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Abstract.
The robustness of field calibrated Air Quality Multisensors (AQM) performances to

long term and/or mobile operation is still debated. Though accuracy generally
exceeds the one of laboratory calibrations models, experimental results show that
field calibration models cannot sustain optimal field performances due to changes
occurring in operative conditions. Among them, the relocation of calibrated multi-
sensors platforms and sensors drift are considered as the most relevant.
In this work, we want to provide an answer to the general issue of field calibration

robustness analysing theoretical foundations and providing tools for determining the
main drivers affecting performances. In particular, by leveraging on probability
distribution of target and interferents gas as well as environmental variables,
measures of dissimilarity between calibration and operative phase conditions are
provided to quantitatively capture the occurring change. A 6 months multiple nodes
dataset including node relocations events in several sites, have been processed for
deriving nonlinear multivariate field calibrations whose robustness to changing
conditions have been analysed. Kullback-Leibler, Euclidean and Hellinger dissimilarity
measurements have been correlated with recorded performance degradation. Results
show that quantifying relevant factors probability distribution changes allows to
explain and predict performances of in field data driven calibration models. They also
highlights the role of concept drifts in explaining field performances ameliorating our
capability to select optimal conditions in which a field calibration should be derived.
Finally, smart air quality monitors could now autonomously detect the need for re-
calibration.

Keywords. Field Calibration robustness; Mobile Air Quality multi-sensor platforms; Sensors relocation;
Concept drift; Learning in Dynamic Environments.

1. Introduction

Smart air quality monitors, mostly based on solid state micro-sensors, are receiving
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an increasing interest from the general public. This is due primarily to their
capability to act as pervasive sentinels enabling to assess personal exposure to air
pollutants (see [1-2,26]), a primary concern for general population and especially for
those who live in urban environments. Actually, the fraction of total exposome due
to air pollutants is deemed as extremely relevant in determining the incidence rate of
several severe illnesses like strokes, cardiovascular diseases, asthma, COPD, etc.
[3,24,25]. Aside from wearable/portable systems, fixed multi-sensor platforms will
also have a significant role in augmenting the information to the citizen and policy
maker. Should we be able to harmonize data provided by such different systems and
classical model approaches, we would be capable to build high space and time
resolution maps, that will allow the estimation of air quality for exposome
monitoring, nowcasting applications and predictive scenarios with unprecedented
accuracy and hence, value [4,5].
Unfortunately, most smart AQM systems are nowadays sold without any guarantee

on data accuracy and precision [6]. Moreover, raw data are usually not available for
post processing.
It is well known that chemical as well as particulate matter sensors are affected by

long term drift, interferents and non-linearities. The latter requires laboratory
calibration procedures to use several set points to completely describe sensors
response curve. Lack of selectivity cause several unwanted factors, like non-target
gases and environmental conditions, to elicit a significant response negatively
interfering with the response to the nominal target. The set of target gases, non
target gas and environmental interferents, are hereafter collectively referred to as
forcers.
To correct for interference, multiple regression schemes are employed [6]. However,

the number of forcers (non-linearly) influencing sensor responses is usually so
significant that a complete lab based calibration procedure appears simply unfeasible.
Moreover, lack of reproducibility in sensors fabrication requires ad-hoc calibration for
each multisensors multiplying the overall costs while calibration transfer technology is
still to provide evidence of scalability. Simplified calibration procedures retain a high
cost with significant risks of badly performing under field conditions. Schneider et al.
[4] showed how a lab calibrated device whose calibration model was developed
taking into account temperature dependence correction was still negatively impacted
by different weather conditions encountered in the field.
Supplementing lab based calibration, in Field calibration models may be obtained

by jointly analysing multi-sensors data and pollutants concentrations as measured by
collocated reference analysers. This methodology offers a viable solution for obtaining
accurate pollutant concentration predictions allowing to compute models that well
describe the field behavior of the multi-sensors. The results are so impressive that
Borrego et al. [7] have shown that, at least for short term periods, the calibrated
multi-sensors can already meet the data quality objectives (DQO), set by European
Union in the 2008 directive, actually qualifying the sampled data for supplementing
the sparse regulatory AQ monitoring network. However, the robustness of field
calibration is still debated.
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In facts, multiple factors can negatively affect multi-sensors in field calibrations
performances. Changes in environmental conditions and local atmosphere composition
either of natural or anthropogenic origin along with sensors drift, challenge their
robustness to effective field deployment. This is particularly evident for non-
parametric calibration models.
Introducing the main point of our work, to cope with field conditions variability

and cross sensitivities a calibration model should be ideally trained with enough data
to span all the meaningful configurations of forcers values1. In this way, an
automated learner may enjoy a complete knowledge on the influences of all the
relevant factors on sensor response and the full calibration function may be learnt. If
provided with a limited number of samples, on the contrary, the resulting model may
be incomplete. Moreover, it may learn false, or at least temporary, correlations
among forcers and sensors responses due to special conditions occurring in space and
time. The resulting model will not be able to survive to significant changes in the
relevant conditions. Unfortunately, these often occur in time, at least on a seasonal
basis (e.g. weather conditions) or due to changing human activities. In the space
dimension, moving away from calibration site, conditions could severely change due,
for example, to dramatically different car traffic conditions.
Loss of accuracy due to model incompleteness is related with the so called “concept

drift” effects, as opposed to sensor drift effects due to sensor ageing and poisoning.
Recently some authors, including De Vito [8,9,15], Zimmermann et al. [10], Cross et
al. [11], Spinelle et al. [12], Hagan [14], although advocating for the use of field
multivariate calibration warn the practitioners about some of these possible effects.
De Vito et al. showed evidence of long term drift effects recovering while
proceeding towards the season in which their multi-sensor was originally field
calibrated [8], thus highlighting cyclostationarity in the performances. Spinelle et al.,
warned against false or local correlations and advised not to use sensors targeted to
species (proxies) that show high correlation with the target gas by operating an
accurate preliminary feature selection scheme [12]. That correlation obviously depends
on atmosphere composition and may disappear or change in intensity when moving
away from calibration site. Cross et al identified temperature as a major interferents
for Alphasense electrochemical sensors with respect to humidity and argued that
environmental variables range changes may be the primary source of calibration
errors with respect to sensor drift itself during extended field operations [11].
Most of these studies are conducted using a single or a few multi-sensor devices

and hence their generalization capability could be limited. The field knowledge could
be improved by deploying several devices in field for multi-seasonal periods and
collectively analysing the devices performances over time. Cordero et al. [22], for
example, attempted to develop a multilinear regression framework for field calibrating
several AqMesh Pods [23] and evaluating the significance of non-target and
interferent gases with state-of-the-art statistical tests. They account for a limited
influence of temperature but these results may be due to the non-linearity of

1 Along the paper, we will use the term manifold to refer to the
multidimensional space subset containing forcers values configurations.
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temperature influence reported in the adopted sensors datasheets [21] or to limited
operational time.
Field calibration robustness is often linked by practitioners to location issues. Few
studies, however, analyse the performances when sensor nodes are operated
elsewhere with respect to its field calibration site. During spring and summer 2017,
our research group investigated the location dependence of the performances of field
calibrations in the city of Oslo [13]. Surprisingly, we didn’t observe significant
differences among the performance of relocated multi-sensors and the ones that
continued to operate at calibration site. Instead, seasonal changes in mean values of
forcers appeared to negatively affect performances of all the nodes, irrespective of
their location. Later the same year, Hagan et al. highlighted the relevance of the
target gas range change in determining the performance of a field calibration scheme
[14]. During 2018, Casey and Hannigan obtained results that shown how pollutant
emissions composition changes caused performance degradation in field calibrated
multi-sensors devices [17]. Masey et al. [18], studied the temporal performance
behaviour of field calibrated again generally attributing to sensors drift and
concentrations range changes the loss of calibration quality. They propose to
gradually enlarge the calibration dataset with recurrent colocation measurements
period. Although very effective, this approach will boost calibration costs and pose a
risk of catastrophic interference (or even catastrophic forgetting if sequentially
learning) effects, often reported when learning in nonstationary environments [19,20].
These works clearly highlighted the role of concept drifts in determining
performances of field calibrated AQ monitors, however to the best of our knowledge,
none of them analyzed the theoretical foundations of the underlying phenomena, nor
they attempted to quantitatively investigate their drivers. At the same time, they
advocated for further experiments to be conducted in order to clarify the robustness
of field calibration strategy. It is indeed clear that we need to set up a new
theoretical reference model to encode these aspects. This knowledge is, in fact, would
be of paramount importance, especially for developing efficient calibration strategies
for mobile or fixed long term deployments at the base of future dense air quality
monitoring networks and exposome monitors. As a consequence, in this work we will
focus on the following objectives:
a) Introducing a theoretical model for quantitatively analysing and predicting the
robustness of a calibration model in nonstationary environments identifying the main
drivers of performance. In our view, the manifold spanned by calibration data points
becomes crucial in determining the calibration function robustness to changing field
conditions. In particular, we will analyse the differences between the statistical
distribution of relevant forcers during calibration learning and field operation to
explain the overall performances. We formulate the hypothesis that the distribution
difference consistently and negatively correlates with the calibration performance.
This knowledge will consequently help to understand the best conditions for field
calibration sites selection. As a further result, this will allow the multisensor to
assess its current accuracy and anticipate the need for recalibration.
b) Testing the introduced model and hypothesis using a dataset featuring multiple



Published in Sens. and Act. B: Chemical, Vol. 310, 2020, 127869, ISSN 0925-4005, doi.org/10.1016/j.snb.2020.127869.

5

devices operated in different locations during several months with the constant
availability of ground truth regulatory grade data about pollutants concentrations and
weather conditions. Target gas and a primary interferent will be chosen to
investigate the relationship between distribution changes and performance indicators.
In the following sections, background and the experimental setting are described.
Specifically, we first introduce the experimental campaign upon which we developed
our preliminary analysis along with a motivational review of the most related works.
Theoretical framework and methodology description follow right after. Results are
detailed and discussed in Section 4. Finally, conclusions are drawn in Section 5.

2. Background

2.1. Dataset: Multisensor device and deployment campaign description

The dataset analysed in this work has been extracted from a recording campaign
conducted by NILU using 24 AQMesh multi-sensor platforms [4,23]. These AQMesh
multi-sensor devices, deployed in Oslo for more than 6 months, were equipped with
NO, NO2, O3, CO, PM2.5 and PM10 sensors plus Temperature (T) and Relative
Humidity (RH) sensors. Specifically, all gas sensing capabilities were based on
Alphasense Electrochemical sensors. Alphasense electrochemical sensors are reported
by several studies to be among the best performing in field conditions [7], although
affected by slow response [9] and interference by temperature [11] and non-target
gases [21]. Datasheets are available at [21]. AQMesh pods are sold with a factory
derived calibration that partially correct for cross-sensitivities although temperature
interference can still be significant as shown in [4]. In this work, however, we field
calibrated the pods against co-located reference stations for optimal performances.
Actually, the 24 platforms were co-located at the reference AQM station of

Kirkeveien road from April to June 2015. Then, a subset of them was relocated to 3
other different regulatory monitoring stations in Oslo. In particular, 5 pods were
relocated to Akebergveien Rd, 4 pods to Manglerud Rd and 4 pods to Alnabru Rd.
(Fig. 1). The latter are not used in this study due to a critical malfunction.
Kierkeveien and Manglerud stations are located close to highly busy traffic while the
Akebergveien station is located at intersection of two streets with low to medium
traffic. More detailed information about sensors deployments and air pollution local
assessment are available in [4]. This setting allowed all the pods to be collocated
with at least a reference station along the entire deployment duration. To us, that
meant being able to have access to true, or better saying to high accuracy,
concentrations levels from a regulatory grade station, all the time. Reference data
have been, in facts, exploited for supervised calibration learning. Note that while NO2

reference data were available in all the reference stations, O3 reference data were
available only at Kierkevein rd. station.
Furthermore, several pods experimented sustained data losses. For our investigations,

we have taken into account only 12 of the total 24 pods, actually the ones for which



Published in Sens. and Act. B: Chemical, Vol. 310, 2020, 127869, ISSN 0925-4005, doi.org/10.1016/j.snb.2020.127869.

6

more data were available. To balance spatial composition, 4 of the nodes were
chosen among the ones that remained in Kirkeveien, 4 nodes were chosen among the
ones that were relocated from Kirkeveien to Akebergveien and 4 were chosen among
the ones that were relocated to Manglerud Rd. (for a summary of the considered
AQMesh nodes, see Table 1.)

Figure 1: Sensor nodes (Pods) and Reference stations deployment locations in the city of Oslo.

Platform Monitored Species/parameters Final Location
(starting from July 2017)

No. of recorded
samples

(hourly averages)

715150 CO, NO, NO2, O3, PM2.5, PM10, T,
RH

Kirkeveien rd., Stationary pod 3061 hrs

764150 CO, NO, NO2, O3, PM2.5, PM10, T,

RH

Kirkeveien rd., Stationary pod 2924 hrs

785150 CO, NO, NO2, O3, PM2.5, PM10, T,

RH

Kirkeveien rd., Stationary pod 2893 hrs

849150 CO, NO, NO2, O3, PM2.5, PM10, T,

RH

Kirkeveien rd., Stationary pod 2915 hrs

712150 NO, NO2, PM2.5, PM10, T, RH Relocated to Akebergveien Rd. 1151 hrs

743150 NO, NO2, PM2.5, PM10, T, RH Relocated to Akebergveien Rd. 2764 hrs

828150 NO, NO2, PM2.5, PM10, T, RH Relocated to Akebergveien Rd. 2930 hrs

850150 NO, NO2, PM2.5, PM10, T, RH Relocated to Akebergveien Rd. 2974 hrs

718150 NO, NO2, PM2.5, PM10, T, RH Relocated to Manglerud Rd. 3119 hrs

737150 NO, NO2, PM2.5, PM10, T, RH Relocated to Manglerud Rd. 2905 hrs

751150 NO, NO2, PM2.5, PM10, T, RH Relocated to Manglerud Rd. 2833 hrs

856150 NO, NO2, PM2.5, PM10, T, RH Relocated to Manglerud Rd. 3064 hrs

Table 1: Summary of the AQMesh nodes, along with their composition and positioning strategy along the dataset,
used in the evaluations.
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2.2. Motivation and Related Works

The motivation for performance drivers assessment in field calibration comes from
earlier studies that revealed difficult to interpret. In a preliminary investigation, we
calibrated AQMesh multi-sensor nodes (pods) using field sensors data and colocated
regulatory grade station data recorded during the previously described campaign.
Shallow neural networks were trained with these data to serve as a calibration
function [13]. In particular, pods were calibrated against NO2 using data recorded
during their localization in Kirkeveien rd. (April 13rd to May, 31st) in Oslo.
Performance were assessed using data recorded afterwise (4 10-days periods from
June, 1st to Sept. 10) when a subset of the pods were relocated in different streets
(Mangerud rd. and Akeberg rd.) in colocation with a different regulatory grade
instrument. The obtained results have shown a complex picture that did not allow for
a straightforward interpretation. Our investigations showed that, regardless of the
position of the pods, a similar behaviour can be observed, i.e. a collective
deterioration of the performances in mid-summer time. Actually, we observed that
both the stationary and the relocated nodes suffered from a worsening of correlation
index between sensor estimations and true concentrations of NO2 as provided by co-
located reference stations. Surprisingly, stationary pods, that stayed at Kirkeveien rd.
for the whole data collection period, did not show the best relative performances. We
observed that, during the Oslo summer weeks, the average temperatures were
significantly higher than during the training phase (see Fig.2a,b). In the same period,
NO2 concentration median slightly decreased in Manglerud rd. and in Kierkeveien rd.
sites (see Fig.2c,d,e), due to a decrease of anthropogenic emissions (i.e. car traffic)
during summer (see [4]). During the last weeks of the deployment, temperatures
lowered approaching the levels recorded during training phase and performance
improved accordingly. We graphically compared the temperature changes with
observed performances showing an interesting correlation among performance
worsening and temperature increase [13].
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(a,b)

(c,d,e)

Figure 2: (a,b) Box plot of hourly averaged environmental parameters (T, RH) recordings during the colocation
period in OSLO (Blindern City official weather station data). The Pearson coefficient between the two variables
computed along the entire deployment period was found to be negative (r = -0.36). (c,d,e) Box plot of hourly

averaged NO2 concentrations recorded by the reference analyzers in the three relevant deployment site.

These preliminary analysis supported a primary role for natural and anthropogenic
forcers distribution changes (concept drift) in determining the performance of
calibrated nodes subjected to long term deployments and/or nodes relocation. Simple
relocation, obviously, does not necessarily lead to performance degradation, unless
there is a significant change of relevant conditions. These, in turn, depending on the
deployment time scale, may prevail on sensors drift as a major cause of accuracy
losses.
In fact, Esposito et al. [9] in 2016 (single site 5-months deployment, NO2 targeted
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ANN model) and, more extensively, Hagan et al. [14] in 2018 (multisite 8-month
deployment, SO2 targeted kNN model) have empirically shown that non-linear non-
parametric calibration functions are challenged by extrapolation tasks, i.e. when they
are used to estimate target concentrations outside the range encountered in
calibration set. Casey and Hannigan reported different scales performance degradation
of field calibrated Ozone and CO2 targeted multi-sensor devices when operated at
different locations or different seasons with respect to calibration sites. Supported by
their results, they argued how performances can be affected by the different
composition of the pollution sources (car traffic in urban areas, oil and gas processing
in industrial areas) occurring in different locations and by generalization capabilities
of the concerned algorithm (linear or non-linear models) [17]. However, multiple
regression approaches will typically embed2 interferents response model and, hence,
their performance will be also affected by (possibly multiple) interferents ranges
mismatches as also suggested in [14]. As a result, we are no more concerned of
target range mismatch alone but, more generally, of mismatch occurring between
delimiting surfaces of calibration and operative manifolds for all forcers.
Furthermore, while adequately matching or just including the operative envelope, we
may still fail to adequately cover the (hyper-)volume subsets depicting actual
operative relationship among forcers values as a result we may not obtain sufficient
knowledge of the shape of calibration function in that relevant volumes. Generalizing,
a small number of training points located in strongly nonlinear regions of the multi-
sensors response model may be insufficient for learning an accurate description of its
true curvature. The resulting non parametric model will hence be also challenged by
interpolation conditions: whenever operating conditions will limit the forcers
distribution to a restricted nonlinear volume that is insufficiently represented in the
training set, the model will be inaccurate and this will lead to poor predictions. The
training manifold density is hence, locally relevant.
With this specific background, we propose to quantitatively assess the loss of
performance of a calibration scheme specifically due to concept drift leveraging on
forcers’ statistical distribution changes.
In our opinion, multivariate distribution dissimilarity analysis will provide a more
complete picture of the performance drivers helping improving robustness of field
calibration procedures. More specifically, concerning training and operative conditions,
similar multivariate forcers probability distribution functions should lead, to best
predictions; large differences instead should lead, as a sufficient condition, to poor
predictions. In our hypothesis, nonlinearities coverage and adequate range extension
is the key to the selection of a calibration site (and time) that will lead to a robust
calibration algorithm.

2 either implicitly or explicitly
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3. Methods

3.1. Distributions dissimilarity tools theoretical and applicative framework

In order to quantitatively check the relevance of the distribution similarity hypothesis,
it is paramount to select a set of tools that can appropriately describe the similarities
and summarize the differences among two probability distribution functions detecting
the change. In this regard, tenths of different operators have been proposed in the
last decades. A taxonomic attempt was made available by Cha in [34]. Among the
most interesting operators are those belonging to f-divergences [30,31]. The latter is a
flexible family of non-negative measures of dissimilarities comparing the two
probability distribution functions, say P(x) and Q(x), along their entire support,
specifically weighing their odds ratio by the use of a specific function f:

(1)

They are particularly suited for our purposes since they make no peculiar
assumptions on original data distributions and hence can be used for forcers
belonging to different and/or unspecified distribution.
Different choices for function f generates the different operators. Specifically,

substituting

(2)

in (1) generates the Kullback-Leibler divergence (KL) operator:

(3)

KL divergence provides an asymmetric measure of how one probability distribution
differs from a second, expected probability distribution. Like any f-divergence, it is
non-negative and take zero value only when P(x) equal Q(x) almost everywhere. KL
divergence is usually considered as a measure of distance between probability
distributions, though it does not exactly defines a geometrical metric. In fact,
symmetry property and triangle inequality, mandatory requirements in this case, do
not hold true for the KL divergence. More precisely, it defines a dissimilarity measure.
It is widely used in information theory and machine learning, where it is used to
compute the information gain achieved if Q distribution is used to estimate P
distribution.
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Hellinger distance (see [32]), H(P,Q) which is also an f-divergence, is generated by :

(4)

and is hence defined as:

(5)

Differently from KL divergence, Hellinger divergence also defines a metric, properly
accounting for a distance. It is bound to take value in [0, 1] range with 1
representing two completely different distributions. Hellinger distance have been
previously proposed for tackling machine learning challenges when operating in
dynamic environments; Ditzler and Polikar actually used univariate Hellinger distance
between single feature distributions for their concept drift detector in nonstationary
environments [32].
A Minkowsky Lp distance complete the set of analysed dissimilarity indicators. In
particular, we use the classical Euclidean distance defined as

(6)

Summarizing, three different measures of dissimilarity are taken into account. The
first two (KL, Hellinger) differs from the facts that only the second properly accounts
for a distance being also value-bound. Being asymmetric, KL divergence favour
conditions in which Q(x) is wider than P(x) , Hellinger distance, instead treats the
two distribution equally, penalizing all differences. Finally, we also exploited the
simple Euclidean distance, which is not a divergence, but returns a geometrical
difference assessment which is more sensible to localized differences. The combined
usage of these three different mathematical operators (see fig. 3) will contribute to a
more complete assessment of our hypothesis.
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Figure 3: Integrand values of KL, Hellinger and Euclidean integral distance when comparing N(0,1) and
N(2,2)gaussian probability density functions. Note that values have been biased and rescaled to improve picture

readability and favour comparisons.

In the following, the relevant calibration time forcers probability distribution function
substitute P in (3,5,6) and the test time one, in turn, substitutes Q. As an example,
for KL divergence we will obtain:

(7)

with x being, using a simplified notation, a vector scanning the joint support of the
calibration and test probability distribution of any relevant forcers subset, respectively
yCalibration and yTest. In this way, using KL divergence, we would actually compute the
information lost when we approximate the actual forcers concentration distribution
(e.g. NO2 or T) as would be recorded on a test set using the one recorded on
training set.
Obviously, for any multi-target/multi-sensors system, forcers set should encompass all
target gases and all variables that are proven or suspected to be an interferent to any
of the sensors response.
Given the dynamic nature or sensors systems, in certain cases, the derivative of a
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variable may be considered among the relevant forcers. A specific example is given
by temperature derivative that have been suggested as relevant in affecting
electrochemical sensor responses [9,11]. Pang et al. [27], also observed short-term
interferences by stepwise RH level transients, induced in laboratory conditions in
electrochemical sensors. However, a complete analysis of all sensors known
interferents impact is outside the scope of this work. Here, we restrict the analysis to
dissimilarities of probability distributions over manifolds described by a subset of
forcers. These include NO2 as a target gas which reference readings are always
available along the dataset, regardless of the location and the time, plus temperature.
The latter, as above mentioned, is considered the main environmental interferent for
Alphasense EC sensors under analysis. We currently do not include Ozone, a non
target gas that proven a relevant interferent for the concerned NO2 sensor.
Of course, comparing forcers joint probability distributions can provide for a more
complete picture of the distributions changes. For these reasons, in our analysis, we
also included joint probability distributions. In the following, we will hence substitute
y in (6) with the discrete probability distribution function of NO2 concentration,
namely p(NO2), temperature, namely p(T) and their joint probability distribution
function, p(NO2,T).
In the next sections we will correlate the value of these dissimilarity indicators with
nodes concentration estimation performance indices. In this way we want to show the
dependence of the field calibration effectiveness on the differences between the
multivariate forcers distribution on calibration and operative (test) manifolds.

3.2. Multisensors performance assessment procedure

In this contribution, we choose to calibrate the multi-sensor nodes using the Support
Vector Regressor (SVR) as a prototype calibration function (see [15]). This structural
risk minimization rooted machine learning architecture is characterized by good
generalization properties and sparseness in knowledge representation [16,29]. SVRs
also allow to reduce the uncertainty sources in the model training procedures
associated to neural networks due to random weights initialization procedure.
According to the choice in the previous chapter, the multisensors nodes are
specifically calibrated against NO2. NO2 sensors, Temperature, and RH sensors
readings are used as SVR inputs. Note that including environmental sensor readings
allow for a correction of their influence on EC sensors response.
Concentration estimations performances are assessed through selecting multiple
calibration and test sets along the entire deployment time. Precisely, for each pod,
we divide the time domain into different timewise subsets of fixed length (180 hourly
samples). Afterwards, we scan the pod dataset serially selecting two consecutives
subsets for their use in the calibration procedure. As such, each calibration set



Published in Sens. and Act. B: Chemical, Vol. 310, 2020, 127869, ISSN 0925-4005, doi.org/10.1016/j.snb.2020.127869.

14

includes 360 samples (15 days). Two third of calibration set samples have been
selected, by interleaving, for actual training (training set) while the other third
(validation set) have been used for implementing an hyperparameters selection
procedure. In particular, SVR model hyper parameters selection have been
implemented by a grid search optimization procedure. Table 2 reports which
hyperparameters have been actually taken into account, along with the corresponding
spanned value range.

Kernel Function Box Constraint Kernel Scale Epsilon

Selected range Radial basis
function

(20, 21, .., 25) (20, 21, .., 25) (0.1: 0.1: 3)

Table 2: SVR hyperparameters optimization ranges.

As such, each training and optimization procedure required 6x6x30=1,080 evaluations
accounting for the different hyperparameter combinations aiming to minimize errors
on validation set.For each calibration set choice, we cycle through all the remaining
timewise subsets, one at a time, selecting them for testing and final performance
assessments (see Fig. 4); each test set is hence built up by 180 samples (about one
week). In this way, we can explore the entire space of all possible relative
combinations of times of the year and mutual location of the single pods during the
calibration and respective test period. We are hence generating realistic conditions in
terms of manifolds and joint probability distribution of forcers reflecting what could
happen in real world conditions for both fixed and mobile applications. On average,
every pod generated 90 different calibration/test set pairs with a minimum of 12
pairs, a maximum of 120 pairs and only one pod generating less than 90 pairs (pod
#712150). Arithmetically, we computed a total number of 1,116,400 SVR training
sessions.
Mean Absolute Error (MAE) has been selected as performance estimation index. MAE
is one of the most relevant, and often selected, performance indices for air quality
multisensors performance assessment, (see [7]). Here, it has been computed by
averaging, along all of each test sets samples, the absolute estimation error, i.e. the
absolute difference among hourly SVR estimations yi and hourly reference
concentrations ŷi as provided by the co-located regulatory grade analyser:

(8)
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Figure 4: Graphical description of the dataset including pods locations and the calibration/test partitioning and
combination procedure used for deriving SVR based calibration functions.

3.3. Distribution dissimilarity relevance testing procedure

After performance evaluation, a linear Pearson correlation index has been computed
between the test MAE values associated to each calibration-test sets pair and the
distribution dissimilarity indices evaluated on the same sets pair. The specific goal
was, in fact, to show that the knowledge of the forcers distribution change between
calibration and operative conditions is a good predictor of the operative performances
of a field calibration procedure. More precisely, for each different calibration and test
sets pairs, the MAE index obtained on test set samples, have been normalized by
dividing it for the MAE value obtained during the respective calibration set,
specifically, using its associated validation subset. This allowed a) to assess initial
performance on a separate but ideally equally distributed set of data with respect to
training data; b) to rule out, by normalization, the inherent performance diversity
among sensor arrays as well as the one induced by outcomes of the training
procedure. Hence, we are now assessing only the actual performance worsening (or
improvement) when applying the learned calibration function to a different set of
samples. Dissimilarity indexes were similarly obtained considering test set and the
corresponding validation subset. In this way, the correlation coefficient among them,
or more precisely its squared value R2, has provided a tool to estimate how much of
the performance variance could be linearly explained by the concept drifts effects
accounted for by the chosen dissimilarity tool.
Among the introduced indices, the choice initially focused on evaluating the impact
of the dissimilarity between the univariate statistical distribution of Temperature (T)
interference occurring in calibration, and test sets. Slightly afterward we also checked
for the sum of distances of T and the target gas (NO2) concentration distributions
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among the same sets. Finally, we computed the distance between the multivariate
distributions (T, NO2) occurring in validation and test sets.

4. Results and Discussion

4.1. Univariate dissimilarity impact assessment

Following the above mentioned experimental procedures, as a first step, we
have fitted NO2 empirical distributions computed for each of the designated training
and test sets, with a Lognormal probability density function (pdf) [28]. The same
procedure have been repeated for Temperature readings, this time using a Gaussian
distribution model.
We have then numerically computed the first of the proposed pdf dissimilarity indices
(i.e. Kullback-Leibler divergence) between each pair of validation and test sets fitted
pdfs for both target gas and temperature for all pods. The dissimilarity index term
obtained for NO2, specifically DKL(NO2.Validation||NO2.Test), have been added to the
dissimilarity index obtained for temperature DKL(TValidation||TTest) obtaining a composed
term hereafter named SUM-D. Afterward, for each of the above mentioned
calibration-test pairs, we have trained and optimized SVR machine using training set
and, respectively, validation samples; MAE on NO2 concentration estimations was then
computed on the relevant test sets. Finally, the normalized MAE and dissimilarity
indices, as computed on all the calibration-test pairs for each pod, have been
correlated. Table 3, shows the Pearson correlation coefficients r values as obtained
for each pod of all locations for the case of KL divergence. The obtained r values
range from a minimum of 0.42 to a maximum of 0.84, averaging at 0.65, with
respect to Temperature changes as captured by KL divergence while they ranges from
0.44 to 0.84, averaging at 0.66, when considering the sum of the KL obtained for
both forcers. All of the computed r values have been tested for statistical significance
at α = 0.01 level. For all the sets pair, test results indicate that there is sufficient
evidence of a statistically significant correlation among the variables under
investigation.

Kirkeveien Rd. Stable Pods Manglerud Rd. Relocated Pods Akebergveien Rd. Relocated
Pods

#Pod rD(T) rSUM-D #Pod rD(T) rSUM-D #Pod rD(T) rSUM-D

715150 0.76 0.75 718150 0.80 0.80 712150 0.82 0.84

764150 0.55 0.53 737150 0.66 0.65 743150 0.73 0.84

785150 0.45 0.48 751150 0.67 0.65 828150 0.42 0.44

849150 0.63 0.62 856150 0.58 0.58 850150 0.72 0.72
Table 3: Correlation indexes obtained among KL diversity indexes and normalized MAEs obtained for all Pods
during the entire experimental campaign. In particular, rD(T) = Correlation between MAE and KL dissimilarity for
temperatures; rSUM-D = correlation between MAE and the sum of KL dissimilarity for temperatures and target gas.
The bold/underlined values highlights the maximum and minimum computed values, respectively.
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Furthermore, the results show that except for two pods, the correlation among
concept drift and performance worsening always exceeds 0.50. Hence, it can be
observed that in all cases, the dissimilarity between the Temperature distributions
and/or the sum of dissimilarities of T and NO2, is a good predictor of the
performances obtained in the calibration test set. However, the increase in correlation
obtained by adding the target concentrations’ distribution dissimilarity term was very
small (if any). Actually in 5 pods, the correlation index slightly decreased; 3 pods
showed equal results while the remaining 4 pods showed a limited increase. This is
probably due to the relative stability of the target pollutant concentration, with
respect to temperatures behaviour, during all the considered time interval.
R2 reached an average of 0.43 and 0.44 respectively, highlighting how the sum of
univariate DKL captured fractions of the considered concept drift is capable to explain
more than 40% of the variance of the considered performance index.
Summarizing, by relying on the proposed methods, knowledge of the single forcers
distributions during the calibration could be exploited to obtain quantitative insights
about the calibration algorithm (normalized) performances in future operational
conditions.

a b

c d

e f



Published in Sens. and Act. B: Chemical, Vol. 310, 2020, 127869, ISSN 0925-4005, doi.org/10.1016/j.snb.2020.127869.

18

Figure 5: Normal (Gaussian) estimates of temperature probability distribution functions during training (blue),
validation (orange) and test (green) as computed on the best performing calibration/test set pair (left column,
lowest normalized MAE) and the worst performing pair (highest normalized MAE, right column), respectively
recorded for the Kierkeveien rd. stable (a,b) pods, the Manglerud rd relocated pods (c,d) and the Akeberg

relocated pods (e,f). Note how best performance are consistently obtained when temperature pdf as estimated on
test set data are very similar to the one estimated on calibration set data (both training and validation). On the

contrary, large performance degradation have been found to be consistently associated with significant temperature
distribution dissimilarities.

Figure 5 helps to visualize how the dissimilarity in temperature distribution between
calibration and test (operative) conditions is positively associated with performance
degradation in single pods. In particular, pods have been partitioned by the three
final locations. For each of the 4 pods belonging to each of the 3 partitions,
calibration and test pairs were scanned searching for best and worst normalized MAE
performance. Among the pods of each partition, the ones expressing the widest
difference between best and worst case were selected. For these pods, the
temperature pdf representative of calibration and test conditions and belonging to the
best and worst performing pair, were depicted respectively on the left and right
column of fig. 5. It is evident how different environmental conditions shown by
relative position (μ) and shape (σ) of the temperature normal distributions during
train and test are reflected by the worsening of performance indices. Worst cases
actually show a very different distribution of temperatures between calibration and
operative phase that make the learnt models to work outside the calibration manifold
causing inaccurate estimations.

4.2. Multivariate dissimilarity impact assessment

In an attempt to take into account as much as possible of the properties of the
forcers’ sub-space in which the pods are calibrated and operated, we repeated the
process computing dissimilarities of joint multivariate distributions. In particular, we
computed the bivariate empirical joint distribution of temperature and NO2

concentrations, p(T, NO2), for each calibration/test pair, more specifically for the
validation subset and for the test set. Afterwise, the Euclidean, KL and Hellinger
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dissimilarity indices between them, have been computed. Table 4 shows the
correlation coefficient between normalized MAE and corresponding multivariate
dissimilarity measures, for each pod considering all relative conditions of time and
locations. All of the computed values have been positively tested for statistical
significance under α=0.01 conditions.

Kirkeveien Rd. Stable Pods Manglerud Rd. Relocated Pods Akebergveien Rd. Relocated Pods

#Pod rEu rHe rKL #Pod rEu rHe rKL #Pod rEu rHe rKL
715150 0.80 0.79 0.72 718150 0.81 0.84 080 712150 0.79 0.74 0.55
764150 0.57 0.56 0.50 737150 0.64 0.70 0.68 743150 0.83 0.76 0.72
785150 0.57 0.62 0.55 751150 0.66 0.71 0.68 828150 0.57 0.46 0.40
849150 0.67 0.68 0.62 856150 0.57 0.64 0.64 850150 0.75 0.76 0.70

Table 4: Correlation Coefficient (r) of dissimilarity indexes between normalized MAE and joint empirical
probability distributions p(T, NO2). In particular, rEu = Correlation between normalized MAE and Euclidean
distance; rHe = correlation between normalized MAE and Hellinger distance; rKL = correlation between normalized
MAE and Kullback-Leibler dissimilarity. The bold/underlined values highlights the maximum and minimum
computed values, respectively.

In particular, the correlation coefficient r averaged 0.69 for both Hellinger and
Euclidean distance while averaging 0.65 for KL divergence. R2, averaged 0.48 for
Euclidean distance, 0.47 for Hellinger distance and 0.43 for the KL one. That means
that according to the first two indices the forcers subset distribution change is
capable to linearly explain almost 50% of the chosen performance index variance.
This improves the results reached by either univariate or multivariate assessments
based on DKL. Empirically, Euclidean and Hellinger dissimilarity measures seams
capable to slightly better explain the observed performance variance with respect to
KL divergence.
A qualitative evaluation of the relationship among the performance and forcers
distribution may improve our understanding beyond simple r assessments. Since
Hellinger and Euclidean distances show best performances and an extremely similar
average correlation with a slight advantage for Euclidean distance, we choose to
focus on the latter. Actually, Figure 6 (a,b,c) shows a scatter plot based depiction of
the relationship among the value of normalized MAE and Euclidean distance between
joint (bivariate) empirical probability distributions p(T, NO2) in calibration and
operative phase, for all the considered nodes. All the scatter plots highlight a
significant to good correlation (0.57<r<0.83). It is also noticeable how unknown
performance drivers, ostensibly not captured by our model, hampers a full linear
prediction capability. Specifically, the shape of the depicted cloud points consistently
shows that, when low dissimilarity values are concerned, the recorded dissimilarity is
not able to satisfactorily explain most of the observed performance variance. In these
conditions, performance may be dominated by irreducible uncertainty of the node or
unconsidered forcers. Correlation values significantly improve when growing
dissimilarity values are reflected in a consistent increase in calibration error, as
captured by normalized MAE. This confirms the existence of a sufficient condition
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whereby, if the dissimilarity between the training and operative forcers distribution is
sufficiently high then this condition will be invariably associated with significant
performance degradation. Furthermore, the higher the dissimilarity the higher the
average estimation error will be. This relationship show to be capturable by a linear
regression. Comparing the results obtained by different nodes we could see that linear
prediction bias ranged from 0.75 to 0.95 while angular coefficient ranges from 0.075
to 2.5, in half of the cases, though, they are confined in the [0.13, 0.16] range.
Finally, Figure 7 shows a summary of the obtained correlation indices, using the
different distance measures, for the different pods.

Figure 6a : Correlation plots showing the actual relationship between normalized MAE estimations and Euclidean
distance applied to joint empirical distribution p(T, NO2) for the 4 stable pods.
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Figure 6b : Correlation plots showing the actual relationship between normalized MAE estimation nad Euclidean
distance applied to joint empirical distribution p(T, NO2) for the 4 pods relocated in Manglerud rd.
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Figure 6c : Correlation plots showing the actual relationship between normalized MAE estimation and Euclidean
distance applied to joint empirical distribution p(T, NO2) for the 4 pods relocated in Akebergveien rd.
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Figure 7: Summary plot of the correlation results obtained using different distribution dissimilarity indexes -
Multivariate distributions in greenish colors (rKL - KL Dissimilarity, rHe-Hellinger Distance, rEu-Euclidean
Distance), Univariate distribution results in bluish colors (rSUM-D - sum of KL Dissimilarity for Temperature and
Target gas concentration, rD(T) - KL Dissimilarity for Temperature) .

In particular, the greenish bars show the correlation coefficient r of KL divergence,
Hellinger distance and Euclidean distance computed between the bivariate distribution
and the normalized calibration error. Bluish bars indicate computed correlation
coefficient r for the univariate case. As it can be seen, all the considered distances
show a very similar behaviour, except in the case of POD no. 828150 where
Euclidean bivariate value significantly differs from the value obtained by the other
indicators. In general, a slightly better performance is expressed by Hellinger and
Euclidean distance in the bivariate case. We can summarize these results as
confirming that the knowledge of the manifold in which our sensors have been
calibrated, including the distribution of at least the target (NO2) and temperature
interferent, allows to generally forecast the field calibration performances for the
concerned gas multi-sensors devices in operative conditions. Furthermore, distribution
dissimilarity indices seem to be capable to linearly explain significant fractions of the
performance variance. These results have been obtained in very different conditions
characterized by different locations and different weeks of the year, with multi-sensor
platforms that were relocated or operated in the same locations in which they have
been trained. Generalizing these findings, forcers’ distribution changes including
targets and non-targets/environmental interferents could be used to predict
performance issues for field calibrated multi-sensors. In some cases, and, in
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particular for two of the twelve analysed multi-sensors, results clearly indicate the
presence of unknown performance drivers that, being not taken into account,
generates outliers results.

5. Conclusions and Remarks

In this work, we analyse the subject of in field calibration robustness by pursuing a
way to objectively identify and quantify the main drivers of performance degradation
for field calibrated smart air quality monitors. In particular, we proposed the use of
pdf dissimilarities indices to predict performance losses occurring when they are
forced to operate in different places and, more exactly, in different environmental,
non-target and target gases concentrations conditions, with respect to those
encountered during calibration function learning. Our results are obtained with
measurements of twelve multisensory units, deployed over several months and in
different locations. They show that widely adopted performance indicators like MAE
are significantly correlated with changes occurring in forcers’ probability distribution
between calibration and operation phase. Actually, distributions dissimilarity indices
seems capable to numerically capture and so quantify these changes. In particular,
when high values of distributions dissimilarity were recorded, significant performance
worsening can be expected. These findings highlight the significance of the role of
concept drift in determining the performance of field calibrated environmental multi-
sensors platforms. Until recently, this role was often underestimated with respect to
the role universally recognized to sensors drift. Given the enhanced role of concept
drifts, these findings may also stimulate further research tackling semi-supervised
learning strategies for adaptive drift correction.
In general, to which fraction the concept drift may explain the observed lack of
robustness of field calibration, may depend on multiple factors including size of the
calibration dataset, the current amount of sensors ageing and generalization properties
of the calibration algorithm itself. These effects may negatively affect linear
correlation, however normalization procedures may help to reduce their impact.
These results can be exploited in several ways. Just as an example, practitioners may
use the performance prediction capability to identify when a new calibration is
needed. If concept drift is consistently detected in available forcers, or sensors,
distributions for a significant period of time then a new calibration can be
autonomously requested by the pod. Furthermore, the results can be used to
invalidate data when needed. This will avoid using bad quality data in the
subsequent steps of the data processing path such as for exposome monitoring or for
high resolution pollutant concentrations mapping. Most importantly, these insights can
be furthermore explored to define criteria for the selection of field calibration sites
and timing aiming to match operative and calibration conditions. Ultimately, we
should aim to sites and time of the year in which we could, preferably in short
times, obtain a forcers measurement dataset spanning a volume wide enough to
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include a sufficient range of final operative conditions and dense enough to
effectively describe the nonlinearity regions of the calibration function support.
Complete datasets, in this sense, will reduce or rule out the occurrence of
dissimilarity and their relative impacts. As a consequence, the recorded performance
will be entirely explained by sensors precision.
As a final remark, further work is needed to better identify the causes of the fraction
of performance changes that appear not to be captured by the proposed methodology.
Enlarging the number of known interferents (e.g. in our case, Ozone) that are taken
into account may improve the explanatory capabilities of our model though unknown
interferents will still represent a threat to them.
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