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Abstract

Sources of elemental carbon (EC) and organic car@@) in atmospheric aerosols
(carbonaceous aerosols) were investigated by tiolfeof weekly aerosol filter samples at six
background sites in Northern Europe (Birkenes, Ngrwavihill, Sweden; Risoe, Denmark;
Cabauw and Rotterdam in The Netherlands; Melpien@any) during winter 2013. Analysis
of **C and a set of molecular tracers were used to @nshe sources of EC and OC. During
the four-week campaign, most sites (in particutasse in Germany and The Netherlands)
were affected by an episode during the first twekgewith high concentrations of aerosol, as
continental air masses were transported westwah@ dnalysis results showed a clear,
increasing north to south gradient for most molactriacers. Total carbon (TC = OC+EC) at
Birkenes showed an average concentration of 0.53+u@ C m°, whereas the average
concentration at Melpitz was 6.0 + 4.3 ug C.n®ne weekly mean TC concentration as high
as 11 pg C i was observed at Melpitz. Average levoglucosan eomations varied by an
order of magnitude from 25 + 13 ng M(Birkenes) to 249 + 13 ng th(Melpitz), while
concentrations of tracers of fungal spores (arbkatmd mannitol) and vegetative debris
(cellulose) were very low, showing a minor influenaf primary biological aerosol particles
during the North European winter. The fraction afdarn carbon generally varied from 0.57
(Melpitz) to 0.91 (Birkenes), showing an opposrentl compared to the molecular tracers and
TC. Total concentrations of 10 biogenic and antbggmic carboxylic acids, mainly of
secondary origin, were 4-53 ng inwith the lowest concentrations observed at Bidseand
the highest at Melpitz. However, the highest reiatconcentrations of carboxylic acids
(normalized to TC) were observed at the most nantlsges. Levels of organosulphates and
nitrooxy organosulphates varied more than two arddrmagnitude, from 2 to 414 ng™
between individual sites and samples. The thres 8felpitz, Rotterdam and Cabauw, located
closest to source regions in continental Europewsld very high levels of organosulphates
and nitrooxy organosulphates (up to 414 nd)muring the first two weeks of the study, while
low levels (<7 ng nT) were found at all sites except Melpitz during tast week. The large
variation in organosulphate levels probably reBedifferences in the presence of acidic
sulphate aerosols, known from laboratory studiesatcelerate the formation of these
compounds. On average, the ratio of organic sudpt@inorganic sulphate was 1.5 + 1.0%
(range 0.1-3.4%). Latin-hypercube source apportemmtechniques identified biomass
burning as the major source of OC for all samptesllasites (typically >40% of TC), while
use and combustion of fossil fuels was the secoast important source. Furthermore, EC
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from biomass burning accounted for 7-16% of TC, mehe EC from fossil sources
contributed to <2-23% of TC, of which the highesrqentages were observed for low-
concentration aerosol samples. Unresolved noniessrces (such as cooking and biogenic
secondary organic aerosols) did not account forentlwain 5-12% of TC. The results confirm

that wood combustion is a major source to OC andrBMrthern Europe during winter.
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1. Introduction

Atmospheric aerosol is of concern due to its eff@ct human health (Brook et al., 2010; Kelly
and Fussell, 2012; Cassee et al., 2013; WHO, 2848)climate (Stocker et al., 2013). The
carbonaceous fraction, comprising both organic ammgs and elemental carbon (EC), has
become increasingly important in e.g. Europe a##fective abatement strategies have
reduced emissions of precursors to inorganic abomsstituents, such as nitrate and sulphate.
Still, there is a lack of understanding of the sesy chemical composition and properties of
the carbonaceous aerosol (Glasius and Goldstei)20he organic component is composed
of a multitude of compounds with a wide range afparties regarding e.g. hygroscopicity and
surface activity affecting cloud droplet formatiagirect interactions with sun light through
scattering and absorption, as well as toxicity [¢last et al., 2009).

Elemental carbon is an important contributor tobglowarming, with an estimated total
radiative forcing of 1.1 W if (90% uncertainty range 0.17-2.1 W3n(Bond et al., 2013),
although recent studies have cast some uncertamtyese estimates (Samset et al., 2014).
Organic compounds (often measured as organic car®@) could enhance the light-
absorbing capacity of EC by a factor of 2-4 whetingcas a coating, known as the lensing
effect (Fuller et al., 1999; Jacobson, 2001; Sdknat al., 2005; Bond and Bergstrom, 2006),
though field studies have shown less absorptioramedment (Cappa et al., 2012). Increased
knowledge of the sources as well as physical andtalpproperties of EC is needed both
scientifically and to implement effective mitigat® steps.

The origin of carbonaceous aerosol can be asséssttk“C/°C ratio, as recent emissions
from non-fossil sources, such as vegetation, hapeoximately the same ratio as present-day
atmospheric carbon dioxide, while carbon from pssagg or combustion of fossil fuels are
devoid of **C due to radioactive decay, e.g., Heal (2014). Eptasi of non-fossil
carbonaceous aerosol in the atmosphere are prionalngical aerosol particles (PBAP) (e.g.,
pollen, plant debris, fungal spores), biogenic sdany organic aerosol (BSOA) formed by
oxidation of biogenic volatile organic compoundsV@®C), particles from combustion of
biomass and from cooking. To separate the naturdl the anthropogenic fraction of the
carbonaceous aerosol, source specific moleculeersaand combinations thereof, are needed
to identify and constrain the contribution from tregious sources.

In order to obtain quantitative estimates of maources of carbonaceous aerosol in north-
European background areas during winter, we comdbmeasurements of EC, OC, the
ci’C ratio and source-specific organic tracers, inidgdlevoglucosan from wood
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combustion, mannitol and arabitol from fungal sgpand cellulose from plant debris, as well
as their emission ratios as input for source apparient calculations. In addition, the
interpretation was supported by measurements okcutdr tracers of both biogenic and
anthropogenic secondary organic aerosols (SOA)leTablists an overview of the tracers
analysed in the present work.

During winter, episodes with elevated concentratiah carbonaceous aerosols can occur,
caused by stagnant weather conditions combined wgh emissions from e.g. residential
combustion sources and long-range transport. Woodbastion for residential heating may
account for 20-80% of the organic aerosol in uréigas in Europe during winter (Puxbaum et
al., 2007; Saarikoski et al., 2008; Favez et &1@, and is a major, but very uncertain,
contributor to rural OA levels (Denier van der Geihal., 2015). These uncertainties arise
largely from the available emission inventories,ichhare typically based upon poorly-
constrained information on residential wood comiomsaind emission factors, together with
problems which the issues of condensable VOC clmnssven the definition of PM emissions
(Denier van der Gon et al., 2015; Robinson et28lQ7). Ciarelli et al. (2017) recently found
that residential wood combustion was a source of B0 of submicron OA in Europe during
winter. Even in megacities, such as Paris, resiglenbod combustion is a major contributor
to carbonaceous aerosol in winter, either fromaegii sources or long-range transport (Favez
et al., 2009; Beekmann et al., 2015).

The monosaccharide anhydrides levoglucosan, mannasd galactosan are formed from
pyrolysis of cellulose and hemi-celluloses, and stivme specific tracers of biomass
combustion (Simoneit et al., 1999; Puxbaum et28lQ7), which have been applied in several
previous studies to investigate the influence ainfass combustion on aerosol levels in
Northern Europe (e.g., Yttri et al., 2005; Yttriat, 2007b; Glasius et al., 2008; Saarikoski et
al., 2008; Szidat et al., 2009; Genberg et al. 1201

Major sources of PBAP include plant debris and &lrgpores (dry diameter typically 2-10
um), in addition to pollen (up to about gén) and bacteria (aboutim) (Deguillaume et al.,
2008; Despres et al., 2012). Globally, fungal sporay constitute as much as 23% of total
primary OC emissions (Heald and Spracklen, 2009 Ttontribution of fungal spores
(particularly from Asco- and Basidio-mycetes) tonaspheric aerosol can be traced by
analysis of the sugar-alcohols mannitol and argbbich are storage substances in fungal
spores (Bauer et al., 2008a; 2008b; Di Filippolgt2013). A previous study conducted at
Nordic background sites in summer showed that fusgares organic carbon contributed 7-
15% of the total carbon mass in RMYttri et al.,, 2011a). Plant debris contains deke
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which can be used as a source-specific tracerrmsals (Puxbaum and Tenze-Kunit, 2003).
The contribution of plant debris organic carbortdtal carbon in P was found to be 12 —
18% at Nordic background sites (Yttri et al., 2011A two-year data set of cellulose
concentrations in Phs and PM; filter samples collected at six rural or backgrdugites in
Europe, found that the contribution of plant debosorganic material amounted to 2 — 10%
(Sanchez-Ochoa et al., 2007), whereas the contiibof plant debris organic carbon to total
carbon was 1.5 — 6% (Gelencsér et al., 2007). Asrathta set covers cellulose concentrations
determined during periods of wildfires in Portug®io et al., 2008); although absolute
concentrations increased slightly during the pexiaith intense fires, the contribution to OC
decreased. The differences between these stuchegrehably be attributed to differences in
studied size fractions, conversion factors fromoGotganic matter, and whether tracers for
both plant debris and fungal spores were includethé analyses. Recently, Bozzetti et al.
(2016) used aerosol filter sampling combined withline aerosol mass spectrometry (AMS)
and positive matrix factorization (PMF) to show tthduring summer, primary biological
organic aerosol and SOA made comparable contribsitio PM, at a rural background site in
continental Europe.

Formation of SOA can be more difficult to traceraglecular tracer analysis compared to the
primary sources, due to the complexity of orgammpounds in primary emissions and their
atmospheric processing (Noziere et al., 2015; Gdasind Goldstein, 2016). In the present
work, we analysed tracers of monoterpene SOA (pigi¢ acid, pinonic acid and terpenylic
acid), as well as anthropogenic SOA from fossill ft@nbustion (e.g., benzoic acid). Pinic
acid, pinonic acid, terpenylic acid and are fornfedm oxidation of a- and B-pinene
(Hatakeyama et al., 1989; Christoffersen et al971¥Hoffmann et al., 1997, 1998, Glasius et
al., 1999, 2000; Claeys et al., 2009), while 3-mikeih2,3-butanetricarboxylic acid (MBTCA)
and diaterpenylic acid acetate (DTAA) are formedunyher oxidation reactions of the initial
products (Szmigielski et al., 2007; linuma et 2008; Claeys et al., 2009; Muller et al., 2012).
Molecular tracers of anthropogenic SOA include lménacid from photochemical oxidation
of aromatic hydrocarbons (Kawamura et al., 1985deoet al., 1993), as well as adipic acid
and pimelic acid from ozonolysis of cyclic olefifldatakeyama et al., 1985; Grosjean et al.,
1978). Pinene-derived SOA tracers have been mahsursgeveral field studies, which were
mainly performed during summer when monoterpenessions are high (e.g., Kourtchev et
al., 2008, 2009; Kristensen and Glasius, 2011: Ge@enzalez et al., 2012; for a review, see
Noziere et al., 2015). The secondary OC (SOC) tgmriton from a-pinene was determined
for campaigns in summer 2003 at forested sitesilich] Germany (Kourtchev et al., 2008)
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and K-puszta, Hungary (Kourtchev et al., 2009). Was hereby made of the measured tracer
concentrations and the laboratory-derived tracessnieactions reported by Kleindienst et al.
(2007) and Lewandowski et al. (2008). It was fouinat the SOC contribution to the BM
OC was, on average, 2.4% for the Jilich site aBéo4for K-puszta. However, considering
that various uncertainties are associated withagi@oach of Kleindienst et al. (2007), as also
indicated by these authors, it is estimated thatuhcertainty that is associated with the
pinene SOC percentage is at least a factor of 2rtkbev et al., 2009).

We also investigated the occurrence of organost#gh@S) and nitrooxy organosulphates
(NOS) formed from acid-catalysed reactions of ngacbrganic compounds with sulphate
aerosols (Surratt et al., 2008). Several precursbtise investigated OS and NOS compounds
are biogenic, being either isoprene or monoterpemkie other OS and NOS have unknown
or anthropogenic precursors (Riva et al., 2015).na@% previously been studied in the USA,
Europe (linuma et al., 2007; Surratt et al., 20B@mez-Gonzélez et al., 2008, 2012; Surratt et
al., 2008; Kristensen and Glasius, 2011; Nguyeal.eP012; Nguyen et al., 2014; Martinsson
et al.,, 2017a) and the Arctic (Frossard et al.,122(Hansen et al., 2014). The present study
comprises the geographically largest study of O8 EH@S to date. In addition, we have
implemented a revised set of calibration stander@sprove the quantification.

As is clear from the studies cited above, this wtigdnot the first to investigate source-
apportionment of organic aerosol in Europe. Howgearrent knowledge is patchy both in
terms of temporal and spatial resolution. Only véew studies have performed source
apportionment of the carbonaceous aerosol for tn@gean rural background environment
based on organic tracers which covers the entmealrtycle (Gelenscér et al., 2007; Genberg
et al., 2011; Gilardoni et al., 2011). These stui@dik report the same major findings; OC from
residential wood burning emissions dominate dutivgheating season and SOA originating
from biogenic sources is the major fraction of daebonaceous aerosol in summer. Studies
covering shorter time-periods (e.g., Szidat et20Q7; Yttri et al. 2011a,b) support the major
findings of the long-term studies. In addition, gbestudies have suggested that for the
Northern outskirts of Europe, PBAP are the secomdtnabundant source to carbonaceous
PMjo during the vegetative season. Furthermore, Madnéal. (2016) applied the PMF
technique (EPA PMF5) to a multi-species data sguding a total of 29 variables (i.e., PM10
mass, OC, EC, levoglucosan, mannosan, galactosaate8-soluble ions and 15 elements) for
four urban background sites in Flanders, Belgiund, faund that the average contributions of
wood smoke were quite substantial in winter andyeanfrom 47 to 64% for PN OC. The

contribution from wood burning to the RMmass and OC was also assessed by using
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levoglucosan as single marker compound and theetsion factors of Schmidl et al. (2008),
as done in a previous study on wood burning in ddas (Maenhaut et al., 2012). However,
the apportionments were much lower than those amtdiom PMF, suggesting that the
conversion factors of Schmidl et al. (2008) maylwapplicable to all areas.

EC is typically dominated by fossil fuel sourcesgaelless of season; however, the
contribution from residential wood burning can heeoequally large during the heating
season and even dominate in certain regions (Seiddt, 2007; Zotter et al., 2014). A recent
study (Yttri et al., 2014) showed that EC from desitial wood burning, derived from
levoglucosan measurements, could be an importantcsoeven in the remote Arctic
environment, accounting for 31-45% of the total &fServed in winter.

The increasing availability of AMS instruments &o interesting new approaches to source
apportionment. Crippa et al. (2014) presented teslbitained by AMS measurements at 15
rural background sites and two urban sites dur@dié@d campaigns of the EU EUCAARI
project (Kulmala et al., 2011), including measurataeduring spring, fall and winter. Crippa
et al. (2014) used a new PMF technique (ME-2) solkee OA into primary sources, i.e., HOA
(hydrocarbon-like OA), COA (cooking OA) and BBOAIidmass-burning OA), and secondary
sources including semi-volatile and low-volatilibxygenated OA (SV-OOA and LV-OOA).
For all sites and seasons, the HOA fraction aceslfar 11 + 5% of the total OA, the BBOA
fraction contributed 12 + 5%, and the vast majodfythe OA was attributed to secondary
sources, i.e., SV-OO0A (34 = 11%) and LV-OOA (508%). The COA was not retrieved at
any of the rural sites. Using model-based sourgoiijenment and comparison with PMF
analysis of AMS data from 11 sites in Europe, Glaret al. (2017) found that SOA
constituted a major fraction of OA (on average 628age 32 to 88%) during winter, HOA on
average 13%, while BB primary OA was as high as 2%®though online-AMS in
combination with PMF techniques are very powerfhgy can only address the sub-micron
aerosol fraction (typically <700 nm) and do not\pde information on, for example, PBAP
sources. They also cannot distinguish modern frossikfuel carbon, being particularly
important for the secondary components (OOA). Fliiesed measurements therefore remain
an important source of such information, and indéea two approaches should be very
complementary. For both AMS and filter-based apghea, the major need now is to expand
the database of measurements to cover more s#asorss and species, in order to provide
sufficient data for generally applicable conclusiolo be drawn. Such datasets are also
required to serve the needs of model and emisgealsiation (Bergstrom et al., 2012; Denier
van der Gon et al., 2015).



235
236
237
238
239
240
241
242
243
244

245
246

247
248
249
250
251
252
253
254

In line with this need, the aim of the present gtigdto quantify the contribution of the most
abundant sources of the carbonaceous aerosol irrutta® background environment in
Northern Europe during winter.

2. Experimental

2.1 Sampling sites

Aerosol samples (PM) were collected at five rural background sites amte urban
background site in Northern Europe (Figure 1),dpresent various environments regarding
area type and proximity to major anthropogenic simissources.
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Figure 1. Map showing the location of the studgsit

The Birkenes atmospheric research station (BIR,233R, 8° 15'E, 190 m above sea level,
a.s.l.) is a joint supersite for EMEP (The Europ&onitoring and Evaluation Programme)
and GAW (Global Atmospheric Watch) and is situatgaproximately 20 km from the

Skagerrak coast in southern Norway. The statiolmdated in the boreal forest with mixed
conifer and deciduous trees accounting for 65%hefland use in the vicinity of the site; the
remaining 35% is attributed to meadow (10%), lovemsity agricultural areas (10%), and
freshwater lakes (15%). The nearest local emissoamce is the city of Kristiansand (65 000
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inhabitants), located 25 km south/south-west ofstia¢ion, which is known to have minor or
even negligible influence on the air quality at site.

Risoe(RIS, 55° 41' N, 12° 07' E, 12 m a.s.l.) is a seun& monitoring station on the Danish
island Zealand, located on a small peninsula byRbskilde fjord. The surrounding area is
characterized by agricultural land and small vilado the east, and the main road A6 with
about 15,800 vehicles per day located within aadis¢ of one km. The Roskilde Fjord is
located to the west of the site and occupies 72 kinis the longest fjord in Denmark and
propagates 41 km from North to South. The Risogostaés situated 30 km west of the capital
Copenhagen (1.2 million inhabitants) and 7 km nedhkt of central Roskilde (46 000

inhabitants). The station is part of the Danish @irality Monitoring Program.

Vavihill (VAV, 56° 01’ N, 13° 09’ E, 172 m a.s.l.) is a EUBR (European Supersites for
Atmospheric Aerosol Research) and EMEP site sitbist&outhern Sweden. The surrounding
area is dominated by grassland and pastures (48é6)duous trees (40%) and farmland
(10%). The site is situated 25 — 45 km north-eastdst of the densely populated areas of
greater Malm¢ (about 660 000 inhabitants), Copeahagnd Helsingborg (100 000
inhabitants). An earlier study by Kristensson et(2008) has shown that air masses passing

over these areas are typically more polluted thiamasses originating from other directions.

The Cabauw Experimental Site for Atmospheric RededCAB) is situated in the western
part of The Netherlands, 44 km from the North &8 58’ N, 4° 55’ E, 0.3 m a.9.l.ltis a
supersite that hosts several networks such as GAWEP and the European project ACTRIS
(Aerosols, Clouds, and Trace gases Research ImiiiGte Network). The agriculturally
dominated area is located tens of kilometers frampncities such as Amsterdam, The Hague,
Rotterdam, and Utrecht. A variety of air masses lsarencountered, from modified clean

maritime to continental polluted ones.

Rotterdam (ROT), The Netherlands, is a city wigoaulation of 570 000 inhabitants, situated
geographically within the Rhine—Meuse—-Scheldt ridetta of the North Sea. The port of
Rotterdam is the largest cargo port in Europe aedlOth largest in the world. The sampling
site is situated on Zwartewaalstraat (51° 844° 29 E) in the south part of Rotterdam. It is

an urban background site with no direct influenwarf the port, highways or industry, and is

10
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managed by the regional environmental agency. @hgbng site is situated 32 km west of
the Cabauw rural background site.

The Melpitz (MEL) atmospheric research station (8jgr et al., 2010; 2013) operated by
TROPOS is a rural background site located 4 kmhsauatst of the city of Torgau (20 000
inhabitants) in the glacial valley of the river Ellm eastern Germany (12°56’ E, 51°32’ N, 86
m a.s.l.). The city of Leipzig (550 000 inhabitgritslocated about 50 km to the south-west of
the station. The station is situated on a meadawrosnded by agricultural land. The
dominating wind direction at Melpitz is south-westiereas marine air masses reach the site
after crossing the western part of central Eurdpasterly air masses arriving at Melpitz
typically contain low relative humidity and are lugnced by hot spots of anthropogenic
(industrial and domestic) air pollution in East&urope. The Melpitz site is representative for
a large rural area in Saxony (East and North-Eastm@n lowlands). Melpitz is a GAW
regional station and integrated in EMEP and ACTRS&s et al., 2012).

2.2 Sample collection and air mass back-trajectory analysis

Aerosol samples were collected on quartz fibrerdt(Whatman QM-A; 47 mm), using low-
volume filter samplers (Kleinfiltergerat or at Vail Leckel SEQ47/50) equipped with a
PMyp inlet. The filters were all from the same batch @ne-fired at 850C for 3 h before they
were distributed to the sites.

The study period was January 11 - February 8, 2B&8h sample was collected for one week
and a total of four aerosol samples were obtainesheh site. After sampling, the filters were
placed in petri-slide dishes, and stored in a freat -18°C until analysis.

Air mass back-trajectories were calculated for gw@mhours with the FLEXTRA trajectory
model (Stohl et. al., 1995; Stohl and Seibert, 1%®#&ilable at www.nilu.no/trajectories)
using meteorological data from European Centre M@mdium Range Weather Forecasts
(ECMWEF).

2.3 Thermal-optical analysis of Total Carbon, OC, and EC

The samples collected at Birkenes, Cabauw, LilldbyaMelpitz and Rotterdam were
analysed using the Sunset laboratory OC/EC instntyméhereas the OC/EC Thermal Optical
Carbon Analyzer from DRI (Desert Research Instjtutas used to analyse the samples from
Vavihill. All samples were analysed according t@ tBUSAAR-2 protocol (Cavalli et al.,
2010), using transmission to correct for charrifigO&L. The performance of the OC/EC

11
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instruments has been subject to intercomparisothereiannually as part of the joint
EMEP/ACTRIS quality assurance and quality contoolas part of research studies (Yttri et
al., 2011b).

In order to minimise artefacts on the determinabd&C from charring of high levels of OC,
water-extraction of filters was performed to remevater-soluble components (Zhang et al.,
2012c) before a second thermal analysis. Ultrapuater with a low total organic carbon
content was passed through the filters, which vptaeed in a plastic filter holder with the

laden side upwards.

2.4*C analyses

The *C content in total carbon (TC) of the collectedtiches was determined by accelerator
mass spectrometry (Hellborg and Skog, 2008), uieg250 kV single-stage instrument at
Lund University (Skog, 2007; Skog et al., 2010)ioPto analysis, carbon in the aerosol
sample was transformed into graphite accordindg¢oprocedure described in Genberg et al.
(2010). In brief, the sample was combusted in vaguusing CuO as an oxidation agent. The
evolved CQ was purified cryogenically and mixed with, Hh a small-volume reduction
reactor and then heated to 600 °C. In this reac@® is transformed into graphite on a
heated iron catalyst. The amount of carbon in Hmapes ranged from 23 to 150 pg C. Oxl
was used as primary standard, IAEA-C6 and IAEA-€8econdary standards, and acetanilide
as background (Genberg et al., 2010).

The results of th&'C measurements are presented’4€ Hraction modern carbon (Reimer et
al., 2004). Fossil sources have #G value of 0 due to their large age. A'€ value of 1
represents th&'C content in atmospheric G@ 1950, if human influences are not taken into
consideration. The real atmosphéfl€ content has been altered because of emissicB©.0f
from fossil fuel combustion (the Suess effect) arav formation of'*C as a result of
detonation of thermonuclear weapons (the bomb gff€be latter effect, which resulted in a
peak with an almost doubledE value in 1963, needs to be taken into accountnwhe
estimating the ¥¥C value resulting from biogenic carbon (e.g., plantissions), as well as

from combustion of biomass.

2.5 Cdlulose analysis
Free cellulose was determined based on the enaymatthod described by Kunit and
Puxbaum (1996). Filter punches of 2 cm? were eta@chavith 1.2 mL of a citric acid buffer

containing thymol (0.05%) to prevent bacterial gttovDifferent to the method of Kunit and
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Puxbaum (1996), the pH of the buffer was adjustefl.8 to obtain more suitable conditions
for the final enzymatic determination of glucosell@ose was saccharified by cellulase and
cellobiase for 24 hours at 45 °C. After denaturatamd centrifugation, the supernatant was
analysed for D-glucose enzymatically using a tes{x-glucose-HK, Magazyme). Glucose
was phosphorylated to glucose-6-phosphate and guésty oxidized by nicotinamide
adenine dinucleotide phosphate (NADP) to glucogapdosphate. The emerging NADPH
was quantified photometrically at 340 nm. The rissulere corrected for the samples content
of free glucose. The limit of detection of this fmed is 16 ng T (calculated as three times

standard deviation of the blanks using an averageolime of 386 m3).

2.6 Anhydrosugars, sugar alcoholsand sugars

The samples were analysed for anhydrosugars, sugads sugar-alcohols by gas
chromatography/mass spectrometry (GC/MS). The awlsydars measured were
levoglucosan, mannosan and galactosan; the sugams glucose, fructose, sucrose and
trehalose; and the sugar-alcohols arabitol and r@nThe method was similar to that
described in Pashynska et al. (2002), but the eira was done with methanol instead of
dichloromethane-methanol (80:20, v/v), a differestovery standard was used, and the GC
temperature program was modified.

A punch of the quartz fibre filter sample (usuadlysingle 1.0 cfhpunch) was used for the
extraction. Prior to the extraction the internalaeery standard methyl O-L-xylanopyranoside
was added (typically 510 ng). The filter punch when extracted three times, each time
during 5 min with 10 mL methanol, using ultrasoamgitation in a 25 mL Pyrex glass flask
with a Teflon-lined stopper. The combined extraseye reduced with a rotary evaporator
(213 hPa, 35 °C) to about 1 mL. The concentratécheixwas then filtered through a Teflon
syringe filter (0.45um) and completely dried under a nitrogen streambs8guently, a
derivatisation was carried out; heretold0ON,O-bis(trimethylsilyl)trifluoroacetamide with 1%
trimethylchlorosilane was added to the dried sapghe the mixture reacted during 60 min at
70 °C. 1ulL of the solution obtained was then immediatelylgsed by GC/MS. For the
derivatisation of calibration mixtures with the reseeed compounds and the internal recovery
standard, the same procedure was applied withatesation and analysinglL of the 40uL
solution, but no filter punch, no extraction, armavaporation were done.

The GC/MS system consists of a TRACE GC2000 gasneatograph and a Polaris Q ion trap
mass spectrometer equipped with an external eledtnuisation source (Thermo Scientific,

San Jose, CA, USA). Data acquisition and processerg done with the Xcalibur version 1.4
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software (Thermo Scientific). The GC was providathva deactivated silica pre-column (2 m
x 0.25 mm i.d.) and an ATTM-5ms “low-bleed” capifacolumn (95% dimethyl-, 5%
phenylpolysiloxane, 0.2am film thickness, 30 m x 0.25 mm i.d.) (Alltech, &#&eld, IL,
USA). The split/splitless injector was used in fipditless mode (splitless time: 0.5 min) at 250
°C. Helium at a flow rate of 1.1 mL mifnwas used as carrier gas. The temperature of the
transfer line was 280 °C. The GC temperature pragras as follows: initial temperature of
100 °C, kept for 2 min, followed by a gradient ofG min™ to 200 °C, kept constant for 2
min, then a gradient of 30 °C minto 310 °C, after which the final temperature was
maintained for 2 min. The total GC/MS analysis twees 43 min.

Electron ionisation (EI) was carried out at 70 eM an ion source temperature of 200 °C. The
m/z values for the analytes and the recovery standemd as follows: Recovery standard,
levoglucosan, mannosan, galactosan: 217; arabitahnitol, 319; fructose, glucose: 217,
sucrose, trehalose: 361.

For the quantification of the monosaccharide aniigdr calibration curves of 8 points were
made in the following ranges (the quantities giae those in the 4QL derivatisation
solution; of this solution luL was analysed by GC/MS): levoglucosan, 20 — 2089 n
mannosan, 2 — 200 ng; galactosan, 1 — 100 ng;takabi— 100 ng; mannitol, 1 — 100 ng;
fructose, 2 — 200 ng; glucose, 1 — 100 ng; sucrdse,500 ng; trehalose, 5 — 500 ng. The
precision of the method for the individual monosesae anhydrides in real aerosol filter

samples is estimated to be between 5 and 10%.

2.7 Analysisfor SOA tracers

Each sample was analysed for three types of SQiersaorganic acids, organosulphates, and
nitrooxy organosulphates, generally following pomsly published methods (Kristensen and
Glasius, 2011; Hansen et al., 2014). For this aimlyetween 0.75 and 1 £wf the collected
filter samples were used. The filter punch was gdlain a preparation vial and spiked with 8
puL of a 50 pg/mL recovery standard (camphoric atadinonitor the extraction efficiency.
The filter punch was covered with 2 mL of a 50:%@tanitrile-methanol extraction solution
and extracted using a cooled ultrasonic bath fomd®. The extract was filtered through a
Teflon filter with a pore size of 22 um (Chromafijd was evaporated to dryness undeg a N
flow. The sample was re-dissolved in 200 puL Milv@ter with 10% acetonitrile and 0.1%

acetic acid.
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All sample extracts were analysed on an ultra-hggrformance liquid chromatograph
(UHPLC, Dionex), coupled to a quadrupole time-agtit mass spectrometer (g-TOF-MS,
Bruker Daltonics) through an electrospray ionisaiidet (ESI).

The UHPLC stationary phase was an Acquity T3 1.8(fArh x 100 mm) column from Waters
and the mobile phase consisted of eluent A: 0.18ti@acid and eluent B: acetonitrile with
0.1% acetic acid. The operational eluent flow wad @L/min and an 18 min multistep
gradient was applied: From 1 min to 10 min, elmcreased from 3% to 30%. Then over 1
min, eluent B increased to 90% where it was hetdlfenin. During the following 0.5 min,
eluent B increased to 95% and was held for 3.5bmfore being reduced back to 3% over 0.5
min and held there for the remaining 0.5 min ofdhalysis.

The ESI-g-TOF-MS was operated in negative ionisatmde with a nebuliser pressure of 3.0
bar, a dry gas flow of 8 L/min, source voltage B5and collision energy 6 eV. The data were
acquired and processed using Bruker Compass seftwar

The organic acids were identified and quantifiecthgisauthentic standards. Organosulphates
and nitrooxy organosulphates were identified frdra presence of HSO(m/z 97) and the
neutral loss of S€X80 u) and an additional neutral loss of HNG3 u) in the case of nitrooxy
organosulphates (Surratt et al.,, 2007). Due to ldek of authentic standards, most
organosulphates and nitrooxy organosulphates weterrdined using surrogate standards of
an authenticp-pinene organosulphate with MW 250 (synthesisedhanse according to
linuma et al., 2009), octyl sulphate sodium sa@50% Sigma-Aldrich) and D-mannose-6-
sulphate sodium salt90% Sigma-Aldrich). The surrogate standard chosemdantification

of the individual compounds was decided based wmlasi retention times in the UHPLC-g-
TOF-MS system, as described by Nguyen et al. (2014)

A linear relation between peak area and conceatrawas established and applied for
quantification off-pinene organosulphate MW 250, D-mannose-6-sulplééerpenylic acid
acetate (DTAA), octyl sulphate, pinic acid, andoeaylic acid. A quadratic relation between
peak area and concentration was established andeagpr quantification of adipic acid,
azelaic acid, benzoic acid, camphoric acid (recpv&mandard), MBTCA, phthalic acid,
pimelic acid, pinonic acid, and suberic acid. Tlerelation coefficients Rof all calibration
curves were better than 0.99 (n = 7 data pointge@xfor octyl sulphate, which had a
correlation coefficient of 0.93. The detection lismof all compounds fell within the interval of
0.004 — 0.016 ng M The results were corrected according to the respof the recovery

standard (53 + 15%), and the overall uncertaintg watimated to be 30%. Supplemental
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Information (SI) Table 1 presents an overview ofedted organosulphates and nitrooxy
organosulphates.

2.8 Statistical analyses

The relationship between any tracer and its derivédomponent is highly uncertain; hence,
we use a method developed in previous papers (Gaderet al., 2007; Szidat et al., 2009;
Yttri et al., 2011a; Yittri et al., 2011b) to assigm uncertainty distribution of allowed
parameter values for all important emission ratiomeasurement inputs. In order to solve the
system of equations, allowing for the multitudepaissible combinations of parameters, an
effective statistical approach known as Latin-hgpbe sampling (LHS) is used, which is
comparable to Monte Carlo calculations. Detailstlms procedure were first given by
Gelencsér et al. (2007), and the procedure as lusexlis described in detail in Yttri et al.
(2011a). In brief, central values with low and highits are associated to all uncertain input
parameters. These factors are combined using alis@gdpapproach of LHS in order to
generate thousands of solutions for the source rappment. All valid combinations of
parameters (i.e., excluding those producing negamiutions) are condensed in frequency
distributions of possible solutions. Extensive dssion of the choices behind the factors used,
and their uncertainties, can be found in earlitateel studies (Gelencsér et al., 2007; Szidat et
al., 2009) and especially for wood-burning emissionSimpson et al. (2007). The results of
this analysis consist of so-called central-estimaté the TC components (i.e., the 50th
percentile), as well as the range of possibilitdiewed by the LHS calculation, usually
expressed as the 10th and 90th percentiles ofolnéians. For example, we assign ratios for
TCl/levoglucosan from biomass-burning with low amghhimits of 11 and 17, respectively, or
we allow an uncertainty in the EC estimate of 25%uad the measured values. In this work
we retain the same factors as in Yittri et al. (2)1dxcept that we modify the lower limit
values assigned to'f€ to be 1.025 for debris and spores and 1.05 fambss burning (Yttri

et al., 2011b, used 1.055 for both), reflecting teduction in atmosphericfc values
between the time of the Yittri et al. study (200®20and the sampling conducted for this
work (2013).

Although it is impossible to give a statistical entainty on these LHS calculations since we
have no 'true' answer to compare with, each LHiBhast used here tests 8000 combinations
of possible contributions. One complication, foraewple, is that different wood-types or
wood-burners can give different emission profilesit actually several studies in very

different parts of Europe have resulted in simiros for OCbb/levoglucosan (e.g. Puxbaum
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et al., 2007 and Yttri et al, 2005). This was poergly discussed extensively in Simpson et al.
(2007), who concluded that most studies show aglenosan/OC ratio of around 10-20%. In
the Supplementary information of Yttri et al. (20)Me discuss the LHS scheme in more
detail, and also ran the LHS scheme with a widarettainty range for the different input
assumptions. This study showed that the LHS reswkse quite robust. In fact, the
supplement of Yitri et al (2011b) noted that theS_Ejpproach is thus not primarily designed
to give a 'best’-estimate; it is designed to sholckv solutions are possible. One of the
encouraging and important findings of these LHSlistsl has been that one can allow very
wide ranges of emission ratios, and still end ughwuite similar general findings, since the
impossible combinations are excluded by the requerd that all solutions are positive.

3 Results

High carbonaceous aerosol levels were observedoat sites during the two first weeks of
sampling (Figure 2), when Scandinavia and partlathern Europe were influenced by a
high-pressure system transporting continental aissas towards the west (particularly during
13-26 January), while the remaining study period wdluenced by westerly winds and lower

levels of aerosols.
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3.1 Concentrations of total carbon

12
®11 Jan W18 Jan 25Jan @1 Feb

10

TC (g C m3)
(o))

BIR VAV RIS CAB ROT MEL

Figure 2. TC in aerosol samples collected at sixlystsites across Northern Europe as one-
week samples starting on the indicated dates. BIRiikenes (Norway), VAV is Vavihill
(Sweden), RIS is Risoe (Denmark), CAB is Cabauwe(Netherlands), ROT is Rotterdam
(The Netherlands), and MEL is Melpitz (Germany).

The average TC concentration decreased one ordemaghitude along a south to north
transect, ranging from 6.0 + 4.3 pg C°mt Melpitz to 0.5 + 0.3 pg C That Birkenes. The
steep gradient is partly explained by the elevatattentrations observed during the two first
weeks of sampling at the continental sites, wittameeekly concentrations as high as 11 ug
C m>. The mean TC concentration observed at the threslitN sites is comparable to
previously reported measurements for these sitegnter (Yttri et al., 2007a; Genberg et al.,
2011; Martinsson et al., 2017b) (see also ebaswijuwhereas it is clearly elevated in the
first two weeks especially for Melpitz (Spindlerat, 2013), for Rotterdam (see Jedynska et
al., 2014), and somewhat for Cabauw (see Dusek, @0d.7). The TC concentrations at Risoe
(PMy) were comparable to TC concentrations at the ssilee(PM ) available from the
National Monitoring Program (Ellermann et al., 2Pa&hich showed the same trend as TC in
PMso with the highest concentration in the first weekl ahe lowest concentration in the last

week (data not shown).
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3.2 Modern carbon/fossil carbon
The results of thé’C measurements are shown in Figure 3, excludingaafiples from Risoe

and one from Birkenes (see below).

1
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@11 Jan @18 Jan 25Jan @1 Feb

FlC

BIR VAV CAB ROT MEL

Figure 3. E'C in aerosols collected at five study sites acidaghern Europe (start days are

listed). Typical uncertainty of the measuremens'f€ = 0.006.

The lowest E'C value in the current study(\=0.362 at Cabauw, The Netherlands) shows a
clear influence from fossil sources. Such loWdr values have previously been found in
heavily trafficked areas in cities (Glasius et @011). The samples with the two highest
values are from the two northernmost sites, Birkesrad Vavihill, and were collected during
the same sampling period (18 - 25 Jan 2013). Aelapgoportion of carbon from biomass
burning results in the highest’E values, as discussed later.

The P“C data sets for the various sites are not stailitisignificantly different from each
other. The E'C results are very similar to those from a previstisly of TC collected at
Vavihill, Sweden, during January and the beginrohgebruary 2009, where thé’E values
ranged between 0.621 and 0.863 (Genberg et all)201

All samples from Risoe showed a clé&E contamination (FC varied between 3.9 and 42).
The sampling site at Risoe is located in the vigiof two shut-down nuclear experimental
reactors presently undergoing decommissioning. cdmtamination most probably originates
directly or indirectly from these reactors, suchfrasn work related to decommissioning or
classification of waste (Hou, personal communicgti®©ne of the Birkenes samples was also
contaminated (FC=4.6). This may be associated with a contaminatibthe very small
sample (only 23 pg of carbon) occurring in i sample preparation laboratory due to the
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handling of the contaminated Risoe samples. Howelhir remains speculative as none of the
measured secondary standards displayed any cormiaoninAnother possibility could be a
4C contamination during sampling at the Birkenes. fuchholz et al. (2013) report tH4€
contamination in aerosol samples is uncommon butrax@, and in their experience about
10% of sampling sites are affected (Buchholz et28113). Buchholz et al. (2013) and Zotter
et al. (2014) identify potential sources as labmias using*’C as a tracer, as well as
incinerators combusting’C-labelled medical or biological material. Thesehaws further
point out that the very high surface area of PMililggprovides absorption of volatil&C-
labelled compounds as well as 6€0,. C is also commonly used as a tracer in various
research disciplines, not only in laboratories dsb in field experiments, see e.g. Rasmussen
et al. (2008). Influence from such activities ire thicinity of air monitoring stations may
obscure'*C-based source apportionment of aerosols, and tiais important to consider

potential locaf“C-contamination in future studies.

3.3 Organictracersfrom primary sources

L evoglucosan

The mean concentrations of levoglucosan ranged #5m 13 ng i (Birkenes) to 249 + 13
ng ni® (Melpitz), and increased along a north to southgect (see Supplemental Information
Table 2). The levels are comparable to those pusWoreported for the European rural
background environment, as is the North to Soudldignt, and the observed levoglucosan to
sum monosaccharide anhydrides (levoglucosan, mannogalactosan) ratio (85 = 2%)
(Puxbaum et al., 2007; Yttri et al., 2011a). Insexhlevels were observed during the first half
of the sampling period compared to the last onel waere attributed to meteorological
conditions with stagnant air and low temperatucasising poor dispersion. High levoglucosan
to TC ratios (from 0.04 to 0.05) observed for alés (SI Table 2), indicate a pronounced
influence of biomass combustion emissions, whicthva high level of confidence can be
attributed to residential heating, given the gepQgieal region and time period studied. A very
high correlation coefficient (= 0.94) for levoglucosan and TC during the samplieriod
supports the statement of biomass combustion baimgajor source of the carbonaceous

aerosol.

Sugarsand sugar alcohols
Sugars and sugar alcohols were present in all smsngemonstrating the presence of PBAP

even during the middle of winter in Northern Europle concentrations were however low,
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in particular for the sugar alcohols arabitol andnmitol used to trace fungal spores (see Si
Table 2). The highest total concentrations of ssigand sugar alcohols were observed during
the two first weeks of sampling, except for Vadiiwhereas their relative share of TC was
higher for the two last weeks. There was a pronedncorrelation of levoglucosan with
fructose (R = 0.88) and glucose (R 0.74), suggesting that these species are coeshitt
during residential wood burning. No correlation twievoglucosan was observed for the
fungal spore tracers (arabitol and mannitol).

A correlation between glucose and levoglucosardumps from forest fires was observed by
Medeiros et al. (2006) and also for emission measants from combustion of different types
of wood or biomass (Kistler et al., unpublishedaflaalthough the ratio between glucose and
levoglucosan was markedly lower in the emissiodysttompared to the ambient data

presented here.

Cedllulose

Free cellulose concentrations were only above #tection limit (of 16 ng fY) in the aerosol
samples from Rotterdam, where concentrations rariged 24 to 43 ng M. Summer to
winter ratios between 2 and 4 have been reportedaqursly for average concentration values
at continental background sites (Sanchez-Ochod.ef@07). Summer concentrations are
available from measurements conducted at Birkendsvavihill, where averages were close
to 90 ng m® (Yitri et al., 2011b). Assuming the limit of detiem as an upper limit of
wintertime cellulose concentrations, the seasonait Birkenes and Vavihill seems to be
slightly more pronounced than reported by Sanchelze@ et al. (2007).

3.4 Organic tracersfrom secondary sour ces. carboxylic acids, organosulphates, and
nitr ooxy organosulphates
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Figure 4. Average concentrations of carboxylic a@dmmarised as anthropogenic acids (AA,
i.e., adipic acid, benzoic acid and pimelic acfdjty acid-derived carboxylic acids (FDA, i.e.,
azelaic acid and suberic acid), first-generatiorgbnic acids (1BA, i.e., pinic acid, pinonic
acid, and terpenylic acid) and second-generati@ydsiic acids (2BA, i.e., MBTCA and
DTAA). In the lower panel, the concentrations aoenmalised to TC concentrations. The error

bars show the standard deviation of the four sargperiods.

Carboxylic acids were grouped into anthropogenidsa@dipic acid, benzoic acid and pimelic
acid), fatty acid-derived carboxylic acids (azelaicid and suberic acid), first-generation
biogenic acids from oxidation ef andp-pinene (pinic acid, pinonic acid, and terpenybaia
and second-generation biogenic acids from oxidabére.g. pinonic acid (MBTCA and
DTAA). Figure 4 shows the average concentrationshese groups of carboxylic acids for

each site during the study period. The mean tatatentrations of the carboxylic acids were
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4-53 ng m>, with the lowest concentrations observed at Bidseand the highest at Melpitz,
showing a pronounced north-south gradient.

The concentrations of the carboxylic acids werematised to TC, in order to reduce the
influence of particle mass on partitioning of semlatile components (Kroll and Seinfeld,
2008), and the lower panel of Figure 4 shows tlselte. Here the two most remote or rural
sites, Birkenes and Vavihill, have higher relatoamtributions from biogenic acids compared
to the other sites, where the fatty acid-derivedsadominate the relative contribution. The
relative contribution of the biogenic acids wastigatarly high at Birkenes and Vavihill for
week 2 and 4, whereas quite similar relative cbaotions were observed at the other sites
during the study period (data not shown). Sourodsidgenic acids at Birkenes and Vavihill
could include regional monoterpene emissions arssipte wood combustion. The biogenic
acids from these sources together with the othebogalic acids, which were at low
concentrations, could contribute to the highertnetdevels of biogenic acids at these sites.
Generally, the concentrations of the biogenic agdpecially pinic acid and terpenylic acid)
and the fatty acid-derived acids (in particularlaeacid) were larger than the levels of the
anthropogenic acids. The concentrations of pinid &8.3-9.7 ng nv), terpenylic acid (0.2-
10.6 ng m°) and pinonic acid (below the detection limit 0® hg m>) were within previously
observed levels in Northern and Central Europe (fbev et al., 2009; Zhang et al., 2010;
Kristensen and Glasius, 2011).
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Figure 5. Concentrations of organosulphates (O8)nénooxy organosulphates (nitrooxy OS)
according to parent molecules (i.e., alkanes, n@penhes, isoprene, anthropogenic or

isoprene, see text for further explanations).

We observed 23 different organosulphates (OS) andrsnitrooxy organosulphates (NOS)
during the study period (S| Table 1). The organplsates of lowest molecular weight (OS
140, 154, 156, 168 and 182) were products of gaildehyde, hydroxyacetone, methylglycolic
acid, methacrolein and 2-methylglyceric acid (Swiret al., 2007; Olson et al., 2011;
Schindelka et al., 2013; Shalamzari et al., 20b8ginating from either the oxidation of
isoprene or anthropogenic compounds (BiesenthalSleghson, 1997; Myriokefalitakis et al.,
2008; Surratt et al., 2008; Hakola et al., 2009athet al., 2012a; Hansen et al., 2014) and
contributed with 22 + 7% of the sum of OS. Anotlggoup of OS originated from the
photochemical oxidation of isoprene, namely OS 183, 200, 212, 214 and 216, of which
the latter one is derived from isoprene epoxyditE®OX (Surratt et al., 2008; Surratt et al.,
2010; Shalamzari et al., 2013), and this group maulel3 + 5% of the sum of OS. The
organosulphate OS 200 derived from 2-methylglycedid (Surratt et al., 2007; Zhang et al.,
2012b) was only observed at very low levels. Orgalmhates originating from monoterpenes
(OS 248, 250, 252, 268a and 280a) (Surratt e2@06) contributed to 11-46% of the sum of
OS (on average 28 + 8%). Furthermore, organosughae¢rived from oxidation of alkanes,
namely, OS 210, 238, 268b, 270, 280b, 280c, 296,288, as well as NOS 327, (Riva et al.,
2016b) constituted 13 £ 3% of the sum of OS. Ob&hedS 210 was previously detected at
Svalbard and North Greenland during winter (Hanseal., 2014). Only very low levels of
organosulphates derived from green-leaf volati®salamzari et al., 2014) and polycyclic
aromatic hydrocarbons, PAH (Riva et al., 2015) wdreerved.

Nitrooxy organosulphates contributed to 24 + 5%hef sum of OS. Of these, NOS 295, 311
and 327b are derived from and p-pinene, while NOS 297, 313, 327 and 329 have been
observed in chamber oxidation experimentd-bimonene (Surratt et al., 2008).

Figure 5 shows the distribution of major groupO& and NOS during the study period. The
total levels varied between 2 and 414 ng.rithe highest levels were observed at Melpitz
during week 1 and 2, followed by the Cabauw anddRdam sites during period 2, while the
lowest levels were observed for the last study weekll sites.

The levels of the organosulphates at each sitedawnsiderably between sampling periods,

with a difference as high as 70 times observeti@iRotterdam site. These variations reflect

24



683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708

709

710

711

712
713

714

differences between sampling periods regarding ®ams, air mass transport patterns and
atmospheric mixing.

When the data for OS and NOS are normalised toSIG-igure 1), the differences between
the sampling periods become smaller. For exampRo#terdam, the difference between the
highest and lowest relative concentration is onlyaetor of 13 (compared to 70 when
addressing the concentrations). The average r&t@Soand NOS to TC was 0.013 £ 0.010,
ranging from 0.002 to 0.038.

Organic bound sulphate in OS and NOS had a ratié.®f+ 1.0% to inorganic sulphate,
determined by ion chromatography and obtained fiteeratmospheric monitoring database at
ebas.nilu.no for all sites except those in The Bidimds. The range was 0.1-3.4%, with a
tendency that the highest ratio of organosulphé&demorganic sulphate were observed in
continental, polluted air masses and the lowesb iGiring periods with marine air masses
(with higher levels of sea-salt sulphate). As expaca high correlation between sum of OS
and NOS with inorganic sulphate was observed{B.84, n = 16).

Organosulphates are formed in reactions betweeanargrecursors, such as epoxides, and
sulphate aerosols, and the rate of formation carease with acidity of the aerosol (linuma et
al., 2009; Surratt et al., 2010; Zhang et al., 2)1&nhd can be reduced by organic coating
(Riva et al.,, 2016a). This makes the formation gjaoosulphates especially sensitive to
aerosol acidity, sulphate and aging, which canrdmuie to explain the differences observed

between sites and samples in this study.

3.5 Resultsfrom LHS analysis

Latin hypercube sampling source apportionment (1349 ascribes the carbonaceous aerosol
(here: TC, EC, and OC) into a number of predefisedrces, as defined by a selection of
source-specific tracers analysed from aerosolrfii@mples (e.g., Gelencsér et al., 2007;
Genberg et al., 2011; Gilardoni et al., 2011; Yatial., 2011a; Yttri et al., 2011b). In the

. 4
present study, the tracers levoglucosan, manni&lulose and1 C of TC, separated the
carbonaceous aerosol into EC from biomass burrii@yf) (here: from residential heating)
and fossil fuel sources (EQ, whereas OC was attributed to biomass burningpfpGossil

fuel sources (Off), primary biological aerosol particles (Pgap) and OGuf (remaining
non-fossil). The latter category has previously beensidered a proxy for the biogenic

secondary organic aerosol (g€ga. There are however anthropogenic sources of
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contemporary carbon, such as cooking and biofueétbanol and biodiesel) that contribute to
OGCinf, and there is an increasing recognition that tlatker sources may be included in this

category.

The exact setup of the LHS scheme used here has deseribed in detail in Yttri et al.
(2011b), and is not repeated here. The only changarameters has been to update the values
for modern carbon, ¥C to more recent years (extrapolating from Zotteale 2014), now
with the lowest values being 1.025 (e.g., for PBARJY the wood-burning range being 1.05 -
1.2 (see Yttri et al. (2009) for comparison). Irdition to the'“C contamination mentioned
earlier, we also encountered problems with higlellewf carbonaceous aerosols interfering
with the instrumental split between OC and EC fbe tsamples of highest aerosol
concentrations, which limits the number of samglaswhich LHS source apportionment
could be performed. The results from the LHS SAsii@wvn in Figure 7.
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Figure 7. Central estimate, i.e., 50 percentilencemtrations (ug C ™) of different
carbonaceous particle fractions for sites and sasnfir which source apportionment was
possible. Uncertainty bars represent 10 and 90ep&hkes from LHS calculations (not given

when the LHS solution rate <5%).

Biomass burning is estimated to be the major soafd®C for all analysed samples at all

sites, accounting for more than 40% of TC for ait bne sample at Birkenes (31%). Minor
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variability in the relative contribution of Qfg to TC was found within and between sites in

the other cases. Fossil fuel sources of OC arsg¢bend most important source of OC (in all
samples except one), accounting for typically 3G%®©. There was a general tendency (data
not shown) that OC from fossil fuel sources wasritatted to secondary aerosol

(anthropogenic SOA) for samples with a high carlsenas loading. Zotter et al. (2014)
reported a similar finding during winter-smog epies in Switzerland. The Qg source

contributed ca. 5-12 % to TC for all samples. Exiogs were seen for the 2nd and low-
loading Birkenes samples, for which a noticeabl&b3®ontribution of O to TC was

estimated. We speculate that the pronounced relationtribution is a result of low

anthropogenic impact for these samples, as therapped levels of Og,f are not particularly

high. A dominating contribution of OC from BSOA (@£4) to OGnf has been argued for

the Nordic countries (e.g., Yttri et al., 2011blthaugh this appears more likely in summer
than in winter. On the other hand, increased cosatean due to lower temperatures can be an
important source of Ofgoa in fall and winter, which could outweigh the effeaf high
temperature and increased terpene emissions in suridémdersson-Skold and Simpson,

2001; Simpson et al., 2007). @gap contributed < 5% for all samples, and only Rotend
experienced a relative contribution > 1%. Rotterdaas the onlsite for which levels of the
plant debris tracer (cellulose) was present abbtreedetection limit. The part of Ggap

attributed to fungal spores was less than 1% aitaks, Rotterdam included.
EC from biomass burning accounted for 7% to 16% @fconsidering all samples, and as for

OCyp, the variability was typically minor within and teesen sites. The relative contribution
of EC from fossil fuel sources (¢ to TC varied more, ranging from <2% to 23%. There
was a tendency that the relative contribution of,E@as highest, and higher than for #C

for high loading samples, whereasfE@ominated the low ones.

4. General discussion

The weekly concentration means at all six sites iafelenced by local meteorological
conditions and emissions, but also by long-rangastrort. Backward trajectories show that

the source regions for long-range transport cay eaer the investigated week but also for the
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different stations, even though during this studg trajectories were relatively consistent
during the first two sampling periods and in costréo the last weeks. Concentration
differences between the weeks and especially betwee northern (more maritime) and the
southern (more continental) stations can be exgthin this way.

The highest TC values in this study are observededpitz (Figure 2), the easternmost of the
three southern sites, while the second and thigtidst values are obtained at the two other
southern sites, Rotterdam and Cabauw. For thes®, site same pattern is observed for TC,
with the highest values in the second week and dowe the last week, while the three
northernmost stations (Birkenes, Vavihill and Riskpw a different pattern with highest TC
in the first week. The concentrations of the casfioxacids, organosulphates and nitrooxy
organosulphates follow the pattern of TC at all stes. A recent year-long study at Cabauw
observed a factor of three average increase in Uihgl periods of long-range transport of
continental air masses compared to regional polufiDusek et al., 2017).

Since local emissions near Melpitz are of minoevahce, except during strong inversions,
long-range transport of primary emitted specieSOA precursors is the main source of the
high carbonaceous aerosol levels. Daily jpMneasurements during a decade show
considerable differences in concentrations of bmthanic and inorganic compounds for an
air-mass inflow from west versus east of Melpitpi(@ler et al., 2010; Spindler et al., 2013).
For example, the average concentrations of EC alghate in PMy during 2003-2013 are
about 1.1 pg EC mMand 2.2 pg S§& m > in winter periods with air mass inflow from west,
whereas there is an increase to 4.1 ug E€amd 6.2 pg S§& m during periods with air
masses from the east, influenced by anthropogemmcbastion tracers from industry and
traffic, but especially from residential combustioincoal and biomass (Spindler et al., 2013).
The study of Ciarelli et al. (2017) also showed gansource region of POA situated east of
Melpitz.

Solid fuels are used for heating of almost 50%hefhouseholds in Poland (situated less than
150 km east of Melpitz), in particular in rural ase where anthracite coal and fuel wood are
combusted in single-house boilers or stoves (CkStadistical Office, 2014). Considering the
formation of organosulphates it is also relevanidte that Poland is the EU country with the
highest emission of S840 Gg in 2013), twice the emission of the sechigthest emitting
country, Germany, and 223 Gg S0f this is emitted from residential combustion m@s in
Poland (EEA, 2015).

These emission patterns are reflected in our obtiens, as the highest concentrations of

levoglucosan are found in samples with intermediatew F“C (see Sl Figure 2), i.e., tracers
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of both biomass and fossil combustion are highesheé same aerosol samples. This is also
observed in the LHS SA analysis, where high coutrims from fossil fuel combustion were
found in samples with high concentrations of leusglkan, supporting that combustion of

coal and biomass is a significant source of carbeoas aerosols.
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Figure 8. Concentrations of major groups of orgatgsates as a function of TC and coloured

according to levoglucosan concentration.

Emission data (mentioned above) and meteorology atmtribute to explain the high
concentrations of levoglucosan, TC and organostdishabserved in the particle filter samples
during the first two weeks of our study period wahasterly winds. Figure 8 shows that the
highest levels of organosulphates, in particularrttonoterpene-derived ones, are observed in
samples with high concentration of the biomass-bogrimarker, levoglucosan (correlation
coefficient R = 0.75). Based on this, we hypothesise that cotigsusf coniferous wood and
coal can lead to formation of organosulphates ohaterpenes from mixing of the smoke

plumes. The presence of acidic sulphate aeroséhcgs can be decisive for formation of
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organosulphates, as found e.g. in laboratory stutlie Riva et al. (2016a), while coating
reduces the reactive uptake to form organosulphates

5. Conclusions

In the present study, we have used a suite of miaet¢racers combined with LHS source
apportionment to constrain the wintertime sourcesasbonaceous aerosols in background
areas in Northern Europe.

The results clearly identified a strong gradienteivels of the carbonaceous aerosol (TC) and
molecular tracers such as levoglucosan, decredsings much as one order of magnitude
from the southernmost to northernmost site. LHS@apportionment showed that biomass
burning contributed more to EC than fossil fuel rees for 75% of the samples. EC
originating from combustion of fossil fuel was mogbundant in samples with a low
carbonaceous aerosol loading.

Regarding OC, biomass burning was identified asntagor source for all samples, typically
accounting for more than 40% of TC. Remaining sesirimcluded use and combustion of
fossil fuels (14-34% of TC) in addition to a lowntobution (about 5-12% of TC) from
unresolved non-fossil sources, such as cookingbamgknic secondary organic aerosols. The
contribution of PBAP was negligible for all samples

Overall, the results confirm that wood burning fesidential heating is the major source of
OC and EC in Northern Europe in winter, which idifre with previous investigations.

In addition to the molecular tracers directly usadthe LHS source apportionment, additional
molecular tracers including carboxylic acids, omguwiphates and nitrooxy organosulphates
were measured to provide information on SOA sourdé® organosulphates and nitrooxy
organosulphates showed a pronounced variation @btders of magnitude between sites and
sampling periods, probably caused by differencethenlevels of acidic sulphate aerosols
enhancing formation of organosulphates from bothrapogenic and biogenic precursors.

We experienced problems with the presence of deecauper modern carbon (i.e., the
fraction of **C is higher than thé’C content in atmospheric GDin some of the aerosol
samples. The source was identified as a nearbyauotactor undergoing decommissioning.
Other sources may include nuclear power plantsvaaste incinerators (processing waste
from laboratories and hospitals).

Overall, the study has provided new informatiorwaastrain the sources of OC and EC in the
northern part of Europe.
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Table 1. Overview of measured molecular tracet{C s fraction of modern carbon in total

carbon (TC), MW is molecular weight. SOA tracers bisted according to their origin, which

is either anthropogenic (A), fatty acid-derived bmatylic acids (FDA), first-generation

biogenic acids (1BA) or second-generation biogeags (2BA). Relevant references are
listed in the main text and in Table S1 regardirgdd NOS.

Source

Tracer

Biomass burning

Levoglucosan, mannosan, galactosan

Primary biological aerosol particles
(PBAP)

Arabitol, mannitol, fructose, glucose, sucrog

trehalose, cellulose

Se,

Contemporary carbon

F“c (TC)

Secondary organic aerosol (SOA)
Carboxylic acids

Organosulphates

Nitrooxy organosulphates

Adipic acid (A), benzoic acid (&) pimelic acid
(A)®, azelaic acid (FDA) suberic acid (FDA)
pinic acid (1BAY, pinonic acid (1BA), terpenylic
acid (1BAY, diaterpenylic acid acetate (2BAB-
methyl-1,2,3-butanetricarboxylic acid (2BA)

Organosulphates (OS) (MW = 140, 154, 156, 1
170, 182, 184, 200, 210, 212, 214, 216, 238, 24
250, 252, 268, 280, 282, 296, 298)
Nitrooxy organosulphates (NOS) (MW = 24
297, 311, 313, 327, 329)

"Hatakeyama et al., 198%awamura et al., 1985; Rogge et al., 19@osjean et al., 1978.
*Mochida et al., 2003, Rogge et al., 198Thristoffersen et al., 1997, Hoffmann et al., 1998,
Glasius et al., 1999, 200fHatakeyama et al., 1989, Hoffmann et al., 19@7aeys et al.,

2009.%linuma et al., 2008; Claeys et al.,

2088zmigielski et al., 2007; Milller et al., 2012.
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Highlights

» Sources of elemental carbon and organic carbon studied at six background sites

» Combination of molecular tracer analysis and | atin-hypercube source apportionment
» A clear, increasing north to south gradient for most molecular tracers

* Wood combustion is amajor source to OC and EC in Northern Europe during winter

*  Organosulphates and nitrooxy organosul phates varied more than two orders of magnitude



