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Abstract 28 

     Mercury (Hg) is a toxic element entering the biosphere from natural and anthropogenic 29 

sources, and emitted gaseous Hg enters the Arctic from lower latitudes by long-range 30 

transport. In aquatic systems, anoxic conditions favour the bacterial transformation of 31 

inorganic mercury to methylmercury (MeHg), which has a greater potential for 32 

bioaccumulation than inorganic mercury, and is the most toxic form of Hg. The main 33 

objective of this study was to quantify the biomagnification of MeHg in a marine pelagic food 34 

web, comprising species of zooplankton, fish and seabirds, from the Kongsfjorden system 35 

(Svalbard, Norway), by use of Trophic Magnification Factors (TMFs). As expected, tissue 36 

concentrations of MeHg increased with increasing trophic level in the food web, however, at 37 

greater rates than observed in several earlier studies, especially at lower latitudes. There was 38 

strong correlation between MeHg and total Hg (TotHg) concentrations through the food web 39 

as a whole. The concentration of MeHg in kittiwake decreased from May to October, 40 

contributing to seasonal differences in TMFs. The ecology and physiology of the species 41 

comprising the food web in question may have large influence on the magnitude of the 42 

biomagnification. A significant linear relationship was also observed between concentrations 43 

of selenium (Se) and TotHg in birds but not in zooplankton, suggesting the importance of Se 44 

in Hg detoxification for individuals with high Hg concentrations. 45 

 46 

Key Words: Methylmercury, Trophic magnification, Bioaccumulation, Arctic, Food Web 47 
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Introduction 49 

 50 

     Mercury (Hg) is a potentially toxic element entering the biosphere from natural and 51 

anthropogenic sources. The awareness of Hg as a threat to human and environmental health 52 

has led to international agreements to reduce emissions, such as the Minamata Convention on 53 

Mercury of the United Nations Environmental Programme (UNEP), agreed at the fifth session 54 

of the Intergovernmental Negotiating Committee in Geneva, Switzerland in 2013. However, 55 

discharges prevail and current anthropogenic sources account for approximately 30% of 56 

annual Hg-emissions to air, while approximately 60% is from re-emissions of previously 57 

released mercury [1]. Gold mining and coal combustion account for the largest proportions of 58 

anthropogenic emissions [2]. 59 

 60 

     In aquatic systems, anoxic conditions favour the bacterial transformation of inorganic 61 

mercury to methylmercury [3]. Methylmercury (MeHg) is the most toxic form of Hg, and has 62 

a greater potential for bioaccumulation than inorganic mercury. In marine ecosystems, 63 

organisms at the top of food chains are especially exposed, due to the biomagnifying 64 

behaviour of methylmercury [4]. Furthermore, there is some evidence of higher 65 

biomagnification of mercury in food webs of Northern environments [5]. 66 

 67 

     MeHg binds to sulfhydryl -groups of amino acids, which are the building stones of 68 

proteins [6]. Methylmercury is also readily absorbed from the gastrointestinal tract (90-95%) 69 

and crosses the blood brain-barrier [6]. Toothed wales (Odontoceti) appear to be a particularly 70 

vulnerable group, accumulating high concentrations of mercury in the central nervous system, 71 

leading to neurochemical effects [7]. Other adverse effects of MeHg include cardiovascular 72 

and reproductive effects, as well as impaired immune function [6]. 73 
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 74 

     Correlating concentrations of mercury and selenium has been observed in for instance 75 

mammals and birds, and it has been suggested that selenium plays a protective role against the 76 

toxic effects of inorganic and organic mercury [e.g. 8]. The mechanism of Se mediated 77 

detoxification of mercury in organisms is not fully understood, but may be related to synthesis 78 

of metal binding proteins or binding of Hg as insoluble selenide compounds [8, 9]. Potential 79 

Hg-Se compounds that have been suggested responsible for the antagonism include 80 

bis[methylmercuric]selenide, methylmercury selenocysteinate, selenoprotein P-bound HgSe 81 

clusters and the biominerals HgSexS1-x [9]. 82 

 83 

     The Intergovernmental Panel on Climate Change (IPCC) predicts prospective climatic 84 

changes and consequences for the ecosystem that will occur fastest and with largest 85 

magnitude in Polar Regions [10]. Changes in climatic parameters may affect mercury 86 

transport, speciation and cycling in the Arctic [11]. Furthermore, primary productivity and 87 

food web energetics may be affected by climate changes [12], which may impact the trophic 88 

transfer of mercury. Emitted anthropogenic gaseous elemental Hg enters the Arctic from 89 

lower latitudes by long-range transport (in the atmosphere and the oceans; [13]). A net loss of 90 

gaseous mercury from the atmosphere to snow surface in the Arctic during spring has been 91 

shown, and global atmospheric Hg modelling indicates that the Arctic is a sink for Hg [14]. 92 

Concentrations of Hg in some Arctic marine organisms are currently approximately a factor 93 

of 12 higher than in pre-industrial times [2]. 94 

 95 

     There are few studies pertaining to trophic transfer of MeHg, specifically, from the 96 

Svalbard area (Norwegian Arctic; [15]). The main objective of the present study was to 97 

quantify the biomagnification of MeHg in an Arctic pelagic food web, comprising species of 98 
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zooplankton, fish and seabirds (specified below) from the Kongsfjorden system (northwest 99 

Spitzbergen, Svalbard, Norway). Furthermore, an objective was to elucidate possible seasonal 100 

changes in MeHg biomagnification. The biomagnification was quantified by use of Trophic 101 

Magnification Factors (TMFs) that give the factor of increase in concentrations of 102 

contaminants per trophic position. TMFs have recently been amended to Annex XIII of the 103 

Regulation of the European parliament and of the Council on the Registration, Evaluation, 104 

Authorization and Restriction of Chemicals (REACH; [16]) for possible use in weight of 105 

evidence assessments of the bioaccumulative potential of chemicals as contaminants of 106 

concern. A second order objective was to quantify the relationship between total mercury and 107 

methylmercury, as well as between total mercury and selenium in the food web, to better 108 

understand mercury dynamics and the role of Se in Hg detoxification, respectively. 109 

 110 

 111 

Material and Methods 112 

Study site and sampling 113 

     Seabirds, fish, and zooplankton were collected in the Kongsfjorden system, northwest 114 

Spitzbergen, Svalbard, Norway 12th to 18th of May, 26th to 29th of July and 1st to 10th of 115 

October, 2007, during three cruises with R/V Lance and R/V Jan Mayen. Kongsfjorden 116 

(79°N, 12°E) is an open fjord system and the sill-less entrance facilitates exchange of Atlantic 117 

and Arctic water masses across the shelf-fjord boundary, which affects the physical and 118 

biological environment of the fjord [17]. 119 

 120 

     Adult black legged kittiwake (Rissa tridactyla) and little auk (Alle alle), were collected 121 

with a shotgun in the inner to middle part of the fjord, by permission from the Governor of 122 

Svalbard. Polar cod (Boregadus saida), and capelin (Mallotus villosus) were caught by 123 
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gillnets (mesh size: 10, 12.5, 15, 18.5, 22, 26, 35, and 45mm divided into five sections each 124 

5m and 1.5m high, to a total length of 40 m). Zooplankton (copepods: Calanus hyperboreus, 125 

C. glacialis, C. finmarchicus; krill/euphausiids: mostly Thysanoessa inermis; amphipods: 126 

Themisto abyssorum and T. libellula) were collected at two stations in Kongsfjorden, one in 127 

the middle of the fjord (inner station; 78°96 N, 11°94 E) and one outside on the shelf break 128 

(outer station; 78°94 N, 8°54 E; [18]). Zooplankton were collected by use of WP-3 (1000 mm 129 

mesh, 1 m2 opening) and MIK (Method Isaac Kid; mesh size 1000 mm and 500 mm at the 130 

end, 3.14 m2 opening) nets. Samples were taken from the entire water column (depth at inner 131 

and outer stations were 330 m and 290 m, respectively; hauling speed 1 m/s). Live 132 

zooplankton specimens were quickly sorted by species (species specific samples of several 133 

pooled individuals, except for some samples sorted to genus; Calanus sp.) and stored at -20 134 

°C until preparation for analyses of mercury (Hg), selenium (Se), methylmercury (MeHg) and 135 

stable isotopes of nitrogen (a smaller sub-sample for the latter). Biometric measures of 136 

seabirds and fish were taken prior to dissection (Supplemental Data, Table S1). Pectoral 137 

muscle of birds was analyzed for (organo-)metals and stable isotopes. Muscle tissue of fish 138 

was analyzed for MeHg and stable isotopes (TotHg and Se not analysed in fish, i.e. polar cod 139 

and capelin). 140 

 141 

 142 

Element analysis 143 

     The element analyses were conducted at the Norwegian University of Science and 144 

Technology (NTNU), Norway. The samples were lyophilized for 24 h prior to digestion [19]. 145 

Dry samples (~0.15 g) were transferred to PTFE‐vials (18 mL) and added ultrapure water and 146 

nitric acid (4.2 g; HNO3; Scanpure/ultrapure grade), before digestion by use of a high pressure 147 

microwave emitter (Milestone Ultra Clave, EMLS). Subsequently, samples were diluted in 148 
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ultrapure water to a final volume of 60 mL (0.6 M HNO3). Total Hg and Se were determined 149 

by high resolution inductively coupled plasma mass spectrometer (HR‐ICP‐MS; Thermo 150 

Finnigan model Element 2 instrument), with instrument settings as previously described [20]. 151 

No concentrations were below the limit of detection (Hg: 0.24 ng/g dry wt.; Se: 60 ng/g dry 152 

wt.). The average relative standard deviations (RSD) of multiple scans were below 3 % for 153 

both elements. Blank samples and the standard reference materials Bovine liver (National 154 

Institute of Standards and Technology; NIST 1577b), Oyster tissue (NIST 1566b) and 155 

Chicken (National Research Center of Certified Reference Materials; GBW 10018) were 156 

included (n>6) for quality assurance/quality control (QA/QC). The recovery of Se was 114, 157 

123 and 102% in bovine liver, chicken and oyster, respectively. Mercury recovery was only 158 

assessed in oyster, and was 105% [19]. 159 

 160 

Methylmercury analysis 161 

     The MeHg analyses were conducted at the Norwegian Institute for Water Research 162 

(NIVA). All samples were extracted/analyzed as previously described [21] by use of an acid 163 

extraction method based on Hintelmann and Nguyen [22]. Samples (≥0.03 g) were added 10 164 

mL 30% HNO3 and heated at 60°C overnight (15 h). Prior to analysis, the extraction 165 

solution was added 10 mL deionized water, and thereafter 0.050 mL of the solution was 166 

neutralized with 0.050 mL 15% KOH and ethylated before purge/trap and gas 167 

chromatography with cold vapor atomic fluorescence spectrometry (GC-CVAFS) analysis 168 

and detection based on USEPA Method 1630 [23]. Automated systems, standardized for 169 

MeHg, were used for analysis (Brooks Rand Labs MERX automated systems with Model III 170 

AFS Detector). For every run of MeHg analysis (n = 30) QA/QC measures included method 171 

blanks (n = 4), sample duplicates (n = 3), matrix spikes (n = 3) and certified standard 172 

materials (CRMs; n = 6). The certified MeHg concentrations of the CRMs used were 0.355 ± 173 
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0.056 mg/kg , 0.152 ± 0.013 mg/kg and 28.09 ± 0.31 μg/kg for DORM- 3 (fish protein; 174 

National Research Council of Canada, CNRC), TORT-2 (lobster hepatopancreas; CNRC) and 175 

SRM-2976 (mussel tissue; NIST), respectively. Samples that were analyzed in duplicates 176 

were also used for matrix spike samples. Samples chosen for matrix spiking were added 1000 177 

pg (1.0–100 ng/g; 0.1 mL of 10.0 ng/mL MeHg hydroxide; MeHgOH) or 10 000 pg (100–178 

1000 ng/g; 1.0 mL of 10.0 ng/ mL MeHgOH) depending on the concentration in the 179 

biological sample. Concentrations of MeHg in blank digestions correspond to a method 180 

detection limit (MDL) of 1 ng/g dry wt. or better (3 standard deviations of blank 181 

concentrations). The actual MDL will vary depending on the weight of sample available for 182 

analysis, but are typically in the range of 0.2 – 1.0 ng/g dry wt. for samples weights (0.03 – 183 

0.1 g) included in this study. MeHg recovery of matrix spikes (75 – 125 %) and CRM (0.299 184 

– 0.411 mg/kg, 139 – 165 mg/kg and 27.78 – 28.40 µg/kg for DORM-3, TORT-2 and SRM-185 

2976, respectively) were within expected ranges. The RPD between duplicate samples was 186 

found to be satisfactory (< 20 %). If QA/QC measures were not met, samples were re-187 

analyzed. 188 

 189 

 190 

Stable isotope analysis 191 

     The stable isotope analyses were conducted at the Institute of Energy Technology at 192 

Kjeller, Norway, as previously described [24]. Prior to analysis, removal of lipids was 193 

performed by Soxhlet extraction. Samples (900 – 1500 µg; Mettler Toledo MT5, precision 194 

±0.001 mg) were loaded into tin cups (9 × 15 mm) and were analyzed on a Micromass 195 

Optima Isotope Ratio Mass Spectrometers (IRMS; Waters). Stable isotope ratios were 196 

expressed in  notation as the deviation from standard in ‰, according to: 197 

 198 
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15N‰ = [(Rsample/Rstandard) – 1] × 1000      (Eqn. 1) 199 

 200 

where R is the molar ratio of 15N:14N in the sample and in standard, respectively. Atmospheric 201 

air was used as standard for isotopic ratios of nitrogen. Replicate measurements of internal 202 

laboratory standards (muscle tissue of fish) are done routinely and were performed with the 203 

samples. This internal standard has been calibrates against the reference standards IAEA-N-1 204 

and IAEA-N-2 (International Atomic Energy Agency) and the mean value in 2008 was 205 

15NAIR= 11.63‰ ±0.20 (1σ). The mean value for the present study was 15NAIR= 11.62‰ 206 

±0.16 (1σ). Blanks run routinely generally showed ~10 µg N. 207 

 208 

     Trophic position (TP) was calculated for each species relative to the copepod C. 209 

finmarchicus in the same season (May, July or October). C. finmarchicus is a primary 210 

consumer and therefore is defined as inhabiting TP = 2. TP was calculated by assuming that 211 

isotopic enrichment was constant for each trophic step and of the order 3.8‰ [19, 24-27].  212 

 213 

TPconsumer = 2 + (15Nconsumer – 15NC. finmarchicus)/3.8     (Eqn. 2) 214 

 215 

where 15Nconsumer is the species in question and 15NC. finmarchicus is the stable isotope ratio 216 

found in C. finmarchicus (in the same season). 217 

 218 

     However, studies on piscivorous birds have indicated that the 15N isotopic fractionation 219 

between bird diet and muscle tissue is less than that derived for the other trophic steps, and 220 

according to Mizutani et al. [28], a bird diet-muscle isotopic fractionation factor of 2.4‰ is 221 

appropriate. Thus, Equation. 2 is then modified to: 222 

 223 
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TPbird = 3 + (15Nbird – (15NC. finmarchicus + 2.4))/3.8     (Eqn. 3) 224 

 225 

 226 

Data treatment and statistical methods 227 

     Statistical analysis (linear regressions; general linear models) was performed with the use 228 

of Statistica software (Ver 11; Statsoft). A significance level of  = 0.05 was chosen. 229 

 230 

     The trophic magnification factor (TMF) was calculated as the antilogarithm (base 10) of 231 

the slope (b) of the linear regression between log10 concentration (dry wt.) and the trophic 232 

position (TP) of the sample/species in question: 233 

 234 

Log10 Concentration = a + bTP       (Eqn. 4) 235 

 236 

TMF = 10b          (Eqn. 5) 237 

 238 

 239 

Results and Discussion 240 

General observations 241 

     The highest concentrations of total mercury (TotHg) and methylmercury (MeHg) were 242 

found in birds (kittiwake and little auk), while the lowest concentrations were measured in 243 

zooplankton (Table 1; Figure 1). General linear models with (log10) concentrations of MeHg 244 

and TotHg, and amount of MeHg relative to TotHg (%), respectively, as response variables, 245 

and season (May, July and October) and food web compartment (bird, fish [applicable only to 246 

MeHg] and zooplankton) as predictors, showed all predictors significant (p<0.0007). The 247 

concentrations of TotHg varied somewhat between seasons, most noticeable for the birds 248 
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(Table 1). In kittiwake, concentrations decreased from May, through July, to October [19]. 249 

Similarly, in little auk concentrations were lower in July, than in May (little auk were not 250 

available in Kongsfjorden in October). The concentrations of MeHg in the birds also 251 

decreased from May to July, and to October for kittiwake. Thus, the relative amount of MeHg 252 

(MeHg as % of TotHg) in the birds was relatively stable through seasons (Table 1). The 253 

zooplankton showed a higher variation in the relative amount of MeHg (Table 1). The 254 

concentrations of TotHg and MeHg in the organisms were mostly within the same order of 255 

magnitude as in previous studies from the Arctic [15, 29-31]. 256 

 257 

     A general linear model was used to analyze the effect of trophic position (TP) and season 258 

(May, July and October) on (Log10) MeHg concentrations: 259 

 260 

Log10 [MeHg] = a + bTP + ciseasoni + diTP×seasoni + ε     (Eqn. 6) 261 

 262 

where a to d are constants and ε is the error term (i pertains to the three different seasons). In 263 

addition to significant TP and seasonal terms, the interaction TP×season was significant, 264 

indicating different increase in Hg concentration with trophic position (and thus different 265 

TMFs) among seasons (p<0.015; TMFMay = 24.4, TMFJuly = 15.0, TMFOctober = 8.8). Krill was 266 

only sampled in May and July, and if krill is omitted from the analysis (see below), the 267 

interaction term would not be significant, although still with a fairly low p value (p=0.065; 268 

TMFMay = 15.5, TMFJuly = 13.3, TMFOctober = 8.8). 269 

 270 

As for mercury, the concentrations of Se in the birds were also reduced from May to July (and 271 

to October for kittiwake; Table 1). 272 

 273 



14 

 

     Lower TotHg and MeHg concentrations in birds in July than May (Table 1; p<0.000001 274 

for both TotHg and MeHg in kittiwake; p<0.0002 and p<0.0007 for TotHg and MeHg, 275 

respectively, in Little Auk) may suggest that kittiwakes changed from a diet dominated by 276 

fish to a diet predominantly constituted of invertebrates (as discussed by Øverjordet et al. 277 

[19]). It may partly also be a result of the trophic position of the birds declining from May to 278 

July (Table 1; Figure 1; p<0.000001 both for kittiwake and for little auk), which in turn may 279 

partly be attributed to a shift (increase) in the 15N baseline (Calanus finmarchicus, defined as 280 

TP 2 at all seasons). On the other hand, the lower concentrations in birds, later in the year may 281 

also be a result of increased elimination of mercury, bound to feather keratin, through molting 282 

(full molt occurring June to July) [19]. Keratin is a group of fibrous structural proteins 283 

abundant in feathers, rendering feather growth as an excretion pathway of Hg [8]. Female 284 

birds may also excrete Hg via their eggs (egg-laying occurring in June) [32]. 285 

 286 

Biomagnification 287 

     Concentrations (log10-transformed) of MeHg in organisms of the Kongsfjorden system (all 288 

seasons included) showed a significant linear relationship with trophic position (p<0.0001; 289 

R2=0.68; Figure 1). Krill showed somewhat deviating MeHg concentrations and trophic 290 

positions from the other organisms (in May; Figure 1). Omitting krill from the regression 291 

would change the intercept of the regression line, but leave the slope nearly unchanged 292 

(Figure 1), as well as increase the goodness-of-fit (R2=0.84). The slope of the regression 293 

corresponded to a trophic magnification factor (TMF) of 8.7 (8.6 without krill). 294 

 295 

The concentrations of MeHg in the food web were highly correlated with the concentrations 296 

of TotHg (Figure 2; p<0.0001; R2=0.96), indicating an average fraction of 63% MeHg (of 297 

TotHg; deduced from the slope of the regression) in the food web. As mentioned (Table 1), 298 
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this fraction was generally slightly higher in birds, than in zooplankton (p<0.0007; but note 299 

that TotHg was not quantified in fish). Since MeHg has a higher bioaccumulative potential 300 

than inorganic Hg, it could be expected that this fraction would increase with higher trophic 301 

level [5, 33, 34]. The linear relationship between MeHg and TotHg entails a similar TMF for 302 

TotHg and MeHg (TMF = 8.8 for TotHg; 8.7 without krill). 303 

 304 

     The observed TMFs for MeHg and TotHg in the present study are higher (greater 305 

biomagnification) than previously observed in the Arctic, and especially higher than observed 306 

at lower latitudes [e.g. 15, 30, 33, 35, 36]. Examples of findings from different 307 

geographic/climate zones are as follows: 308 

Jæger et al. [15] showed a TotHg TMF = 4.87 for fish and sea birds (muscle) and a MeHg 309 

TMF = 4.26 for fish and sea birds (liver) in Kongsfjorden (Svalbard, Norwegian Arctic). It 310 

must be noted that concentrations of Hg (total and methyl) are higher in bird liver, than 311 

muscle [15, 19]. In a study from the Northwater Polynya, Baffin Bay, Canada, Campbell et al. 312 

[30] quantified TotHg and MeHg biomagnification in a food web including ice algae, 313 

zooplankton, fish and pinnipeds. They found a concentration increase per trophic level 314 

corresponding to TMFs of 5.6 and 7.0 for TotHg and MeHg, respectively (assuming a 15N 315 

enrichment per integer trophic step (N) of the order 3.8‰, as in the present study). 316 

Furhermore, Atwell et al. [29] studied TotHg accumulation in 27 Arctic species from the 317 

Lancaster Sound, northwest Territories, Canada, with samples ranging from particulate 318 

organic matter through invertebrates, fish, sea birds, marine mammals (cetaceans and 319 

pinnipeds) and polar bear (Ursus maritimus). They found a concentration increase per trophic 320 

level corresponding to a TMF of 5.8 (assuming N = 3.8), while Lavoie et al. [31] found a 321 

concentration increase per trophic level corresponding to TMFs of 4.43 and 7.82 for TotHg 322 

and MeHg, respectively (assuming N = 3.8) in a Gulf of St. Lawrence (Canada) food web 323 
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(particulate organic matter, invertebrates, fish and seabirds). Riget et al. [27] reported 324 

concentration increases per trophic level corresponding to TMFs of 2.00 and 3.63 for TotHg 325 

and MeHg, respectively (assuming N = 3.8), in a central West Greenland food web 326 

including fish, sea birds and marine mammals. In a temperate estuary (Masan Bay, Korea), 327 

Kim et al. [36] studied biomagnification of mercury in a benthic food web comprised of 328 

invertebrates and fish. They found a concentration increase per trophic level corresponding to 329 

TMFs of 2.8 and 4.3 for TotHg and MeHg, respectively (assuming N = 3.8). In a sub-330 

tropical food web (fish at different trophic levels), Cheng et al. [33] found TMFs = 2.32-2.60 331 

for MeHg and TMFs = 1.94-2.03 for TotHg, also indicating an increased fraction of MeHg 332 

with higher trophic level. In another subtropical coastal food web (Southwest Florida, US), 333 

comprising 57 species (invertebrates and fish), Thera and Rumbold [37] found a TMF = 5.05 334 

for TotHg. In a study of different fish from a tropical marine ecosystem in the Arabian sea, 335 

Al-Reasi et al. [35] found a concentration increase per trophic level corresponding to TMFs of 336 

3.1 and 3.4 for TotHg and MeHg, respectively (assuming N = 3.8), while Kehrig et al. [38] 337 

found a TMF for TotHg of 5.4 in a Brazilian coastal food web comprised of invertebrates, fish 338 

and ceteceans. 339 

 340 

     The apparent latitude dependence of the magnitude of Hg accumulation, showing higher 341 

biomagnification at higher latitude, is in accordance with findings of Lavoie et al. [5], who 342 

conducted a worldwide meta-analysis of mercury biomagnification in aquatic food webs 343 

(fresh water and marine), compiling data from 69 studies (analyzing TotHg or MeHg), 344 

comprising 205 aquatic food webs. They found a mean TMF for TotHg of 4.7 (± 4.7), and for 345 

MeHg a mean TMF = 8.1 (± 7.2). For marine locations, the mean TMFs were 6.2 (± 4.1) and 346 

7.0 (± 4.9) for TotHg and MeHg, respectively. The MeHg biomagnification was, on average, 347 

a factor of 1.5 higher than for TotHg, and the biomagnification of both MeHg and TotHg was 348 
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significantly and positively correlated with latitude. Hence, their results suggested that the 349 

biomagnification of mercury is highest in cold and low productivity systems, though for 350 

reasons much still unknown. They argued, however, that several mechanisms pertaining to 351 

temperature may be important [5]. Warmer temperatures induce growth, which leads to 352 

growth dilution. Additionally, colder temperatures lead to slower excretion rates. 353 

Furthermore, these authors hypothesized that less complex food webs in the north could lead 354 

to higher bioaccumulation, since a larger choice of prey organisms at lower latitudes may 355 

potentially reduce the efficiency of trophic mercury transfer. Al-Reasi et al. [35] also argued 356 

that mercury biomagnification was lower in tropical system subject of their study, compared 357 

to temperate and Arctic ecosystems, likely due to diverse diet items with different Hg content, 358 

rendering large variation in the body burden of fish species with similar trophic position. 359 

 360 

     The ecology and physiology of the species comprising the food web in question may also 361 

have large influence on the biomagnification. For instance, Lavoie et al. [31] found that the 362 

biomagnification was greater for pelagic and benthopelagic species, compared to benthic 363 

species, and suggested that Hg is more bioavailable to benthic species at the base of the food 364 

web, but trophic transfer efficiency is higher in pelagic and benthopelagic species. Kim et al. 365 

[36] also found that MeHg concentrations were lower in benthic-feeding species, than in 366 

pelagic-feeding species, but attributed this to possible biodilution at the base of the benthic 367 

food web, as a consequence of higher carbon turnover rates, suggesting that the mercury 368 

dynamics at the base of the food web is likely of high importance. High biomagnification of 369 

mercury in Arctic pelagic systems, such as that in the present study also corroborates these 370 

observations. 371 

 372 
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     Furthermore, according to a review by Lehnherr [4], in Arctic marine ecosystems, 373 

increasing evidence suggest Hg methylation in the water column, rather than in sediments, as 374 

the primary source of MeHg. It has also been suggested that dimethylmercury (DMHg; the 375 

other naturally occurring organic Hg species, only present in low concentrations in the deep 376 

areas of the oceans), might be an important, mobile pre-cursor for MeHg in the Arctic marine 377 

environment [39]. 378 

 379 

     Another interesting observation with regard to methylation of mercury was done by Pućko 380 

et al. [40], who studied transformation of mercury at the base of the Arctic food web and 381 

observed that the copepod Calanus hyperboreus shifts Hg from mainly inorganic forms in the 382 

pelagic particulate organic matter (POM) and seawater to primarily organic forms in their 383 

tissue. Furthermore, they observed that the dietary intake of MeHg could supply only 30% 384 

of the MeHg body burden, suggesting transformation within C. hyperboreus, possibly 385 

mediated by microbes in the gut, or bioconcentration from ambient seawater being of high 386 

importance. They argued that acidic and suboxic/anoxic conditions in the gut of C. 387 

hyperboreus promote mercury methylation by iron dissolution and anaerobic microbial 388 

activities. Thus, they hypothesize that the lowest trophic levels of Arctic marine food webs 389 

could present a very important point of in vivo Hg transformation, shifting the MeHg:TotHg 390 

ratio towards higher values. 391 

 392 

     Wang et al. [34] also reported differences in the relative amount of MeHg (MeHg as % of 393 

TotHg) suggesting biomagnification of MeHg between different size classes of zooplankton. 394 

Atwell et al. [29], on the other hand, found no biomagnification among invertebrates (as a 395 

subset of the sampled food web), suggesting different transfer mechanisms for mercury at 396 

different trophic levels. 397 
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 398 

     A physiological trait of the organisms in the food web, which may have an impact on 399 

biomagnification is the issue of thermoregulation. Since homeotherms (or more specifically 400 

endotherms) have higher energy requirement and lower food conversion efficiencies than 401 

poikilotherms, their higher Hg intake may theoretically lead to larger biomagnification in food 402 

webs where homeotherms are included, compared to food webs where homeotherms are not 403 

considered [26, 31]. The inclusion of birds in the food web of the present study may therefore 404 

be partly responsible for the high TMFs. Higher biomagnification in food webs where 405 

homeotherms are included, compared to food webs where homeotherms are not considered is 406 

also observed for persistent organic pollutants [e.g. 24]. Lavoie et al. [5], however, found that 407 

neither the species composition nor the percentage of homeotherms in food webs affected the 408 

magnitude of the biomagnification of mercury. In the study by Campbell et al. [30] from the 409 

Northwater Polynya, TotHg and MeHg biomagnification was also lower than in the present 410 

study (a concentration increase per trophic level corresponding to TMFs of 5.6 and 7.0 for 411 

TotHg and MeHg, respectively, assuming N = 3.8), despite inclusion of substantially more 412 

homoeothermic species/samples.  413 

 414 

     Besides the homeothermy, another influential property of birds is their migratory behavior, 415 

since they experience spatiotemporal variations in contaminant exposure, impeding sampling 416 

of a static food web [41]. In the study by Atwell et al. [29], vertebrates also had, in general, 417 

wider ranges of mercury concentrations than invertebrates, possibly linked to the fact that 418 

they are migratory and have larger foraging ranges. The authors therefore argued that high 419 

trophic level organisms thus also may be exposed to different levels of dietary mercury during 420 

different seasons. Fort et al. [42] also showed that little auks were more contaminated with Hg 421 

when outside the Arctic breeding area/season. As mentioned, the concentrations of TotHg in 422 
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the birds of the present study changed with season (Table 1; Figure 1). Furthermore, 423 

segregating the data on season produced significant differences in TMFs (a trend towards 424 

lower TMF in October, than in May and July; see above). 425 

 426 

Selenium 427 

     Mercury is not an essential element and is not maintained at a stable level by homeostasis, 428 

while Se, being an essential trace element, must be present at a certain level to maintain 429 

physiological functions. As mentioned, it has been suggested that selenium plays a protective 430 

role against the toxic effects of mercury, although the mechanism is not fully understood. As 431 

such, concentrations of mercury and selenium are often correlated in organisms [e.g. 8]. A 432 

significant linear relationship was observed between the (log10-transformed) concentrations of 433 

Se and TotHg in birds (all individuals of both species, all seasons pooled; p<0.00001, 434 

R2=0.61; Figure 3). In contrast, the same relationship was not found within the zooplankton 435 

group (Figure 3), in which concentrations of Hg were substantially lower than in birds. 436 

Looking at kittiwake, separately, the relationship between Se and TotHg was also significant 437 

(all seasons pooled; p<0.00001, R2=0.61; [19]). 438 

 439 

     Kim et al. [8] found a clear relationship between the concentrations of TotHg and Se in the 440 

liver of sea bird individuals with TotHg concentrations above a certain level, while such a 441 

relationship was unclear in other individuals with lower Hg levels, suggesting the importance 442 

of Se in Hg detoxification for individuals with high Hg concentrations. It is known that Se 443 

mitigate Hg-toxicity through formation of Hg-Se complexes at Se:Hg molar ratios above 1 444 

[9]. Looking at Kittiwakes from October, separately, when Hg concentrations were lowest, no 445 

relationship could be observed between concentrations of Se and TotHg (Figure 3). In fact, 446 
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when seasons were addressed separately, such a relationship could only be observed in May, 447 

when Hg concentrations were highest (p<0.05, R2=0.40). 448 

 449 

     Bjerregaard et al. [43] found that dietary exposure of selenium to the brown shrimp 450 

(Crangon crangon) enhanced the elimination of MeHg, and that the effect was dose 451 

dependent, suggesting that selenium present at lower trophic levels of marine food webs may 452 

play an important role in inhibiting MeHg accumulation. Thus, no observed relationship 453 

between concentrations of Se and TotHg in zooplankton may be a consequence of too low 454 

concentrations of Hg, and not that Se plays a less important role in zooplankton. It is also 455 

known from multi-generational studies of cladocerans that selenium deficiency has a negative 456 

effect on fertility and development [44], suggesting the importance of Se for prevention of 457 

oxidative damage.  458 

 459 

Concluding remarks 460 

     As expected, tissue concentrations of MeHg increased with increasing trophic level in the 461 

food web (biomagnification) in an exponential manner, however, at greater rates than 462 

observed in several earlier studies, especially at lower latitudes. There was strong correlation 463 

between the MeHg and the TotHg content through the food web as a whole, thus although 464 

MeHg has a much higher bioaccumulative potential than inorganic mercury, measures of 465 

MeHg and TotHg depict similar trends. It must be noted, however, that TotHg was not 466 

quantified in fish. The concentration of MeHg in kittiwake decreased from May (through 467 

July) to October, contributing to seasonal differences in trophic magnification factors. The 468 

ecology and physiology of the species (e.g. pelagic versus benthic species, homeotherms 469 

versus poikilotherms) comprising the food web in question may also have large influence on 470 

the magnitude of the biomagnification. A significant linear relationship was observed between 471 
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concentrations of Se and TotHg in birds but not in zooplankton, suggesting the importance of 472 

Se in Hg detoxification for birds with high Hg concentrations. 473 

 474 
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Figure Legends: 

 

Figure 1. Trophic level (TL; estimated from 15N) vs. Log10-transformed concentrations of 

methylmercury (ng/g dry wt.) in the organisms from the pelagic food web of Kongsfjorden 

(Svalbard, Norwegian Arctic), sampled in 2007 (May, July and October). Data clustered by 

species/food web compartment: 

a. Zooplankton (Calanus finmarchicus, C. hyperboreus, C. glacialis, Themisto libellula, T. 

abyssorum). 

b. Krill (mostly Thysanoessa inermis) 

c. Capelin (Mallotus villosus) 

d. Polar cod (Boreogadus saida) 

e. Little Auk (Alle alle) 

f. Kittiwake (Rissa tridactyla; Data from Øverjordet et al. [19]) 

Regression lines for the linear regression including (solid line; 

Log10[MeHg] = -1.189 + 0.9411×TL; p<0.0001, R2=0.68) and excluding (stippled line; 

Log10[MeHg] = -1.0468 + 0.9363×TL; p<0.0001, R2=0.84) krill are depicted. 

 

 

Figure 2. Total mercury (TotHg; ng/g dry wt.) vs. methylmercury (MeHg; ng/g dry wt.) in the 

organisms of the pelagic food web of Kongsfjorden (Svalbard, Norwegian Arctic), sampled in 

2007 (May, July and October). [MeHg] = 12.1973 + 0.6314×[TotHg]; p<0.0001; R2=0.96. 

 

 

Figure 3. Concentrations of Selenium (Se; ng/g dry wt.; Log10-transformed) vs.  

concentrations of total mercury (TotHg; ng/g dry wt.; Log10-transformed) in birds (black 
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legged kittiwake, Rissa tridactyla, and little auk, Alle alle) and zooplankton (Calanus 

finmarchicus, C. hyperboreus, C. glacialis, Themisto libellula, T. abyssorum and krill/mostly 

Thysanoessa inermis)  from the pelagic food web of Kongsfjorden (Svalbard, Norwegian 

Arctic), sampled in 2007 (May, July and October; season specified/clustered for the birds). 

(Kittiwake data from Øverjordet et al. [19]; Log10[TotHg] = -2.1123 + 1.2754× Log10[Se]; 

p<0.00001,  R2=0.61). 
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Table S1. Biometric measures for birds (black legged kittiwake, Rissa tridactyla, and little auk, Alle alle) and fish (Polar cod, Boregadus saida, 
and capelin, Mallotus villosus) from Kongsfjorden (Svalbard, Norwegian Arctic), sampled in 2007 (May, July and October). Values are mean 
(and standard deviation). 
Species Season    n a. Body mass 

(g) 
Wing length 

(cm) 
Gonys depth 

(mm) 
Head-bill 

(mm) 
Tarsus length 

(mm) 
Kittiwake b. May 10 

(4 M, 6 F) 
428 
(59) 

31.8 
(1.7) 

11.0 
(0.43) 

89.6 c. 
(4.4) 

40.8 d. 
(1.5) 

 July 10 
(7 M, 3 F) 

380 
(35) 

32.1 
(0.8) 

10.7 
(0.37) 

89.6 
(3.3) 

39.8 
(1.7) 

 October 10 
(8 M, 2 F) 

438 
(54) 

31.2 
(1.3) 

10.2 
(0.7) 

92.1 
(3.7) 

38.9 
(3.5) 

Little Auk May 10 
(7 M, 3 F) 

160 
(11) 

12.7 
(0.4) 

7.8 
(1.8) 

52.9 e. 
(2.5) 

24.2 f. 
(2.1) 

 July 10 
(4 M, 6 F) 

165 
(10) 

12.9 
(0.4) 

8.8 
(0.4) 

53.4 
(1.5) 

25.5 
(0.7) 

        
Species Season n Body mass 

(g) 
Length 

(cm) 
   

Polar cod July 5 11.8 
(1.7) 

12.8 
(0.8) 

   

Capelin July 8 9.6 
(1.5) 

12.4 
(0.6) 

   

a. Total number of samples (as well as the number of males, M, and females, F); b. Data from Øverjordet et al. [1] (where data are reported by sex); 
c. n = 8; d. n = 9; e. n = 8; f. n = 9. 
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