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32 Abstract

33

34 In the Barents Sea, pelagic and coastal polar bears are facing various ecological challenges 

35 that may explain the difference in their pollutant levels. We measured polychlorinated 

36 biphenyls, organochlorine pesticides, polybrominated diphenyl ethers in fat, and perfluoroalkyl 

37 substances in plasma in pelagic and coastal adult female polar bears with similar body 

38 condition. We studied polar bear feeding habits with bulk stable isotope ratios of carbon and 

39 nitrogen. Nitrogen isotopes of amino acids were used to investigate their trophic position. We 

40 studied energy expenditure by estimating field metabolic rate using telemetry data. Annual 

41 home range size was determined and spatial gradients in pollutants were explored using latitude 

42 and longitude centroid positions of polar bears. Pollutant levels were measured in harp seals 

43 from the Greenland Sea and White Sea - Barents Sea as a proxy for a West-East gradient of 

44 pollutants in polar bear prey. We showed that pelagic bears had higher pollutant loads than 

45 coastal bears because: (1) they feed on higher proportion of marine and higher-trophic level 

46 prey, (2) they have higher energy requirements and higher prey consumption, (3) they forage 

47 in the marginal ice zones, and (4) they feed on prey located closer to pollutant emission sources/ 

48 transport pathways. 

49

Page 3 of 32

ACS Paragon Plus Environment

Environmental Science & Technology



4

50 1. Introduction

51

52 Persistent organic pollutants (POPs) are transported to remote places such as the Arctic 

53 through air and ocean currents in addition to river outflows1–6. Species at the top of the food 

54 web with lipid-rich diets, such as polar bears (Ursus maritimus), bioaccumulate relatively high 

55 concentrations of POPs7–11. Concomitantly, Arctic sea-ice is declining at an unprecedented 

56 rate12, and loss of sea ice due to climate change is one of the greatest threats to polar bears13,14. 

57 Cumulative stress from habitat loss, reduced food availability and exposure to pollutants could 

58 be of high significance in some polar bear populations15–17. 

59 The Barents Sea polar bears experience high exposure to POPs compared to several other 

60 subpopulations18,19. In particular, concentrations of perfluoroalkyl substances (PFASs), mainly 

61 perfluoroalkyl acids that bind to proteins, have been detected at high concentrations in Barents 

62 Sea polar bears19,20. PFASs contain both emerging and legacy compounds and are broadly 

63 present in various consumer products, because of their surfactant and water repellent 

64 properties21–23. The polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), 

65 followed by the polybrominated diphenyl ethers (PBDEs), are quantitatively the most abundant 

66 lipophilic compounds detected in Barents Sea polar bears24. PCBs and OCPs were extensively 

67 used in the past in various industrial and agricultural applications, and their use had been 

68 gradually regulated since 1970. PBDEs have been largely employed as brominated flame 

69 retardants and their regulation has been ongoing for the last decade. Meanwhile, Arctic sea ice, 

70 which represents the main polar bear habitat for foraging, travelling and mating14,25,26, is 

71 declining at the fastest recorded rate in the Barents Sea27. This polar bear subpopulation, shared 

72 between Norway and Russia, is currently under multiple stressors that might act in 

73 synergy15,16,28,29. 
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74 There are two ecotypes of Barents Sea polar bears with distinct space-use strategies, 

75 individually stable movement patterns and high site fidelity over years30,31. The “pelagic bears” 

76 undertake long annual migrations following the ice retreat toward the northeastern part of the 

77 Barents Sea, while the “coastal bears” stay on land or on land-fast ice year-round at the western 

78 part of the Barents Sea, in the Svalbard Archipelago30,32. The distribution of Barents Sea polar 

79 bears has shifted northwards since the beginning of the 1990s due to changes in their habitat 

80 and in the abundance and distribution of their main prey14,25,33–36. Polar bears depend on sea ice 

81 as a platform for hunting and preferentially feed on ringed seals (Pusa hispida), bearded seals 

82 (Erignathus barbatus) and harp seals (Phoca groenlandica)37–39. However, in the absence of 

83 sea ice, Barents Sea polar bears can feed opportunistically on alternative food sources such as 

84 ground-nesting bird, seabirds, bird eggs, reindeers, whale carcasses, algae and even 

85 vegetation37,39–41. The two ecotypes of the Barents Sea are currently facing very different 

86 ecological challenges. The migration routes of pelagic bears following the marginal ice zone 

87 are getting longer, whereas longer ice-free periods in the Svalbard area force coastal bears to 

88 feed on land-based prey.

89 Previous studies have shown marked differences in pollutants levels between the two 

90 ecotypes, with the pelagic polar bears generally having higher pollutant levels than the coastal 

91 ones42–44. However, the underlying reasons for these differences in pollutant concentrations are 

92 largely unknown. Multiple factors can drive these differences including feeding habits, energy 

93 expenditure, proximity to emission sources, transport routes and abiotic factors42,44–46. Tartu et 

94 al.44 showed that pelagic females had a higher diet selectivity than the coastal females based on 

95 bulk stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in red blood cells. However, in 

96 order to correctly interpret stable isotope data in predators, the base of the food web (baseline) 

97 needs to be constrained. Determining and obtaining baseline stable isotope values can be 

98 problematic in animals that forage widely, such as polar bears. Nitrogen stable isotope of amino 
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99 acids (δ15N-AA) can overcome this issue, by indirectly fingerprinting the base of the food web, 

100 as it conservatively traces δ15N of primary producers. Simultaneously, trophic amino acids 

101 (trophic AA), which become enriched during trophic transfer can be used to isolate a predator’s 

102 trophic position47,48. In addition, pelagic bears occupy a wider home range30,42,44,49, and it has 

103 been proposed that this results in greater energetic costs, greater prey intake and therefore, 

104 higher pollutant levels42. Finally, higher levels of pollutants in the pelagic bears, which utilize 

105 the northeastern part of the Barents Sea to a greater extent, could be due to a spatial gradient in 

106 pollutant concentrations related to proximity of emission sources, uptake and/ or transport 

107 routes of pollutants44–46. 

108 In the present study, we investigated a suite of ecological drivers in order to decipher 

109 drivers of pollutant levels between the two ecotypes of Barents Sea polar bears. Specifically, 

110 the foraging habitat and diet were studied with bulk stable isotope ratios of carbon (δ13C) and 

111 nitrogen (δ15N), as proxies of feeding habits. We also used δ15N-AA as a trophic indication and 

112 in order to estimate the polar bear trophic level. Using satellite telemetry data, we studied energy 

113 expenditure by estimating field metabolic rate (FMR). Annual home range (HR) size was also 

114 determined and potential spatial gradients in pollutants were explored using latitude and 

115 longitude centroid positions of polar bears. Finally, pollutant levels were measured in adult harp 

116 seals from the Greenland Sea stock and White Sea - Barents Sea stock as a proxy for a West-

117 East gradient of pollutants in polar bear prey.  

118

119 2. Material and methods

120

121 a) Fieldwork

122
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123 Adult female polar bears (n = 40; 15 pelagic and 25 coastal) from the Barents Sea were 

124 captured throughout the Svalbard Archipelago in spring (29th March – 24th April) between 2011 

125 and 2018 (Table S1). One female was captured twice, in 2016 and 2017, whilst the others were 

126 captured only once. Immobilization, sampling and handling procedures followed standard 

127 protocols50,51, and are, together with methods for determination of body condition, age and 

128 reproductive status, further described in the supporting information (SI). As concentrations of 

129 pollutants are related to body condition and reproductive status24, we selected individuals with 

130 similar body condition (Table 1) and reproductive status (Table S1) for both ecotypes to avoid 

131 confounding effects of these factors44.

132 Blood and adipose tissue samples of adult harp seals of the Greenland Sea stock were 

133 collected in April 2017 (n = 3) and March 2018 (n = 7) in the pack ice of the Greenland Sea 

134 (geographical range: N69°10’-72°30, W16°-20°). Blood and adipose tissue samples of harp 

135 seals from the White Sea – Barents Sea stock were collected in April 2018 (n = 11) in the 

136 Pechora Sea (geographical position: N69°52’, W50°36’). Procedures for sampling and 

137 estimation of body condition are described in the SI.

138

139 b) Determination of ecotype, home range and field metabolic rate

140

141 Annual HR size defined as the 50% minimum convex polygon (MCP) and the location of 

142 its centroid were calculated for each bear (detailed in the SI). We assigned each bear to an 

143 ecotype (“pelagic” or “coastal”), based on the percentage of overlap between MCP of each 

144 individual and the Svalbard area. The Svalbard area was defined as the 4 largest islands in the 

145 Svalbard archipelago (Spitsbergen, Nordaustlandet, Edgeøya and Barentsøya) and a 20 km 

146 buffer around each island (Figure 1). A bear was deemed “coastal” if at least half of its 50% 

147 yearly HR was included within the polygon (n = 25; Figure 1). By contrast, if at least 50% of 
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148 the bear’s HR was outside of this polygon, the bear was deemed “pelagic” (n = 15; Figure 1). 

149 Ecotype attribution was checked and validated after visual inspection of each track. The daily 

150 speed of each bear was corrected for sea ice drift following the approach taken by Durner et 

151 al.52 (detailed in the SI). FMR was calculated for each bear based on average daily speed 

152 corrected for sea ice drift (as detailed in Blanchet et al. submitted) and following the relationship 

153 in Pagano et al.53 : Daily FMR = 167.3 * speed + 153, where daily FMR is in KJ.kg-1.day-1 and 

154 speed in km.h-1. Because denning events and their duration vary substantially between 

155 individuals and years, we only investigated FMR in the period between May (1st) and 

156 September (30th), when polar bears do not den. 

157

158 c) Pollutant measurements

159

160 Organochlorine compounds (OCPs and PCBs) and PBDEs were analyzed from polar bear 

161 (n = 38) and harp seal (n = 20) adipose tissue. PFASs were analyzed in polar bear plasma (n = 

162 40) and harp seal plasma/serum (n = 20). All analyses were conducted at the Norwegian 

163 Institute for Air Research (NILU) in Tromsø, Norway, following Scotter et al.54 and Hansen et 

164 al.55. Analytical procedures and quality assurance are given in the SI. We quantified OCPs 

165 (trans-, cis-chlordane, oxy-chlordane, trans-, cis-nonachlor, α-, β-, γ-hexachlorocyclohexane 

166 [HCH], mirex, hexachlorobenzene [HCB], o,p’- dichlorodiphenyltrichloroethane [DDT], p,p’-

167 DDT, o,p’-dichlororodiphenyldichloroethane [DDD], p,p’-DDD, o,p’-

168 dichlorodiphenyldichloroethylene [DDE] and p,p’-DDE), PCBs (-28, -52, -99, -101, -105, -118, 

169 -138, -153, -180, -183, -187, -194),  PBDEs (-17, -28, -47, -49, -66, -71, -77, -85, -99, -100, -

170 119, -126, -138, -153, -154, -156, -183, -184, -191, -196, -197, -202, -206, -207, -209), 

171 perfluoroalkyl sulfonic acids (PFSAs) with 4-10 carbons (C) (both linear and branched C8), 4:2, 

172 6:2, 8:2 fluorotelomere sulfonate (FTS), perfluorooctanesulfonamide (FOSA) and C6-14 
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173 perfluoroalkyl carboxylic acids (PFCAs). Only compounds detected in at least 60% of the 

174 samples were used for further statistical analyses and values below the limits of detection 

175 (LOD) were replaced by ½ LOD. The compounds remaining for further investigation included 

176 adipose tissue concentrations of ∑5CHLs, α-, β-HCH (detected in ≥ 60% of polar bear samples 

177 only), mirex, HCB, p,p’-DDE, ∑PCBs (-99, -105, -118, -138, -153, -180, -183, -187, -194), 

178 ∑PBDEs (-47, -99, -100, -153) expressed in ng.g-1 lipid weight (lw), and plasma/serum 

179 concentrations of ∑PFSAs and ∑PFCAs expressed in ng.g-1 wet weight (ww) with following 

180 carbon chain lengths: C5-8 PFSAs and  C7-13 PFCAs for polar bears, and, C6-8 PFSAs and C8-13 

181 PFCAs for harp seals.

182

183 d) Stable isotope analysis (SIA)

184

185 SIA was carried out mostly at the Liverpool Isotope Facility for Environmental Research 

186 (LIFER) lab in United Kingdom and partly (26 red blood cell [RBC] samples) at the University 

187 of Alaska Anchorage in the USA. The respective role of foraging habitat and diet were 

188 investigated in RBCs and hair using bulk SIA ratios of carbon (δ13C) and nitrogen (δ15N)56. 

189 Bulk isotopes were used to investigate isotopic niche width as a proxy of the trophic niche57. 

190 The δ13C of a predator reflects the origin of food sources, as there is generally a good 

191 discrimination between terrestrial and marine food sources7,58–61. The δ15N is commonly used 

192 as an indicator of the trophic position of a consumer7,58,59, owing to the large trophic 

193 fractionation of 2 to 5 per mil (‰) between each trophic level62. We also performed a principal 

194 component analysis (PCA) on δ15N-trophic AA as a proxy of polar bear trophic position. 

195 Finally, polar bear trophic level was estimated from δ15N-AA, using phenylalanine as the 

196 “source amino acid” and glutamic acid as the “trophic amino acid”47,63. This combined approach 

197 allowed for robust trophic level estimation, taking account of potential spatial variation of the 
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198 δ15N baseline. Trophic level was computed according to the formula developed by Chikaraishi 

199 et al.48,64 , adapted for marine food webs65 (β = 2.9‰), and based on a marine mammal trophic 

200 enrichment factor66 (TEF = 4.3‰; Harbor seal [Phoca vitulina]: TLGlu/Phe = [15NGlu - δ15NPhe – 

201 2.9] / 4.3 + 1). Therefore, δ13C, δ15N, δ15N-AA are used in the present study as relevant proxies 

202 of polar bear feeding habits. RBCs are a metabolically active tissue, having a half-life ~1.5 

203 months for δ13C and at least twice as long for δ15N in polar bears67. As a metabolically inert 

204 tissue, hair provides information at the time of tissue synthesis, about 6-8 months before 

205 sampling in case the bears were sampled in April68. Thus, measuring stable isotopes in both 

206 RBCs and hair samples can provide a retrospective record of polar bear feeding habits in 

207 different seasons over a larger time scale. Sample preparation, instrumental analysis and data 

208 processing are further described in detail in the SI.

209

210 e) Statistical analysis

211

212 All statistical analyses were performed using R version 3.5.1. In order to compare pollutant 

213 concentrations in both ecotypes, we used linear mixed-effect models (LMEs, “nlme” R-

214 package, developed by Pinheiro et al69 with ∑CHLs, ∑PCBs, α- and β-HCH, mirex, HCB, p,p’-

215 DDE, ∑PBDEs, ∑PFSAs and ∑PFCAs as response variables. Pollutants were ln-transformed 

216 to meet model assumptions. “Sampling year” was included in each model as a random factor to 

217 account for temporal variation of pollutant levels in Barents Sea polar bears70,71. As suggested 

218 by Zuur et al.72, we used the restricted maximum likelihood estimation (REML) method to 

219 avoid any potential biased estimations. Similarly, we compared δ13C and δ15N signatures (in 

220 RBCs and hair), PC1 scores of δ15N-trophic AA (in RBCs and hair), estimated trophic level (in 

221 RBCs and hair), FMR, HR size, latitude and longitude centroids, and BCI in pelagic vs coastal 

222 polar bears. The PC1 scores of δ15N-trophic AA were extracted from a PCA performed on 5 
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223 trophic AA inferred from RBCs (alanine, valine, leucine, aspartic acid, glutamic acid) and 4 

224 trophic AA from hair (alanine, proline, aspartic acid, glutamic acid). Prior to PCA, we 

225 subtracted the δ15N of phenylalanine from the δ15N of each trophic AA to remove potential bias 

226 due to variation in the baseline, and scaled the baseline corrected δ15N values of each trophic 

227 AA using a z-transformation. Higher PC1 scores indicate increasing trophic positions of polar 

228 bears. Isotopic niche widths (inferred from δ13C and δ15N in RBCs and hair) of both ecotypes 

229 were illustrated by standard ellipses (containing ~95% of the data) on an isotopic biplot (Figure 

230 2 & S1) using “SIBER” R-package73. The areas of the resultant ellipses were then computed 

231 using both the maximum likelihood (SEAc, adjusted for small sample size) and the Bayesian 

232 approaches (SEAb; parameterized as detailed in Jackson et al.73) (Figure 2 & S1). Estimated 

233 SEA values were directly compared in a probabilistic manner in terms of similarity between 

234 pelagic and coastal bears73. Pollutant levels and body condition between the Greenland Sea and 

235 White Sea – Barents Sea harp seals were compared with linear models.

236 To investigate the influence of the ecological drivers on pollutant concentrations in Barents 

237 Sea polar bears, we tested and quantified the effects of feeding habits (δ13C, δ15N and estimated 

238 trophic level from δ15N-AA), energetic cost (FMR), spatial gradient in pollutants (latitude and 

239 longitude centroid positions) and BCI on pollutant concentrations, regardless of which ecotype 

240 they belonged to. We used LMEs with ln-transformed ∑CHLs, ∑PCBs, α- and β-HCH, mirex, 

241 HCB, p,p’-DDE, ∑PBDEs, ∑PFSAs and ∑PFCAs as response variables; and δ13C (both RBCs 

242 and hair), δ15N (both RBCs and hair), trophic level (both RBCs and hair), FMR, latitude and 

243 longitude centroids, and BCI as predictors. “Sampling year” was included in each model as a 

244 random factor. All predictors were standardized (scaled to mean = 0 and standard deviation = 

245 1) to facilitate the comparison of their effect size74. We generated a model set containing 

246 ecologically relevant sub-models from the set of predictors of interest and including an intercept 

247 model (null model). Significantly correlated predictor variables were not included within the 
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248 same model to minimize any collinearity concerns75 (Table S2). This resulted in a final set of 

249 44 competitive models (Table S3). Models (parameterized with the maximum likelihood 

250 estimation as suggested in Zuur et al.72) were first ranked using an information-theoretic 

251 approach based on the Akaike’s information criterion corrected for small sample size (AICc)76. 

252 The AIC weight (wi) was estimated and can be interpreted as the probability that the model i is 

253 the best fit, given the candidate set of models77. We then performed conditional model 

254 averaging (parameterized with the REML estimation as suggested by Zuur et al.72) from the 

255 selected models (cut-off value = cum [∑wi ≤ 0.95]) as described in Grueber et al.78. This method 

256 produces averaged estimates of all predictors, weighted according to their wi
76,79. For all the 

257 predictor variables considered in the selected models, we finally determined conditional 

258 parameter-averaged estimates and 95% confidence intervals (CI). CIs provide information 

259 about the range in which the true estimate value lies with a certain degree of probability, as well 

260 as the strength and direction of the demonstrated effect80. As a general guideline, if CIs do not 

261 cross zero, it can be assumed that the predictor significantly affects the response variable. 

262 Diagnostic plots were assessed on residuals to test whether the data met the assumptions of 

263 LMEs.

264

265 3. Results and discussion

266

267 a) Pollutant levels: pelagic vs coastal polar bears

268

269 Pelagic polar bears generally had higher levels of pollutants than coastal bears (Table 1 & 

270 S4). Median concentrations of ∑CHLs, β-HCH, p,p’-DDE, ∑PFSAs and ∑PFCAs were 64%, 

271 39%, 117%, 49% and 52% higher in pelagic bears than in coastal bears (Table 1). With the 

272 exception of α-HCH, all other compounds investigated, were higher in the pelagic bears, 
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273 although these differences were not significant (Table 1). Previous studies have already 

274 highlighted similar differences in concentrations of pollutants between pelagic and coastal polar 

275 bears from the Barents Sea42–44. However, no such differences were reported for the lipophilic 

276 compounds measured in plasma44. Concentrations of lipophilic POPs are strongly related to 

277 body condition, and as Tartu et al.44 observed that pelagic bears were fatter than coastal bears, 

278 body condition may have masked potential differences between these two ecotypes44. 

279

280 b) Polar bear trophic position 

281

282 The trophic level estimates based on δ15N values of phenylalanine and glutamic acid 

283 suggested that the Barents Sea polar bears occupy trophic level ≈ 3 (i.e. secondary consumer; 

284 Table 1), which is lower than expected for an apex predator7,58. δ15N-AA have not been 

285 investigated in polar bears before, and so a TEF from another marine mammal species was used 

286 (i.e. Harbor seal66), to determine trophic level. However, TEFs have been shown to vary greatly 

287 between species81, and previous studies reported consistent underestimation of trophic levels 

288 inferred from δ15N-AA across a range of diverse wild marine predators, likely due to the use of 

289 inappropriate TEFs65,66,82–86. In addition, we assumed that polar bears from this study fed mainly 

290 on marine prey, and determined trophic level based on an equation developed for marine food 

291 webs. However, coastal polar bears from the Barents Sea also consume terrestrial prey39,41,87,88, 

292 and the use of an equation developed for terrestrial food webs would have led to higher trophic 

293 level estimations64,65. According to the formula developed by Chikaraishi et al.64 for terrestrial 

294 C3 plant food webs, we found an alternative estimates for trophic level ≈ 3.5 for coastal polar 

295 bears (compared to ≈ 2.7). Despite the notable underestimation of polar bear trophic level, we 

296 report very high correlations between the estimated trophic level and PC1 scores of δ15N-trophic 

297 AA (Figure S2), suggesting that the trophic level based on δ15N values of phenylalanine and 
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298 glutamic acid is a reliable trophic indicator in the present study. However, further studies are 

299 needed to define appropriate TEF and β values for polar bears. 

300

301 c) The role of feeding habits

302

303 The trophic level estimates based on δ15N values of phenylalanine and glutamic acid tended 

304 to be higher in the pelagic bears, but the differences were less than one trophic level (Table 1). 

305 There were no significant differences in the δ15N-trophic AA scores of PC1 scores between 

306 bears from each ecotype (Figure S3, LMEs; p = 0.142 for RBCs and p = 0.190 for hair), 

307 suggesting that coastal and pelagic polar bears maintain similar trophic levels. However, δ13C 

308 and isotopic niche width differed significantly between the two ecotypes (Table 1; Figure 2, S1 

309 & S3; probability = 1 for hair and RBCs). The higher δ13C values and the restricted isotopic 

310 niche of pelagic polar bears suggests a selective diet essentially or exclusively composed of 

311 marine prey (i.e. seals), whereas the lower δ13C values and the wider isotopic niche of coastal 

312 polar bears suggests a mixed diet including marine and terrestrial prey. Presence of terrestrial 

313 prey in polar bears diet from Svalbard has also been shown by earlier studies39,41,87,88. In 

314 addition, model-averaged estimates indicated that trophic levels and diet composition 

315 determined from δ15N-AA, δ15N and δ13C signatures were important predictors of pollutant 

316 levels in Barents Sea polar bears (Figure 3). Concentrations of ∑CHLs, ∑PCBs, β-HCH, mirex, 

317 ∑PBDEs and ∑PFCAs increased significantly with δ15N in RBCs. Similarly, concentrations of 

318 β-HCH increased significantly and ∑CHLs tended to increase with δ15N in hair (Figure 3). We 

319 also found positive trends between trophic levels inferred from δ15N-AA in hair and ∑CHLs  

320 and p,p’-DDE, whereas ∑PBDEs increased with trophic level in RBCs (Figure 3). Finally, 

321 concentrations of ∑CHLs, β-HCH, ∑PBDEs, ∑PFSAs, ∑PFCAs increased significantly with 

322 δ13C in hair and/or RBCs, whereas concentrations of ∑PCBs and mirex tended to increase with 
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323 δ13C in hair and/or RBCs (Figure 3). For example, median concentrations of ∑CHLs were about 

324 3.5 times higher in bears with a predominantly marine diet at the highest trophic level compared 

325 to the bears with a mixed diet at the lowest trophic level. Our results are in agreement with 

326 previous findings, which indicated that bears with a predominantly marine diet and higher 

327 trophic level accumulated higher concentrations of pollutants than bears at a lower trophic level, 

328 which fed on a mixed diet including terrestrial prey20,24,44,70. 

329

330 d) The role of energy expenditure

331

332 FMR reflects energy expenditure of polar bears during both resting and active time such as 

333 feeding and movements. FMR in pelagic polar bears was 29% higher than FMR in coastal 

334 individuals (Table 1). This is consistent with the use of larger areas as shown by the size of their 

335 HR, which were 200% larger compared to HR occupied by coastal individuals (Table 1). 

336 Pelagic polar bears have greater energy expenditure (detailed in Blanchet et al. submitted), 

337 presumably because they spend more time in motion in order to reach their foraging habitat and 

338 because they hunt for seals over larger areas, than coastal bears, which live in more confined 

339 areas, feeding opportunistically on an alternative locally distributed diet (e.g. coastal ringed 

340 seal, whale carcass, seabird colonies, algae). Consequently, pelagic polar bears have higher 

341 energy requirements and thus, higher food consumption. In addition, model-averaged estimates 

342 indicated that ∑CHLs concentrations were 2 times higher in bears with the highest FMR 

343 compared to those with the lowest FMR (Figure 3). Similar, but less pronounced and non-

344 significant tendencies were found for ΣPCBs, HCB and ∑PFCAs (Figure 3). This supports the 

345 previous assumption made by Olsen et al.42 suggesting that polar bears with larger HR have 

346 greater energetic costs, greater food intake and consequently, higher pollutant assimilation. 

347
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348 e) The ice edge effect

349

350 Pelagic polar bears were distributed further north compared to coastal polar bears (Figure 

351 1; Table 1). Moreover, model-averaged estimates indicated significantly increasing 

352 concentrations of ∑CHLs, ∑PCBs, mirex, p,p’-DDE and ∑PBDEs with latitude centroid, being 

353 2.5 to 5.2 times higher in the northernmost compared to the southernmost bears (Figure 3). 

354 Higher pollutant levels in polar bears using higher latitudes, in line with recent findings43,44, are 

355 likely related to the location of the sea ice edge, which is for the most of the year north of 

356 Svalbard. Indeed, it has been proposed that when sea ice melts and retreats during spring and 

357 summer, pollutants deposited on snow and stocked in ice are released in large quantities into 

358 the water column and subsequently bioaccumulate within the lipid-rich and low ice-associated 

359 food web89,90. Once assimilated, POPs biomagnify in upper trophic consumers until reaching 

360 elevated concentrations in seals, which are then eaten by polar bears in spring and early 

361 summer91. Interestingly, concentrations of PCBs have been shown to be negatively related to 

362 latitude in Barents Sea polar bears monitored in the 1990s, which has also been related to the 

363 location of the sea ice edge42. However, the marginal sea ice zone was located much further 

364 south in the Barents Sea in 1990s than during our study period92–94. 

365

366 f) The existence of a West-East pollutant gradient

367

368 Pelagic polar bears were distributed further east compared to coastal polar bears (Figure 1; 

369 Table 1). Model-averaged estimates indicated significant increasing concentrations of p,p’-

370 DDE, ∑PFSAs and ∑PFCAs with longitude centroid, being 6.3, 3.2 and 2.8 times higher in the 

371 easternmost compared to the westernmost bears (Figure 3). Similar trends were found for 

372 ΣCHLs and β-HCH (Figure 3). Accordingly, harp seals from the White Sea - Barents Sea stock 
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373 had generally higher levels of pollutants than those from Greenland Sea stock (Table 2 & S4). 

374 Median concentrations of ∑CHLs, ∑PCBs, HCB, p,p’-DDE and ∑PFSAs were 53%, 82%, 

375 62%, 70% and 88% higher in White Sea - Barents Sea harp seals than in those from the 

376 Greenland Sea (Table 2). Our results, in line with recent findings43–46, indicate higher 

377 contaminant levels in the eastern part of the Barents Sea compared to more western areas. This 

378 suggests the existence of a pollutant gradient with increasing trends from Svalbard archipelago 

379 to western Russia. Such geographical pattern of pollutant levels could be related to proximity 

380 to pollutant emission sources and transport pathways. Discharges of lipophilic POPs from large 

381 rivers outflows in the western Russian Arctic have been suggested as an important source of 

382 pollutants in this area6,95. Emissions of volatile PFAS precursors from the Russian and Chinese 

383 industry or elsewhere96,97, can be transported to the eastern part of the Barents Sea through 

384 atmospheric currents and subsequently deposited on sea ice98. Due to a dilution effect, PFASs 

385 are generally more concentrated in surface snow than in seawater99,100. During melting periods, 

386 a considerable amount of pollutants are released, assimilated and biomagnified within polar 

387 food webs, ultimately terminating in polar bears. 

388

389 g) Implications

390

391 Our results indicate that pelagic polar bears from the Barents Sea are exposed to higher 

392 levels of pollutants than their coastal counterparts because (1) they feed on higher proportion 

393 of marine and high-trophic level prey, (2) they have higher energy requirements and 

394 subsequently higher prey consumption, (3) they forage in the marginal ice zones, and (4) they 

395 feed on prey located closer to pollutant emission sources/ transport pathways. In this study, we 

396 selected pelagic and coastal polar bears with similar body condition to avoid confounding 

397 effects for our analyses. Larger studies based on random sampling on bears indicated that 

Page 17 of 32

ACS Paragon Plus Environment

Environmental Science & Technology



18

398 pelagic females are fatter than coastal females44 (e.g. Blanchet et al. submitted), and only 

399 concentrations of proteinophilic PFASs were reported to be higher in pelagic females44. Tartu 

400 et al.44 concluded that the lack of difference in plasma concentrations of lipophilic POPs 

401 between coastal and pelagic polar bears was likely masked by difference in body condition. 

402 Future studies should aim to predict how rapidly declining sea ice in the Barents Sea27, which 

403 is likely to challenge polar bears energetically101, will influence contaminant fate and exposure 

404 in Barents Sea polar bears.

405
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767 Table 1. Estimated pollutant concentrations and ecological predictors in pelagic and coastal adult female polar bears from the Barents Sea (2011-

768 2018). Pelagic and coastal polar bears were compared using linear mixed-effect models with “sampling year” as a random factor.

Pollutantsa n 
(pelagic/coastal)

Estimated median ± SE
for pelagic polar bears

Estimated median ± SE 
for coastal polar bears

p-value

   ∑CHLs (ng.g-1 lw) 14/24 616.6 ± 93.0 375.1 ± 43.1 0.013
   ∑PCBs (ng.g-1 lw) 14/24 2 183.5 ± 388.3 1 477.4 ± 200.2 0.089
   α-HCH (ng.g-1 lw) 14/24 8.0 ± 1.8 9.0 ± 1.9 0.587
   β-HCH (ng.g-1 lw) 14/24 34.6 ± 4.3 24.9 ± 2.4 0.043
   Mirex (ng.g-1 lw) 14/24 4.3 ± 1.0 2.7 ± 0.5 0.117
   HCB (ng.g-1 lw) 14/24 63.1 ± 11.1 45.6 ± 6.2 0.149
   p,p’-DDE (ng.g-1 lw) 14/24 66.9 ± 18.5 30.8 ± 6.5 0.031
   ∑PBDEs (ng.g-1 lw) 14/24 14.5 ± 2.1 10.3 ± 1.4 0.068
   ∑PFSAs (ng.g-1 ww) 15/25 334.6 ± 63.4 224.1 ± 42.0 0.013
   ∑PFCAs (ng.g-1 ww) 15/25 121.2 ± 20.4 80.0 ± 13.4 0.003

Ecological predictors n 
(pelagic/coastal)

Estimated mean ± SE
for pelagic polar bears

Estimated mean ± SE for 
coastal polar bears p-value

   δ13C in RBCs (‰) 15/25 -19.4 ± 0.3 -20.9 ± 0.3 < 0.001
   δ13C in hair (‰) 15/25 -18.2 ± 0.3 -18.9 ± 0.3 0.071
   δ15N in RBCs (‰) 15/25 16.6 ± 0.4 15.3 ± 0.3 0.011
   δ15N in hair (‰) 15/25 18.4 ± 0.5 17.0 ± 0.4 0.030
   Trophic level (from δ15N-AA in RBCs) 15/25 3.1 ± 0.2 2.8 ± 0.1 0.099
   Trophic level (from δ15N-AA in hair) 15/25 3.1 ± 0.2 2.6 ± 0.2 0.157
   Field Metabolic Rate (KJ.kg-1.day-1) 15/25 267.9 ± 5.7 207.1 ± 5.0 < 0.001
   Home range size (Km2) 15/25 190 092 ± 52 865 63 452 ± 53 004 < 0.001
   Latitude centroid 15/25 N 79.8 [79.1 – 80.4] N 77.5 [76.6 – 78.3] < 0.001
   Longitude centroid 15/25 E 41.6 [38.9 – 44.7] E 29.1 [27.7 – 30.6] < 0.001
   Body condition index 15/25 -1.0 ± 0.1 -1.2 ± 0.1 0.280

769 a Pollutants were ln-transformed to meet model assumptions
770 Significant differences are shown in bold
771 OCs and PBDEs have been measured in adipose tissue and PFASs in plasma
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772 Table 2. Estimated pollutant concentrations and body condition index (BCI) in adult harp seals from the White Sea - Barents Sea stock (n = 10) 

773 and Greenland Sea stock (n = 10). White Sea - Barents Sea and Greenland Sea harp seals were compared using linear models. Values are expressed 

774 in ng.g-1 lw for OCs and PBDEs and in ng.g-1 ww for PFASs.

Variables Estimated median ± SE
for White Sea - Barents Sea harp seals

Estimated median ± SE
for Greenland Sea harp seals

p-value

∑CHLs 195.4 ± 25.2 127.4 ± 16.4 0.030
∑PCBs 362.6 ± 55.7 199.2 ± 30.6 0.013
α-HCH 3.4 ± 0.3 5.1 ± 0.5 0.009
Mirex 3.9 ± 2.0 2.2 ± 1.1 0.431
HCB 59.4 ± 10.7 35.3 ± 6.4 0.055
p,p’-DDE 265.8 ± 40.4 156.5 ± 23.8 0.024
∑PBDEs 3.8 ± 0.5 3.6 ± 0.5 0.763
∑PFSAs 39.7 ± 6.5 21.1 ± 3.4 0.013
∑PFCAs
BCI

20.6 ± 2.9
0.6 ± 0.1

18.0 ± 2.5
0.7 ± 0.1

0.504
0.210

775 Pollutants and BCI were ln-transformed to meet model assumptions
776 Significant differences are shown in bold
777 OCs and PBDEs have been measured in adipose tissue and PFASs in plasma/serum
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778 Figure 1. Map of the study area including the tracks of 40 adult female polar bears. The tracks 

779 are color-coded according to their ecotype: pelagic (n = 15 in blue) or coastal (n = 25 in orange). 

780 The staple black line represents the coastal region around the Svalbard area. The insert shows 

781 the location of the Svalbard Archipelago (in red).

782
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783 Figure 2. (A) Isotopic niche width (inferred from δ13C and δ15N in RBCs) illustrated by 

784 standard ellipses (containing ~95% of the data and computed with “SIBER” R-package), for 

785 both pelagic (blue point) and coastal (orange triangle) Barents Sea polar bears (n = 40 adult 

786 females). (B) Comparison of the standard ellipse area (SEA) according to the ecotype. SEAb is 

787 illustrated with black point and SEAc with red cross. 

788  
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789 Figure 3. Effects size of δ13C (in RBCs and hair), δ15N (in RBCs and hair), trophic level (from 

790 δ15N-AA in RBCs and hair), field metabolic rate (FMR), latitude and longitude centroids, and 

791 body condition index (BCI) on pollutant levels in adult female polar bears from the Barents Sea 

792 (2011-2018; n = 38 for OCs/ PBDEs and n = 40 for PFASs). The figures illustrates model 

793 averaging outputs (conditional averaged estimates and 95% confidence interval) from the 

794 selected models. Values of pollutants were ln-transformed
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