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Abstract 24 

Low-cost air quality sensors offer high-resolution spatiotemporal measurements that can be used 25 

for air resources management and exposure estimation. Yet, such sensors require frequent 26 

calibration to provide reliable data, since even after a laboratory calibration they might not report 27 

correct values when they are deployed in the field, due to interference with other pollutants, as a 28 

result of sensitivity to environmental conditions and due to sensor aging and drift. Field calibration 29 

has been suggested as a means for overcoming these limitations, with the common strategy 30 

involving periodical collocations of the sensors at an air quality monitoring station. However, the 31 

cost and complexity involved in relocating numerous sensor nodes back and forth, and the loss of 32 

data during the repeated calibration periods make this strategy inefficient. This work examines an 33 

alternative approach, a node-to-node (N2N) calibration, where only one sensor in each chain is 34 

directly calibrated against the reference measurements and the rest of the sensors are calibrated 35 

sequentially one against the other while they are deployed and collocated in pairs. The calibration 36 

can be performed multiple times as a routine procedure. This procedure minimizes the total number 37 

of sensor relocations, and enables calibration while simultaneously collecting data at the 38 

deployment sites. We studied N2N chain calibration and the propagation of the calibration error 39 

analytically, computationally and experimentally. The in-situ N2N calibration is shown to be 40 

generic and applicable for different pollutants, sensing technologies, sensor platforms, chain 41 

lengths, and sensor order within the chain. In particular, we show that chain calibration of three 42 

nodes, each calibrated for a week, propagate calibration errors that are similar to those found in 43 

direct field calibration. Hence, N2N calibration is shown to be suitable for calibration of distributed 44 

sensor networks. 45 

 46 
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Capsule 47 

Node-to-node calibration is proposed as a general method for field calibration of wireless 48 

distributed air-quality sensor networks. 49 

 50 

Introduction 51 

Air pollution is known to levy severe health effects and high risks for the public 1-3, hence air 52 

quality is regularly monitored in many regions worldwide. Regulatory air pollution monitoring is 53 

mainly performed by stationary and routinely calibrated reference Air Quality Monitoring (AQM) 54 

instruments, which measure the concentrations of different criteria pollutants, typically ozone (O3), 55 

nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), and particulate matter (PM). 56 

While AQM stations provide reliable and accurate measurements, they are expensive to install and 57 

to operate, and require professional maintenance and personnel. Therefore, the spatial distribution 58 

of AQM stations is rather sparse. The use of geospatial interpolation or regression methods for 59 

estimating ambient concentrations of (and exposure to) monitored pollutants away from the AQM 60 

stations is a common procedure for bridging over the sparse spatial availability of the observations 61 

4-8. Yet, such a mapping is significantly affected by the spatial distribution of the stations 4 and the 62 

temporal resolution of the reported data, and may involve spatially biased model errors 9. Such 63 

model errors tend to propagate when concentration maps are used for, e.g., exposure estimation, 64 

in particular in areas that are characterized by considerable spatiotemporal concentration 65 

variability 9-12. 66 

Recently, miniaturization of sensor technology has enabled deployment of multi-sensor 67 

Micro Sensing Units (MSUs, hereinafter nodes) as part of Wireless Distributed Sensor Networks 68 

(WDSNs) for air quality measurements 13-16. Dense deployment of such sensor nodes can capture 69 
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the spatiotemporal variability of urban air pollution and provide more reliable exposure and risk 70 

estimates. Yet, these sensors have limited accuracy 16, tendency to degrade and age relatively fast 71 

17, 18, and they suffer from severe interference by co-existing airborne pollutants and 72 

meteorological parameters 19, 20. Many of these limitations are normally unaccounted for during 73 

lab testing and calibration, which are performed in controlled chambers 15, 20, 21. These limitations 74 

call for frequent field calibrations under real environmental conditions, to assure reliable 75 

measurements. 76 

Field calibration of WDSN sensors has been studied using the so-called collocation 77 

procedure, where the nodes are placed next to a standard AQM station and the time series recorded 78 

by the sensors are regressed against the co-measured AQM data 15, 16, 19-25. Specifically, this 79 

approach relies on placing the sensor next to a reference device for a certain time-period, averaging 80 

the rich sensor data to fit the lower sampling frequency of the reference device, and performing a 81 

pairwise linear-regression between the sensor and the AQM datasets. The regression coefficients 82 

are then used to correct the sensor measurements and make them follow the reference data. 83 

Let y and x be the registered measurements by the reference device and by the WDSN 84 

sensor, respectively. Assuming a linear relationship between y and x 16, 24, 85 

     y x e  ,  (1) 86 

where   and   are the slope and intercept of the linear model, respectively, and e is a vector of 87 

the model errors, which are assumed to have a zero mean. Let ̂  and ̂  be the estimated 88 

coefficients that are obtained using the collocation data. The calibrated measurements, x̂ , are 89 

given by: 90 

 ˆˆˆ    x x  .  (2) 91 
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It is noteworthy that the length of the collocation period in which the sensors are adjacent to the 92 

AQM station until a reliable calibration is obtained may vary, depending on the environmental 93 

conditions 16, 18, 26, 27 and the sensor technology 21, 22. Moreover, relocating the sensor nodes to the 94 

AQM station for calibration is labor intensive, and for a WDSN with a large number of nodes can 95 

become cumbersome. Frequent relocations of nodes to the AQM station for calibration involve 96 

also loss of measurements until the sensors are returned to their prescribed deployment sites. As 97 

such, this strategy counteracts the main advantage of the WDSN concept – richness and continuous 98 

data. 99 

A field calibration procedure that does not require collocation at an AQM station has been 100 

suggested 28 for cases where the measurement errors comply with certain limitations. Yet, since 101 

the sensors are calibrated against the mean reading of all the reporting WDSN nodes, they may 102 

still provide values that do not conform with those measured by a reference device. For example, 103 

if all the sensors have a systematic measurement error this method will come short of reporting 104 

accurate concentrations 16. 105 

We propose here an alternative strategy, designated node-to-node (N2N) calibration. The 106 

idea is to employ chain calibration of the sensors in the field, with minimal interruption to the 107 

continuous measurement and fewer hops of the nodes between their deployment sites and the 108 

reference (AQM) site. Whereas N2N calibration is not limited to stationary nodes, for simplicity 109 

we assume in the following WDSNs with stationary nodes. WDSN sensors require proactive 110 

frequent calibrations, therefore a calibration procedure that involves a smaller number of 111 

collocations at AQM stations is advantageous as it enables versatile calibration logistics. 112 

Moreover, continuous measurement at the deployment sites guarantees little missing data and 113 

better spatial and temporal analyses. Reducing the number of collocations is also cost effective 114 
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and environmental friendly, since WDSNs may be deployed quite far from AQM stations, i.e. the 115 

nodes may be closer to each other than to a distant AQM station. 116 

Let 1 2 3 1AQM n nu u u u u       represent a sequence of collocated nodes, 117 

such that sensor 1u  is collocated next to an AQM instrument for a period T. Then it is relocated 118 

and collocated with sensor 2u  (during a non-overlapping period T). Next, sensor 2u  is relocated 119 

and collocated with sensor 3u  (during a non-overlapping period T), etc. Finally, the last sensor nu  120 

is collocated next to sensor 1nu  . At this stage, sensor nu  can be N2N calibrated against the AQM 121 

data. Yet, the process can end also by relocating sensor nu  to the AQM station, such that the N2N 122 

calibration process can be evaluated. Namely, the N2N calibration procedure proposes that all the 123 

sensors  1 2, , , nu u u  are calibrated one against the other in a sequential manner, with all of them 124 

(but 1u ) not collocated at the AQM station. In fact, N2N calibration has been suggested before but 125 

its mathematical model for stationary nodes was developed only for two sequential sensor pairings 126 

27, 29. Similarly, N2N calibration of mobile sensors was also suggested by pairing events, inherent 127 

for roaming sensors mounted on vehicles 18, using Geometric Mean Regression (GMR) to reduce 128 

the propagation of the calibration error relative to Ordinary Least Squares (OLS) regression. 129 

However, the study accounted only for the slope and disregarded the effect of the intercept on the 130 

accumulated calibration error. 131 

Here, we study N2N calibration of stationary sensors both analytically, computationally, 132 

and experimentally, demonstrating the effect of the number and order of the nodes on the 133 

propagation of calibration coefficient errors (slope and intercept) and the overall calibration 134 

uncertainty. We present a detailed derivation of chain calibration equations and of the respective 135 

error propagation, followed by computational results that confirm the analytical derivation and 136 
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reveal certain limitations of the process. Next, experimental results of WDSN nodes that were first 137 

collocated at an AQM station and then deployed in the field are presented, and the N2N calibration 138 

process and the propagation of calibration errors throughout the network are demonstrated. We 139 

conclude by discussing the suitability of the method for field calibration of air quality WDSNs. 140 

 141 

Methods 142 

Theoretical aspects of node-to-node calibration  143 

Let sensor 1u  be collocated next to an AQM reference device for a time-period T1 and let sensor 144 

2u  be collocated next to sensor 1u  for a consecutive time-period T2 that does not overlap with T1 145 

(Fig. 1). Assuming linear relationships between the sensors’ and the AQM station data, the N2N 146 

calibration process implies that for any pollutant we can obtain the calibrated measurements, 2x̂ , 147 

of sensor u2 by applying Eq. (2) sequentially. Namely, by performing a sequence of sensor-to- 148 

sensor calibration we can first obtain 
AQM 1

ˆ


x , i.e. calibration of the raw data from sensor u1 against 149 

the reference AQM data,  150 

 1 1 1
AQM 1

ˆˆˆ  

  x x  , (3) 151 

and then use the calibrated sensor to indirectly calibrate sensor u2 to the reference AQM records, 152 

by calibrating it to u1 while they are collocated, 153 

       2 1 1 1 2 2 2 1 1 2 2 1 2 1
1 2

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ          


             x x x x  . (4) 154 

Clearly, a similar chain calibration can be applied for longer sensor sequences. For example, for a 155 

chain of three sensors that are calibrated against each other during non-overlapping time-periods 156 

with only one sensor collocated next to a reference device, the equivalent expression is 157 

       3 1 2 3 3 3 2 1 1 2 3 3 1 2 3 1 2 1
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ                           x x x  . 158 
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  (5) 159 

This expression can be easily generalized to a sequence of n  sensors in a row, with the calibrated 160 

measurements of the nth sensor, ˆ nx , being 161 

 
1

1
1 2 1

ˆ ˆˆ ˆˆ
jn n

n i n i j
i j i

   


  

          
    
  x x  . (6) 162 

Due to the linear nature of the process, Eq. (6) reveals that the order of the sensors in the calibration 163 

sequence is unimportant. In a more concise writing, the linear regression of un against the AQM 164 

data can be written as 165 

 
AQM AQM

ˆˆˆ n n
n n

 
 

  x x  , (7) 166 

where 167 

 
AQM

1

ˆ ˆ
n

i
n

i

 




  , (8) 168 

and 169 

 
1

1
AQM 2 1

ˆ ˆ ˆˆ
jn

i j
n j i

   


  

  
    

  
   . (9) 170 

It is noteworthy that 
AQM

ˆ
n




 depends on all the estimated sensor-to-sensor regression slopes, ˆi , 171 

and that the intercept,
AQM

ˆ
n




, is affected both by the slopes, ˆi , ( except for ˆn ) and the intercepts, 172 

î . Consequently, the estimation errors of the regression coefficients of each sensor in the 173 

calibration chain propagate throughout the N2N calibration procedure and accumulate in the 174 

overall calibration error. Yet, as will be demonstrated, by carefully tracking the propagation of the 175 

calibration errors throughout the N2N calibration it may be possible to detect the failure of specific 176 

sensors. 177 
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 178 

 179 

Figure 1. Schematic representation of the N2N calibration process. In blue are the sensors’ initial 180 

deployment locations. Black dashed arrows represent sequential relocations of the sensor nodes, 181 

with time progressing from left to right and with each dashed line representing a non-overlapping 182 

period of T days (for practical reason, iT T ). Blue arrows represent node-to-AQM or N2N 183 

calibrations, with time progressing from left to right and with each arrow representing a new 184 

calibration period. Collocation sites are designated by boxes. The double headed red arrow 185 

represents the first T-days period following the current n·T days sequence length, where both 186 

evaluation of the N2N calibration and analysis of the propagation of the calibration errors can be 187 

performed, and correction measures can be applied by re-calibrating the nth sensor. This sensor 188 

serves as the first calibrated sensor in a new calibration sequence. 189 

 190 

Error propagation in N2N calibration  191 

Let 2
ˆi

s , 2

î
s
 , and ˆˆi i

s
   be the variance and covariance of the calibration coefficients ˆi  and î  192 

between sensors iu  and 1iu   (where 0u is the reference AQM sensor). For simplicity, we designate 193 
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AQM
ˆ ˆ

n
 


  and 

AQM

ˆ ˆ
n

 


 . According to the error propagation theorem 30, the errors of these 194 

calibration coefficients are given by 195 

 

22

2 2
ˆ ˆˆ ˆ ˆ

1 1 1

ˆ ˆ ˆ ˆ
ˆ ˆˆ ˆ    

   
    

       
              
  i i i i

n n n

i i ii ii i

s s s s  , (10) 196 

 

2 2

2 2
ˆ ˆ ˆˆ ˆ

1 1 1

ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ   

   
    

        
               
  i i i i

n n n

i i ii ii i

s s s s  , (11) 197 

Using Eqs. (8) and (9) for calculating the partial derivatives of ̂  and ̂  (see details in the 198 

electronic Supporting Information) and assuming that they are uncorrelated (e.g. ˆˆi i
s
  =0, see 199 

justification below), the calibration error of any measurement by sensor un, i.e. which accompanies 200 

Eq. (7), is 201 

 
22

2 2 2 2 2
ˆ ˆˆ ˆˆ

ˆ ˆ
ˆˆn

n n
x n

x x
s s s x s s   

            
 , (12) 202 

where nx  is an element of nx . The normalized calibration error is 203 

 
2 2 2 2

ˆ ˆˆˆ 2
ˆˆ 2 2

n

n

nx
x

n n n

x s s ss
s s

x x x
  




     . (13) 204 

Due to having 2
nx  in the denominator of Eq. (13), the normalized calibration error has a lower 205 

bound ( ˆˆlim
n

nx
s s

x ) but it is unbounded for very low xn. Thus, in general, low measurements  nx  206 

are expected to show higher normalized calibration errors. Moreover, Eqs. (10)-(13) suggest that 207 

the overall calibration error increases with the length of the calibration sequence. 208 

 209 

  210 
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Computational calculation of the propagation of calibration errors  211 

To examine the theoretical predictions (Eq. 13), we used half hourly O3 concentrations measured 212 

during 14 days in winter 2014 by 16 collocated sensor nodes (Elm, Perkin Elmer, USA; see sensor 213 

specifications in the SI), and calculated the linear regression coefficients between each pair of 214 

sensors (120 pairs in total). The negligible mean covariance between the slope and the intercept, 215 

ˆˆ
0.04 0.03

i i
s
 

   , supports our assumption to ignore it in Eq. (12). Starting with a single pair 216 

of sensors (i.e. a chain length of one), we simulated adding one sensor at a time and generating 217 

sensor sequences of increasing lengths, from one and up to 20 sensors. To simulate the N2N 218 

calibration process, the sensor sequence was developed by drawing a random pair from all the 219 

permissible possibilities, accounting for the last sensor that has been added but allowing the use 220 

of sensors more than once throughout the calibration process (as will be demonstrated in the field 221 

study, Fig. S1). To avoid a possible selection bias, construction of the calibration chains was 222 

repeated 10 times, creating 10 different sequences for each sensor-chain length. The regression 223 

coefficients between each pair in the sequence were used for calculating the normalized calibration 224 

error, Eq. (13), as sensors were added to the chains. 225 

As derived theoretically, the normalized calibration error is larger for lower concentrations, 226 

nx , regardless of the sensor sequence length, and it increases with the sensor sequence length (Fig. 227 

2) and can attain large values for long chains. However, this can be circumvented by avoiding long 228 

calibration chains and/or by using better sensors (e.g. super-nodes), since the rate at which the 229 

calibration errors accumulate depend on the performance of individual sensors. In general, more 230 

accurate sensors enable maintaining longer calibration chains before the error exceeds a preset 231 

threshold. 232 

 233 
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 234 

Figure 2. Normalized calibration errors (Eq. 13) of N2N calibration as a function of the length of 235 

the sensor sequence. The curves represent average results of 10 chains for which the concentration 236 

reported by the last sensor to be added, nx , is as noted. The color of the dots represents the STD 237 

of the 10 chains (of the same length and nx ). 238 

 239 

Experimental design 240 

Study area 241 

To evaluate the N2N calibration procedure (Fig. 1), air quality measurements were conducted in 242 

the Neve Shaanan neighborhood and at the Atzmaut downtown area of the Mediterranean coastal 243 

city of Haifa, Israel (Fig. 3). Collocation measurements were performed at two AQM stations, 244 

located in two different yet typical urban microenvironments. The Neve Shaanan (NSH) AQM 245 

station is located in a planar residential area on the northeastern slop of Mount Carmel, about 200 246 

m a.s.l. A major road crosses the neighborhood and connects the northeastern and southwestern 247 

slopes of the Carmel Ridge, passing through the Ziv junction - a small yet busy neighborhood 248 

commercial area. The mean traffic volume in the neighborhood during the day ranges from 300 249 
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vehicles h-1 in quiet roads and up to 2000 vehicles h-1 in the neighborhood main artery. The 250 

Atzmaut (ATZ) AQM station is a roadside (e.g. transportation affected) site, located in a 251 

downtown commercial area near the Haifa harbor and train station. The mean daytime traffic 252 

volume in its vicinity is ~3000 vehicles h-1. 253 

 254 

 255 

Figure 3. Study area, with the Neve Shaanan and Atzmaut AQM stations (marked by triangles) 256 

and the Neve Shaanan neighborhood (marked by a red polygon). 257 

 258 

Sensor technologies 259 

Two ambient pollutants were studied: NO (a primary pollutant emitted in urban areas mainly by 260 

traffic) and O3 (a secondary pollutant). The measurements of these pollutants were performed by 261 

distinct sensor technologies and platforms. Namely, ambient O3 concentrations were measured 262 

using metal oxide (MO) sensors (Aeroqual, New Zealand) mounted in Elm nodes (Perkin Elmer, 263 

USA) 16 whereas NO concentrations were measured using electrochemical (EC) sensors 264 

(AlphaSense, UK) mounted in AQMesh pods (Geotech, UK) 15 (see the SI for additional sensor 265 
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specifications). Data were recorded every 30 min (O3) and 15 min (NO) by the two WDSN arrays 266 

(Table 1). 267 

 268 

Table 1. Details of the collocation campaigns. 269 

Experiment* Pollutant 

Sensor type 

& platform† 
Sensor ID AQM station Collocation period 

Set 1 O3 MO (PE)  414, 422, 624, 626 Neve Shaanan (29/04/14) – (28/05/14) 

Set 2 O3 MO (PE) 418, 621, 620 Neve Shaanan (09/06/14) – (10/07/14) 

Set 3 NO EC (GT) 135, 136, 468 Atzmaut (03/02/15) – (26/02/15) 

Set 4 NO EC (GT) 220, 465, 471 Atzmaut (27/02/15) – (28/04/15) 

* Sensor data in Sets 1 & 2 were re-sampled from the original time resolution (15 min) to the AQM time resolution (30 min). AQM data 270 

in Sets 3 & 4 were re-sampled from the original time resolution (5 min) to the sensor time resolution (15 min). 271 

† MO – metal oxide, EC – electrochemical, PE - Perkin Elmer (USA), GT – Geotech (UK) 272 

 273 

Calibration period 274 

It has been shown 16 that convergence of the estimated regression coefficients requires a minimum 275 

calibration period. Let ct  be the number of collocation days needed until convergence of the 276 

calibration coefficients is attained, T be the actual number of days of sensor collocations, and   277 

be the number of days a sensor can operate reliably between consecutive calibrations. Assuming 278 

ct  and   to be constant (i.e. not to change from collocation to collocation or among seasons), the 279 

N2N calibration (Fig. 1) can be applied for a sequence length of n T  sensors before re- 280 

collocation at the AQM station of one of the nodes. Both   and ct  are sensor characteristics that 281 

depend on the quality of the sensors and their sensitivity to the measurement conditions (physical 282 

environment, meteorology, etc.) 16,19,20. On the other hand, T  can be arbitrary as long as cT t . 283 
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Clearly, smaller T values enable longer chain sequences, n. It is noteworthy that according to the 284 

N2N calibration scheme (Fig. 1), each sensor is relocated and calibrated only once in  days. 285 

Moreover, applying a continuous N2N calibration, each sensor will be eventually collocated at the 286 

AQM station once in n   days (for a period of T days) and directly calibrated against data 287 

collected by the AQM reference instrument. Since depends on the sensor technology and 288 

environmental conditions, it must be carefully assessed as part of the calibration scheme. Based 289 

on our previous work 16, 20, a conservative estimate of  for both the O3 and NO sensors used in 290 

this study is six weeks (based on continuous sensor monitoring for up to five months and 291 

accounting solely for sensor aging). 292 

The minimum number of collocation days needed for reliable calibration of a given sensor 293 

type, ct , was determined based on the convergence of the calibration coefficients and of the 294 

regression goodness of fit (coefficient of determination, R2). We calculated the linear regression 295 

(Eq. 2) based on an increasing number of records, taking 24 h (i.e. daily) incremental steps as 296 

practical time steps of a field calibration procedure. Specifically, each additional calibration day 297 

added 48 (O3) or 96 (NO) data points. The actual number of collocation days for a given sensor 298 

type, T, was set as the fixed (protocol) period for field calibration of all the sensors of this type 299 

throughout the study, both against the reference AQM device and against each other. Due to 300 

practical reasons, we applied a common T that was suitable for both sensor technologies, as 301 

explained below. Initially, all the sensor nodes were collocated at the AQM stations (Table 1), 302 

enabling easy assessment of the required calibration period. 303 

 304 

  305 
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N2N chain calibration 306 

N2N chain calibration was studied using two experimental designs: with the nodes collocated 307 

solely at the two AQM stations and while they were deployed as an operative WDSN in the Neve 308 

Shaanan study area. In the former, we used data from Sets 1-4 (Table 1), where the sensors were 309 

next to the NSH or AZT AQM stations. Two scenarios were examined for each Set, with the same 310 

sensor in each scenario calibrated using three sensor chains (sequences) of different lengths: a 311 

direct calibration of the sensor against the AQM device and indirect calibration through one or two 312 

intermediate sensors. Based on our results, we set the number of collocation days used for 313 

calibration, T, for both sensor-to-AQM and sensor-to-sensor for one week. The calibration error 314 

was calculated for each of the above sequences by comparing the calibrated data of the last sensor 315 

in the chain against the AQM reference data, using records that were not used for the N2N 316 

calibration. This design enabled us to compare direct calibration and N2N calibration under 317 

identical environmental conditions and time-periods, i.e. with minimal uncertainty. Moreover, this 318 

design enabled evaluation of N2N calibration for a varying length of the sensor chains, and thus 319 

to compare the actual propagation of the calibration errors with the computational predictions (Fig. 320 

2). 321 

In the second experimental design, we tested N2N calibration under real deployment 322 

conditions against data from an AQM reference device, using five Elm nodes deployed across the 323 

Neve Shaanan neighborhood, Haifa, between 29/4-29/7, 2014 (with only one node initially 324 

collocated at the AQM station, Figs. 1 and S1). The dynamic deployment plan of the O3 sensors 325 

enabled us to study two N2N calibration sequences (see SI and Fig. S1). Data collected by the last 326 

sensor in the sequence were calibrated by means of the N2N calibration procedure (Eq. 6) and 327 

compared to the measurements of the AQM device, such that the performance of the N2N 328 
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calibration process could be assessed. In addition, the measurements of this sensor passed also an 329 

independent (i.e. direct) calibration against the AQM data (Eq. 2), enabling the onset of a new 330 

N2N calibration chain with this node as the first node. To evaluate the accuracy and precision of 331 

N2N calibration we examined the residuals, ˆx , 332 

 ˆ ˆ xε x y  , (14) 333 

and the normalized calibration error,    ˆ k kxε y , of data points that were not used for calibration. 334 

The statistics used for evaluating the N2N calibration are detailed in the electronic Supporting 335 

Information. 336 

 337 

Results and discussion 338 

Calibration period  339 

Data from Sets 1-4 (Table 1) were used for determining the required collocation period, based on 340 

the convergence of ̂ , ̂  and R2 against the calibration period length (Figs. S2 and S3). For the 341 

O3 sensors, convergence of R2 is apparent after seven days whereas for the NO sensors, 342 

convergence of R2 is apparent after two days. As seen, the convergence of the slope, ̂ , is faster 343 

than that of the intercept, ̂ . It is also noteworthy that the slope of O3 sensor 626 (Set 1, Fig. S2) 344 

drifted over time due to the sensor being faulty and not due to a change in the environmental 345 

conditions, as the other sensors did not show a similar pattern. Based on these results, the sensors’ 346 

operational calibration duration, T, was set to be one week for all the sensors (this decision reflects, 347 

in part, practical and convenience considerations). This calibration duration applied for both direct 348 

calibration of the sensors against the AQM device and the N2N (sensor-to-sensor) calibration. 349 

 350 
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Individual sensor performance 351 

Figures 4 and S4 depict scatter plots of directly calibrated ( x̂ ) and AQM ( y ) measurements, and 352 

histograms of the normalized calibration errors. Apart from O3 sensor 626 (Set 1), all the sensors 353 

showed an almost zero mean calibration error. Since the mean absolute error (MAE) of sensor 626 354 

( 626MAE  =5 ppb) was higher than the average MAE of the other O3 sensors in Set 1 ( MAE  =2.7 355 

ppb) while its standard deviation ( MAE,626SD  =4.1 ppb) was similar to the average MAESD  of the 356 

other sensors in Set 1 ( MAESD  =3.5 ppb), sensor 626 is clearly inaccurate, as was already noted. 357 

This analysis shows how a careful examination of the WDSN data can be used to identify faulty 358 

sensors and, therefore, to reduce the propagation of measurement errors throughout the N2N 359 

calibration process, by avoiding their use. 360 

As a contrary example, measured NO concentrations in Set 4 ranged between zero and 361 

about 500 ppb (Fig. S4) and showed a considerably higher standard deviation than in Set 3 (Fig. 362 

4). However, the average of the mean absolute normalized error, which is blind to the magnitude 363 

of the measurement, is similar for Sets 3 and 4 ( MAnE  =26% and 21.3%, respectively), and the 364 

MAnESD  of these sets is 35% and 30%, respectively. Hence, it seems that the NO sensors performed 365 

well during Set 4 measurements and that the higher NO concentrations measured in Set 4 (0-500 366 

ppb) relative to Set 3 (0-300 ppb) were reliable. 367 

Thus, we demonstrated for two pollutants (O3 and NO), two sensor technologies (MO and 368 

EC) and two platforms (Elm and AQMesh) that pooled analysis of calibrated sensor data, collected 369 

by relatively low-cost sensors under common ambient pollutant levels, can be used for assessing 370 

the reliability and performance of individual sensors. 371 
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 372 

Figure 4. Scatter plots of directly calibrated O3 measurements by the Elm nodes (Set 1) against 373 

Neve Shaanan AQM O3 data (a), and of directly calibrated NO measurements by the AQMesh 374 

nodes (Set 3) against Atzmaut AQM NO data (b). The lower row presents the corresponding 375 

histograms of the normalized calibration errors for O3 (c) and NO (d). 376 

 377 

Sensor Calibration Stability 378 

Without continuous calibration the quality of the concentrations reported by the sensors will 379 

quickly deteriorate, deeming the WDSN untrusty. In particular, use of erroneous sensor data for 380 

air resources management, environmental epidemiology studies, or citizen engagement may bias 381 

the estimated exposure and/or raise unwarranted public concerns. For a calibration procedure to 382 

be effective, it should be stable for long time-periods, thus avoiding the need for a frequent 383 

calibration duty-cycle. In practice, however, the stability of the calibration coefficients is limited 384 

and they may change due to varying environmental conditions 16, 18-20, 24. In fact, calibration 385 
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consistency is a problem also of standard monitoring equipment, and AQM operation guidelines 386 

respond to this by requiring frequent automated checks of the monitoring equipment. For example, 387 

the USEPA guidelines require that Level 1 zero and span checks will be performed every two 388 

weeks, and AQM stations in Israel do this automatically on a weekly basis. Similarly, detection of 389 

changes in the sensor calibration coefficients can be achieved by regular surveillance of the 390 

records, as part of a quality assurance/quality control procedure. 391 

Here, we report the stability of the calibration coefficients of four sensors that have been 392 

collocated next to an AQM station for a week (time period I), deployed in another location (time 393 

period II), and then re-collocated at the same AQM station for yet two more weeks (time period 394 

III) (Table 2). Calibration coefficients for each sensor were estimated based on measurements from 395 

the first period and from the first week of the third period. The two sets of calibration coefficients 396 

were applied to raw measurements from the second week of period III, and the calibrated records 397 

were evaluated against the AQM measurements from this period. Figure S5 depicts scatter plots 398 

of the pre-calibrated and the calibrated measurements, and histograms of the normalized 399 

calibration errors. Table 2 reveals that calibrations based on more recent data (i.e. from the first 400 

week of period III) were more accurate, showing considerably smaller node-specific calibration 401 

errors. Specifically, both the MAE and MAnE increased by a factor of ~3(±1.5) over a course of 402 

six weeks, and Figure S5 and Table 2 show that the calibrations of sensors 414 and 626 were less 403 

stable than of sensors 624 and 625. In fact, this is unfortunate since, by chance, the former two 404 

sensors were involved in more re-locations during the evaluation of the N2N calibration procedure 405 

in this study. 406 

  407 
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Table 2. Mean absolute error (MAE) and mean absolute normalized error (MAnE) of calibrated 408 

O3 sensor measurements and AQM data from the second week of period III (16-22/7, 2014), 409 

based on calibrations using measurements from period I (22/5-28/5, 2014) or from the first week 410 

of period III (9-15/7, 2014). 411 

Sensor # 

MAE (ppb) MAnE (%) 

Calibration 

based on 

collocation 

in period I 

Calibration 

based on 

collocation in 

period III 

Calibration 

based on 

collocation in 

period I 

Calibration 

based on 

collocation in 

period III 

414 5.5 1.9 13.2 4.8 

624 3.1 1.6 7.3 3.9 

625 2.8 1.3 6.7 3.3 

626 6.8 1.3 17.7 3.4 

 412 

 413 

Evaluation of Node-to-Node Calibration 414 

Collocated nodes 415 

The MAE and MAnE of all the N2N calibration sequences are summarized in Table 3. Together, 416 

Table 3 and Figs. S6 and S7 show that N2N calibration (with up to two intermediate nodes) did 417 

not propagate considerable calibration errors (MAE 3.6 ppb and 16.1 ppb for O3 and NO, 418 

respectively, MAnE 7.9% and 27.6% for O3 and NO, respectively) relative to direct calibration 419 

(MAE 2.9 ppb and 16.2 ppb for O3 and NO, respectively, MAnE 7.6% and 26% for O3 and 420 

NO, respectively). It is noteworthy (although anecdotal) that in some cases (e.g. Set:scenario 1:2 421 

and 4:2, Table 3) the N2N calibration with two intermediate nodes performed even better than the 422 

direct calibration. Furthermore, for the small number of nodes ( 3) for which we could test the 423 
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theoretical N2N calibration predictions, the experimental results of the collocation setup showed 424 

only limited sensitivity to the length of the calibration chain (Tables S1 and S2 in the SI show the 425 

effects of the N2N sequence length on the calibration parameters, ̂  and ̂ ). 426 

 427 

Table 3. MAE (ppb) and MAnE (%) of direct and N2N calibrations in the collocation 428 

experiments. (The statistics are detailed in the SI). 429 

Experiment 

MAE (MAnE) 

Direct 

calibration 

N2N calibration 

with one 

intermediate node 

N2N calibration 

with two 

intermediate nodes 

Set 1 
Scenario 1 (Fig. S4a) 2.4 (7.6) 2.3 (6.9) 2.4 (7.4) 

Scenario 2 (Fig. S5a) 2.4 (7.6) 1.9 (5.8) 2.0 (6.2) 

Set 2 
Scenario 1 (Fig. S4c) 2.9 (6.8) 3.1 (7.1) 3.6 (7.9) 

Scenario 2 (Fig. S5c) 2.9 (6.8) 2.9 (6.8) 3.1 (6.9) 

Set 3 
Scenario 1 (Fig. S4b) 5.0 (26.0) 5.4 (26.1) 5.2 (25.7) 

Scenario 2 (Fig. S5b) 5.0 (26.0) 6.1 (26.6) 5.6 (26.5) 

Set 4 
Scenario 1 (Fig. S4d) 15.7 (21.4) 16.1 (26.9) 16.1 (27.6) 

Scenario 2 (Fig. S5d) 16.2 (21.1) 15.2 (23.4) 15.2 (22.9) 

 430 

 431 

Field Deployment 432 

To test N2N calibration under real urban deployment conditions, we used five O3 sensors mounted 433 

on Elm nodes to build two N2N calibration sequences of length 3n   (Fig. S1), and compared 434 

their results to that of the direct calibration (Fig. 5 and Table 4). Differences of MAE 2.4 ppb 435 

(MAnE 5.7%) between N2N calibration with two intermediate nodes and direct calibration were 436 
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evident. The corresponding differences in the collocation setup (Set 1 and 2, Table 3) were MAE 437 

0.7 ppb and MAnE 1.4%. Namely, for a chains of n=3 O3 sensors the differences in both MAE 438 

and MAnE between in-situ N2N calibrations (Table 4) and the corresponding direct calibrations 439 

(i.e. during collocation at the AQM station; Table 3) are larger by a factor of about 3. Hence, while 440 

N2N chain calibration can be applied for in situ calibration of deployed WDSN nodes, it does 441 

propagate calibration errors that limit its accuracy for long chains, as was shown also in Fig. 2 (and 442 

in contrast to the results of our collocation experiment). Clearly, firmer conclusions require further 443 

testing on a larger scale. In part, our results represent the quality of the sensors used in this study 444 

(see Sensor Technologies), which affects the minimal collocation period required for reliable 445 

calibration (tc) and the maximal time-period between consecutive calibrations (). With better 446 

sensors the general properties of the N2N calibration will still be valid (e.g. its dependence on the 447 

quality of individual sensors and on the length of the sensor sequence in the calibration chain) but 448 

our specific results (tc, , max n before the normalized calibration error is larger than, e.g., 30%, 449 

etc.) may change . 450 

 451 
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 452 

Figure 5. Evaluation of direct and N2N calibration of O3 Elm sensors 626 (left) and 414 (right) 453 

against AQM NSH O3 data. Panels (a) and (b) present the scatter plots, and panels (c) and (d) 454 

present the histograms of the normalized residual errors. Black: uncalibrated data, red: directly 455 

calibrated data based on collocation during the 4th week of the experiment (see text), blue: N2N 456 

calibration with two intermediate nodes, calibration based on paired measurements from the first 457 

three weeks of the experiment and evaluation based on data from the 4th week, each pair of sensors 458 

was collocated for one week in a different location (see Fig. S1).  459 

  460 
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Table 4. MAE (ppb) and MAnE (%) of direct and N2N chain calibrations of MO O3 sensors 461 

mounted in WDSN nodes that were deployed in the Neve Shaanan urban neighborhood between 462 

29/4-29/7, 2014 (Figs. 3 and S1). 463 

 

MAE (ppb) MAnE (%) 

Direct 

calibration 

N2N calibration 

with two 

intermediate nodes 

Direct 

calibration 

N2N calibration 

with two 

intermediate nodes 

Scenario 1 1.4 3.8 3.4 9.1 

Scenario 2 1.9 2.6 4.7 6.9 

 464 

 465 

In-situ N2N chain calibration has few limitations. First, if nodes are moved around 466 

deployment sites the continuity of their measurements is interrupted, yet this is also true for 467 

calibration by collocation at an AQM station. Second, N2N calibration involves accumulation of 468 

calibration errors that may result in a considerable overall calibration error as the length of the 469 

sensor chain increases. Nonetheless, using relatively short chains (in our case n≤3) enables N2N 470 

calibration with manageable calibration errors. In practice, this means that a large WDSN will 471 

require a considerable number of extra nodes to enable reliable N2N calibration. Based on our 472 

results, it seems that ~30% nodes in excess of the number of deployment sites are required for 473 

maintaining the N2N calibration process. Alternatively, instead of using identical nodes a 474 

dedicated set of high-quality nodes (“super nodes”) can be used for the N2N calibration, i.e. using 475 

the super-nodes as roaming nodes. The analytical derivation of the propagation of the calibration 476 

error suggests that using such high-end nodes will reduce the overall calibration error as a result 477 

of (a) reducing the error of any individual calibration (due to the improved sensor performance), 478 
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and (b) limiting the calibration chain to n=2 (with n=1 being the super-node). Whereas super-nodes 479 

will cost more than simple WDSN nodes, their own calibration against the AQM reference device 480 

will last longer and enable numerous pairings of the super-node and regular nodes between 481 

consecutive calibrations of the super-node (i.e. a larger ). 482 

 483 

Conclusions 484 

We studied N2N chain calibration of WDSN sensors analytically, numerically and experimentally, 485 

and confirmed that after collocation at an AQM station convergence of the slope, intercept, and 486 

goodness of fit of the linear calibration is attained, in agreement with 16. The theoretical results 487 

revealed that the length of the sensor sequence that can be used for N2N calibration strongly 488 

depend on the performance of individual sensors, as well as on the measured concentrations. In 489 

particular, the higher the ambient concentrations the more accurate the sensors are and the longer 490 

the chain that can be applied for N2N calibration while the accumulated calibration errors are still 491 

low, in accordance with 19. This suggests that WDSN for air quality measurements will perform 492 

better in traffic-affected inner-city sites 20, in more polluted geographical regions (e.g. megapolises 493 

in India, China, Pakistan, Nigeria, Bangladesh, etc.), and when ambient pollutant levels span a 494 

decent range that enables reliable calibration. 495 

The experimental evaluation of N2N calibration was performed using two study designs: 496 

with the measurements collected during collocation of the nodes at AQM stations, and with the 497 

measurements collected while the nodes were deployed in an urban neighborhood, imitating an 498 

operational WDSN. We showed that a N2N calibration of individual sensors is possible, and that 499 

when the calibration is performed while the sensors are collocated at the AQM station the N2N 500 

calibration is comparable to a direct calibration. Yet, a N2N calibration during collocation has no 501 
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real merit and it was examined only to gain better understanding of the propagation of calibration 502 

errors throughout the in-situ N2N calibration process. In general, the flexibility of N2N calibration 503 

enables more frequent calibrations of sensors that require it although, for practical reasons, we 504 

applied a uniform calibration period (T =7 days) throughout the study. It is noteworthy that with 505 

current sensor technology, sensor performance must be monitored continuously on a sensor-by- 506 

sensor (rather than on a batch-by-batch) basis. 507 

Owing to the sensor sensitivity to varying environmental conditions and to aging (drift), 508 

WDSN calibration is a major obstacle to their deployment and use. We believe that the N2N 509 

calibration scheme can provide a reasonable solution to the required frequent calibrations of 510 

WDSN nodes. We were able to test N2N calibration chains of up to three sensors, i.e. an overall 511 

calibration period of 3 weeks, which for the sensors we used is about half of the calibration 512 

persistence ( ~6 weeks). While future improvements in sensor technology may spare the need for 513 

frequent calibrations, in the meantime in-situ N2N field calibration can support the spread of 514 

WDSN technology for air pollution surveillance. 515 

 516 
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