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Abstract. We show how factorial regression can be used to analyse numerical model experiments, testing the
effect of different model settings. We analysed results from a coupled atmosphere–ocean model to explore how
the different choices in the experimental set-up influence the seasonal predictions. These choices included a
representation of the sea ice and the height of top of the atmosphere, and the results suggested that the simulated
monthly mean air temperatures poleward of the mid-latitudes were highly sensitivity to the specification of the
top of the atmosphere, interpreted as the presence or absence of a stratosphere. The seasonal forecasts for the mid-
latitudes to high latitudes were also sensitive to whether the model set-up included a dynamic or non-dynamic
sea-ice representation, although this effect was somewhat less important than the role of the stratosphere. The
air temperature in the tropics was insensitive to these choices.

1 Introduction

The question of whether seasonal forecasting has useful skill
is getting increasingly relevant with the progress in climate
modelling. Another question is how we can learn more about
such skills, and one strategy is to examine the models used in
seasonal forecasting. These include state-of-the-art coupled
atmosphere–ocean–land-surface models, built on our knowl-
edge of physical processes and formulated in terms of com-
puter code (Palmer and Anderson, 1994; Stockdale et al.,
1998; Palmer, 2004; George and Sutton, 2006). They can be
used for seasonal forecasting if a correct initial state is pro-
vided, and from which the subsequent evolution can be simu-
lated. Their skill depends on several factors, such as the qual-
ity of the initial states, the representation of all relevant pro-
cesses, and whether the seasons ahead truly are predictable
in the presence of non-linear chaos (Palmer, 1996). Thus, in
order to address the initial question of useful skill for sea-
sonal predictions, we need to understand what is important
and what is irrelevant for the outcome of the predictions,
which includes choices about the model set-up. Here we look
at seasonal forecast results for the air temperature. We know

that the atmosphere in the high latitudes is subject to non-
linear dynamics, and that the effect of different factors may
interfere and amplify or dampen each other (Charney, 1947;
Gill, 1982; Lindzen, 1990; Held, 1993; Feldstein, 2003).

1.1 Background

It is well known that numerical weather prediction (NWP)
has a limited forecast horizon because small initial errors will
grow over time in a non-linear fashion (Lorenz, 1963). The
case for seasonal forecasting is somewhat different, as it re-
lies on slow changes in the ocean and cryosphere, which act
as persistent boundary conditions. NWP and seasonal fore-
casting represent two types of predictability referred to as
“type 1” and “type 2” (Palmer, 1996). Whereas NWP is more
an initial value problem (type 1), the seasonal forecasts em-
beds a degree of the boundary value problem aspect (type
2). Furthermore, seasonal forecasts tend to present the statis-
tics of the weather over a given interval, rather than the exact
state at any instant. In other words, seasonal forecasts can be
compared with predicting a change in the statistics of a sam-
ple of measurements, whereas weather forecasting is more
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like predicting the details about one specific data point in
that sample.

Models used for seasonal forecasting have traditionally in-
volved a model for the atmosphere coupled to an ocean com-
ponent, and were originally developed for the tropical re-
gion and the El Niño–Southern Oscillation (Anderson, 1995;
Stockdale et al., 1998; Palmer and Anderson, 1994). Aspects,
such as sea ice, the stratosphere, and snow cover, were not
emphasised as they were not believed to play an important
role for the seasonal weather evolution. More recent studies
have looked at the potential influence of sea ice (Balmaseda
et al., 2010; Petoukhov and Semenov, 2010; Overland and
Wang, 2010; Francis et al., 2009; Deser et al., 2004; Mag-
nusdottir et al., 2004; Seierstad and Bader, 2008; Benestad
et al., 2010; Orsolini et al., 2012), especially after the recent
dramatic downward trends in the sea-ice extent (Kumar et al.,
2010; Boé et al., 2010; Holland et al., 2008; Wilson, 2009;
Kauker et al., 2009; Stroeve et al., 2007, 2008). Other stud-
ies have involved the effect of snow cover on the atmospheric
circulation (Cohen and Entekhabi, 1999; Ge and Gong, 2009;
Ueda et al., 2003; Hawkins et al., 2002; Watanabe and Nitta,
1998; Orsolini et al., 2013) or the influence of stratospheric
conditions on the lower troposphere (Baldwin and Dunker-
ton, 2001; Baldwin et al., 2003; Thompson et al., 2002). Few
of these studies, however, have looked at how these different
factors in combination may interfere with each other, nor has
there been many sensitivity tests for investigating how the
model set-up, with different combinations of the components
representing these different aspects, affects the results. One
question we would like to address is whether the response
to these different factors adds linearly or if the response is a
non-linear function of these factors. Furthermore, it is inter-
esting to find out which of these factors are more dominant
than others. Moreover, our objective was to try to understand
which processes simulated by the model are more impor-
tant, rather than what real signals there are in nature. In this
sense, this was a so-called perfect model study (Day et al.,
2014). We present the combination of an experimental de-
sign (Williams, 1970; Kleijnen and Standridge, 1988; Klei-
jnen, 2015) and analytical techniques that can address this
question. The results were taken from a “synthesis” experi-
ment with a moderately high-resolution earth system model.
Hence, these numerical experiments constitute a kind of sen-
sitivity study (Bürger et al., 2013).

2 Method and data

2.1 Model simulations

The model used in this study was the EC-Earth version 2.1
state-of-the-art earth system model (Hazeleger et al., 2010),
which had been developed by a consortium of meteorological
institutes/universities across Europe. The atmospheric com-
ponent of the EC-Earth model was based on ECMWF’s Inte-
grated Forecasting System (IFS) cycle 31R1 with a new con-

vection scheme and a new land surface scheme. The ocean
component was based on version 2 of the NEMO model
(Madec, 2008), with a horizontal resolution of nominally
1× 1 ◦ and 42 vertical levels. The sea-ice model was the
LIM2 model (Fichefet and Maqueda, 1997). The ocean–ice
model was coupled to the atmosphere–land model through
the OASIS 3 coupler (Valcke, 2006).

The synthesis experiments consisted of a set of 12 coupled
model simulations. Six of these simulations used the L62
vertical resolution for the atmospheric component, which ex-
tended up to 5 hPa, while the other six used the higher res-
olution L91 version, which extended up to 0.01 hPa. These
two sets of experiments were designed to determine the sen-
sitivity of model results to a better representation of the
stratosphere. Further, to evaluate the role of sensitivity to
the representation of sea ice, the LIM2 sea-ice model was
implemented as a standard thermodynamic–dynamic model
(DyIce) and as a thermodynamic-only model (NoDyIce). Fi-
nally, sensitivity to initial conditions was tested by introduc-
ing perturbations to initial conditions corresponding to pos-
itive/negative NAO SST (North Atlantic Oscillation sea sur-
face temperature) anomaly patterns over the North Atlantic
(Melsom, 2010). All simulations started on 1 January 1990
and lasted 90 days. The initial conditions used in this ex-
periment came bundled with the earlier (test) versions of
EC-Earth (up to V2.1) and were based on ERA-Interim. An
overview of the model simulations is listed in Table A1.

2.2 The analysis

Here the experiments and analysis used an approach known
as “factorial design” (Yates and Mather, 1963; Fisher, 1926;
Hill and Lewicki, 2005; Wilkinson and Rogers, 1973; Ben-
estad et al., 2010), where a factorial regression was used to
assess which influence each of the choices in the model set-
up has on the forecasts. It is a technique that can analyse sets
of factors which are considered to have potential effects on
the outcome in experiments, where an analysis of variance
(ANOVA; Wilks, 1995) provides estimates for error bars and
the level of statistical significance. Hence, factorial regres-
sion offers an alternative to traditional ways for estimating
statistical significance used in meteorology and climate sci-
ences, such as difference tests between two ensembles. Fac-
torial regression can be applied to data that are generated by
a process that involves two or more factors (set-up options or
categories) and are difficult to quantify due to their discrete
nature (e.g. some factors may either be present or absent). It
has been used to analyse the effect of introducing different
crop varieties in agriculture (e.g. Baril et al., 1995; Vargas et
al., 1999, 2006; Voltas et al., 2005). It is based on the con-
cept “factorial experiment”, or factorial design, in statistics,
which involves two or more factors, each of which can be
assigned a category or a discrete value. This kind of analysis
takes all possible combinations of levels over all such factors
including their interactions into account.
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Figure 1. Map of monthly mean air temperature difference at 200 hPa between the high-top and low-top experiments for month 3.

The model response to different initial conditions or dif-
ferent model set-ups with different options for three configu-
rations (SST perturbation, model top, and sea-ice model) was
investigated, and a comparison was made between the differ-
ent experiments in terms of vertical and horizontal cross sec-
tions of temperature anomalies. If the final response 1T is a
linear function of sea ice, SST, and stratospheric effects, then
it can be expressed as a sum of these different contributions
1T = x1C(sea ice)+ x2C(SST)+ x3C(stratosphere), where
C(. . .) signifies the difference in outcome due to different
choices in terms of one option setting. The factorial regres-
sion provided an estimate of the coefficients xi and their error
estimates. In a non-linear case, this linear expression is un-
likely to provide a good description, and the regression anal-
ysis will yield large errors and low statistical significance.

We did not know the relative strength of the different
factors in terms of an input; however, the factorial regres-
sion quantified the differences between output from differ-
ent combinations of subsets. It was also used to estimate the
probability that the response in the different combinations of
these subsets would be due to chance. The results from the
factorial regression were subsequently used to explore the
combined effect of several factors.

The Walker test was used to assess the false discovery
rate of the p values found in the factorial regression (Wilks,
2006). The test involved comparing the minimum p value pn
from the local tests with pW = 1−(1−α)1/K forK locations
and the statistical significance level α. If pn <pW then the

expected fraction of local null hypothesis with incorrect re-
jections is smaller than the number of statistically significant
local p values.

3 Results

Figures 1 shows the difference in the forecasts’ associated
stratosphere, more specifically between the low-top (L62)
and high-top (L91) versions of the atmosphere for month 3. It
presents horizontal transects at the 200 hPa level, and shows
the monthly mean temperature starting with a 2-month lead
time. The left panels show results with no initial perturba-
tion (neutral NAO conditions), the middle panels show re-
sults from model simulation with initial conditions set at a
positive phase of NAO, and the right panels results for which
the initial conditions were the negative phase of the NAO. All
the panels show that there were differences between the low-
and high-top results, and the difference between the low- and
high-top model simulation was most pronounced at negative
and positive NAO-type initial conditions (not shown). Hence,
the forecasted air temperature was sensitive to the inclusion
of the upper part of the atmosphere, and the effect can be seen
extending throughout the entire vertical extent of the atmo-
sphere (not shown). The differences between the upper and
lower rows show the effect of dynamic vs. non-dynamic sea-
ice representation. With a non-dynamic sea ice, the inclusion
of a stratosphere resulted in stronger vertical dipole patterns
at certain longitudes and for positive NAO initial conditions.
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For the negative NAO initial conditions, the dynamical sea-
ice representation amplified the differences between the L91
and L62 model simulations.

Figure 1 suggests that the effect of including the strato-
sphere and the representation of sea-ice matter for the mid-
latitude regions to the polar regions, and the choice of the ver-
tical levels had less impact in the tropics. The response sug-
gests mid-latitude wave-like structures in the 200 hPa tem-
peratures, albeit with a tendency of a coherent anomaly over
the North Pole. The choice of the sea-ice representation had
a visible impact on the simulation of the monthly mean tem-
perature after 3 months, seen as the difference between upper
and lower panels. The horizontal picture at 200 hPa (Fig. 1)
suggests radically different wave structure for the negative
NAO phase, however, whereas for the respective “positive”
and “neutral” NAO states, the differences were seen in both
regional details and in magnitude. The exact geographical
structure in these maps is not the important point here, as
the longitude of action will depend on the initial condition.
The important information here is the pronounced response
in the mid-latitudes to high latitudes.

In summary, it is apparent from Fig. 1 that the effect of
different model aspects such as the choice of model top and
sea-ice representation influenced the model forecasts. Fur-
thermore, we see that the influence varied with the initial
SST conditions, and that different sea-ice representation in-
troduced changes in the forecast of similar magnitude as the
influence of the model top. It is difficult to compare these
effects with that of the initial conditions merely from Fig. 1;
however, we compared the effect from these different aspects
through the means of a factorial regression. The ANOVA for
the factorial regression yielded a set of coefficients β describ-
ing the association between the temperature and the model
set-up choice, as well as the associated error bars’ ε and
p values.

Figure 2 presents the coefficients and the error estimates
from the factorial regression. The top panel shows the mean
air temperature for the model forecasts with a model set-up
of dynamical sea-ice component, no perturbation in the SST,
and 62 vertical levels (low top). Panels b–e show the differ-
ences in the forecasts due to different choices in the model
set-up in terms of the regression coefficients β, and panels
f–i show error estimates for these coefficients. Regions with
large values estimated for the coefficients and large errors
suggest a high sensitivity but also that the response cannot
readily be attributed to the given factor. In other words, the
level of both the signal and the noise is high. The magnitude
of the error was mainly below 3 K except for around 100◦ E
near the 100 hPa level, and generally smaller than the influ-
ence of the variable. The results suggested that the forecasts
were sensitive to both the representation of the sea ice and
the inclusion of the stratosphere, as well as the initial condi-
tions. The analysis also suggested that the magnitude of the
effect of the sea-ice representation and the model top was
similar to those of the different SST perturbation near 60◦ N.

Furthermore, the error estimates associated with the three
factors (SST perturbation, sea-ice representation, and atmo-
sphere top) exhibited similar magnitudes and spatial struc-
ture. A comparison between the different panels in Fig. 2
suggests that the different choices for model set-up had sim-
ilar magnitude on the predicted outcome for all these factors.

The previous results have indicated a high sensitivity to
the various choices in the model set-up; however, we need to
examine the relationship between the regression coefficients
and error estimates in order to infer whether any has a sys-
tematic effect on the model predictions. Figure 3 shows the
ratio response to error for sea ice (upper), positive NAO SST
perturbation (second from the top), negative NAO SST per-
turbation (third), and the stratosphere L91 (bottom). Only
a small region had a response that was greater in magni-
tude than the error estimate for the sea ice, whereas for the
SST perturbations and the stratosphere, the regions where the
response-to-error ratio had a magnitude greater to unity were
more extensive. Both large negative and positive values indi-
cate that the signal is stronger than the noise |β /ε|> 1, as β
may be both positive and negative, whereas ε is positive.

The factorial regression gave the highest number of low
p values for the stratosphere (L91), followed by the SST per-
turbation (not shown). For most of the 60◦ N vertical transect,
the sea-ice representation did not yield a large response com-
pared to the error term. Furthermore, for a global statistical
significance level of α = 0.05 and K = 3840, the threshold
value for the Walker test was pW = 1.3× 10−5. The min-
imum p value for sea ice was 0.01, for SST perturbation
pn = 9.2× 10−4 and the stratosphere pn= 1.6× 10−4. In
other words, the 12-member experiment was not sufficient to
resolve the response in the air temperature forecast at 60◦ N
for month 3 to the different set-up options; however, they did
suggest that the model top had the greatest impact on the
forecast. The lack of a clear dependency between the sea-ice
representation and the forecast was also found for the sum-
mer in Benestad et al. (2010), and the obscure links between
the factors and the response may be explained by the pres-
ence of strong non-linear dynamics, where one given factor
may result in different forecasts depending on other influ-
ences.

The question of degree of non-linearity can be addressed
by comparing the sum of the influence from the different fac-
tors with simulations with and without a set of factors com-
bined; i.e. we check for the equivalency:

DyIce pNAO L91 − NoDyIce nNAO L62

≈ (DyIce − NoDyIce) nNAO L62

+ NoDyIce (pNAO − nNAO) L62

+ NoDyIce nNAO (L91 − L62). (1)

Here, the left-hand side of Eq. (1) (Fig. 4a) shows the dif-
ference between the simulation with high top, dynamic sea
ice, and positive NAO perturbation (DyIce pNAO L91) and
that with low top, non-dynamic sea ice, and negative NAO
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Figure 2. Coefficients and error estimates from the factorial regression of air temperature at 60◦ N. These results describe the systematic
differences associated between the different choices in the model set-up.

(NoDyIce nNAO L62). We compared Fig. 4a with the sum
of the differences from individual factors (right-hand side
of Eq. 1, Fig. 4b), and the comparison showed that the
non-linear model response was mainly confined to the mid-
latitudes to high latitudes, especially in the Northern Hemi-

sphere (Fig. 4c), e.g. along the 60◦ N transect presented in
Fig. 3.
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Figure 3. The ratio of the factorial regression coefficients to the er-
ror estimate for different factors: (a) sea-ice representation, (b) pos-
itive NAO SST perturbation, (c) negative NAO SST perturbation,
and (d) the model top L91/stratosphere (bottom).

4 Discussion

The set of sensitivity experiments shows that seasonal fore-
casts at mid-latitudes to high latitudes are sensitive to a num-
ber of factors concerning the model set-up, and that the
choice of subjective and subtle options can have as strong an

Figure 4. Monthly mean air temperature at 60◦ N. (a) Difference
between DyIce pNAO L91 and NoDyIce nNAO L62. (b) Sum of the
differences: NoDyIce (pNAO-nNAO) L62, (DyIce-NoDyIce) nNAO
L62, and NoDyIce nNAO (L91-L62). (c) Difference between (a) and
(b).

effect on the monthly mean temperature poleward of the mid-
latitudes as the initial conditions. A factorial design experi-
ment allows us to assess the relative magnitudes of different
model height with that of different sea ice or different SST
perturbations. We can also test the response in the model to
see if it is close to being a linear superposition of the different
single factors, or if the model response is highly non-linear.
The statistical significance was estimated based on the fac-
torial regression. The magnitude of the effect of the sea ice,
SST perturbations, and the model top height were roughly
similar, although the response to the sea ice was somewhat
weaker than the others. The lower ratio of estimate-to-error
also reflected the degree of non-linearity, and the relatively
higher p values associated with the sea ice may be due to
a greater degree of non-linearity in the response to the sea-
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ice representation. The experiment nevertheless suggested
that stratospheric conditions are important for mid- to high-
latitude seasonal forecasting. This experiment was only car-
ried out for the northern hemispheric winter, and may change
with season. The stratosphere decouples in the summer, and
there was a hint of a weaker influence from the model top in
the Southern Hemisphere when it was summer.

There is previous work in which model sensitivity and un-
certainty have been assessed (e.g. Rinke et al., 2000; Wu et
al., 2005; Pope and Stratton, 2002; Jacob and Podzun 1997;
Knutti et al., 2002; Dethloff et al., 2001); however, most of
these assessments have been carried out for climate simula-
tions as opposed to seasonal forecasts. In seasonal forecast-
ing, the emphasis has been more on multi-model forecasts
and their spread (Weisheimer et al., 2009), rather than the
configuration of single models. However, Jung et al. (2012)
discussed the effect of the spatial resolution on seasonal fore-
cast based on an experimental design with a single model.
The use of factorial regression was also discussed by Rinke et
al. (2000) in conjunction with climate simulations, and Ben-
estad et al. (2010) used it in a study of seasonal predictabil-
ity and the effect of boundary conditions associated with sea
ice and initial conditions. This study applied factorial regres-
sion to a new set of model configuration options, including
the model top, the representation of sea ice, and initial con-
ditions. In this case, we emphasised the individual factors
rather than their interaction because of the limited sample
of model runs. An inclusion of these interactive factors can
give an indication of the effects of changing more than one
option at the time (given a sufficient sample), e.g. how the
combination of different vertical extent, sea ice model, and
initial conditions results in a different outcome. However, we
addressed this issue separately in this study by comparing
the different terms in Eq. (1), which indeed suggested that
the results from changing more than one factor give a non-
linear response. These aspects require more efforts to form a
better understanding, both in terms of larger ensemble exper-
iments and understanding of the physics involved. However,
the objective here was to try to find potential additional ex-
planations for why seasonal forecasting has been associated
with such low skill in mid-latitudes, in addition to the higher
degree of non-linear dynamics in connection to weather pat-
terns.

These experiments involved global coupled atmosphere–
ocean models that are used for operational seasonal fore-
casting, especially for the El Niño–Southern Oscillation
(ENSO); however, our analysis focused on the mid-latitudes.
The results nevertheless allow for a comparison between the
tropics and higher latitudes. They suggest that the outcome of
the predictions in the mid-latitudes is sensitive to the choice
of the top of the atmosphere and the representation of sea ice,
but the low latitudes are insensitive to these factors. Hence,
they support the hypothesis that the lack of seasonal pre-
diction skill reported in the mid-latitudes may be linked to
non-optimal model configuration. Further insight from these
experiments moreover includes (1) that subjective choices in
terms of model set-up (vertical levels and type of sea-ice rep-
resentation) have an effect on the outcome of the seasonal
forecasts in the high latitudes, (2) that factorial regression can
be used as a means to describe the effect of different model
options, and (3) that the effect of these different choices re-
sults in a non-linear response. These aspects have rarely been
discussed in the past, perhaps because they do not have a
strong effect on the simulation of processes in the tropics
(e.g. ENSO).

5 Conclusions

A set of sensitivity tests revealed that seasonal predictabil-
ity of the temperature at the mid-latitudes to high latitudes
was as sensitive to subjective choices regarding the model
set-up as the initial SST conditions. Hence, these results il-
lustrate the difficulties associated with seasonal forecasting
at the higher latitudes with an effect on the forecast skill. The
tropical temperatures were insensitive to these choices, and
the sea-ice representation and the stratosphere do not have a
visible effect on, e.g., ENSO forecasts.

6 Data availability

The data presented here are available from http://www.
figshare.com, doi:10.6084/m9.figshare.4131375s.
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Appendix A

Experiment Description

1. DyIce neutNAO L62 EC-Earth with L62 vertical resolution and no perturbations to initial conditions and a
thermodynamic–dynamic LIM2 sea-ice model

2. NoDyIce neutNAO L62 Same as above but with thermodynamic-only sea-ice model

3. DyIce neutNAO L91 Same as 1. above but with L91 vertical resolution

4. NoDyIce neutNAO L91 Same as 2. above but with L91 vertical resolution

5. DyIce pNAO L62 Same as 1. above but with perturbation to initial condition corresponding to a positive
NAO SST anomaly pattern over the North Atlantic

6. NoDyIce pNAO L62 Same as 5. above but with thermodynamic-only sea-ice model

7. DyIce pNAO L91 Same as 5. above but with L91 vertical resolution

8. NoDyIce pNAO L91 Same as 6. above but with L91 vertical resolution

9. DyIce nNAO L62 Same as 5. above but with perturbation to initial condition corresponding to a negative
NAO SST anomaly pattern over the North Atlantic

10. NoDyIce nNAO L62 Same as 9. above but with thermodynamic-only sea-ice model

11. DyIce nNAO L91 Same as 9. above but with L91 vertical resolution

12. NoDyIce nNAO L91 Same as 10. above but with L91 vertical resolution
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