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Preface 

This is the final report from an internal project at NILU to investigate the relative expanded uncertainty 
(REU) formula for comparing low-cost sensors (microsensors) and reference measurements. The 
purpose of the REU formula is to check if microsensor measurements follow the data quality objective 
(DQO) of the European Air Quality Directive 2008/50/EC to be considered equivalent to reference 
instruments. The project aimed to obtain a good understanding of the REU formula for its proper use 
in projects involving microsensors. 
 
The work was led by Sam-Erik Walker and carried out in collaboration with Philipp Schneider and Jean-
Marie Lepioufle. Thanks also to Matthias Vogt, Franck Dauge, and Leif Marsteen for valuable input. 
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Summary 

The relative expanded uncertainty formula, as described in the EC Guidance document from 2010, is 
used to define uncertainties of low-cost sensor measurements relative to reference measurements 
to check if the Data Quality Objective of the European Air Quality Directive 2008/50/EC, primarily 
for indicative methods, is reached for these sensors as compared with the reference instrument. 

In this report, we investigate the relative expanded uncertainty formula both theoretically and 
practically, to properly understand the background for and derivation of this formula for its proper use 
in current and future projects involving low-cost or microsensors. We show that this formula is correct 
under the usual assumptions of orthogonal regression, but that it also needs an additional assumption 
of an expected zero difference or bias between the measurands for each time point to represent a 
proper two times relative standard deviation value. The latter assumption is in practice equivalent to 
assuming an ideal 45-degree straight-line relationship between the low-cost and reference instrument 
measurands. If this assumption is not correct, a value calculated with this formula may still be used but 
must then be interpreted as an upper bound of the relative expanded uncertainty (REU) at the 
indicated low-cost measurement level. 

The report stresses the importance of performing orthogonal regression in a proper way, not through 
the standard orthogonal regression formulae in the literature, but by applying the two-step adjusted 
orthogonal regression approach as developed by Dissanaike and Wang in their paper from 2003. We 
also show an alternative formula for the relative expanded uncertainty following more closely the 
model assumed for this two-step adjusted orthogonal regression method. The alternative formulae 
seem to give overall slightly higher relative expanded uncertainty values as compared with the 
standard method. Alternatively, one may use the standard relative uncertainty formula in combination 
with the two-step adjusted orthogonal regression method. 

Simulation results show that the two-step adjusted orthogonal regression method works well in 
combination with both the standard and alternative relative expanded uncertainty formula.  
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A study of the relative expanded uncertainty formula for 
comparing low-cost sensor and reference measurements 

 

1 Introduction 
This project aims to gain better insight and an improved understanding of the relative expanded 
uncertainty (REU) formula as used in a recent paper by Spinelle et al. (2015) and defined in the EC 
Guide to the demonstration of equivalence document (EC, 2010). This formula is used to define relative 
uncertainties of low-cost sensors for checking if the Data Quality Objective (DQO) of the European Air 
Quality Directive (2008/50/EC) (EC, 2008) for indicative methods are reached for these sensors as 
compared with reference measurements. 
 
The REU formula has been used by NILU in previous projects involving the calibration of low-cost 
sensors. It is therefore important to properly understand the background for and derivation of this 
formula for its proper use in current and future projects involving such sensors, e.g. in connection with 
the current IFLINK project. This is also important if we are going to use these sensors to compare with 
modelled concentrations or to combine with such concentrations. 
 
The uncertainty referred to above is described as follows in the EC directive Annex I (EC, 2008): 
 
“The uncertainty (expressed at a 95 % confidence level) of the assessment methods will be evaluated 
in accordance with the principles of the CEN Guide to the Expression of Uncertainty in Measurement 
(ENV 13005-1999), the methodology of ISO 5725:1994 and the guidance provided in the CEN report 
‘Air Quality — Approach to Uncertainty Estimation for Ambient Air Reference Measurement Methods’ 
(CR 14377:2002E). The percentages for uncertainty in the above table are given for individual 
measurements averaged over the period considered by the limit value (or target value in the case of 
ozone), for a 95 % confidence interval.” 
 
The EC Guidance document (EC, 2010), which is a follow-up on the EC directive, describes that the REU 
of a measurement of an assessment method (i.e. low-cost sensor in our case) should, in general, be 
expressed by the following formula 

 ( ) ( )
r

k V y
U y

y
= , (1.1)  

where y  is the measured concentration; ( )V y  is the estimated variance of the assessment method, 

i.e. the estimated variance of the low-cost sensor measurement in our case; and k  is a given so-called 
coverage factor related to the confidence level associated with the uncertainty statement.  
 
Since one generally assumes that measurement errors are normally distributed, a 95 % confidence 
level as stated in the EC directive Annex I quote and repeated in the EC Guidance document 
corresponds to using a factor 2k =  in the formula (1.1). Without this factor, i.e. for 1k = , the 
expression in (1.1) is defined simply as the relative uncertainty of the measurement y . 
 
REUs expressed in the form of percentages rather than as fractions of 1 is obtained by multiplying the 
expression in (1.1) by 100. These may be compared with threshold percentages for assessment 
methods as stated in the table in Annex I part A of the EC directive (EC, 2008). The relevant percentages 
for various compounds for indicative measurement methods are reproduced in Table 1. 
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Table 1: Data quality objectives for ambient air quality assessment for indicative measurements in 

the form of given threshold percentages for various compounds. From Annex I in EC (2008). 
 

Compound(s) SO2/NO2/CO Benzene PM10/PM2.5/Lead O3 
REU threshold in % 25 30 50 30 

 
For those values of y  for which ( ) 100 thr %rU y × ≤ , where thr  is the threshold in per cent for the 
given compound, the assessment method, i.e. low-cost sensor in our case, will comply with the EC 
directive (EC, 2008) in terms of indicative measurements.  
 
The crucial aspect of using (1.1) is to evaluate or estimate the variance of the measurement error of 
the assessment method, i.e. our low-cost instrument. In the EC Guidance document (EC, 2010) the REU 
is given by the following formula 
 

 ( )
( ) ( )( )22

0 1
RSS2 1

2 i i

r i
i

u x b b x
nU y

y

− + + −
−= . (1.2)  

Here n  is the number of measurements, and ix  and iy , for 1,...,i n= , refers to the reference and 

low-cost measurements, respectively. Further, 0b  and 1b  are estimated regression coefficients 
obtained via orthogonal regression between x  and y , and RSS denotes the so-called residual sum of 

squares obtained after fitting the regression coefficients to the data as ( )2
0 11

RSS n
i ii

y b b x
=

= − −∑ .   

 
Finally, in (1.2) ( )2

iu x  denotes the measurement error variance of the reference measurements. The 

expression under the root sign in (1.2) is thus an estimate of the variance iV  of the error of the low-

cost sensor measurements iy  expressed in terms of the corresponding reference measurement ix . 
 
Application of orthogonal regression when comparing measurements forms a crucial part of the 
derivation and use of the REU formula in (1.2). It is therefore important to describe this part a little 
more thoroughly which is done in the next section. 
 

2 Comparing low-cost and reference measurements using orthogonal 
regression 

In the following, let ix  denote the reference measurements, and iy  the corresponding low-cost 

measurements, for a set of time points 1,...,i n= . We generally assume that each pair ,i ix y  can be 
viewed as measurements with the same sampling period, e.g. hourly or daily mean values, etc. 

Associated with these measurements are the true underlying reference and low-cost concentrations, 
or measurands iX  and iY , related to the measurements via the following expressions 

    and   
i ii i x i i yx X y Yε ε= + = + , (2.1) 
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where 
ixε  and 

iyε  denotes the reference and low-cost measurement errors, respectively, for 

1,...,i n= . It is important to note that the measurand values and errors are not directly observable or 

known, only the actual measurements ,i ix y , for 1,...,i n= , are known. 

The following two-variable linear regression equation is then introduced for linking the true reference 
concentrations with the true low-cost concentrations 

 0 1i i iY X uβ β= + + , (2.2) 

where 0β  and 1β  are the regression intercept and slope, respectively, and where iu , for 1,...,i n= , 
represents regression residuals or errors. In the literature of methods for comparing measurements, 
these are also known as equation errors. It is assumed in orthogonal regression that { } 0iE u =  and 

( )cov , 0i iu X = , i.e. that the residuals have mean zero and are uncorrelated with iX . 

Using (2.1), the regression equation in (2.2) can alternatively be written 

 0 1i i iy x vβ β= + +  , (2.3) 

with residuals 1i ii i y xv u ε β ε= + − . Here we still have zero mean residuals, i.e. { } 0iE v = , but these 

residuals will not be independent of the ix  variables since 

 ( ) ( ) 2
1 1cov , cov ,

i i i xi i i y x i xv x u X εε β ε ε β σ= + − + = − . (2.4) 

Note also that since 
ixε  and 

iyε  are independent of iu , we have 

 2 2 2
1var var

x yi iv u ε εβ σ σ= + + . (2.5) 

In either (2.2) or (2.3), the regression coefficients are not known and must be estimated from the data, 
i.e. from the actual measurements ix  and iy . Furthermore, the residuals are not known either. 
However, the variance of the residuals can be estimated using the data and the estimated regression 
coefficients. 

The equation errors iu  or iv  are often the most important errors to consider when comparing 
measurements from two different instruments and are often of a much larger magnitude than the 
measurement errors themselves. 

Due to the symmetry in the situation of comparing two instruments, one should use a regression 
method that respects and fully uses the symmetry between x  and y . One such approach which is 
suggested to use in the EC Guidance document (EC, 2010) is orthogonal regression. The classical 
formulae for orthogonal regression are given in the EC Guidance document (Annex B) and are also 
used in the recent paper by Spinelle et al. (2015). 

However, a theoretical and empirical study conducted by Dissanaike and Wang (2003) shows that the 
classical formulae of orthogonal regression are incorrect in that they implicitly assume a model without 
any equation errors. Consequently, as shown in their paper, the resulting estimates of the regression 
parameters using the classical approach will be biased and inappropriate to use in many cases, 
resulting in estimates of the slope coefficient which in general cannot be trusted. In fact, as stated in 
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their paper, by scaling the variables individually one may obtain completely arbitrary estimates of the 
slope coefficient.  

Dissanaike & Wang (2003) offer a proper solution to this problem in the form of an unbiased estimator 
for the parameters of orthogonal regression. Their method is given in the form of a two-step adjusted 
orthogonal regression estimator, where in the first step, the variance of the residuals is estimated, and 
then a proper set of formulae are used in the second step to estimate the regression coefficients. They 
show that their method performs better than the classical estimator, and in most cases, better than 
ordinary least squares. Besalu et al. (2010) give an extensive theoretical and empirical study of this 
method in chemistry-related studies confirming these findings. The Besalu et al. (2010) paper also 
contains references to the use of this method in other disciplines such as in biology, economics, and 
physics, including aerosol science. 

Appendix A contains a complete description of the two-step adjusted orthogonal regression method.  

3 A derivation of the relative expanded uncertainty formula 
The EC Guidance documents (EC, 2010; 2008) does not contain an explicit derivation of the REU 
formula (1.2). In the following, we will, therefore, attempt to derive this formula ourselves from some 
basic principles. The starting point of this derivation will be the difference, or error, between the low-
cost sensor measurement iy , and the true reference concentration or measurand iX , which may be 
written 

 ( )0 1 0 1error 1
i ii i i i i i x i x iy X x v x v xβ β ε ε β β= − = + + − + = + + + − , (3.1) 

for each time point 1,...,i n= . The aim is to obtain an expression for the variances iV  of these errors. 

The REU of iy  with a 95 % coverage assuming normal errors is then given by 

 ( ) 2 i
r i

i

V
U y

y
= . (3.2)  

We next derive the variance iV . Note that (3.1) can alternatively be written 

 ( )0 1error 1
ii x i iv xε β β− = + + − . (3.3)  

Now since the random variables errori  and 
ixε  are independent, we first obtain 

 ( ) ( )( ) ( ) ( )2 2
0 1 1var error var 1 2 1 cov ,

xi v i i ix v xεσ σ β β β+ = + + − + − . (3.4) 

Inserting (2.4) into (3.4) and rearranging we obtain 

 ( ) { } ( )( )2 2 2
1 1 0 1var error 2 2 1 var 1

xi i v iV xεσ β β σ β β= = + − + − + + − . (3.5) 

Here 2
vσ  is the variance of the error term in the orthogonal regression between ix  and iy , for 

1,...,i n= , and thus, can be estimated by using the residual sum of squares (RSS) as follows 

 
( )2

0 1
2 1

ˆ ˆ
RSSˆ

2 2

n

i i
i

v

y x

n n

β β
σ =

− −
= =

− −

∑
. (3.6)  
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The division by 2n −  rather than n  corrects for a bias introduced by the two estimated β -coefficients 

in (3.6) and makes the resulting estimator of 2
vσ  unbiased. 

The next term in (3.5) is { }2 2
1 12 2 1

xε
β β σ− + −  where 2

xε
σ  is the variance of the reference 

measurement error and assumed to be known. This term can, therefore, be estimated using 

 { }2 2
1 1

ˆ ˆ2 2 1
xε

β β σ− + − . (3.7)  

The variance 2
xε

σ  in (3.7) may be homoscedastic, i.e. constant and not varying with iX , or 

heteroscedastic, i.e. depending on iX , e.g. increasing with iX . One possibility could then be to 
operate with the following measurement error model for this variance 

 ( )2 2 2 2
x i a r iX Xεσ σ σ= + , (3.8) 

where 2
aσ  and 2

rσ are known absolute and relative measurement error variances for the reference 

instrument. The measurement error standard deviation will then be aσ≈  for 0iX ≈  and r iXσ≈  for 

0iX >> . For this error model, since iX  is not known, iX  needs to be replaced by e.g. ix  in the 
expression for the measurement error. Since 

 
( ){ } ( ){ } { }

{ } { } ( )

22 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2

                  1 ,

x i i i

x

i a r i x a r i i x x

a r i r a r i r i

E x E X E X X

X X X

ε

ε

σ σ σ ε σ σ ε ε

σ σ σ σ σ σ σ

= + + = + + +

= + + + = +
 (3.8b) 

an unbiased estimate of this measurement error variance is then obtained using 

 ( ) ( ) { }2 2 2ˆ 1
x xi i rx xε εσ σ σ= + . (3.8c) 

Finally, consider the last term in (3.5), the variance of ( )0 1 1 ixβ β+ −  which can be written 

 ( )( ) ( )( ){ } ( )( ){ }22
0 1 0 1 0 1var 1 1 1i i ix E x E xβ β β β β β+ − = + − − + − . (3.9) 

Here ( )( ) ( )0 1 0 11 1i iE x Xβ β β β+ − = + −  which is zero in general only if 0 0β =  and 1 1β = . In this 

case (3.9) may be written 

 ( )( ) ( )( ){ }2
0 1 0 1var 1 1i ix E xβ β β β+ − = + − . (3.10)  

If we further assume that the variance in (3.9) or (3.10) is heteroscedastic, i.e. that it varies with ix , 

then the only way to estimate this variance is to use the value ( )0 1 1 ixβ β+ − directly and square it. 

Thus, we obtain the following very crude estimate for this variance 

 ( )( )2

0 1
ˆ ˆ 1 ixβ β+ − . (3.11)  

Combining the expressions (3.6), (3.7) and (3.11) we obtain the following estimate of iV  
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 { } ( ) ( )( )2
2 2

1 1 0 1
RSS ˆ ˆ ˆ ˆˆ ˆ2 2 1 1

2 xi i iV x x
n εβ β σ β β= + − + − + + −
−

. (3.12) 

Inserting this expression into (3.2) we obtain the following REU of iy  with a 95 % coverage at the low-

cost measurement level iy  

 ( )
( ) ( ) ( )( )2

2 2
1 1 0 1

RSS ˆ ˆ ˆ ˆˆ2 2 2 1 1
2 x i i

r i
i

x x
nU y

y

εβ β σ β β+ − + − + + −
−= . (3.13) 

This formula is nearly the same as in the EC Guidance document (EC, 2010) and in the recent paper by 

Spinelle et al. (2015). If 1̂ 1β ≈  or we simply assume that we perform orthogonal regression using (2.3) 

with the assumption that iv  and ix  are independent, i.e. ( )cov , 0i iv x = , we essentially obtain the 

same expression as in the (EC, 2010) and Spinelle et al. (2015), i.e. (1.2). 

Since the assumption 0 0β =  and 1 1β =  generally does not hold, and thus the last term on the right-
hand side of (3.9) is non-zero, the expression in (3.13) is valid generally only as an upper bound on the 
REU at the level iy . This means that if ( )r iU y  as calculated by (3.13) is less than some threshold level, 

then a properly calculated ( )r iU y  taking into account that the second term on the right-hand side of 

(3.9) is non-zero will also be below this same threshold level. Thus, (3.13) enables us to state for which 
values of concentrations iy  the low-cost sensor complies with the Data Quality Objective (DQO) of the 
EC directive (EC, 2008), but it is a conservative formula, i.e. there might be data values failing to comply 
with the DQO according to this formula which nevertheless strictly speaking comply according to a 
more correctly calculated REU taking into account that the second term on the right-hand side of (3.9) 
is generally non-zero. It seems difficult, however, to come up with a better and more accurate formula. 

4 The standard procedure for calculating the relative expanded uncertainty 
Here we give the standard procedure or recipe for calculating the REU for a given compound based on 
a set of measurements ,i ix y , for 1,...,i n= , from a reference and a low-cost sensor, respectively, 
where n  denotes the number of measurements from each instrument. 

It is assumed that the ratio of variances between the low-cost and reference measurements 
2 2

y xε ελ σ σ=  is known. If this is not the case, or if one is unsure about this ratio, it is recommended in 

the two-step adjusted orthogonal regression procedure (Dissanaike and Wang, 2003) to set 1λ = .  

However, if one believes the measurement uncertainties in the low-cost instrument are higher than in 
the reference instrument one could try to use higher values of λ  and compare the results. This 
recommendation also applies to the alternative procedure in Section 5. 

The standard procedure now consists of the following steps: 

Step 1. Perform orthogonal regression according to the two-step adjusted procedure as outlined in 

Appendix A. The first part of this procedure produces estimates 0β , 1β  and 2ˆuσ . The second part 

produces final estimates 0β̂  and 1̂β  based on the estimate 2ˆuσ . 

Step 2. Calculate the REU using 
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 ( )
( ) ( )( )2

2
0 1

RSS ˆ ˆˆ2 1
2 x i i

r i
i

x x
nU y

y

εσ β β− + + −
−= , (4.1) 

where ( )0 11
ˆ ˆRSS n

i ii
y xβ β

=
= − −∑ . 

For each data value iy , one then checks if ( ) thr %r iU y < , where thr  is the given threshold in per 

cent for the current compound (see Table 1 in Section 1). Plotting the curve of such values as a function 
of iy  indicates for which concentration levels the low-cost sensor complies with the EC directive (EC, 
2008). It is important that it complies with the directive at or above the limit value for the given 
compound. 

The variance under the root sign in (4.1) is 

 ( ) ( )( )2
2

0 1
RSS ˆ ˆˆ ˆ 1

2 xi i iV x x
n εσ β β= − + + −
−

. (4.2) 

Thus, we see that this total variance which contributes to the REU value consist of the following three 
terms: 

1. The regression residual error variance 
RSS

2n −
, with ( )0 11

ˆ ˆRSS n
i ii

y xβ β
=

= − −∑ . 

2. The reference measurement error variance ( )2ˆ
x ixεσ− . 

3. The error variance due to the deviation from an ideal 45-degree line, i.e. ( )( )2

0 1
ˆ ˆ 1 ixβ β+ − . 

 

Clearly, the REU increases with increasing residual error variance as given by the first term. 

Also, the REU increases when the regression line deviates more from the ideal 45-degree line 

corresponding to 0
ˆ 0β =  and 1̂ 1β =  as given by the third term. Thus, even without any equation or 

measurement errors per se, the REU will be large if the fitted regression line deviates from the ideal 
y x=  relationship. Thus, REU does not only consider measurement and equation and errors but also 

the systematic deviation of the fitted regression line from the ideal 45-degree line through the origin.  

In (4.2) the reference measurement error variance always contributes negatively to the estimated total 
variance. Thus, a larger assumed reference measurement error variance will lead to lower REU values 
everything else being equal. Note, however, that the estimated residual error variance here includes 
both reference and low-cost measurement error variances. Thus, when the reference measurement 
error variance is correctly specified only the low-cost measurement error variance will remain after 
summing the first two terms in (4.2). 

Finally, it is important to reiterate that REU might be large, irrespective of the regression residual and 
measurement errors if the fitted line from the orthogonal regression deviates from the ideal 45-degree 
line through the origin. As the results in Appendix B, Figure B.5a, shows, based on a simulation 

example, maximum REU will be at around 0.2 (20 %) already for 0
ˆ 2β =  and 1̂ 0.9β =  even without 

any residual or measurement errors. 
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5 An alternative procedure for calculating the relative expanded 
uncertainty 

Here we give an alternative procedure or recipe for calculating the REU based on following more 
closely the model we have assumed for orthogonal regression as outlined in Section 2.  

The starting point of this approach is to replace the variance of iv , i.e. 2
vσ  in (3.5) with the more 

accurate formula (2.5), where 2 2
y xε εσ λσ= . Thus, the variance îV  in (3.12) then becomes 

 ( ) ( ) ( ) ( ) ( )( )2
2 2 2 2 2

1 1 1 0 1
ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2 2 1 1

x xi u i i iV x x xε εσ β λ σ β β σ β β= + + + − + − + + −  . 

Here 2
uσ  can be estimated using ( )2

cˆ RSS 2u nσ = −  with ( ) ( ){ }2 2 2
c 11

ˆ ˆRSS
x

n
i ii

v xεβ λ σ
=

= − +∑  

and 0 1
ˆ ˆ

i i iv y xβ β= − − . 

The alternative procedure then consists of the following steps: 

Step 1. Perform orthogonal regression according to the two-step adjusted procedure as outlined in 

Appendix A. The first part of this procedure produces estimates 0β , 1β  and 2ˆuσ . The second part 

produces final estimates 0β̂  and 1̂β  based on the estimate 2ˆuσ . 

Step 2. Calculate the REU using the alternative formula 

 ( )
( ) ( ) ( ) ( ) ( )( )2

2 2 2 2 2
1 1 1 0 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ2 2 2 1 1
x xu i i i

r i
i

x x x
U y

y
ε εσ β λ σ β β σ β β+ + + − + − + + −

= , (5.1) 

with ( )2
cˆ RSS 2u nσ = − ; ( ) ( ){ }2 2 2

c 11
ˆ ˆRSS

x

n
i ii

v xεβ λ σ
=

= − +∑  and 0 1
ˆ ˆ

i i iv y xβ β= − − . 

The formula (5.1) is more correct to use than the classical formula (4.1) under the model that we have 
assumed for orthogonal regression as outlined in Section 2. It becomes identical with the standard 
formula (4.1) when there are no measurement errors, i.e. ( )ˆ 0

x ixεσ = .  

By combining similar terms related to the measurement error, the variance under the root sign in (5.1) 
can be written 

 ( )( ) ( ) ( )( )22
2 2

1 0 1
ˆ ˆ ˆˆ ˆ ˆ1 1

xi u i iV x xεσ λ β σ β β= + − − + + − . (5.2) 

Thus, we see that the total variance now contributing to the REU value consist of the following three 
terms: 

1. The equation error variance 2ˆuσ . 

2. The measurement error variance ( )( ) ( )
2

2
1̂ ˆ1

x ixελ β σ− − . 

3. The error variance due to the deviation from an ideal 45-degree line, i.e. ( )( )2

0 1
ˆ ˆ 1 ixβ β+ − . 
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Clearly, the REU again increases with increasing equation error variance as given by the first term. 

It is also clear that again the REU increases when the regression line deviates more from the ideal 45-

degree line corresponding to 0
ˆ 0β =  and 1̂ 1β =  as given by the third term. Thus, again even without 

any equation or measurement errors, the REU will be large if the fitted regression line deviates from 
the ideal y x=  relationship. Thus, again REU does not only consider equation and measurement 
errors but also the systematic deviation of the fitted regression line from the ideal 45-degree line 
through the origin.  

However, whether the measurement errors contribute positively to the estimated variance in (5.2) and 

the subsequent REU value will now depend on the sign of the expression ( )2

1̂ 1λ β− − . Note that when 

1̂ 1β ≈ , it will add approximately ( )2ˆ
x ixελσ  to the total variance, i.e. precisely the measurement error 

variance of iy . Also, since usually we use 1λ =  and ( )2

1̂1 1 0β− − >  for all [ ]1̂ 0, 2β ∈ , the second 

term in (5.2) will usually contribute positively to the total variance and REU. 

Finally, it is again important to reiterate that REU might be large, irrespective of the equation and/or 
measurement errors if the fitted line from the orthogonal regression deviates from the ideal 45-degree 
line through the origin. As the results in Appendix B, Figure B.5b, shows, based on a simulation 

example, the maximum REU will be at around 0.2 (20 %) already for 0
ˆ 2β =  and 1̂ 0.9β =  even without 

any equation or measurement errors. 

Appendix C contains a short description of an R package called reu implementing both the standard 
and the alternative procedure for calculating REU values. Also, the package contains a plotting routine 
for making standard REU plots based on the calculated REU values.  

6 Deviations from assumptions of orthogonal regression 
In this section, we discuss some possible deviations from the assumptions of orthogonal regression 
and how this may impact the results of orthogonal regression and the REU calculations. In the case of 
measurements or model error distributions not being normal, we also discuss the use of 
transformations to correct for this. 

6.1 Incorrect specification of measurement uncertainty 

As part of the orthogonal regression procedure, measurement uncertainty needs to be specified, and 
this needs to be done for both reference measurements x  and low-cost measurements y . It is 
generally not possible to infer the amount of measurement uncertainty from the data, i.e. from the 
measurements themselves. They need to be pre-specified by the user before we apply the method of 
orthogonal regression.  

Specifying measurement uncertainty for the reference measurements may be done e.g. by defining 
the two parameters aσ  and rσ  in the expression for the measurement error variance (3.8), or its 
standard deviation obtained by taking the square root of (3.8), if we believe in this error model for the 
reference measurements. These parameters represent respectively, the absolute measurement error 
standard deviation when the underlying true concentration level iX  is zero or close to zero, and the 
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relative standard deviation as a fraction (or per cent) of iX  for higher values of iX . Typical values 

could e.g. be in the range 1-3 µgm-3 for aσ , and 0.05-0.10 (5-10 %) for rσ . 

Measurement uncertainty for the low-cost sensor is specified by setting the orthogonal regression 
parameter λ , representing the ratio of the measurement error variance of the low-cost sensor vs. the 
reference instrument. As stated earlier, if we know very little or nothing about the measurement 
uncertainties of the low-cost sensor, it is recommended as part of the two-step adjusted orthogonal 
regression method of Dissanaike and Wang (2003) as outlined in Appendix A, to set this parameter to 
1, i.e. to specify the same amount of uncertainty for the low-cost sensor as for the reference 
instrument. If we know more about the measurement error uncertainty of the low-cost instrument we 
might specify a different λ  value, e.g. a somewhat higher value than 1, in the orthogonal regression 
method.  

Applying orthogonal regression prevents us, however, from specifying the measurement error 
variance of the low-cost sensor precisely, since it always has to be defined through the use of the λ  
parameter, which needs to be set to a constant value for all time points. Thus, even if we manage to 
describe precisely the measurement uncertainty of the reference instrument, there will almost always 
and inevitably be some degree of approximation involved in specifying the measurement uncertainty 
for the low-cost sensor since it has to be made proportional to the reference uncertainty with 
proportionality constant λ . 

One may, therefore, ask: What is the impact on orthogonal regression and the subsequent REU 
calculations of specifying incorrectly the measurement uncertainty of the low-cost sensor, or for that 
matter of the reference instrument, or both?  

We consider first the case of incorrectly specifying the low-cost measurement uncertainties under the 
tacit assumption that the uncertainties associated with the reference measurements are specified 
correctly. Appendix B includes a small simulation study describing the effect of specifying incorrectly 

1λ = , while in reality, its value is 2, 3, or 5. As shown in Table B.3, this seems to have a relatively small 
effect on the estimates of the regression coefficients 0β  and 1β , with estimates only gradually 

becoming further from their true values with increasing λ . We believe this to be the situation in most 
cases if the measurement errors are independent and with mean zero, i.e. when there are no biases 
in the measurements, which we assume here (see Section 6.2 for the case of bias in the 
measurements).  

Thus, specifying incorrectly the measurement uncertainty in the y  data will generally only have a 
modest or limited effect on the point estimates of the regression coefficients. The standard deviations 
of the point estimates will, however, generally increase with increasing λ , which is natural since the 
uncertainty increases. As seen from Table B.3 we see that the increase in parameter estimation 
standard deviations from this simulation study, which is based on bootstrapping, is not very dramatic.   

The biggest impact, however, as seen from Table B.3, of underestimating measurement uncertainty in 
y  is on the estimate of uσ , the model equation standard deviation. As seen from this table, the 

estimate increases from about 8 for 1λ =  (which is correct) to approximately 9.5, 10.7, and 12.8 for 
λ equal to 2, 3, and 5, respectively. Thus, the impact on orthogonal regression of specifying a too small 
uncertainty in y  is to inflate the estimate of the equation error standard deviation uσ . This is evident 

also from the estimation equation of uσ  as given in equation (A.6) in Appendix A, which can be written 
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 ( ) ( ){ }2 2 2 2 2c
c 1 0 1

1

RSSˆ ˆ ˆ;    RSS ;   
2 x y

n

u i i i i i i
i

v x x v y x
n ε εσ β σ σ β β

=

= = − − = − −
− ∑     (6.1) 

Thus, as long as the estimated parameters 0β  and 1β  are relatively unaffected by the incorrectly 

specified measurement uncertainty in y , which they generally are, the impact of too small ( )2ˆ
y ixεσ  

values for 1,...,i n=  will be a too high value of ˆuσ ; and vice versa, if the ( )2ˆ
y ixεσ  values are too high, 

the effect will be a too low value of ˆuσ . 

From the expression (6.1) we also see that incorrect specification of the measurement uncertainties 
of the reference instrument ( )2ˆ

x ixεσ  will have a similar effect on ˆuσ , i.e. that too small ( )2ˆ
x ixεσ  values 

will lead to a too high value of ˆuσ ; and vice versa, if ( )2ˆ
x ixεσ  values are too high, this leads to a too 

low value of ˆuσ . 

Thus, to summarise, if we underestimate the measurement uncertainty of either instrument, we will 
overestimate the model equation uncertainty; and if we overestimate the measurement uncertainty 
in either instrument, we will underestimate the model equation uncertainty.  

The latter case has an important practical implication: If we obtain an estimate ˆ 0uσ = , it indicates we 
operate with too large measurement uncertainties in either the reference instrument, or in the low-
cost sensor, or both. 

The impact of incorrectly specifying measurement uncertainty on the standard REU values is easily 
seen from the expression for standard REU as given by equation (4.1).  

Since the standard REU only depends on ( )2ˆ
x ixεσ , and not on ( )2ˆ

y ixεσ , there will be no impact on the 

standard REU values of incorrectly specifying measurement uncertainties for the low-cost instrument 
as long as the estimates of the regression coefficients are fairly unaffected.  

Underestimation of measurement uncertainties in the reference instrument, however, will lead to an 
overestimation of the standard REU values; and overestimation of measurement uncertainties in the 
reference instrument leads to an underestimation of the standard REU values. 

Again, this has an important practical implication: Since REU values all should be positive, obtaining 
standard REU values equal to zero indicates we operate with too large measurement uncertainties in 
the reference instrument. 

6.2 Measurement bias 

The model for orthogonal regression as outlined in Section 2 assumes unbiased measurement errors 
for both x  and y . We will here briefly consider the consequences of performing orthogonal 
regression when there are biases in one or both measurements. Assume therefore that the 
measurement equations (2.1) are replaced by 

    and   
i ii i i x i i i yx X y Yµ ε ν ε= + + = + + , (6.2) 

where iµ  and iν  are the biases of the ix  and iy  measurements, respectively, at each time point i , 

for 1,...,i n= . We may view (6.2) as still representing unbiased measurements but now for a pair of 
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alternative or perturbed underlying true concentrations or measurands i i iX X µ′ = +  and i i iY Y ν′= +  

for 1,...,i n= .  

If the biases are constant with time, i.e. iµ µ=  and iν ν= , then the model equation (2.2) can be 
written 

 ( )0 1 0 1      i i i i i iY X u Y X uν β β µ β β′ ′ ′ ′ ′− = + − + ⇔ = + + , (6.3) 

with 0 0 1β β ν β µ′ = + − , and where 1β  and iu  are unaltered. Thus, a constant bias in one or both 
measurements will lead to a perturbed orthogonal regression equation where only the constant term 
is affected. For example, if 0β  in the relationship between the measurands is zero or close to zero, the 

perturbed 0β ′  due to bias might further from zero, unless 1ν β µ−  is zero or close to zero. 

In the more general case of biases that varies with time, estimates of all three quantities 0β , 1β  and 
2
uσ   will generally be influenced by such biases. Thus, if we believe that there might be some biases in 

the measurements, e.g. perhaps most likely in the low-cost instrument, we should interpret the 

estimated parameters 0β̂ , 1̂β  and 2ˆuσ  not only as parameters in the linear regression relationship 
between the measurands associated with the instruments but in a linear regression taking into account 

the combined effect of different measurands and biases in the instruments. Thus, a 0β̂  differing from 

zero and a 1̂β  differing from 1 need not necessarily be due to a discrepancy between the measurands 
in the two instruments but might likely be also due to biases in one or both of the instruments, or in 
their combined effect.  

It follows from this that biases in the measurements might easily affect the REU values and affect the 
conclusion as to whether two instruments are equivalent according to the DQO. This is how it should 
be: Biases in the low-cost sensor measurements e.g., should be reflected in increased REU values. 
 

6.3 Non-normal measurements or model errors 

Often in air quality analysis, measurement or model errors will not be normal but have distributions 
that are somewhat non-symmetric or skewed, typically with a longer tail to the right. In orthogonal 
regression we assume these errors to be normally distributed. This is also the assumption in the REU 
calculations and is the reason for the factor 2 in the REU expression (e.g. in (4.1) or (5.1)).  

Thus, if the distribution of errors is not normal, the numerator in the REU expression may no longer be 
associated with a 95% coverage or confidence interval for the low-cost measured value iy . The REU 
values might then correspond to a smaller coverage or confidence interval than 95% which will 
invalidate the use of these values to check for compliance with the DQO or testing for equivalence of 
instruments. 

To make such errors more symmetric and normal-like, we may use transformations of the variables. 
One suitable transformation to use in this regard is the Box-Cox power transformation, which reads 

 ( )
1 0 1

log 0

z
z

z

γ

γ γ γ
γ

γ

 −
+ < ≤= 

 =

, (6.4)  
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where z  is the variable to be transformed and γ  is the Box-Cox power transformation parameter. For 

1γ =  we have no transformation, i.e. ( )1z z= , and for 0γ =  we have the log-transformation, i.e. 
( )0 logz z= , obtained mathematically in the limit as 0γ → +  using L’Hôpitals rule. 

If we decide to transform the variables of orthogonal regression using this transformation we obtain 
the following transformed measurement and model equations 

 ( ) ( ) ( ) ( ) ( ) ( )
0 1;   ;   

i ii i x i i y i i ix X y Y Y X uγ γ γ γ γ γε ε β β= + = + = + + , (6.5)  

corresponding to (2.1) and (2.2) involving the transformed measurements and measurands. For some 
suitable [ ]0,1γ ∈ , e.g. 0γ =  using the log-transformation, the errors involved in (6.5) will become 

more symmetric and normally distributed. Thus, we may apply orthogonal regression and REU 

calculations using the transformed measurements ( )
ix γ  and ( )

iy γ  rather than the original ones. 

We will then check for compliance of the DQO in the transformed space of concentrations. It should, 
however, not cause problems making the same statements of compliance or equivalence of the two 
instruments in the transformed space as in the original space if the transformation we apply is 
monotone and one-to-one, which is the case using (6.4). 

Note that the transformation (6.4) may produce negative values ( )z γ , but only if 1z < . Such negatively 
transformed values are no problem in the orthogonal regression procedure per se, but to avoid 

complications with the REU calculations where we divide by the transformed quantity ( )
iy γ , we may 

wish to retain only the data pairs ,i ix y  for which the low-cost measurement iy  is > 1 to avoid division 
by zero or negative values in these calculations. 

One of the benefits of using the transformation (6.4) is that it often tends to stabilize the variance of 
the error terms, i.e. making the error variances more homoscedastic, i.e. constant and not varying with 
the level of the measurements or measurands. Thus, we may assume an error model like (3.8) for the 
transformed reference measurements using only 0aσ >  and setting 0rσ = . 

A central question in connection with the Box-Cox transformation (6.4) is how to choose the power 
parameter γ . Here we may use the residuals iv  from (2.3), i.e. 

 ( ) ( )
0 1 1i ii i i i y xv y x uγ γβ β ε β ε= − − = + − . (6.6)  

If γ  is correctly set then iu , 
iyε  and 

ixε  should all be approximately normally distributed with 

constant variances. Thus, iv  in (6.6) should also be approximately normally distributed with a constant 

variance. By plotting the distribution of the residuals ( ) ( )
0 1

ˆ ˆ
î i iv y xγ γβ β= − −  from the orthogonal 

regression procedure, we may visually inspect to see if these residuals look symmetric and normal-like 
or skewed. In the latter case, if the distribution is skewed with a longer tail to the right, γ  is too large, 
and vice versa, if the distribution has a longer tail to the left, γ  is too small. A search for a best or 

optimal γ  may then be performed iteratively, recalculating the orthogonal regression estimates 0β̂  

and 1̂β  and calculating new residuals for each new value of γ . 
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7 A real case example 
Here we apply orthogonal regression and REU calculations to a real case example taken from the EU 
H2020 project HackAIR (www.hackair.eu) recently published in Liu et al. (2019). This example involves 
comparing three low-cost Nova SDS011 PM sensors with a reference TEOM (Tapered Element 
Oscillating Microbalance) instrument for measuring hourly-average PM2.5 concentrations at the road-
side station Kirkeveien in Oslo, Norway for the period 11 Dec 2017 to 31 Mar 2018. 

In Liu et al. (2019), orthogonal regression using a standard approach (i.e. not according to the method 
of Dissanaike and Wang (2003) as recommended here) was performed followed by applying standard 
REU calculations using the expression (4.1). The results for the three low-cost sensors named ID-1, ID-
2, and ID-3 are shown in Figure 13 in Liu et al. (2019) as plots of hourly REU values against hourly 
reference measurements with the TEOM instrument. This figure is reproduced below as Figure 7.1. 

 

Figure 7.1:  A plot of hourly REU values from Liu et al. (2019) for the low-cost sensors ID-1 (left), ID-2 
(middle) and ID-3 (right). 

In this plot, the hourly values are plotted as the small dots while the coloured lines represent the fit of 
a generalized additive model (GAM) to the data. The dashed black line represents the data quality 
objective (DQO) for indicative measurements for PM2.5 which is 0.5 (50 %). As can be seen from these 
plots and based on the coloured lines, sensors ID-1 and ID-2 may be considered as equivalent with the 
TEOM for concentrations above approximately 20 µgm-3, while sensor ID-3 fails to be equivalent 
regardless of the level of concentration. 

Table 7.1 shows the results of applying the two-step adjusted orthogonal regression method of 
Dissanaike and Wang (2003) as outlined in Appendix A to these data.  

Table 7.1: Estimated parameters with standard deviation (sd) for the two-step adjusted orthogonal 
regression method. 

Sensor n  ( )0
ˆ sdβ  ( )1̂ sdβ  ( )ˆ sduσ  ( )ˆ sdvσ  

ID-1 2458 0.664 (0.138) 0.924 (0.017) 3.709 (0.130) 4.148 (0.105) 
ID-2 2413 2.696 (0.144) 0.845 (0.017) 3.703 (0.141) 4.108 (0.114) 
ID-3 2390 0.727 (0.170) 0.723 (0.021) 4.478 (0.175) 4.663 (0.138) 

 

In these calculations we have assumed a measurement error model for the TEOM instrument using 
(3.8) with 1aσ =  µgm-3  as absolute measurement error standard deviation at 0 µgm-3 levels; 0.1rσ =  

i.e. a 10 % relative measurement error standard deviation; and 1λ = , i.e. the same measurement 
error standard deviation for the low-cost sensors as for the TEOM instrument.  

http://www.hackair.eu/
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In Table 7.1, the standard deviations (sd) are based on bootstrapping using 1000B =  resamples of 
the original data.  

The parameter estimate ˆvσ  is the table is calculated by 

 ( )22
0 1

1

RSS ˆ ˆˆ ;    RSS
2

n

v i i
i

y x
n

σ β β
=

= = − −
− ∑   

i.e. using the standard REU formula (4.1). 

In Figs. 7.2a – 7.4b below we give plots of the relative expanded uncertainty (REU) for ID-1, ID-2, and 
ID-3 as calculated by the standard formula (4.1) and by the alternative and more correct formula (5.1).  

In these plots only REU values less than 200 % for 1ix ≥  µgm-3  are shown. The horizontal black dashed 

line corresponds to the DQO for indicative methods for PM2.5 (50 %), while the red solid line shows 
the corresponding line for fixed measurements (25 %). The latter line is perhaps not so relevant here 
since the low-cost sensor measurements are thought to be used only as indicative. 

As can be seen, the plots based on the standard formula, i.e. Figs. 7.2a, 7.3a, and 7.4a are quite like 
the plots in Figure 7.1. Again, the REU value is below the critical 50 % when concentration levels are 
above 20 – 25  µgm-3 for both ID-1 and ID-2, while for ID-3 the REU values stay above 50 % for all levels 
and thus, this sensor is not in compliance with the DQO.  

If we compare with the plots based on the alternative formula, i.e. Figs. 7.2b, 7.3b, and 7.4b, we see 
that the alternative formula gives REU values which are generally somewhat higher than the standard 
ones, thus the alternative method is slightly more conservative in its assessment. Still according to 
these plots, however, ID-1 and ID-2 are mostly in compliance with the DQO for levels above ca. 25 µgm-

3, while ID-3 fails to be compliant. 

 

Figure 7.2a: The plot of standard formula REU for ID-1. 
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Figure 7.2b:  The plot of alternative formula REU for ID-1. 

 

Figure 7.3a: The plot of standard formula REU for ID-2. 

 

Figure 7.3b: The plot of alternative formula REU for ID-2. 
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Figure 7.4a: The plot of standard formula REU for ID-3. 

 

 Figure 7.4b:  The plot of alternative formula REU for ID-3. 

 
 

8 Concluding remarks 
This project aimed to gain better insight and an improved understanding of the relative expanded 
uncertainty (REU) formula as described in the EC Guidance document (EC, 2010) and used in the recent 
paper by Spinelle et al. (2015). This formula is used to define relative uncertainties of low-cost sensors 
for checking whether the Data Quality Objective (DQO) of the European Air Quality Directive 
(2008/50/EC) (EC, 2008) for indicative methods is reached for these sensors as compared with 
reference measurements. 

As shown in this report, the standard REU formula is correct under the usual assumptions of orthogonal 
regression but needs an additional assumption of a statistically expected zero difference or bias 
between the measurands of the instruments at each time point, to represent a proper two times 
relative standard deviation value. The latter assumption is in practice equivalent to assuming an ideal 
Y X u= +  relationship between the low-cost and reference instrument measurands. If this 
assumption is not correct, a value calculated with the standard REU formula may still be used but must 
then be interpreted as an upper bound of the REU at the indicated low-cost measurement levels. 
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Appendix A  
 

The two-step adjusted orthogonal regression method 
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Here we give the formulae for the two-step adjusted orthogonal regression method as presented in 
Dissanaike and Wang (2003). According to their paper, they recommend this method as a practical 
approach for performing orthogonal regression between two variables x  and y  when there are 
measurement errors in both, and also errors associated with the linear regression equation relating 
these variables, but little or no prior information about the variances of the errors involved. 
 
Assume in the following that the measurements are denoted by ix  and iy , for 1,...,i n= , where n  is 

the number of measurements. The linear regression model with measurement and equation errors is 
then given by the following set of equations 

 0 1;    ;    
i ii i x i i y i i ix X y Y Y X uε ε β β= + = + = + + , (A.1) 

where iX  and iY  represents measurands, i.e. underlying true concentration values that would have 

been obtained by the instruments if there were no measurement errors 
ixε  and 

iyε , for 1,...,i n= . In 

(A.1), the parameters 0β  and 1β  represents the intercept and slope of the regression equation and 

iu  the corresponding regression equation errors.     

The basic assumptions behind orthogonal regression are then 

A1. 
ixε , 

iyε  and iu  are normally distributed variables for 1,...,i n= . 

A2. 
ixε , 

iyε  and iu  have mean value zero, i.e. 0
i ix y iE E Euε ε= = =  for 1,...,i n= . 

A3. 
ixε , 

iyε  and iu  are independent of iX , iY  and iX , respectively, i.e. 

( ) ( )cov , cov ,
i ix i y iX Yε ε= =  ( )cov , 0i iu X =  for 1,...,i n= . 

Let the variances of the measurement errors be 2
xε

σ  and 2
yε

σ , respectively, and let their variance ratio 

be 

 
2

2
y

x

ε

ε

σ
λ

σ
= . (A.2) 

If one or both measurement error variances are unknown, it is suggested to simply set 1λ = .  

In the following, we will assume λ  has been set, either to the actual ratio of the measurement error 
variances if these are known, or to the value 1 if one or both of them are unknown. 

In the first step of the method one estimates the intercept and slope 0β  and 1β  of the regression 

equation using the following standard orthogonal regression formulae (Dissanaike and Wang, 2003, 
Eq. 6, p. 5) 

 
( )22 2 2 2 2

1

4

2
y x y x xy

xy

s s s s s

s

λ λ
β

− + − +
=  (A.3) 

and  
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 0 1y xβ β= −  , (A.4) 

with xys  the sample covariance between x  and y , and with x  and y  sample means and 2
xs  and 2

ys   

sample variances of x  and y , respectively. These quantities are calculated from the measurements 
as follows 

 

( ) ( ) ( )( )2 22 2

1 1 1 1 1

1 1 1 1 1;    ;    ;    ;    
n n n n n

i i x i y i xy i i
i i i i i

x x y y s x x s y y s x x y y
n n n n n= = = = =

= = = − = − = − −∑ ∑ ∑ ∑ ∑  

 (A.5) 

An estimator for the variance of the model equation error 2
uσ  is then given by 

 ( ) ( ){ }2 2 2 2c
c 1 0 1

1

RSSˆ ˆ;    RSS ;   
2 x

n

u i i i i i
i

v x v y x
n εσ β λ σ β β

=

= = − + = − −
− ∑    . (A.6) 

In the second step of their method, one again estimates the regression parameters but now using 
the following adjusted orthogonal regression formulae (Dissanaike and Wang (2003, Eq. 8, p. 8) 

 
( )22 2 2 2 2 2 2

1

ˆ ˆ 4ˆ
2

y x u y x u xy

xy

s s s s s

s

λ σ λ σ λ
β

− − + − − +
=  (A.7) 

and 

 0 1
ˆ ˆy xβ β= − . (A.8) 

As shown in their paper, this results in unbiased estimates of the true regression parameters, i.e. we 
have 

 { } { }0 0 1 1
ˆ ˆ;    E Eβ β β β= =  , (A.9) 

where {}E ⋅  denotes statistical expectation. This contrasts with the standard orthogonal regression 

formulae (A.3) and (A.4) which do not consider properly the equation errors.  

As shown by Dissanaike and Wang (2003) using the standard approach means that a unit regression 
slope can always be obtained by simply rescaling one of the variables, thus rendering the results 
virtually useless. Only the above-adjusted two-step orthogonal regression formulae assure unbiased 
estimates of these parameters and thus a proper use of the orthogonal regression methodology. 
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Appendix B  
 

Some simulation results 
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Here we give some results using the two-step adjusted orthogonal regression method to calculate 
relative expanded uncertainties (REUs) based on sets of simulated data.  
 
As a starting point for these calculations, true reference concentrations or measurands iX , for 

1,...,i n= , were defined realistically for a whole year, i.e. for 8760n =  hourly values by using actual 
measurement data. 
 

We then simulated reference measured values 
ii i xx X ε= + , 1,...,i n= , with ( )20,

i xx N εε σ=  and  
2 2 2 2

x a r iXεσ σ σ= + , with aσ  and rσ  as given below. Next, true low-cost sensor concentrations or 

measurands iY  were simulated using 5.0 0.7i i iY X u= + + , with ( )20,i uu N σ=  , and uσ  as given 

below. Finally, low-cost measured values iy  were simulated using 
ii i yy Y ε= +  with ( )20,

i yy N εε σ=  

and 2 2
y xε εσ λσ=  with 1λ = .  

 
The following cases were considered: 
 
Case 1: No measurement errors and no equation errors. 

In this case, we set 0a rσ σ= =  and 0uσ = . Table B.1 row 1 gives the results in this case. 

Case 2: Measurement errors but no equation errors. 

In this case, we set 3aσ = , 0.1rσ =  and 0uσ = . Table B.1 row 2 gives the results in this case. 

Case 3: No measurement errors but with equation errors. 

In this case, we set 0a rσ σ= =  and 8uσ = . Table B.1 row 3 gives the results in this case. 

Case 4: Both measurement and equation errors. 

In this case, we set 3aσ = , 0.1rσ =  and 8uσ = . Table B.1 row 4 gives the results in this case. 

 

Table B.1: Estimated parameters with standard deviation (sd) for the two-step adjusted orthogonal 
regression method based on 8760n =  simulated data for each case. 

Case ( )0
ˆ sdβ  ( )1̂ sdβ  ( )ˆ sduσ  ( )ˆ sdvσ  

1 5.000 (0.000) 0.700 (0.000) 0.000 (0.000) 0.000 (0.000) 
2 5.047 (0.126) 0.696 (0.007) 0.000 (0.239) 5.677 (0.121) 
3 5.017 (0.111) 0.701 (0.003) 8.074 (0.061) 8.074 (0.061) 
4 5.249 (0.186) 0.689 (0.009) 8.108 (0.150) 9.898 (0.129) 

 

In this table, the standard deviations (sd) are based on bootstrapping using 1000B =  resamples of 
the original simulated data. The parameter estimate ˆvσ  is defined by 

 ( )22
0 1

1

RSS ˆ ˆˆ ;    RSS
2

n

v i i
i

y x
n

σ β β
=

= = − −
− ∑   
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i.e. using the standard REU formula (4.1). 

In Figs. B.1a – B.4b we give plots of the relative expanded uncertainty (REU) in % for these cases as 
calculated by the standard formula (4.1) and by the alternative and more correct formula (5.1). In these 
plots only REU values for 1ix ≥  are shown. Note that the standard and alternative formulae are 

identical for Cases 1 and 3 thus producing identical plots.  

As can be seen from these plots the simulated y  data instrument is not in compliance with the DQO 
for being equivalent with the x  data instrument for fixed methods or indicative methods for the 
higher values of reference concentrations for any of these cases as indicated by the solid red lines and 
dashed black lines, respectively. The reason for this is that the coefficients 0 5β =  and 1 0.7β =  are 

too far from their ideal values of 0 and 1, respectively. 

To see if using e.g. 0 2β =  and 1 0.9β =  gives results in compliance with the DQO, we repeated the 

above simulations using these as parameters of the regression equation instead. The results are given 
in Table B.2 and Figs. B.5a – B.8b.  

Table B.2: Estimated parameters with standard deviation (sd) for the two-step adjusted orthogonal 
regression method based on 8760n =  simulated data using 0 2β =  and 1 0.9β = . 

Case ( )0
ˆ sdβ  ( )1̂ sdβ  ( )ˆ sduσ  ( )ˆ sdvσ  

1 2.000 (0.000) 0.900 (0.000) 0.000 (0.000) 0.000 (0.000) 
2 2.134 (0.140) 0.895 (0.008) 0.000 (0.500) 6.358 (0.151) 
3 2.019 (0.111) 0.901 (0.003) 8.080 (0.062) 8.081 (0.062) 
4 2.252 (0.198) 0.889 (0.010) 8.120 (0.169) 10.255 (0.141) 

 

Now we see that we are following the DQO for higher values of reference concentrations using the 
standard REU formula, but not for cases 2 and 4 according to the alternative REU formula. 

Next, we check to see what happens if the ratio λ  between measurement error variances of y  vs. 
x  is specified incorrectly, e.g. if the measurement errors in the low-cost sensor y  are much higher 

than those in the reference instrument x . In Table B.3 we give the results of applying both 
measurement and equation errors as in Table B.2, Case 4, but using simulated y  observations for λ  
set to 2, 3, and 5, respectively. 

Table B.3: Estimated parameters with standard deviation (sd) for the two-step adjusted orthogonal 
regression method for Case 4 ( 8760n = ) using 0 2β = , 1 0.9β =  and λ =  2, 3, and 5. 

λ   ( )0
ˆ sdβ  ( )1̂ sdβ  ( )ˆ sduσ  ( )ˆ sdvσ  

2 2.316 (0.235) 0.885 (0.012) 9.481 (0.226) 11.311 (0.193) 
3 2.372 (0.267) 0.882 (0.014) 10.689 (0.275) 12.279 (0.238) 
5 2.481 (0.322) 0.877 (0.017) 12.813 (0.359) 14.020 (0.312) 

 

As can be seen from this table, the three first parameter values are now somewhat further away from 
their true values 2, 0.9, and 8, respectively, thus the standard REU values will be slightly larger for these 
values of λ  than for the simulations we did with 1λ = . 
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Finally, we check to see what happens if rσ  defining the measurement error variances of x  is 

specified incorrectly, i.e. if the measurement errors in the reference instrument are smaller or larger 
than the assumed level based on the value 0.1rσ = .  

In Table B.4 we give the results of applying both measurement and equation errors as in Table B.2, 
Case 4, but using simulated x  and y  observations based on rσ  set to 0.05, 0.10, and 0.15, 

respectively (keeping the value 3aσ = ). 

Table B.4: Estimated parameters with standard deviation (sd) for the two-step adjusted orthogonal 
regression method for Case 4 ( 8760n = ) using 0 2β = , 1 0.9β =  and rσ =  0.05, 0.1, and 

0.15. 

rσ  ( )0
ˆ sdβ  ( )1̂ sdβ  ( )ˆ sduσ  ( )ˆ sdvσ  

0.05 1.768 (0.135) 0.916 (0.005) 6.798 (0.121) 9.316 (0.072) 
0.10 1.976 (0.177) 0.907 (0.009) 8.070 (0.133) 10.238 (0.112) 
0.15 2.338 (0.229) 0.890 (0.012) 9.811 (0.206) 11.580 (0.186) 

 

The results in row 2 are not the same as in Table B.2 row 4 since a different random number seed was 
used in these simulations. As can be seen from Table B.4, the first three parameter values are again 
somewhat further away from their true values 2, 0.9, and 8, respectively, implying that the standard 
REU values will again be affected, i.e. slightly increased for 0.05rσ =  and slightly decreased for 

0.15rσ =  as compared with 0.1rσ = .  

 

Figure B.1a: The plot of standard formula REU in % for Case 1 with 0 5β =  and 1 0.7β = . 
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Figure B.1b: The plot of alternative formula REU in % for Case 1 with 0 5β =  and 1 0.7β = . 

 

Figure B.2a: The plot of standard formula REU in % for Case 2 with 0 5β =  and 1 0.7β = . 

 

Figure B.2b: The plot of alternative formula REU in % for Case 2 with 0 5β =  and 1 0.7β =  . 
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Figure B.3a: The plot of standard formula REU in % for Case 3 with 0 5β =  and 1 0.7β = .  

 

Figure B.3b: The plot of alternative formula REU in % for Case 3 with 0 5β =  and 1 0.7β = . 

 

Figure B.4a: The plot of standard formula REU in % for Case 4 with 0 5β =  and 1 0.7β = . 
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Figure B.4b: The plot of alternative formula REU in % for Case 4 with 0 5β =  and 1 0.7β = . 

 

Figure B.5a: The plot of standard formula REU in % for Case 1 with 0 2β =  and 1 0.9β = . 

 

Figure B.5b: The plot of alternative formula REU in % for Case 1 with 0 2β =  and 1 0.9β = . 
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Figure B.6a: The plot of standard formula REU in % for Case 2 with 0 2β =  and 1 0.9β = . 

 

Figure B.6b: The plot of alternative formula REU in % for Case 2 with 0 2β =  and 1 0.9β = . 

 

Figure B.7a: The plot of standard formula REU in % for Case 3 with 0 2β =  and 1 0.9β = . 
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Figure B.7b: The plot of alternative formula REU in % for Case 3 with 0 2β =  and 1 0.9β = . 

 

Figure B.8a: The plot of standard formula REU in % for Case 4 with 0 2β =  and 1 0.9β = . 

 

Figure B.8b: The plot of alternative formula REU in % for Case 4 with 0 2β =  and 1 0.9β = .
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Appendix C  
 

The reu R package 
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An easy-to-use R package called reu for user-friendly calculation of the relative expanded uncertainty 
formula has been developed as part of this project. The package consists of two main functions: 
calc_reu() and plot_reu().  
 
The function calc_reu()takes as inputs vectors of the reference concentrations and the sensor 
observations, as well some information about the pollutant and whether the “standard” or 
“alternative” method should be used as described in Sections 4 and 5 in this report. It produces a 
vector of relative expanded uncertainties in percent as output. A short description of the inputs and 
outputs of this routine is shown in Figure C.1. 
 
The function plot_reu() creates a standardized plot of relative expanded uncertainty against the 
reference concentrations. The plot further includes a Loess fit to the data and provides indicators for 
the Data Quality Objective (DQO) and a given limit value of the concentration. An example of the 
standard output that the function provides is given in Figure C.2. The plots provided by the package 
are based on the ggplot2 framework and are quite expandable. The function returns a ggplot 
object which can be further modified after figure production. The internal R documentation of the 
plotting function plot_reu() is shown in Figure C.3.  
 
One limitation of the package is currently the lack of choice regarding how the reference uncertainty 
is calculated. More work will be necessary to offer different options for this. 
 

 
Figure C.1: Short documentation of the calc_reu() function in the R package reu. 
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Figure C.2: Example of a standard plot by the plot_reu() function in the R package reu. 

 

 
Figure C.3: Short documentation of the plot_reu() function in the R package reu. 
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