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• Biopsies were taken from 18 blue
whales and 12finwhales from Svalbard.

• Pollutant levels were 1.6–3 times higher
in fin whales than in blue whales.

• Fin whales fed at a higher trophic level
and at higher latitudes than blue
whales.

• Pollutant levels were twice as high in
males as females in both species.

• Pollution levels in whales vary substan-
tially regionally.
⁎ Corresponding author.
E-mail address: heli.routti@npolar.no (H. Routti).

https://doi.org/10.1016/j.scitotenv.2020.137327
0048-9697/© 2020 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 November 2019
Received in revised form 12 February 2020
Accepted 13 February 2020
Available online 14 February 2020

Editor: Yolanda Picó
Pollutant concentrations are poorly known for the largest animals on Earth, blue whales Balaenoptera musculus
and fin whales Balaenoptera physalus. In this study, concentrations of persistent organic pollutants (POPs)
were determined in blubber biopsies and stable isotope values for nitrogen (δ15N) and carbon (δ13C) were mea-
sured using skin biopsies for 18 blue whales and 12 fin whales sampled in waters surrounding the Svalbard Ar-
chipelago, Norway. The samples were collected in summer during the period 2014–2018. POPs were dominated
by DDTs, PCBs and toxaphenes, with median concentrations in blue/finwhales being 208/341, 127/275 and 133/
233 ng/g lipid weight, respectively. Linear models indicated that pollutant concentrations were 1.6–3 times
higher in fin whales than in blue whales, which is likely related to the higher trophic positions of fin whales, as
indicated by their higher δ15N. Lower δ13C in fin whales suggests that they feed at higher latitudes than blue
whales; these values were not correlated with pollutant concentrations. Pollutant levels were approximately
twice as high in males compared to females (intraspecifically), which indicates that females of these species
offload pollutants to their offspring during gestation and lactation, similar to many other mammalian species.
Pollutant concentrations in balaenopterid whales from Svalbard waters were generally much lower than in con-
specific whales from the Mediterranean Sea or the Gulf of California, but higher than those in conspecifics from
the Antarctic Peninsula.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Keywords:
Arctic
Svalbard
Blue whale
Fin whale
Contaminant
Stable isotope
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2020.137327&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.scitotenv.2020.137327
mailto:heli.routti@npolar.no
https://doi.org/10.1016/j.scitotenv.2020.137327
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv


2 S. Tartu et al. / Science of the Total Environment 718 (2020) 137327
1. Introduction

The Arctic is warming twice as fast as anywhere else on Earth, and
recent reports have documented an increasing frequency of southern
species in the Arctic (Kortsch et al., 2012; Laidre et al., 2015). For in-
stance, there has been an expansion of the distributional ranges of
many invertebrate and fish species into the Arctic (Doney et al., 2012;
Fossheim et al., 2015; Kortsch et al., 2012; Vihtakari et al., 2018), and
the new communities of boreal species have attracted new predators
such as balaenopterid whales. Along the shelf breaks west and north
of Svalbard Archipelago, the sighting rate of blue whales (Balaenoptera
musculus) and fin whales (Balaenoptera physalus) has increased in re-
cent years (Storrie et al., 2018; Vacquié-Garcia et al., 2017). The increas-
ing presence of these large balaenopterid whales coincides with an
increase in the intrusion of Atlantic Water with associated Atlantic
prey into these areas (Fossheim et al., 2015; Pavlov et al., 2013). Blue
whales feed almost exclusively on krill, whereas fin whales have a
more varied diet that includes krill, but also amphipods, copepods,
shrimps, small fish and squid (Gavrilchuk et al., 2014; Nemoto, 1970).
In addition to inducing distributional shifts, globalwarming is also caus-
ing remobilization of a large number of POPs from repositories in the
Arctic, due to rising temperatures (Ma et al., 2011).

There is however a general lack of knowledge regarding pollutant
levels in balaenopterid whales in High Arctic areas, although they are
likely exposed to a wide variety of chemicals. Despite its remote loca-
tion, the Arctic is the recipient of pollution from elsewhere on the planet
via both long-range atmospheric and ocean current transport (Wania
and Mackay, 1993). Persistent organic pollutants (POPs) biomagnify in
marine food webs and thus apical feeding predators are exposed to
high levels of POPs (Borgå et al., 2001; Hop et al., 2002; Kelly et al.,
2007), which may cause adverse health effects (Dietz et al., 2019;
Fossi and Panti, 2018). Due to concerns regarding the impacts of POPs
on wildlife and human health, the use and production of these com-
pounds is now either regulated or banned by the StockholmConvention
(http://www.pops.int, see Web references list for complete URL).
Twelve POPs including polychlorinated biphenyls (PCBs), organochlo-
rine pesticides (OCPs) such as chlordanes (CHLs), dichlorodiphenyltri-
chloroethane (DDT), hexachlorobenzene (HCB), mirex and toxaphene
were initially listed as being environmentally dangerous substances in
2001. The hexacyclochlorohexanes (HCHs), α-HCH and β-HCH, and
the polybrominated diphenyl ethers (PBDEs), tetra-, penta-, hexa- and
hepta-BDEs, were added to the Convention's list in 2009, while deca-
BDE was added in 2017. These so-called legacy POPs are, however,
still present in the Arctic environment and in its biota (Rigét et al.,
2019).

Balaenopterid whales do not feed at an apex position in the food
web, but high levels of pollutants have been reported for some popula-
tions feeding close to industrial areas (Fossi et al., 2016, 2014; Metcalfe
et al., 2004). For example, the average PCB concentration in fin whale
blubber from the Mediterranean is ~13,000 ng/g lipid weight (Fossi
et al., 2016), whereas slightly lower concentrations have been reported
for fin whales from the Gulf of California (Fossi et al., 2014). High con-
centrations of pollutants are of concern for blue and fin whales, which
are currently classified as Endangered and Vulnerable, respectively on
the International Union for Conservation of Nature's (IUCN) Red List of
Threatened Species (Cooke, 2018a, 2018b). Particularly high concentra-
tions of POPs are generally found in male whales (Fossi et al., 2014;
Metcalfe et al., 2004), since females transfer pollutants to their foetus
during gestation and to their calf during lactation (Aguilar et al., 1999;
Aguilar and Borrell, 1994).

The few studies reporting POP levels in fin and bluewhales in differ-
ent oceans of the world, suggest that there is considerable variation re-
gionally (Fossi et al., 2016; Metcalfe et al., 2004; Muñoz-Arnanz et al.,
2019; Pinzone et al., 2015). This pattern is thought to reflect pollutant
concentrations in the prey of these whales regionally, because the abil-
ity of cetaceans to biotransform pollutants is limited (Boon et al., 1997;
Hecker et al., 2019). Traditionally, blue and fin whales have been as-
sumed to feed in highly productive areas at high latitudes and to mi-
grate to breed at lower, warmer latitudes, where feeding is reduced or
absent (Geijer et al., 2016). However, the consistency of long-distance
migrations among baleen whale populations has been questioned re-
cently (Geijer et al., 2016). Some studies suggest that winter feeding
at lower latitudes is common among North Atlantic blue and fin whales
(Silva et al., 2019).Migration patterns of these species are poorly known
for the Northeast Atlantic (Moore et al., 2019). Knowledge of pollutant
exposure of blue and fin whale populations may give insights into
their feeding areas, as pollutant levels in the North Atlantic show high
latitudinal variation, which is related to the proximity to emission
sources, patterns and routes of long-range transport and ocean biogeo-
chemistry (Breivik et al., 2002; Lohmann et al., 2007; Wagner et al.,
2019). The aim of this studywas to investigate levels of POPs in relation
to feeding habits in a Northeast Atlantic population of blue and fin
whales that reside around Svalbard during summer.

2. Material and methods

2.1. Fieldwork

Fieldwork was conducted from the end of May to September in the
period 2014–2018 off the west coast of the Svalbard Archipelago
(Fig. 1). Eighteen adult blue whales and 12 adult fin whales were
biopsied using a custom-made biopsy dart (10 cm long, 8 mm in diam-
eter) shot from a crossbow, targeting the upper back in the middle of
the animal. Biological information for the biopsied whales is available
in the supporting information (Table S1). The dart was attached to a
string secured to the crossbow that enabled rapid recovery of the sam-
ple. Skin and blubber were separated, the upper part of the skin (a few
millimetres)was divided vertically into two parts, one part used for sta-
ble isotope analyses and the other was used for genetic analyses. The
blubber closest to skin-blubber interface (1.5 cm from the 3–4 cm
thick layer) was used for POP analyses. All samples were packed in alu-
minium foil or pre-cleaned glass vials and were frozen at −20 °C until
analyses. All sampling procedureswere approved by theNorwegianAn-
imal Care Authority and the Governor of Svalbard.

2.2. Stable isotope analyses and molecular sexing

From the skin samples, nitrogen (δ15N) and carbon (δ13C) stable iso-
tope ratioswere analysed and used as proxies of trophic level and forag-
ing habitat, respectively (Hobson, 1999). Because δ15N values increase
with increasing trophic level, they reflect trophic position of individual
whales (Hobson et al., 1996). In contrast, δ13C varies marginally as a
function of trophic level but it indicates the sources of primary produc-
tion in the food consumed by the whales, for example pelagic vs ben-
thic, inshore vs offshore (Hobson, 1999; Hobson et al., 1996).

The analyses were carried out following methods described in
Marcoux et al. (2012). Briefly, skin samples were lyophilized at −48
°C at a pressure of 133 × 103 mbar for 48 h, homogenized into small
pieces using a scalpel, lipid extracted using a 2:1 chloroform:methanol
mixture to remove lipids (which can bias δ13C measurements), and
then the samples (400–600 μg) were placed into tin cups. Values of
δ13C and δ15N were determined on a Delta V Advantage
Thermoscientific Continuous Flow Mass Spectrometer (Thermo Scien-
tific, Bremen, Germany) coupled to a 4010 Elemental Combustion Sys-
tem (Costech Instruments, Valencia, CA, USA). Instrument accuracy
met laboratory quality assurance criteria, as values were within 0.2‰
for NIST 8547, NIST 8573 and NIST 8574 for δ15N, and 0.1‰ for NIST
8573, 8542, and 8544 for δ13C. Precision was assessed with our labora-
tory standards (NIST 1577c, tilapia muscle, USGS 40 and Urea (n =
104 for each)), run every 12 samples, and was 0.2‰. Sample reproduc-
ibility of δ13C and δ15Nwasmeasured in triplicate every 10 samples and
was ±0.1‰.

http://www.pops.int


Fig. 1. Sampling locations of blue whales (B. musculus) and fin whales (B. physalus) in the coastal waters of Svalbard, Norway. Whales were biopsied between 2014 and 2018.
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Sex of the whales was identified by molecular sexing using the
methods described in Berube and Palsbøll (1996). Briefly, three oligonu-
cleotides primers ZFYX0582F (5′-ATAE GTCTGCAGACTCITCrA-3′),
ZFYX1204K and ZFYX0938R (5′-CITACACCTAAATGGAAGATCC-3′)
were used for PCR amplification of the ZFX/ZFY sequence specific to
mysticetes.

2.3. Pollutant analyses

Methods to determine lipid-normalized concentrations of organo-
chlorine contaminants from blubber biopsies have been previously val-
idated for balaenopterid whales (Gauthier et al., 1997a). In this study,
the blubber biopsies (weight: 0.105–0.478 g) were analysed for OCPs,
HCB, α-, β-, γ-HCH, oxy-, trans-, cis-CHL, trans-, cis-nonachlor, mirex;
o,p′-DDT, p,p′-DDT, o,p′-DDD, p,p′-DDD, o,p′-DDE, p,p′-DDE, toxaphenes
(#26, #32, #38, #40, #42, #50, #58, #62, #69), 2) PCBs (CB-28, -52, -99,
-101, -105, -118, -138, -153, -180, -183, -187 and -194) and 3) PBDEs
(BDE-28, -47, -99, -100, -138, -153, -183, -209). Extraction was per-
formed using the methods described in Scotter et al. (2019). Briefly,
blubber was homogenized with dried sodium sulphate and put into a
freezer overnight. 20 μl of internal standard (ISTD), containing approx-
imately 4 ng 13C labelled PCBs and 4–50 ng PBDEs andOCPs (Cambridge
Isotopes Laboratories Inc., Cambridge, UK; Chem Service Inc., West
Chester, PA, USA), was added and contaminants were extracted with
3:1 cyclohexane:acetone. The filtered extract was evaporated, and the
weight of the extractable organic material (lipids) was determined
gravimetrically. Clean-up of the samples was done using Supelclean
EZ-POP NP cartridges (Sigma- Aldrich Co. LLC, St. Louis, MO, USA). The
evaporated eluate was cleaned-up by using solid phase extraction
(SPE) cartridges packed with 1 g of Florisil (heated at 450 °C for 8 h).
The eluate was evaporated, and the solvent was changed to isooctane,
concentrated and spiked with a recovery standard (13C CB-159).

PCBs and OCPs were measured as described in Scotter et al. (2019).
Briefly, they were determined using gas chromatography coupled
with mass spectrometry (GC–MS quadrupole instrument from Agilent,
Santa Clara, CA, USA, GC 7890, MSD 5975C). PCBs and DDT were
separated using a DB5-MS column (30 m × 250 μm, 0.25 μm df),
whereas the remaining pesticides were separated using an Agilent
Ultra2 column (25 m × 200 μm, 0.11 μm df connected to a 5 m ×
0.32 mm ID retention gap column). Analyses of PBDEs in batch 1 and
2 were performed on a Waters Quattro Micro GC–MS (Waters Corp.,
MA, USA) equipped with a Restek 1614 column 15 m × 0.25 mm ID,
0.25 μm connected to a 5 m × 0.32 mm ID retention gap column.
PBDEs in the third batch were measured on a Q-exactive GC (Thermo
Fisher Scientific Inc., Waltham, MA, USA) in electron ionization mode
and targeted SIM mode (window of 10 m/z units and a resolution of
30,000 FMHW @ 200 m/z). Sample aliquots of 2 μl were injected using
a PTV (large volume injection mode) with a 40 °C start temperature,
0.1 min injection phase, then heated (at a rate of 2.5 °C/s) up to 330
°C with a hold time of 5 min. The carrier gas was helium, introduced
at a constant flow of 1.5 ml/min with an oven temperature program:
80 °C for 2 min, then 30 °C/min increase to 340 °C, held for 3 min. Anal-
yses were conducted on a Restek 1614 column 15 m × 0.25 mm ID,
using a 0,1 μm stationary phase.

One method blank and standard reference material sample (Stan-
dard Reference Material [SRM] 1945 Organics in Whale Blubber, sup-
plied by NIST, Gaithersburg, MD, USA) was run for every 10th sample;
at least three blanks and one SRM were run per batch. Recoveries of
the recovery standard (13C CB-159) from the sample clean-up ranged
from 28% to 99%. PCB, OCP and PBDE concentrations were within ±
20% of the certified values. The limit of detection (LOD) was calculated
as the average peak height of the laboratory blank plus 3 × standard de-
viation (SD), while the limit of quantification (LOQ) was the laboratory
blank average plus 10 × SD of the background ratio. Only pollutants that
were above the LOD in N70% of the individuals were considered for sta-
tistical analyses. HCB and mirex were analysed as single compounds,
whereas other compounds that included several congeners or metabo-
liteswere grouped as sums (Σ). LODs, LOQs and sample sizes (above the
LOD limit described above) are given in Table S2. Compounds with
values below LOQ were replaced by the LOQ value and values below
limit of detection (LOD) were replaced by ½ LOD. If a compound was
below LOD for more than one sample, random numbers (“runif”



Table 1
Model selection table formodels explaining concentrations of POPs in blue andfinwhales according toΔAICc andAICc-weights. Predictors include δ15N and δ13C values in skin, species, and sex. Sign “+”means that a categorical variables is included in
the model. Numbers for intercept, δ15N and δ13C are parameter estimates. Degrees of freedom (df), and adjusted R2 are given.

Intercept Sex Species δ15N δ13C df AICc ΔAICc AICc-weight R2

ln(Σ10PCBs) 4.462 + + 4 36.51 0.000 0.997 0.58
4.864 + 3 48.36 11.85 0.003 0.31
2.045 + 0.289 4 54.35 17.84 0.000 0.23
4.944 + 3 56.11 19.60 0.000 0.10
5.122 2 56.56 20.05 0.000 0.00
3.101 0.206 3 56.96 20.44 0.000 0.07
4.991 + 0.002 4 58.82 22.31 0.000 0.10
5.479 0.019 3 59.01 22.49 0.000 0.00

ln(Σ6DDTs) 4.611 + + 4 49.22 0.000 0.997 0.57
2.398 + 0.2687 4 62.26 13.04 0.001 0.33
5.090 + 3 62.56 13.34 0.001 0.26
5.816 + 0.038 4 65.07 15.85 0.000 0.26
5.238 + 3 66.96 17.74 0.000 0.13
5.447 2 68.61 19.39 0.000 0.00
6.777 0.07 3 70.60 21.38 0.000 0.02
4.240 0.123 3 70.63 21.41 0.000 0.02

ln(Σ5CHLs) 4.065 + + 4 33.92 0.000 0.987 0.49
2.113 + 0.232 4 44.61 10.69 0.005 0.25
4.433 + 3 45.51 11.58 0.003 0.15
4.473 + 3 45.66 11.73 0.003 0.15
4.622 2 47.56 13.64 0.001 0.00
3.852 + -0.031 4 48.04 14.12 0.001 0.16
3.390 0.126 3 49.12 15.20 0.000 0.03
4.248 -0.020 3 50.01 16.09 0.000 0.00

ln(Σ3HCHs) 2.038 + + 4 30.45 0.000 0.920 0.48
-0.410 + 0.275 4 35.79 5.34 0.064 0.37
2.348 + 3 39.70 9.25 0.009 0.20
1.583 + -0.040 4 42.01 11.56 0.003 0.26
2.441 + 3 43.30 12.85 0.001 0.09
2.552 2 43.53 13.08 0.001 0.00
0.999 0.159 3 44.26 13.81 0.001 0.06
2.012 -0.028 3 45.88 15.43 0.000 0.01

ln(HCB)
3.321 + + 4 31.81 0.00 0.994 0.54
1.153 + 0.255 4 43.63 11.81 0.003 0.30
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3.707 + 3 45.37 13.56 0.001 0.18
3.764 + 3 46.42 14.61 0.001 0.15
2.303 + -0.074 4 46.91 15.10 0.001 0.21
3.916 2 48.40 16.56 0.000 0.00
2.567 0.138 3 49.80 17.99 0.000 0.04
2.749 -0.061 3 50.24 18.42 0.000 0.02

ln(Mirex) 0.500 + + 4 46.56 0.00 0.891 0.46
0.834 + 3 50.91 4.34 0.102 0.30
1.095 2 58.50 11.93 0.002 0.00
-1.115 0.226 3 58.88 12.32 0.002 0.07
-1.916 + 0.292 4 59.79 13.23 0.001 0.13
1.009 + 3 60.42 13.86 0.001 0.02
0.808 -0.015 3 60.99 14.42 0.001 0.00
0.627 + -0.020 4 63.12 16.55 0.000 0.02

ln(Σ4BDEs) 1.397 + + 4 58.627 0.00 0.99 0.58
1.926 + 3 68.194 9.57 0.01 0.35
2.328 2 78.327 19.70 0.00 0.00
-1.417 + 0.353 4 78.697 20.07 0.00 0.15
2.118 + 3 78.939 20.31 0.00 0.06
-0.166 0.254 3 79.328 20.70 0.00 0.05
1.715 -0.032 3 80.749 22.12 0.00 0.00
1.118 + -0.052 4 81.433 22.81 0.00 0.07

ln(Σ2TOXs) 3.068 + + 4 37.138 0.00 1.00 0.63
-0.861 + 0.444 4 51.276 14.14 0.00 0.40
3.542 + 3 52.836 15.70 0.00 0.30
0.531 0.334 3 58.082 20.95 0.00 0.16
3.592 + 3 59.081 21.94 0.00 0.13
3.815 2 60.658 23.52 0.00 0.00
2.335 + -0.066 4 61.117 23.98 0.00 0.15
2.975 -0.044 3 62.890 25.75 0.00 0.01
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function in the software R-3.2.5) ranging between the LOD value and ½
LODwere generated. Concentrations are given in ng/g lipidweight (lw).

2.4. Statistical analyses

Statistical analyses were performed using R version 3.6.1 (R Core
Team, 2019). Patterns of POPs including ΣDDTs, ΣPCBs, ΣPBDEs,
ΣCHLs, ΣHCHs, HCB and mirex, were investigated using principal com-
ponent analysis (PCA). Because proportions summing up to one were
used, the PCA was derived from the covariance matrix of centred log
ratio concentrations of pollutants (ln (POPx/ΣPOP)) in R package ade4
(Dray and Dufour, 2007; Aitchison and Greenacre, 2002). Linearmodels
were used to investigate variability in POPs. Thesemodels includedboth
categorical (i.e., sex and species) and continuous (δ15N, δ13C) indepen-
dent variables (Table 1). Correlated predictor variables, for example
species and δ15N, were not included in the same model. The models
were ranked using an information-theoretic approach (Burnham and
Anderson, 2002) based on Akaike's information criterion corrected for
small sample size (AICc, R packageMuMIn (Barton, 2016)). The number
of parameters (K), the difference in AICc values between the “best”
model and the model at hand (ΔAICc) and a normalized weight of evi-
dence in favour of the specific model, relative to the whole set of candi-
date models, derived by e(−0.5(ΔAICc)) (AICc weights) were obtained.
Conditional model averaging was used to make inferences from all of
the models (Burnham and Anderson, 2011). This method produces av-
eraged estimates of all predictor variables in the candidate model list,
weighted using the AICc weights (Burnham and Anderson, 2002;
Lukacs et al., 2009). From this, conditional parameter-averaged esti-
mates (β) and 95% confidence intervals (CIs) for all the predictors in-
cluded in the models were obtained. To determine if parameters were
significantly different from 0 at the 5% level, 95% CI of the model aver-
aged estimates were used. The 95% CIs provide information about a
range in which the true value lies with a certain degree of probability,
and about the direction and strength of the demonstrated effect (du
Prel et al., 2009). If the confidence interval does not include the value
of zero effect, it can be assumed that the result is statistically significant.
Model fit was assessed using residual diagnostic plots. All POPswere ln-
transformed to meet assumptions of linear models.

3. Results and discussion

3.1. Stable isotope values

Based on linearmodel estimates, stable isotope values for δ15Nwere
0.92‰ units (95% CI: 0.38, 1.45) higher in fin whales than in blue
whales, whereas δ13C values were 1.14‰ lower (95% CI −2.24,
−0.03) infinwhales than in bluewhales (Table 2). Stable isotope values
were similar inmales and females,when species-differenceswere taken
into account (−0.11, 95%CI:−0.62, 0.41 and−0.03, 95%CI:−1.10, 1.05
for δ15N and δ13C, respectively) (Table 2). Lower δ15N values in blue
whales indicate that they feed at lower trophic level than fin whales.
This finding is in accordance with a study from the Gulf of St Lawrence,
where stable isotope values suggested that krill is the most important
prey for both species, but that finwhales also forage on various fish spe-
cies (Gavrilchuk et al., 2014). Similar conclusions were also attained by
foodweb network analyses focusing onmarinemammals in the Barents
Sea (Blanchet et al., 2019). Acoustic surveys of krill and density distribu-
tions of fin whales in the Barents Sea suggest that the diet of this ceta-
cean species was dominated by krill and capelin (Ressler et al., 2015).

The lower δ13C values infinwhales compared to bluewhales suggest
that fin whales feed more at higher latitudes than blue whales, because
pelagic ecosystems at high latitudes generally have lower δ13C values
than lower-latitude ecosystems due to low temperatures and high pro-
ductivity (de la Vega et al., 2019; Newsome et al., 2010). Feeding at dif-
ferent latitudes may have occurred prior to the summer migration into
the Arctic, as incorporation rates of stable isotopes in whale skin are
relatively slow andwould reflect feeding over three to sixmonth period
(Busquets-Vass et al., 2017; Giménez et al., 2016). The incorporation
rates for δ15N in bluewhale and bottlenose dolphin (Tursiops truncatus)
skin are 163±91 and 180±71 days, respectively, whereas for δ13C, es-
timated only for dolphins, is 104± 35 days (Busquets-Vass et al., 2017;
Giménez et al., 2016). The results of the current study are in accordance
with results from passive acoustic sampling, which also suggest that at
least some fin whales are present in polar waters of the North Atlantic
during winter, whereas blue whales appear to be present at those
high latitudes only from June to October (Ahonen et al., 2017; Klinck
et al., 2012; Moore et al., 2012). Additional acoustic and satellite track-
ing studies would provide further insights regarding movement pat-
terns and feeding grounds and, thus, possible additional sources of
contaminants in blue and fin whales that spend the summer in
Svalbard.

3.2. Pollutants concentrations and patterns

The following compounds were detected in N70% of the individuals
HCB, α-, β- and γ-HCH, oxy-, trans- and cis-chlordane, trans- and cis-
nonachlor, mirex, o,p′-DDT, p,p′-DDT, o,p′-DDD, p,p′-DDD, o,p′-DDE, p,
p′-DDE, CB-52, -99, -101, -105, -118, -138, -153, -180, -183, and -187,
and, BDE-47, -99, -100 and -153 (Table 2). For toxaphenes, four conge-
ners were quantified and detected in N70% of the individuals in Batch 1:
(toxaphene-26 [B8-1413]; -40 [B8-1414]; -42 [B8-806/809]; -50 [B9-
1679]: Σ4TOXs) using Parlar and AV-code toxaphene identifiers in
brackets. In the second and third batches of POP analyses, only
toxaphenes-26 and -40 (Σ2TOXs) were detected in N70% of the individ-
uals (Table 2).

POPs determined in blubber of both whale species were dominated
by DDTs, PCBs and toxaphenes (Table 2). Median concentrations (ng/g
lw) and ranges of pollutants in blue whale and fin whale blubber for
each species and sex are given in Table 2. For comparative purposes,
mean concentrations and standard deviations for each species are
given in Table S3. Σ6DDTs were dominated by p,p′-DDE, PCBs by PCB-
153 and -138 and toxaphenes by toxaphene-50 (Fig. 2). Σ5CHLs,
Σ5HCHs and Σ4PBDEs consisted mainly of trans-nonachlor, β-HCH and
BDE-47, respectively (Fig. 2).

3.3. Factors explaining pollutant concentrations

All of the highest ranked models explaining variation in pollutant
concentrations included species and sex as predictor variables (ΔAICc
N 4.3); 46–58% of the total variation was accounted for in these models
(Table 1). Model-averaged estimates indicated that concentrations of
Σ5chlordanes (CHLs), Σ3HCH and HCB were approximately twice as
high in fin whales as blue whales (range for 95% CI: 1.3–2.9), whereas
the difference was 2.5-fold for Σ10PCBs, Σ6DDTs, mirex and Σ2TOXs
(range for 95% CI: 1.6–4.0) and almos four-fold for Σ4PBDEs (95% CI:
2.3, 6.4). The PCA plot showing the POP patterns (Fig. 3) indicated that
the proportion of Σ4BDEs contributing to ΣPOPs was higher in fin
whales compared to blue whales. The higher concentrations of pollut-
ants infinwhales are likely the result of them feeding at a higher trophic
position, whichwas shown in this study by their respective δ15N values.
Pollutants biomagnify in pelagic food webs, and higher concentrations
of pollutants infish, compared to krill, have been reported inwaters sur-
rounding Svalbard (Hallanger et al., 2011b). The model-averaged esti-
mates in the current study showed that δ15N explained some of the
variation in pollutant concentrations, although it was not included in
the highest ranked models (Table 1). Overall, concentrations of
Σ2TOXs increased 55% (95% CI: 19, 105)with one permille unit increase
in δ15N. The average increase for Σ10PCBs, Σ5CHLs, Σ3HCH, HCB, mirex
and Σ4PBDEs was 25–36% with one per mille unit increase in δ15N, but
the increase was significant at the 5% level only for Σ3HCH (95% CI: 5,
64), though it was close to significance for the other compounds
(range 95% CI:−12, 114; Table 3). Positive correlation between blubber



Table 2
Median (minimum,maximum) stable isotope values in skin, lipid percentage and concentrations of pollutantsa in ng/g lipid weight in blubber of bluewhales (B. musculus) and finwhales
(B. physalus) sampled from Svalbard (2014-2018). Summed compounds are shown in bold.

Blue whales Fin whales

Females (n=7) Males (n=11) Females (n=8) Males (n=4)

δ15N 9.34 (8.47, 10.68) 9.25 (8.58, 10.29) 10.60 (9.39, 11.37) 10.61 (9.59, 10.70)b

δ13C -18.10 (-19.50, -16.38) -18.93 (-21.98, -15.86) -20.05 (-20.31, -19.25) -19.40 (-19.92, -16.82)b

Lipid % 43 (25 , 55) 52 (24 , 63) 47 (26 , 58) 44 (32 , 49)
CB-52 5.7 (2.4, 14) 14.2 (9.1, 29) 19.2 (7.3, 34) 44.8 (30.0, 55)
CB-99 3.4 (2.0, 11) 10.9 (7.5, 24) 16.6 (5.3, 26) 32.6 (20.8, 41)
CB-101 5.7 (2.3, 13) 12.4 (7.5, 23) 18.9 (6.4, 32) 41.1 (29.2, 53)
CB-105 0.72 (0.37, 2.1) 2.12 (0.92, 4.1) 4.1 (1.87, 7.0) 5.7 (5.12, 8.9)
CB-118 5.1 (2.7, 15) 15.5 (10.3, 35) 22.6 (7.4, 36) 46.5 (31.0, 56)
CB-138 9.3 (6, 26) 22.9 (18, 59) 41 (14.1, 64) 82 (48.9, 94)
CB-153 16 (9.1, 41) 35 (29.6, 90) 58 (20, 97) 118 (70, 132)
CB-180 6.2 (3.2, 19) 10.9 (9.0, 34) 23.2 (8.2, 33) 34.2 (20.1, 49)
CB-183 1.3 (0.45, 3.8) 2.0 (0.58, 6.5) 4.4 (1.61, 5.6) 6.4 (4.23, 10.8)
CB-187 5.8 (3.3, 16) 11.0 (8.1, 31) 20.6 (7.0, 28) 30.0 (19.8, 41)Σ10PCBs 86 (55, 150) 134 (106, 334) 219 (79, 341) 451 (279, 522)
HCB 30 (12, 49) 58 (41, 82) 61 (35, 104) 85 (79, 139)b

Mirex 1.4 (0.9, 6.2) 2.5 (1.6, 6.0) 4.3 (2.5, 8.6) 4.7 (3.5, 8.4)b

α-HCH 1.1 (b0.3, 3.0) 2.3 (1.55, 3.4) 2.8 (1.3, 6.1) 5.2 (4.2, 7.0)b

β-HCH 4.5 (1.5, 9.3) 10.1 (6.6, 17.4) 10.1 (4.0, 22.7) 18.7 (16.4, 31.7)b

γ-HCH 0.80 (0.22, 1.3) 1.21 (0.97, 1.5) 0.99 (0.42, 1.7) 1.82 (1.33, 2.5)bΣ3HCHs 8.4 (4.6, 13) 13.9 (9.6, 22) 12.2 (7.8, 28) 25.7 (21.9, 41)b

Oxychlordane 5.4 (2.5, 12) 14.1 (9.7, 27) 16.7 (7.3, 32) 34.4 (23.1, 50)b

trans-Chlordane 0.26 (b0.08, 0.38) 0.25 (0.18, 0.78) 0.52 (b0.09, 1.02) 0.28 (0.24, 0.56)b

cis-Chlordane 4.3 (1.8, 8.2) 7.2 (4.7, 9.5) 7.6 (4.2, 12.8) 12.6 (12.4, 14.3)b

trans-Nonachlor 23 (12, 55) 57 (41, 109) 73 (25, 118) 130 (89, 191)b

cis-Nonachlor 7.4 (3.8, 20) 20.6 (14.7, 43) 26 (8.6, 42) 51 (34.0, 70)bΣ4CHLs 65 (33, 96) 102 (71, 189) 122 (49, 202) 227 (161, 323)b

o,p'-DDT 7.6 (4.5, 37) 36.2 (18.5, 87) 33 (4.1, 68) 92 (43, 114)
p,p'-DDT 7.4 (5.5, 24) 19 (13, 61) 26 (9.6, 103) 21 (19, 39)
o,p'-DDD 6.3 (2.4, 21) 17 (10, 45) 18 (6.0, 25) 42 (30, 49)
p,p'-DDD 18 (8.3, 47) 40 (15, 131) 32 (8.9, 49) 90 (75, 113)
o,p'-DDE 2.3 (0.7, 5.7) 6.4 (3.3, 10.0) 5.6 (1.7, 8.0) 10.3 (8.6, 14)
p,p'-DDE 46 (18, 133) 128 (90, 335) 165 (47, 238) 367 (231, 400)Σ6DDTs 84 (40, 268) 244 (163, 669) 287 (113, 482) 645 (409, 681)
Toxaphene 26 11 (6.5, 26) 28 (14, 54) 31 (17, 65) 63 (45, 100)
Toxaphene 40 8.6 (4.9, 20) 20 (b0.02, 29) 24 (17, 46) 42 (34, 65)
Toxaphene 42 21 (11, 46)c 53 (27, 66)c 37 (35, 54)c 76 (64, 93)c

Toxaphene 50 28 (13, 65)c 63 (30, 147)c 70 (61, 86)c 142 (132, 210)cΣTOX26+40 23 (11, 46) 48 (21, 81) 56 (34, 110) 105 (79, 166)Σ4TOX 74 (35, 157)c 142 (85, 288)c 178 (138, 179)c 301 (287, 418)c

BDE47 2.1 (1.1, 5.5) 6.1 (4.1, 10.0) 9.9 (2.5, 16) 22 (14, 25)
BDE99 0.92 (0.35, 2.8) 2.3 (1.3, 4.5) 3.5 (0.94, 6.5) 9.0 (5.1, 12)
BDE100 0.48 (0.21, 1.1) 0.90 (b0.09, 1.4) 1.3 (0.17, 71) 2.1 (1.6, 2.9)
BDE153 0.15 (b0.04, 0.88) 0.35 (b0.07, 0.80) 0.61 (b0.08, 1.80) 1.3 (0.77, 2.1)ΣPBDEs 3.7 (2.0, 9.6) 10 (5.9, 17) 16 (4.7, 94) 35 (22, 40)

PCB=Polychlorinated biphenyls, HCB=Hexachlorobenzene; HCH=Hexachlorocyclohexane; DDT=(1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane; DDE=1,1-dichloro-2,2-bis(p-
chlorophenyl)ethylene; DDD=1,1-dichloro-2,2-bis(p-chlorophenyl)ethane; PBDE=polybrominated diphenyl ethers.

a CB-28 and -194, toxaphenes #32, #38, #58, #62 and #69, and BDE-28, -138, -183 and -209 were detected above the limit of detection in b70% of the individuals
b δ15N, δ13C, HCB, HCHs, Mirex and chlordanes were analyses in 3 male fin whales.
c Toxaphenes 42 and 50 and Σ4TOX were only analysed in the first batch of 17 samples (n=4/7, 3/3 for blue whales and fin whales (F/M).
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pollutant concentrations and skin δ15N values has also been demon-
strated in other whale species (Das et al., 2017; Pinzone et al., 2015).
Pollutant concentrations were not related to δ13C values (Table 3).
This suggests that differences in pollutant concentrations are driven
by trophic position rather than carbon source. Feeding at different lati-
tudes, as indicated by δ13C values, does not seem to impact POP expo-
sure in fin and blue whales, which suggests similar POP
concentrations in their prey across latitudes. This is in accordance
with similar measured concentrations of CB-153 in seawater across
mid and high latitudes of the North Atlantic (Wagner et al., 2019). An-
other explanation could be that δ13C may not be a reliable spatial signal
in whales because of their movements between coastal δ13C-enriched
and δ13C-depleted oceanic ecosystems (Newsome et al., 2010) within
a specific latitudinal foraging zone, as previously observed in blue
whales (Bailey et al., 2009).

Concentrations of all compoundswere 1.7–2.8 times higher inmales
than in females (range for 95% CI: 1.1–4.2) (Table 3). This is in accor-
dance with previous studies and trends observed in marine mammals,
including fin whales and blue whales (Aguilar et al., 1999; Aguilar and
Borrell, 1994; Fossi et al., 2014; Gauthier et al., 1997b; Hobbs et al.,
2001; Metcalfe et al., 2004; Muñoz-Arnanz et al., 2019: Pinzone et al.,
2015). This pattern suggests that maternal transfer of pollutants to
their offspring takes place via lactation, and to a lesser degree to the foe-
tus during gestation as indicated by modelling and empirical studies on
whales (Hickie et al., 1999; Trumble et al., 2013).

3.4. Intra- and interspecies differences in pollutant concentrations

To provide a comprehensive overview of the levels of pollutants
found in blue and fin whales in comparison to their counterparts from
other regions, in addition to different whale species feeding in the
same area, pollutant concentrations were explored by sex whenever
the information was available. It should be noted that comparing PCB
concentrations should be considered to be only indicative as most stud-
ies provide values as a sumand the number and type of congeners pres-
ent in the sums often differ among studies. Geographical comparisons



Fig. 2.Major congeners andmetabolites (contribution N 80% to the sumof compounds) inA) bluewhales andB)finwhales blubber samples (n=30 for PCBs, DDTs and PBDEs, 29 for CHLs
and HCHs and 17 for Toxaphenes, respectively) collected in Svalbard, Norway (2014–2018). Black areas represent minor (contribution b 20% to the sum of compounds).
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may also be biased by temporal changes in pollutant levels (Rigét et al.,
2019), if samples collected during different time periods are compared.
To avoid bias of temporal changes in pollutant levels, the comparison in-
cluded only samples collected after 2004, when the United Nations
Fig. 3. Pollutant patterns in the blubber of blue and fin whales (n = 29), collected in
Svalbard, Norway. These PCA ordination plots are based on the covariance matrix of log
ratio concentrations of pollutants (ln (POPx/ΣPOP)). Sample scores are grouped by species.
The 1st axis explains 38% of the variation and the 2nd axis explains 29% of the variation.
Environment Program's Stockholm Convention on restriction or elimi-
nation of POPs entered into force.

A limited number of studies have assessed POP levels in bluewhales.
In general, these studies suggest that blue whales sampled from Sval-
bard are less polluted than conspecifics from the west coast of Mexico
and similarly or less polluted than blue whales from southern Chile
(Fossi et al., 2014; Muñoz-Arnanz et al., 2019). For instance, DDT con-
centrations in blue whales from the Gulf of California, Mexico (sampled
in 2010) were an order of magnitude higher than in Svalbard blue
whales (Fossi et al., 2014). Median concentrations of HCB and Σ6DDT
in bluewhales sampled from Svalbardwere three to seven times higher
in comparison to blue whales sampled from their feeding areas close to
Isla de Chiloé, Southern Chile, between 2011 and 2013 (Muñoz-Arnanz
et al., 2019). PCB and PBDE concentrations were similar between Sval-
bard and Chile, but congener patterns differed. Σ10PCBs was dominated
by CB-153 N CB-138 N CB-118 N CB-52 in blue whales from Svalbard
(Fig. 2), whereas CB-95 N CB-101 N CB-153 N CB-149 were the dominat-
ing congeners, accounting for ~50% of the Σ20PCBs reported, for blue
whales from Chile. In whales sampled from Svalbard, PBDEs were dom-
inated by BDE-47 N BDE-99 N BDE-100 N BDE-153 (Fig. 2), whereas BDE-
47 N BDE-28 N BDE-85 N BDE-99 contributed ~85% to the Σ15PBDE con-
tent reported for the blue whales sampled from Chile. Higher HCB and
DDT concentrations in bluewhales from Svalbardmay be in part related
to much lower usage of these compounds in the Southern Hemisphere
than in the Northern Hemisphere and slow interhemispheric mixing
of HCB (Barber et al., 2005; Stemmler and Lammel, 2009; Zhang and
Lohmann, 2010). However, global distribution of POPs in marine envi-
ronments does not solely reflect their application and use in
neighbouring continents. The similar concentrations of PCBs in blue
whales from Svalbard and Chile may be related to oceanic transport of
PCBs from their main area of usage in the Northern Hemisphere to the
Southern Hemisphere (Breivik et al., 2002; Wagner et al., 2019). In ad-
dition, meteorological and biogeochemical conditions such as tempera-
ture, ocean and air currents, deep water formation, sea ice, light
penetration, productivity and suspended particle dynamics may all in-
fluence distribution and residence time of POPs in seawater (Barber
et al., 2005; Stemmler and Lammel, 2009; Wagner et al., 2019).

Fin whales from Svalbard were generally less polluted than fin
whales sampled in the Gulf of California and in the Mediterranean Sea,
but more polluted than fin whales sampled in Antarctica (Fossi et al.,
2016; Niño-Torres et al., 2010; Pinzone et al., 2015; Taniguchi et al.,
2019). For instance, mean concentrations of ΣPCBs and Σ6DDTs were



Table 3
Variation in pollutant concentrations (ln(ng/g lw)) according to species, sex and dietary tracers (δ15N and δ13C). Bluewhales (B.musculus, n=18) andfinwhales (B. physalus, n=10–11)
were sampled from 2014 to 2018 off the coast of Svalbard, Norway. Conditional averaged estimates and 95% confidence intervals were derived from linearmodels. Values in bold are sig-
nificantly different from 0 at the 5% level. Males = M, females = F.

Intercept Species fin vs. blue Sex M vs. F δ15N δ13C

ln(Σ10PCBs) 4.46 (4.17, 4.76) 0.90 (0.56, 1.24) 0.66 (0.32, 0.99) 0.27 (−0.02, 0.57) 0.01 (−0.16, 0.18)
ln(Σ6DDTs) 4.61 (4.19, 5.03) 0.90 (0.48, 0.1.32) 1.03 (0.62, 1.44) 0.27 (−0.06, 0.6) 0.04 (−0.15, 0.23)
ln(Σ5CHLs) 4.06 (3.61, 4.50) 0.69 (0.34, 1.04) 0.67 (0.33, 1.01) 0.22 (−0.04, 0.49) −0.03 (−0.18, 0.12)
ln(Σ3HCHs) 1.88 (0.55, 3.22) 0.58 (0.25, 0.91) 0.65 (0.33, 0.97) 0.27 (0.05, 0.50) −0.04 (−0.17, 0.10)
ln(HCB) 3.32 (2.93, 3.70) 0.72 (0.39, 1.06) 0.73 (0.40, 1.05) 0.25 (−0.01, 0.51) −0.07 (−0.22, 0.08)
ln(Mirex) 0.53 (0.03, 1.03) 0.93 (0.47, 1.39) 0.55 (0.13, 0.97) 0.25 (−0.08, 0.59) −0.02 (−0.21, 0.18)
ln(Σ4BDEs) 1.40 (0.98, 1.83) 1.34 (0.85, 1.85) 0.87 (0.38, 1.35) 0.31 (−0.13, 0.76) −0.04 (−0.29, 0.21)
ln(Σ2TOXs) 3.07 (269, 3.44) 0.98 (0.64, 1.32) 0.77 (0.44, 1.11) 0.44 (0.17, 0.72) −0.06 (−0.24, 0.12)

Σ10PCBs (CB-52, -99, -101, -105, -118, -138, -153, -180, -183, and -187); Σ6DDTs (o,p′-DDT, p,p′-DDT, o,p′-DDD, p,p′-DDD, o,p′-DDE, p,p′-DDE): Σ5CHLs (oxy-, trans-, cis-chlordane, trans-,
cis-nonachlor); Σ3HCHs (α-, β-, γ-HCH); Σ4PBDEs (BDE-47, -99, -100, -153); Σ2TOXs (TOX-26, -40).
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10–45 times higher in fin whales from the Gulf of California and the
Mediterranean Sea (sampled in 2006–2013) compared to fin whales
from the present study (Fossi et al., 2016; Pinzone et al., 2015). In con-
trast, mean concentrations of Σ3HCH were similar between the Gulf of
California and Svalbard (Niño-Torres et al., 2010). Median concentra-
tions of Σ6DDTs in fin whales from Svalbard were 16 times higher com-
pared to blubber concentrations reported in fin whales sampled from
the Antarctic Peninsula in 2013 (Taniguchi et al., 2019). ΣPCB and HCB
concentrationswere only approximately twice as high in the finwhales
from Svalbard compared to those spending the summer in the Antarctic
Peninsula. The larger difference in DDT, compared to PCBs, between
whales sampled from the Arctic and Antarctic is in accordance with dif-
ferences in sea water concentrations (Gao et al., 2018; Hallanger et al.,
2011a;Wagner et al., 2019). In comparison to other whale species sam-
pled frompolarwaters in theNorthAtlantic since 2004,male humpback
whales (Megaptera novaeangliae) from the Northwest Atlantic (Gulf of
Maine, 2004) were more contaminated than the whales from the cur-
rent study, with 5 to 58 times higher ΣPCB and Σ6DDT concentrations
(Elfes et al., 2010). Higher POP concentrations in humpback whales
are likely the result of this species feeding at a higher trophic level
than fin and blue whales (Pauly et al., 1998).

4. Conclusion

Higher POP concentrations in fin whales than in blue whales from
Northeast Atlantic are likely related to the higher trophic level diet of
fin whales. The comparison of pollutant levels between different areas
suggests that blue and fin whales feeding in Svalbard waters during
summer are exposed to lower levels of pollutants than their conspecifics
sampled close to areas at lower latitudeswith dense human populations
(Mediterranean Sea, Gulf of California). Lower δ13C values in fin whales
than blue whales suggested that more of their feeding occurred at
higher latitudes. Pollutant levels in females were twice those of males,
which indicates that females offload considerable amounts of pollutants
to their offspring. Future studies are needed to identify the movement
patterns and wintering areas of these ocean giants to identify the
sources of their pollutant exposure. While most POPs show decreasing
trends in Arctic biota, the levels measured in marine mammals remain
high in some populations (mid-latitudes) and raise concerns regarding
potential health effects, which warrants further study.
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