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Figure on frontpage: Left panel: 10 km by 10 km surface PM2.5 over Oslo for 28 May 2014 12 UTC
derived from MODIS MOD04 AOD using simple model–based AOD to PM2.5 ratio. Right panel: Down-
scaled 1 km by 1 km surface PM2.5 over Oslo for 28 May 2014 12 UTC. Spatial proxy information from
WRF–EMEP run.
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1 Introduction

The main goal for the “Towards better exploitation of Satellite data for monitoring Air Quality in Nor-
way using downscaling techniques” (Sat4AQN) project was to evaluate the potential of spatially down-
scaling existing satellite products with the support of a high-resolution Chemical Transport Model
(CTM) to spatial scales that are more relevant for monitoring air quality in urban areas and regional
background sites in Norway.

During the last years, the spatial resolution of satellite data has increased. A comparison of recent
sensor spatial resolution is given in Fig. 1. GOME, which was launched on-board ERS-2, in April 1995
had a horizontal resolution of between 40 x 40 km2 to 40 x 320 km2. The TROPOMI instrument
on the Sentinel-5P platform, launched on October 13, 2017, has a significantly smaller pixel size of
3.5 x 7 km2, a larger swath-width (2600 km) and daily global coverage. While this is a major step
forward for atmospheric composition monitoring, it is still not sufficent to capture features on local,
i.e. city scales. Therefore, this project looked into the possibility to downscale the satellite data to
gain spatial information at sub-pixel level.

Figure 1 – Satellite sensor spatial resolution [Courtesy ESA].

More specifically, the aim of the Sat4AQN project was to demonstrate the improvements in spatial
detail and accuracy that can be achieved with respect to air quality monitoring by downscaling cur-
rent satellite data products using high-resolution information obtained from the EMEP-WRF model
for Oslo city and the area around the Birkenes observatory (N 58◦23′, E 08◦15′, 190 m a.s.l) in Agder
county, which is a National monitoring site for greenhouse gases and aerosols.

In general, the air quality in Norway has improved in recent years. Nevertheless, nitrogen dioxide
(NO2) and particulate matter (PM) continue to be of major concern in the urban areas, especially
during winter. For this demonstration project, we focused on satellite aerosol optical density (AOD)
and PM estimates. The reason for this is that ground-based AOD and PM observations, as well as low
and high spatial resolution satellite AOD data, are available, which can be used to directly compare
the performance of the downscaling.

The general structure of the Sat4AQN demonstration project is outlined in Fig. 2. The project was
organized in eight tasks, which are described in more detail in the following.
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Figure 2 – General structure of the Sat4AQN demonstration project. Abbreviations: earth observation
(EO), ground based (GB), particulate matter (PM), aerosol optical density (AOD), European Monitoring
and Evaluation Programme (EMEP), Weather Research Forecast (WRF)

2 Task 1: Choice of episodes - time period

The time period for Sat4AQN was chosen based on the availability of ground-based AOD and PM
data. AOD measurements started at Birkenes Observatory in spring 2009, using an automatic solar
and sky radiometer (CIMEL type CE-318, instrument # 513). The AERONET direct sun algorithm
(for details: http://aeronet.gsfc.nasa.gov) outputs quality assured and cloud-free level 2 data.

Figure 3 – 2009 - 2016 time series of aerosol optical depth (AOD) at 500 nm wavelength in the atmo-
spheric column above Birkenes. Mean values and standard deviations are given [adapted from (Myhre
et al., 2017)].

AOD for 500 nm from the start of measurements in 2009 to 2016, and AOD and PM2.5 concentrations
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for 2014 are shown in Fig. 3 and Fig. 4, respectively. For 2014, AOD measurements are available
between March and September. Gravimetric measurements of particle mass concentration are only
available as weekly averages that do not fit this study. Therefore, we use hourly data (PM2.5) from an
optical particle counter (OPC, this must be adapted to more accurate gravimetric data). We choose
to start with the period from May to September 2014, where AOD and PM values were relatively
high.

Figure 4 – AOD @ 500 nm (left panel) and PM2.5 (right panel) between May and September 2014
measured at the Birkenes observatory.

For Oslo, the episode selection was basically based on a time series from the last seven years of PM2.5
data and cloud information from Blindern Meteorological Station (Fig. 5). The data show that PM2.5
episodes with major contamination in Oslo occur mainly in the winter months (especially December,
January and February). This is because the main source of PM2.5 in Oslo is wood burning from
households. Since satellite data for AOD in these months is generally unavailable due to short days
of low sun that provide few valid satellite observations, it was chosen to use the same test period for
Oslo as for Birkenes station (summer 2014).

3 Task 2: WRF–EMEP model runs

The aim of project was to improve spatial details and accuracy in aerosol optical depth (AOD) and
particulate matter (PM) by downscaling satellite data products using high-resolution information
obtained from the WRF-EMEP model system. The objective of Task 2 was to perform the appropriate
model simulations. Two locations were selected: the Oslo city and the area around the Birkenes
observatory in Aust-Agder. At Birkenes, advanced aerosol and AOD measurements are available for
validation.

For the WRF–EMEP model system the meteorological data are generated with the Weather Research
and Forecast (WRF) model (Skamarock and Klemp, 2008). This is a flexible, state-of-the-art atmo-
spheric model suitable for use in a broad range of applications across scales ranging from meters to
thousands of kilometres. The WRF output is used as a meteorological driver for the EMEP model
(Simpson et al., 2012), where dispersion and air chemistry can be solved.

A significant fraction of pollutants measured in Norway are transported from regions outside Europe,
thus long-rang transport of air masses need be included in the model to simulate realistic aerosol
concentrations. For the time period selected in Task 1, i.e. May – September 2014, nested model
runs were performed.
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The WRF and EMEP models were run on four nested grids: A mother domain of 50 km resolution
covering Europe, a second domain covering Southern and Eastern Norway with a resolution of 10
km, and two inner domains with a resolution of 1 km covering Birkenes and Oslo, respectively. The
inner domains of 1 km spatial resolution covered a region of 100 km x 100 km. Concentration of
pollutants from the outer domain served as boundaries for the inner domains. The emission inven-
tory for the outer domain was from the official EMEP 2014 country total emissions (EMEP Status
Report 1/2016; http://emep.int/publ/reports/2016/EMEP_Status_Report_1_2016.pdf). Fine res-
olution emission data for Oslo and Birkenes were based on results from the NordicWelfAir project
(http://projects.au.dk/nordicwelfair/). Tools were developed to prepare gridded emission files of
eight compounds (SOx , NOx , NMVOC, CO, NH3, PM2.5, PM10), where annual totals of each com-
pound were distributed in 10 appropriate emission sectors. As an example, Fig. 6 shows annual
emissions of NOx , sector 7 (road emission) in the Oslo and Birkenes model domains.

The WRF-EMEP model system provided hourly output for a variety of pollutants. For Sat4AQN AOD
values as well as model based PM2.5 and AOD were selected for the desired period and domains
shown in Fig. 6. The aerosol data served as input for the downscaling activity described in Task 5.

4 Task 3: Selection of satellite AOD products

In Table 1 an overview is provided of satellite data products that were considered to be used for
downscaling and evaluation of the downscaled products.

The episode choosen was May – September 2014. SENTINEL-3 Sea and Land Surface Temperature

1MODIS MxD04_3 description is found at https://ladsweb.modaps.eosdis.nasa.gov/api/v1/
productPage/product=MOD04_3K.

2MODIS MCD19A2 description is found at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_
products_table/mcd19a2_v006.
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Figure 5 – Averaged hourly PM2.5 concentration from all air quality monitoring stations in Oslo (black
line). The blue line shows a 24-hour moving average. Red markers indicate hours where both the absolute
concentration and the moving average were above a certain limit, and the cloud in Oslo measured at
Blindern meteorological station was less than 2/8.

4



Figure 6 – Annual gridded emission of NOx from roads, sector 7, in Oslo (left) and the Birkenes area
(right). Emissions are in ton/year.

Table 1 – Overview over satellite AOD data, their spatial scale and data access.

Sensor Algorithm/data product Spatial Resolution Data access Comments

SLSTR/OLCI Level2_SYN_ OLCI PR ∼300 m NRT Eumetsast First launch 16.02.2016.
SLSTR: 0.5-1 km

AATSR Univ Swansea v4.2, ORAC v 3.02 10×10 km2 ESA, Aerosol_CCI Data until 02.2012.
FMI, ADV v2.3 or higher

VIIRS Environmental Data Record (EDR) 6×6 km2 NOAA CLASS Overpass time
differs from MODIS

VIIRS Intermediate Products (IP) 0.75×0.75 km2 NOAA CLASS Overpass time
differs from MODIS

MODIS Terra (x =O) Deep Blue (DB). Dark Target (DT), 10×10 km2 NASA public Used for downscaling
MODIS Aqua (x = Y) Merged product, MxD04_L2 at nadir
Collection 6 (C6)

MODIS MxD04_3K1 3×3 km2 NASA public Available for evaluation

MODIS MCD19A22 1×1 km2 LP DAAC Available for evaluation

Radiometer/Ocean and Land Colour Instrument (SLSTR/OLCI) and ENVISAT Advanced Along-Track
Scanning Radiometer (AASTR) data are not available for 2014. Data from Visible Infrared Imaging
Radiometer Suite (VIIRS) aboard the joint NASA/NOAA Suomi National Polar-orbiting Partnership
(Suomi-NPP) are available, however, the VIIRS overpass time may differ from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) by up to 45-90 minutes. During this time the aerosol may
have moved thus possibly distorting comparisons between products from the two platforms. Hence,
we used MODIS 10×10 km2 AOD for downscaling, for which data products with higher spatial res-
olution (MxD04_3K at 3×3 km2 and MCD19A2 at 1×1 km2) are available, which can be used for
evaluation.

5 Task 4: Derive PM2.5 maps from satellite AOD

5.1 Processing

The main focus of Task 4 was to generate surface-level particulate matter concentration maps of
particulate matter with particle diameter less than 2.5 µm (PM2.5) from the selected AOD satellite
product. We used the methodology first suggested by van Donkelaar et al. (2010), which calculates
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a satellite-derived surface PM2.5 estimate (PM2.5sat) by multiplying the satellite-based AOD value
with the fraction of model-derived PM2.5 and model-derived AOD such that

PM2.5sat =
PM2.5mod

AODmod
× AODsat (1)

We used this approach to calculate satellite-derived surface PM2.5 for our study domains of Oslo
and Birkenes for all usable satellite overpasses during the study period of 1 May 2014 through 30
September 2014. The satellite product we used for this purpose was the MODIS MOD04 AOD prod-
uct. We acquired and processed a total number of 934 MOD04 files. These files were converted from
HDF4 to GeoTIFF using custom-written code and further processed to flag all pixels as invalid that
did not have retrieval QA flags of at least 2 (good) or 3 (very good). In addition, the processing step
included cropping the AOD data to the area of our two study site domains and reprojecting them to
UTM32N projection with WGS84 datum. It should be noted here that a large fraction of the collected
satellite datasets was too cloudy or suffered from other retrieval issues, such that in the end only a
relatively small number of a few dozen scenes was considered useful for further processing.

5.2 Results

For the model data provided by the WRF–EMEP model, code was developed to read and re-project
the dataset. Then the model-based AOD to PM2.5 ratio was calculated for all hours in the entire
study period. The model information was further resampled in terms of spatial extent and spatial
resolution to match the MODIS MOD04 AOD dataset. All tasks were carried out for both the Oslo
and Birkenes domains. Subsequently routines were developed for matching the satellite overpasses
and model dates/times and automatically selecting on the relevant match-ups. Fig. 7 shows an
example of the MODIS-derived surface PM2.5 product for a few selected (non-cloudy) overpasses for
the greater Oslo region. Similarly Fig. 8 shows the same but for the Birkenes study site.

6 Task 5: Alternative downscaling methods

6.1 Previous work

“Downscaling refers to an increase in spatial resolution” (Atkinson, 2013). It is used for example
to increase the spatial resolution of results from global climate models to allow local impact studies
(Wilby and Wigley, 1997). In satellite remote sensing downscaling is the decrease in pixel size of
remotely sensed images. The coarse resolution variable of interest is downscaled using other high
resolution imagery of either the same quantity (but with poorer time resolution) or a connected quan-
tity. An example is downscaling of coarse resolution soil moisture from microwave measurements
using solar and thermal higher resolution images (Im et al., 2016). Another application is down-
scaling of Tropical Rainfall Measuring Mission (TRMM) precipitation data to allow local analysis
(Park, 2013). Other usages include downscaling of land cover mapping, land surface temperature,
impervious surface distribution, erythemal surface radiation, thermal imagery, evapotranspiration,
and atmospheric trace gases (Kolios et al., 2013; VoPham et al., 2016; Wu and Murray, 2003; Zhang
et al., 2012). Downscaling may give the impression of creating data out of nowhere. While this is
indeed not so, one should keep in mind that “one strictly cannot obtain more information than one
starts with” (Atkinson, 2013).
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Most of the remote sensing relevant literature discusses remote sensing of the Earth surface. Atkin-
son (2013) provides a review of downscaling in remote sensing and the various techniques involved.
Ha et al. (2013) reviewed numerous downscaling methods for remote sensing-based irrigation man-
agement. There has only been very limited literature on applying downscaling techniques to satellite
remote sensing products of the atmosphere, despite their generally coarse spatial resolution. (Zhang
et al., 2012) is one of the few examples, geostatistical downscaling of methane columns derived from
SCIAMACHY data using spatial information from a vegetation index dataset.

To the best of our knowledge, downscaling techniques have to this date not been applied to satellite
products of air quality.

6.2 Overview of downscaling methods

Area-to-point kriging with external drift (or regression area-to-point kriging) as described later in the
document and used for SAT4AQN is by no means the only downscaling technique. In the literature a
large amount of different techniques are described, of which we want to briefly highlight a few in the
following paragraphs. Alternative downscaling methods include, among others, machine learning
techniques such as artificial neural networks (ANN) and geostatistical methods using cokriging.
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Figure 7 – Example of satellite-based PM2.5 estimates (in units of µg m-3) as derived from the MODIS
MOD04 AOD product, here shown for a few overpasses for the area of Oslo and surroundings.
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Figure 8 – Example of satellite-based PM2.5 estimates (in units of µg m-3) as derived from the MODIS
MOD04 AOD product, here shown for a few overpasses for the area of Birkenes and surroundings.

6.2.1 Machine learning

Machine learning techniques may appear attractive as they allow computers to learn without being
explicitly programmed. However, most of these techniques involve trial-and-error approaches to
make the best selection of various model parameters. There are a number of machine learning
methods. Below we discuss some of the methods that have been used for remote sensing applications.
Note that this list is not complete.

Artificial neural networks (ANN) A brief history of artificial neural networks (ANN) and introduc-
tion is provided by Jensen et al. (2009). There are several classes of ANNs. One common
method is the multilayer perceptron (MLP), used by for example Kolios et al. (2013) to down-
scale SEVIRI thermal images. The MLP has at least three layers of nodes: the input layer, one
or more hidden layers, and one output layer. It is common to use one hidden layer. The ANN is
trained through an iterative process, Fig. 9. As input Kolios et al. (2013) used combinations of
SEVIRI pixel properties and the ANN provided output of thermal infrared radiation at MODIS
spatial resolution. During the iterative training the training algorithm modified the weights
of the ANN to minimize the difference between the output from ANN and the desired output
(MODIS training data set).

Support vector machine (SVM) Support vector machines (SVMs) aim to establish optimal hyper-
planes to linearly separate patterns in data. If patterns are not linearly separable, the original
data may be mapped into a new space using kernel functions. SVMs are used for binary classi-
fications and may be extended to a probabilistic setting through scaling. One of the strenghts
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Figure 9 – Supervised training of an ANN with three layers: input, hidden and output (shown inside the
box). The cost function takes as input the difference between the desired output and output from the
ANN. The training algorithm modifies the weights of the ANN to find the optimal choice. Adopted from
Kolios et al. (2013).

of SVMs is that it is not affected by local minima. The literature on SVMs is vast: a tutorial is
provided by Burges (1998).

Relevance vector machine (RVM) Functionally relevance vector machine (RVM) has the same form
as SVM. It was introduced by Tipping (2001). The main difference between RVM and SVM is
that RVM uses far less kernel functions, furthermore the predictions from RVM are probabilistic
while those from SVM are point estimates. A downside with RVM is that it is vulnerable to the
risk of local minima.

Random forest The random forest method is based on a multitude of decision trees. For downscal-
ing as discussed here, the target variable takes on continuous values and the decision trees are
called regression trees. Random forest may be viewed as a way of averaging multiple decision
trees. For selection of training samples, random forest gives the samples equal weights. Further
information about the random forest method is found in Ho (1998) and Breiman (2001).

Boosted regression trees The boosted regression trees method is also based on decision trees. Con-
trary to the random forest method, during training it uses a weighting scheme that focus on
the samples not well trained during the previous iteration. According to Im et al. (2016) this
results in that “boosted regression trees sometimes have a tendency toward overfitting, regard-
less of the number of trees used”.

Cubist The cubist technique is a regression tree system that produce rule-based predictive models.
With each rule a multivariate regression is associated. This may be used to provides statistics
so the relative importance of input parameters may be found. The Cubist technique has been
used for several applications in remote sensing, see Im et al. (2016) and references therein.

6.2.2 Downscaling cokriging (DSCK)

To distinguish kriging and and cokriging we quote: “Kriging and cokriging are geostatistical tech-
niques used for interpolation (mapping and contouring) purposes. Both methods are generalized
forms of univariate and multivariate linear regression models, for estimation at a point, over an
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area, or within a volume. They are linear-weighted averaging methods, similar to other interpola-
tion methods; however, their weights depend not only on distance, but also on the direction and
orientation of the neighboring data to the unsampled location”1. Furthermore; “Traditional regres-
sion methods only use data available at the target location and fail to use existing spatial correlations
from secondary-data control points and the primary attribute to be estimated. Cokriging methods
are used to take advantage of the covariance between two or more regionalized variables that are
related, and are appropriate when the main attribute of interest is sparse, but related secondary
information is abundant.“ Downscaling cokriging (DSCK) was first introduced in remote sensing by
Pardo-Igúzquiza et al. (2006). Software for DSCK is described in Pardo-Iguzquiza et al. (2010).

6.2.3 Single normal equation simulation (SNESIM)

The methods described above utilizes spatial correlation of the fine scale attributes or an a priori
spatial model in form of a variogram or similar. Such approaches have limitations to what spatial
connections that can be accounted for. Specificially, spatial patterns can not be modeled with var-
iograms. Boucher (2009a) used training images which included patterns that are also expected to
be present in the actual image, to develop a method for generating pattern-accurate maps. In ad-
dition to downscaling coarse resolution images, the method also allows for the inclusion of other
fine mapped features. An example is reproduced in Fig. 10, which shows the original Landsat image
in the top. Boucher (2009b) used a training image from another location and then downscaled the
upscaled original Landsat image (middle row, left). The downscaling was done by both excluding
(bottom left image) and including (bottom right image) fine scale data of the water, road network
and other impervious surfaces mapped in other ways (middle right image).

6.2.4 Spectral mixture analysis

Spectral mixture analysis is a physical rather than a statistical technique, which uses the entire spec-
trum of a pixel and a set of pure spectra of various surfaces (endmembers) to derive information bout
the fractional abundance of each endmember within a given pixel. While it is thus not a downscaling
methods per se, it can be used to provide constraints on the subpixel fractions. In addition, it does
not require any additional information rather than the spectral information in the image and that
endmember spectra. As an example, Wu and Murray (2003) estimated impervious surface distribu-
tion using spectral mixture analysis. Let Rb be the measured reflectance in band b for a pixel in the
image. Then

Rb =
N
∑

i=1

fiRi,b + eb, (2)

where fi is the fraction of endmember i, Ri,b is the reflectance of endmember i in band b and eb
is the unmodelled residual. The fraction fi may be determined and provides information about the
surface distribution.

6.2.5 Uncertainty estimates

Downscaled images may appear to have greated detail and contain more information than the start-
ing coarse images. However, the initial information content in the coarse image put limits on what

1http://petrowiki.org/Kriging_and_cokriging
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Figure 10 – Top row: Original Landsat image of impervious (black) and non-impervious (light grey)
surfaces at 30 m resolution. Middle row: Upscaled Landsat image of the impervious class coarse fractions
(left) and fine scale data of the water, road network and other impervious surfaces mapped in other ways
(right).Bottom row: Downscaled image without fine scale data (left). Downscaled image including in
fine scale data (right). Adopted from Boucher (2009b).

can be achieved in terms of downscaling. Hence, it is of great value to have some estimate of the
local uncertainty in the downscaled image. This is seldom provided in the literature. In geostatis-
tics one can use stochastic simulation to assess the spatial uncertainty. This may also be used for
downscaling (Atkinson, 2013; Park, 2013).

6.3 Comparisons of downscaling methods

We are not aware of any study that systematically compares the multitude of downscaling methods.
Below is mentioned some studies that compare two or more methods for specific applications.

The ANN, SVM and RVM methods have been compared by several authors. Srivastava et al. (2013)
find that ANN performs better than SVM and RVM for several statistical parameters such as the coef-
ficient of determination, R2, the Root Mean Square Error (RMSE) and the percentage bias (%Bias),
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Figure 11 – Soil moisture derived from AMSR-E measurements and downscaled using the random forest,
boosted regression trees (BRT) and cubist methods. The upper row shows South Korea for May 2007,
while the bottom row is for New South Wales, Australia, January 2011. Adopted from Im et al. (2016).

when comparing down-scaled soil moisture. However, for downscaling of evapotranspiration and
land surface temperatures, it is noted that several studies cited by Ha et al. (2013) found that the
SVMs performed better than ANNs and also had a lower computational cost.

The random forest, boosted regression trees and cubist methods were compared for downscaling
of soil moisture by Im et al. (2016). Examples of the original Advanced Microwave Scanning Ra-
diometer on the Earth Observing System (AMSR-E) and downscaled data are given in Fig. 11. They
found that the random forest method outperformed the two other methods. They also noted that
“empirical machine learning approaches tend to reduce the dynamic range of a target variable”.

Ke et al. (2016) compared the machine learning algorithms Support Vector Regression (SVR, a vari-
ation of SVM), Cubist and Random Forest. MODIS one kilometer evapotranspiration data were
downscaled using Landsat-8 data. They found the Random Forest algorithm to produce the lowest
error. However, the main control factor was the accuracy of the MODIS evapotranspiration data
product.

Zhang et al. (2012) used ordinary kriging and ordinary cokriging to interpolate and downscale at-
mospheric methane column concentrations from the Scanning Imaging Absorption Spectrometer for
Atmospheric Cartography (SCIAMACHY) instrument on the Environmental Satellite (ENVISAT). The
original CH4 had a spatial resolution of 50 km and was downscaled using the normalized difference
vegetation index (NDVI) from MODIS at 5 km resolution. Based on various statistical estimators
Zhang et al. (2012) found cokriging to perform better than kriging. To perform the study they used
the software from Pardo-Iguzquiza et al. (2010).
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7 Task 6: Downscaling of AOD and PM

7.1 Downscaling methodology

The downscaling methodology that was developed within the framework of the SAT4AQN project
is based on geostatistics (Goovaerts, 1997; Isaaks and Srivastava, 1989; Wackernagel, 2003). More
specifically we developed a variant of area-to-point kriging (Kyriakidis, 2004). In the following we
describe the preliminary downscaling method that was selected for use within SAT4AQN. We first
provide the theoretical basis of the algorithm and then describe the practical implementation.

7.1.1 Theory

Downscaling is essentially the prediction of unknown values at a fine spatial scale given known
values at a coarse spatial scale. In geostatistical terms this is generally regarded as a change-of-
support problem.

The downscaling methodology used here is, just like many other dowscaling techniques, essentially
based on increasing the spatial resolution of a coarse source dataset (in our case satellite data of
air quality) with the help of spatial proxy or auxiliary datasets that are available at a fine spatial
resolution and that are to some extent correlated with the source dataset. As such the technique
makes use of the assumption that the spatial patterns of the unknown fine-scale field of the source
variable will be similar to the spatial patterns of the fine-scale proxy datasets.

More specifically, the technique that we use here follows that proposed by Park (2013), in that it
combines a deterministic component (in this case linear regression against the high-resolution aux-
iliary variables) with a stochastic component (area-to-point kriging of the corresponding residuals),
which is illustrated in Fig. 12. The field of the air quality related parameter (e.g. NO2 column,
surface NO2 concentration, aerosol optical depth, surface PM2.5) can be expressed at coarse scale as
given by Park (2013) as

z(vk) = a+
M
∑

i=1

bi · yi(vk) + R(vk) (3)

where z(vk) are the the values of the variable in question at the coarse scale grid cell vk (with
k = 1, . . . , K), i.e. for block support in geostatistical terminology, in which there are a total of K
block supports. a and bi are the regressions coefficients for i = 1, . . . , M auxiliary variables. yi(vk)
are the values of the fine resolution proxy datasets aggregated to the same coarse spatial scale as the
data to be downscaled. R(vk) are the regression residuals at the scale of the coarse block support.

At the fine spatial scale, which is the target scale of the downscaling, the corresponding equation
becomes

zk(un) = a+
M
∑

i=1

bi · yk
i (un) + Rk(un) (4)

where zk(un) denotes the predicted values of the variable in question at the grid cells given at fine
spatial scale (target scale) within the k-th coarse grid cell. yk

i (un) are the fine-scale predictor vari-
ables and Rk(un) are the residual values that cannot be accounted for by the deterministic linear
relationship.

13



INPUT

Satellite data
at coarse scale

INPUT

Model data
at fine scale

INPUT 

Other proxy data
at fine scale

OUTPUT 

Satellite data
at fine scale

(Multi)Linear regression
(or more complex model)

Stochastic 
component 
(residuals)

at coarse scale

Deterministic 
component 

(trend)
at coarse scale

Stochastic 
component 
at fine scale

Area-to-point 
kriging

Deterministic 
component 

(trend)
at fine scale

Model data
at coarse scale

Other proxy data
at coarse scale

A
g
g
re

g
a
tio

n

Figure 12 – The downscaling workflow developed for the SAT4AQN project.

The latter values are estimated at the fine spatial scale using area-to-point kriging using the coarse-
resolution residuals of the deterministic component to predict the residuals at the fine spatial scale.

One of the crucial steps in doing this is to estimate the unknown point-support variogram from the
known regularized variogram (i.e. the theoretical variogram fitted to the sample variogram of the
coarse-resolution data). In other words, we are looking for the point-support variogram that, when
regularized to the block support of the coarse-resolution datasets, results in the best fit to the actual
observed sample variogram of the coarse-resolution dataset. This is generally carried out using
an iterative process and can be implemented as a deconvolution process (Goovaerts, 2008) or an
optimization technique (Skøien et al., 2014). Once the point-support variogram has been iteratively
derived, it can then be used to solve the kriging system and to calculate the predicted values for the
fine-scale support. The result is then a downscaled residual field of the variable in question, given
for the fine spatial resolution. We call this the stochastic component.

After obtaining the stochastic component by carrying out the spatial downscaling of the residuals,
the predictions of the deterministic component at the fine spatial scale and the downscaled residuals
at the fine spatial scale are added, thus resulting in the final downscaled result.

A clear assumption of the described methodology is that there is a linear relationship between the
variable in question and the auxiliary variables used as a proxy. If such a relationship is not exis-
tent, the deterministic component of the downscaling procedure does not add any value and the
stochastic component alone drives the downscaling. The method then basically defaults to the tech-
nique proposed originally by Kyriakidis (2004), where no fine-scale proxy information is used but
the only additional information aside from the coarse-resolution dataset comes from the point-level
semivariogram which is estimated from the coarse-resolution data.

The advantage of separating the deterministic and the stochastic component in this downscaling
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technique is that the deterministic component can be made arbitrarily complex. While we use here
simple linear regression to establish the relationship between the variable to be dowscaled and the
fine-scale spatial auxiliary variable, significantly more advanced non-linear statistical methods can
be used to carry out this task. This could include machine learning approaches such as artifical neural
networks, random forests, support vector machines, (boosted) regression trees, and many more. The
practical implementation of such approaches could be accomplished with very little effort since only
the deterministic component of the technique, which is currently based on linear regression, would
have to be replaced with a different method. At the same time the rest of the algorithm is kept
entirely the same. We suspect that the power of these more complex approaches will likely be most
obvious when a larger number of auxiliary predictor variables is used.

7.1.2 Practical implementation

In order to carry out the downscaling for SAT4AQN, a new package called dscaler is being im-
plemented in the R programming language (R Core Team, 2018). The package offers a simple and
user-friendly interface by minimizing the number of required input parameters through providing
sensible defaults. The package builts upon on a number of other R packages. This includes the
raster package for providing spatial foundation classes for gridded data (Hijmans and van Etten,
2012) and the sp and sf (Pebesma, 2018) packages for providing spatial foundation classes for
vector-based spatial information. Most importantly, the rtop package (Skøien et al., 2014) was
used for estimating the point variogram from the coarse-resolution data and to solve the kriging sys-
tems for the area-to-point kriging of the residuals. The estimation of the point-support variogram is
based on an iterative optimization procedure similar to the one proposed by Goovaerts (2008) and
is described in detail in Skøien et al. (2006).

It should be noted that for reasons of computational efficiency the method uses a simplification in
calculating in regularizing the point-support variograms. The iterative regularization requires the
computation of point-to-point semivariogram values for all pairs of discretization points and is thus
very expensive. Skøien et al. (2014) adapted the suggestion of Gottschalk et al. (2011) to simplify
this calculation by using the the average distance between areas (as given by the average of all
distances between all respective discretization point pairs) rather than integrating the covariance
function for all distances, such that

d∗i j =
1

|Ai|
�

�A j

�

�

∫

Ai

∫

A j

��

�
−→x i −−→x j

�

�

�

d−→x i d−→x j (5)

where d∗i j represents the averaged distances between areas i and j with corresponding areas Ai and
A j , and where −→x i and −→x j are the position vectors between all discretizations points in the two areas.
As such the regularized semivariance between two areas γ∗i j can then be expressed as

γ∗i j = γp(d
∗
i j)− 0.5×

�

γp(d
∗
ii) + γp(d

∗
j j)
�

(6)

as shown in Skøien et al. (2014).

The downscaling methodology described above is very entirely general and can be used regardless
of the type of geophysical variables to be downscaled, as long as there is at least a minimal amount
of correlation between the coarse-resolution and fine-resolution proxy dataset. Even if this is not
the case, the method essentially defaults to ordinary area-to-point kriging as proposed by Kyriakidis
(2004). It should be noted though that in such a case the spatial patterns of the downscaled results
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will generally be quite smooth and will not exhibit the same level of accuracy that can be accom-
plished when a good fine-scale proxy dataset is being used. Nonetheless it will be significantly more
accurate than traditional resampling techniques such as bilinear interpolation, cubic convolution,
etc.

7.2 Downscaling results

7.2.1 Algorithm validation through simulated fields

The methodology was first tested on simulated fields. Such fields are simulated using unconditional
sequential Gaussian simulation (Goovaerts, 1997). An example of such a field (with arbitrary units)
is given in Fig. 13. Using simulated fields for testing the algorithm has the advantage that the fine-
resolution truth is known and that the performance of the downscaling method can be evaluated
accurately by comparing against the truth. Fig. 14 shows an example of downscaling such a sim-
ulated concentration field. The simulated field was assumed to be “true” state of the atmosphere.
In practice, this truth is of course unknown and only serves as a reference here in this example.
This field was then resampled to a coarser resolution (in this case by a factor of 10), which repre-
sents the coarse-resolution satellite-observed dataset. The goal of the algorithm is then to recover
the true concentration field as good as possible using the coarse information from the satellite and
a correlated auxiliary dataset. The performance of the downscaling procedure can be assessed by
comparing the downscaled dataset with the original true dataset.
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Figure 13 – Example of a simulated dataset created for comparing different downscaling methodologies.
These datasets are produced using unconditional sequential Gaussian simulation (Goovaerts, 1997). The
left panel shows the simulated true concentration field. The center panel shows a coarse-resolution
version of the truth, which is assumed to be what the satellite sees. The right panel shows the output of
a model (or any covariate to the truth) that can have entirely different values/units than the dataset to
be downscaled but which is assumed to have spatial patterns that are at least somewhat correlated with
the spatial patterns of the truth.

Figure 15 shows the output of various statistical downscaling methods with increasing level of com-
plexity. The truth is given in the first panel as a reference. The SAT4AQN downscaling method is
shown in the last panel. It can be seen that the spatial patterns of the SAT4AQN method most closely
replicate the original spatial patterns of the truth dataset. Fig. 16 shows for each method the cor-
responding scatterplots comparing the true fine-scale value to the downscaled estimate of the same
fine-scaled value. It can be observed that the best match between the two datasets is found for the
SAT4AQN method, with an R2 value of 0.98.
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Quantitatively, Table 2 shows the corresponding summary statistics for each method. The SAT4AQN
method (area-to-point kriging with a covariate/trend) by far outperforms all the other methods
by a significant margin. In particular the value of the root mean squared error (RMSE) decreases
significantly for area-to-point kriging with a trend model from a value of 1.42 for simple bilinear
interpolation to a value of 0.69. This is a more than two-fold increase in prediction accuracy and
indicates that the SAT4AQN method by far provides the best performance of the tested downscaling
algorithms. It should also be noted that the mean bias was found to be exactly equal to zero for the
SAT4AQN method, indicating that despite using a proxy dataset with a possibly entirely different
variable, the downscaling method does not introduce any bias to the original satellite dataset.

Table 2 – Summary statistics of a various downscaling methods for a simulated dataset. Marked in bold
are the best values for the various metrics.

Mean bias SD MAE RMSE Intercept Slope R2

Bilinear interpola-
tion (no covariate)

0.04 1.42 1.13 1.42 -0.73 1.04 0.91

Area-to-point krig-
ing (no covariate)

-0.01 1.32 1.05 1.32 -0.54 1.03 0.93

Simple linear re-
gression (with co-
variate)

-0.02 1.46 1.15 1.46 0.96 0.95 0.91

Robust linear re-
gression (with co-
variate)

0.11 1.59 1.26 1.59 -3.11 1.17 0.91

Area-to-point krig-
ing (with covari-
ate)

0.00 0.69 0.54 0.69 0.95 0.95 0.98
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Figure 15 – Comparison of five different downscaling methods based on the dataset show in Figure 13
in order of increasing complexity. The top left panel shows the truth dataset for reference. The rest
of the panels shows various downscaling methods, both with and without the use of a covariate/proxy
dataset. Compare with Table 2 for a quantification of the accuracy of the downscaled results against
the truth dataset. Note that the the method shows in the lower right panel (area-to-point kriging with a
trend model) is best able to replicate the truth dataset. This is the method that has been chosen for the
SAT4AQN project.
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Figure 16 – Validation of the output of five different downscaling techniques against the simulated truth
dataset. The dashed red line indicates the 1:1 line for reference. The blue line indicates a smooth loess
fit to the data. The green line indicates a linear regression fit to the data, with the model coefficients and
the R2 value given in the top left corner of each panel.
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7.2.2 Downscaling real-world satellite data

The downscaling methodology was applied to MODIS MOD04 AOD data and to PM2.5 data derived
from it. The EMEP model was used as a spatial proxy. It should be noted that the EMEP output of
AOD was experimental and has not been thoroughly validated yet. AOD products over Norway tend
to have substantial data gaps due to the often persistent cloud cover. The downscaling algorithm
has been applied to all MOD04 overpasses within the study period (May 1 2014 through 30 Septem-
ber 2014) for which at least some valid retrievals were available. In the following we show some
examples for both Oslo and Birkenes.
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Figure 17 – Downscaling AOD for the greater Oslo region for 30 May 2014 at 09:45 UTC. The top left
panel shows the coarse resolution satellite observations (ca. 10 km by 10 km MODIS MOD04 AOD data),
the top right panel shows the corresponding AOD field provided by the EMEP model, the bottom left panel
shows the results of downscaling the MOD04 product using the EMEP data as a spatial proxy, and the
bottom right panel shows the result of re-aggregating the downscaled AOD field to the original satellite
resolution.

Fig. 17 shows an example for downscaling AOD over the greater Oslo region. It can be observed
that there is a reasonably good correspondence in terms of overall spatial patterns between the
satellite-derived AOD product and the EMEP model output for AOD. The relatively high AOD val-
ues at the western edge of the study domain are present in both datasets. Further the moderately
high AOD values in the southeast can also be observed in both the satellite and the model output.
This correlation in overall spatial patterns is a good starting point for the downscaling algorithm.
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The downscaled result looks quite reasonable in qualitative terms, but more thorough quantitative
validation is needed. The Figure furthern shows how re-aggregating the downscaled results to the
spatial resolution of the original satellite dataset results in nearly the same values, indicating that
the method produces mostly unbiased results. The small discrepancies that can be seen between top
left and the bottom right panels in Fig. 17 are likely due to aggregation artifacts from resampling
and due to edge effects.
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Figure 18 – Downscaling satellite-derived PM2.5 for the greater Oslo region for 18 May 2014 at 11:00
UTC. The top left panel shows the coarse resolution satellite observations (PM2.5 in µg m-3 derived from
ca. 10 km by 10 km MODIS MOD04 AOD data), the top right panel shows the corresponding PM2.5 field
in µg m-3 provided by the EMEP model, the bottom left panel shows the result of downscaling the satellite
product using the EMEP data as a spatial proxy (again in units of µg m-3), and the bottom right panel
shows the result of re-aggregating the downscaled AOD field to the original satellite resolution.

Fig. 18 shows an example of downscaling satellite-derived surface PM2.5 fields. Once again, we
see good correspondences in terms of spatial patterns between the satellite-derived dataset and the
EMEP model ouput. In both dataset we can see a hotspot over the city area of Oslo (hotspots in the
center of the domain) and some relatively high concentrations at the southern edge of the domain.
Due to this correlation in terms of spatial patterns the output of the downscaling algorithms appears
mostly reasonable and in fact it can provide additional details not observable in the original satellite-
derived dataset, such as small but distinct hotspot to the southwest of the center that indiciates the
area of the town Drammen.

Fig. 19 provides an example of downscaling AOD over the area of Birkenes in southern Norway. While
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the correspondense between satellite data and EMEP model output is not as strong as in some of the
previous plots, it is still possible to observe in both datasets a gradient in AOD values ranging from
the relatively low values in the center of the study domain towards relatively high values located
in the northeast corner. The downscaled AOD field thus provides overall qualitatively reasonable
results, although not particular features of note are visible.
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Figure 19 – Downscaling AOD for the greater Birkenes region for 24 May 2014 at 10:25 UTC. The top
left panel shows the coarse resolution satellite observations (ca. 10 km by 10 km MODIS MOD04 AOD
data), the top right panel shows the corresponding AOD field provided by the EMEP model, the bottom
left panel shows the results of downscaling the MOD04 product using the EMEP data as a spatial proxy,
and the bottom right panel shows the result of re-aggregating the downscaled AOD field to the original
satellite resolution.

Finally, Figure 20 gives an example of downcaling PM2.5 over the area of Birkenes. We can observe in
both the satellite-derived PM2.5 datasets as well as the EMEP model output that there is a imcreasing
gradient from the northwest of the study domain towards the southeast. The downscaled results
obviously also show this gradient but in addition the downscale map also contains four clear hotspots
that it inherited from the model dataset. These hotspots represent the coastal towns of Kristiansand,
Lillesand, Grimstad, and Arendal (from southwest to northeast) and are a good example of the type
of value-added product that can be created by combining the coarse-resolution satellite dataset with
fine-resolution model output. It should be noted again at this point that only the spatial patterns are
inherited from the model dataset in this methodology and that the absolute values of the downscaled
results are entirely driven by the satellite dataset.
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Figure 20 – Downscaling satellite-derived PM2.5 for the greater Birkenes region for 29 May 2014 at 10:40
UTC. The top left panel shows the coarse resolution satellite observations (PM2.5 in µg m-3 derived from
ca. 10 km by 10 km MODIS MOD04 AOD data), the top right panel shows the corresponding PM2.5 field
in µg m-3 provided by the EMEP model, the bottom left panel shows the result of downscaling the satellite
product using the EMEP data as a spatial proxy (again in units of µg m-3), and the bottom right panel
shows the result of re-aggregating the downscaled AOD field to the original satellite resolution.
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8 Task 7: Evaluation with ground-based and satellite data

8.1 Ground-based evaluation

8.1.1 Birkenes

The satellite and downscaled data, i.e. AOD and PM2.5 are compared with observations made at the
Birkenes observatory in Aust Agder county. Fig. 21 shows the timeseries of MODIS AOD, downscaled
AOD, satellite derived PM2.5 and downscaled PM2.5, as well as AERONET AOD and surface PM2.5
measured during June – September 2014 at the Birkenes observatory (58◦3’N, 8◦E, 190 m a.s.l). For
the AOD total column observations a good correlation is evident. The satellite derived PM2.5 obser-
vations do not resemble the high values seen by the optical particle counter (OPC). Their absolute
values are in the same oder of magnitude as the weekly gravimetric PM2.5 observations.

Figure 21 – Timeseries MODIS and downscaled AOD and PM2.5 for June – September 2014 for the
Birkenes observatory (58◦3’N, 8◦E, 190 m a.s.l). The upper panel shows MODIS AOD at 550 nm (red),
downscalled AOD at 550 nm (blue) and AERONET AOD at 500 nm. The lower left panel shows satellite
derived surface PM2.5 (blue), downscaled satellite derived surface PM2.5 (red), hourly PM2.5 values from
optical particle counter (OPC) (yellow) and weekly gravimetric PM2.5 observations (yellow).

To look into the effect of the downscaling, in Fig. 22 the original and downscaled MODIS AOD and
satellite derived PM2.5 are shown, and the differences between MODIS AOD and downscaled AOD,
and satellite PM2.5 and downscaled PM2.5 are given. For comparison, the AOD uncertainty given for
the AERONET AOD @ 500 nm is 0.01. As the area around Birkenes is goverened by small gradients
in total column aerosol distribution during the time period studied, the differences are small and
only occasionally exceed the AERONET AOD uncertainty.

A comparison between MODIS and downscaled AOD and AERONET AOD, derived and downscaled
PM2.5 and OPC, gravimetric PM2.5 data for June – September 2014 for Birkenes is shown in Fig. 23.
We find a good correlation for AOD (r2 = 0.736), which is marginally improved by downscaling (r2

= 0.738). As expected, PM2.5 derived via scaling shows a much lower correlation, but also in this
case a marginally improvement is seen (r2 = 0.17 for original data, r2 = 0.18 for downscaled PM2.5).

25



Figure 22 – Timeseries MODIS and downscaled AOD and PM2.5 for June – September 2014 for the
Birkenes observatory (58◦3’N, 8◦E, 190 m a.s.l). The upper left panel shows MODIS AOD (red) and
downscalled AOD (blue). The upper right panel shows PM2.5 derived from MODIS AOD (green) and
downscalled PM2.5 (blue). The lower panel show the effect of the downscaling on the original dataset,
i.e. MODIS AOD - downscaled AOD (lower left panel) and satellite based PM2.5– downscaled PM2.5 (lower
right panel)

Figure 23 – Comparison between MODIS and downscaled AOD and AERONET AOD, derived and down-
scaled PM2.5 and OPC, gravimetric PM2.5 data for June – September 2014 for the Birkenes observatory.
The upper left panel shows MODIS AOD (blue), downscalled AOD (red) in comparison with AERONET
AOD (yellow). The upper right panel shows satellite derived surface PM2.5 (blue), downscaled satel-
lite derived surface PM2.5 (red), hourly PM2.5 values from optiocal particle counter (OPC) (yellow) and
weekly gravimetric PM2.5 observations (yellow). The lower left panel shows the correlation between
MODIS AOD and AERONET AOD (blue), as well as the correlation between downscaled MODIS AOD
and AERONET AOD (red).The lower right panel shows the correlation between satellite derived PM2.5
and gravimetric PM2.5 (blue), as well as the correlation between satellite derived PM2.5 (blue) and gravi-
metric PM2.5 (red).
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8.1.2 Oslo

AOD is not measured in Olso. There are ten air quality stations within greater Oslo measuring PM2.5,
nevertheless nine stations are traffic sites, which are not representative on a scale of 1 km2. There-
fore we compare the satellite and downscaled PM2.5 data to the data measured at the Sofienpark
station, which is the only urban background site in Oslo (59.92295 N, 10.76573 E). For the evalu-
ation of downscaled PM2.5 at the Sofienpark station, in Tab. 3 the mean error, standard deviation,
mean absolute errror and root mean square error (RMSE) for the orgininal satellite derived PM2.5
and the downscaled PM2.5 data are shown. This comparison shows the improvement made by the
downscaling, a small decrease in all values, e.g. the RMSE goes down from 9.3 (original PM2.5) to
8.8 (downscaled PM2.5).

Figure 24 – Timeseries satellite derived PM2.5 (blue), downscaled PM2.5 (red) and hourly surface PM2.5
(green) data for June – September 2014 measured at the Sofienpark station (59.92295 N, 10.76573 E)
in Oslo.

Table 3 – Statistics for the comparison of satellite derived PM2.5 and satellite derived downscaled PM2.5
with surface PM2.5 measured beween June – September 2014 at the Sofienpark station

Method Mean error Std. Dev. Mean absolute error RMSE

Original satellite
product

7.1 6.1 8.0 9.3

Downscaled data 6.5 6.0 7.3 8.81
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8.2 Satellite-based evaluation

In Tab. 1 an overview was provided of satellite data products that were considered to be used for
evaluation of the downscaled products (see Task 3).

The downscaled AOD and MODIS AOD with spatial resolutions of 3×3 and 1×1 km2 are shown in
Fig. 25 for the AOD examples in section 7.2.2.

Figure 25 – Left and centre columns: AOD as retrieved from MODIS at 3×3 and 1×1 km2 resolutions.
Right column: AOD from downscaling. Top row is data from 24 May 2014, 10:25 UTC and bottom row
is for 30 May 2014, 09:45 UTC.

For 24 May the downscaled AOD reproduces the spatial pattern seen in the MODIS AODs. The AOD
distributions are also similar for the downscaled AOD and the MODIS AODs, see Fig. 26. For 30
May the downscaled AOD appears to be limited in range, missing the low AOD values, compared
to the MODIS AODs. For both dates the downscaled AOD mean and median are within the values
calculated from the MODIS AODs.

Pixels from the downscaled product may be directly compared with the MODIS AOD 3×3 km2 val-
ues. The difference in AODs from overlapping downscaled and 3×3 km2 pixels is shown in Fig. 27.
The histograms show that on a regional basis, the downscaled AOD product reproduces the overall
features of the MODIS AOD. However, for single locations differences may be pronounced, see plots
in left column of Fig. 27.
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Figure 26 – Left and centre columns: Histograms of MODIS AOD for 3×3 and 1×1 km2 resolutions.
Right column: AOD histogram from downscaling. Top row is data from 24 May 2014, 10:25 UTC and
bottom row is for 30 May 2014, 09:45 UTC. The mean and median values are included in each plot. Data
included in the histograms were limited to those covered by the downscaled regions and latitudes < 60◦.

Figure 27 – Left column: Difference in AOD from overlapping downscaled and 3×3 km2 resolution pixels.
Right column: Histogram of difference in AOD. Top row is data from 24 May 2014, 10:25 UTC and bottom
row is for 30 May 2014, 09:45 UTC.
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9 Summary and Conclusions

It has been demonstrated that the downscaling technique developed as part of this project is capable
of successfully increasing the spatial resolution of a coarse-resolution satellite product when a spatial
proxy dataset at fine spatial resolution is available and the two datasets agree overall in terms of
spatial patterns. Downscaling AOD is very challenging as the correlation between model output and
satellite observations tends to be much weaker than for, say, nitrogen dioxide, where the emission
sources are very well known and the short lifetime of the gas generally causes a rapid decreasing
spatial gradient from the main emission hotspots. Nonetheless, we showed that for some cases,
downscaling satellite-derived AOD and satellite-derived surface concentrations of PM2.5 is feasible,
but lead only to marginal improvements compared to the satellite dataset at coarser resolution.

Downscaling techniques are capable of successfully increasing the spatial resolution of a coarse-
resolution satellite product and we foresee suitable applications. Downscaling techniques for pollu-
tants that have a clearly defined source and a relatively short lifetimes in the atmosphere, such as
nitrogen dioxide, should be further exploited. In such cases, quite good and robust results can be
achieved as has been demonstrated as part of the ESA-funded SAMIRA project. Furthermore, down-
scaling of methane columns derived from TROPOMI using spatial information from a high resolution
vegetation index dataset, e.g. from Sentinel-2, is an application worth exploiting in more detail.

As a final remark, it should also be noted that, the accuracy of the downscaled results can only be as
good as the quality of its input datasets.

30



Authors contributions

Kerstin Stebel (KS), Philipp Schneider (PS), Tove Svendby (TS), and Arve Kylling (AK) wrote the
SAT4AQN final report; KS was responsible for project design, coordination and episode selection;
TS performed the WRF-EMEP modeling; PS developed and implemented the downscaling algorithm
and performed the downscaling of AOD and PM; AK supplied the review of alternative downscaling
techniques; PS, AK and KS contributed to the evaluation of the downscaled data.

31



References

Atkinson, P. M. (2013). Downscaling in remote sensing. International Journal of Applied Earth Ob-
servation and Geoinformation, 22:106–114.

Boucher, A. (2009a). Sub-pixel mapping of coarse satellite remote sensing images with stochastic
simulations from training images. Mathematical Geosciences, 41(3):265–290.

Boucher, A. (2009b). Sub-pixel mapping of coarse satellite remote sensing images with stochastic
simulations from training images. Mathematical Geosciences, 41(3):265–290.

Breiman, L. (2001). Random Forests. Machine Learning, 45(1):5–32.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2:121–167.

Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press, New
York.

Goovaerts, P. (2008). Kriging and semivariogram deconvolution in the presence of irregular geo-
graphical units. Mathematical Geosciences, 40(1):101–128.

Gottschalk, L., Leblois, E., and Skøien, J. O. (2011). Distance measures for hydrological data having
a support. Journal of Hydrology, 402(3-4):415–421.

Ha, W., Gowda, P. H., and Howell, T. A. (2013). A review of downscaling methods for remote sensing-
based irrigation management: Part I. Irrigation Science, 31(4):831–850.

Hijmans, R. J. and van Etten, J. (2012). raster: Geographic analysis and modeling with raster data.

Ho, T. K. (1998). The random subspace method for constructing decision forests. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(8):832–844.

Im, J., Park, S., Rhee, J., Baik, J., and Choi, M. (2016). Downscaling of AMSR-E soil moisture with
MODIS products using machine learning approaches. Environmental Earth Sciences, 75(15):1120.

Isaaks, E. H. and Srivastava, R. M. (1989). Applied geostatistics. Oxford University Press, New York.

Jensen, R. R., Hardin, P. J., and Yu, G. (2009). Artificial Neural Networks and Remote Sensing.
Geography Compass, 3(2):630–646.

Ke, Y., Im, J., Park, S., and Gong, H. (2016). Downscaling of MODIS One Kilometer Evapotranspira-
tion Using Landsat-8 Data and Machine Learning Approaches. Remote Sensing, 8(3).

Kolios, S., Georgoulas, G., and Stylios, C. (2013). Achieving downscaling of Meteosat ther-
mal infrared imagery using artificial neural networks. International Journal of Remote Sensing,
34(21):7706–7722.

Kyriakidis, P. C. (2004). A Geostatistical Framework for Area-to-Point Spatial Interpolation. Geo-
graphical Analysis, 36(3):259–289.

Myhre, C. L., Svendby, T., Hermansen, O., Lunder, C., Fiebig, M., Hansen, G., Schmidbauer, N., and
Krognes, T. (2017). Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes in 2016
– Annual report. Miljødirektoratet rapport, M-871/2016 (39/2017).

32



Pardo-Iguzquiza, E., Atkinson, P. M., and Chica-Olmo, M. (2010). DSCOKRI: A library of computer
programs for downscaling cokriging in support of remote sensing applications. Computers and
Geosciences, 36(7):881–894.

Pardo-Igúzquiza, E., Chica-Olmo, M., and Atkinson, P. M. (2006). Downscaling cokriging for image
sharpening. Remote Sensing of Environment, 102(1-2):86–98.

Park, N. W. (2013). Spatial downscaling of TRMM precipitation using geostatistics and fine scale
environmental variables. Advances in Meteorology, 2013.

Pebesma, E. (2018). sf: Simple Features for R.

R Core Team (2018). R: A Language and Environment for Statistical Computing.

Simpson, D., Benedictow, A., Berge, H., BergstrÃűm, R., Emberson, L., Fagerli, H., Hayman, G.,
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