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ABSTRACT 
 

Air samples were collected both at an urban and an industrial area of Florence (Italy) in order to evaluate the occurrence, 
profiles, seasonal variation and gas/particle partitioning of polybrominated diphenyl ethers (PBDEs). The mean total (gas 
+ particle phase) PBDE concentrations were 42.8 ± 7.8 and 89.0 ± 21.1 pg/m3 in the urban and industrial sites, respectively. 
In all samples, BDE-209 was the most abundant congener, followed by BDE-47 and BDE-153 in the industrial site, and by 
BDE-99 in the urban site. The Σ6PBDE (sum of BDE-28, -47, -99, -100, 153, -154) concentrations in the urban (12.1–27.9 
pg/m3) and industrialised (21.4–44.3 pg/m3) sites were comparable to, or slightly lower than measured at other sites. The 
partition coefficient of PBDEs between the gas and particle phases (Kp) was well correlated with the subcooled liquid vapor 
pressure (P°L) for all samples. The measured particulate sorption of PBDEs was compared to the predictions from Junge-
Pankow (J/P) model and KOA absorption model. While the Junge-Pankow model tends to overestimate the particulate 
sorption, the KOA based model seemed to fit the PBDE data. 
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INTRODUCTION 
 

Polybrominated diphenyl ethers (PBDEs) are a group of 
additive flame retardants that have been extensively used 
around the world in numerous common products including 
building materials, electronics, furnishings, vehicles, textiles, 
plastics, coatings. The afore-mentioned products constitute 
the main sources of PBDEs in the atmosphere, together 
with the other “secondary” sources, as for example are the 
emissions from vehicular exhausts (e.g., Hsieh et al., 2011), 
or waste incinarators, or fly ash treatment palnts (e.g., Wang 
et al., 2010b; Liao et al., 2012). Three major industrial 
formulations have been commonly used: penta-, octa- and 
deca-bromodiphenyl ethers mixtures. Although the penta- and 
octa- formulations have been banned in Europe since 2004 
and the deca-BDE was prohibited in July 2008 (ECJ, 2008; 
Mandalakis et al., 2008; Lagalante et al., 2009), these 
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chemicals are still ubiquitous in the environment. Their 
occurrence in the indoor and outdoor atmosphere is the 
result of their emission from products, a process that will 
continue until all PBDE-containing products are disposed 
of. Recent concern about their presence in the atmosphere 
is related to their environmental fate and human exposure, 
because some of these compounds are persistent, 
bioaccumulative, toxic and endocrine disrupting chemicals. 
Several epidemiological studies were reported that humans 
exposure to PBDEs has caused the health effects for 
disrupting thyroid and reproductive hormone homeostasis 
(Chevrier et al., 2010; Shy et al., 2012), adverse birth 
outcomes (Chao et al., 2007; Harley et al., 2011), and 
changes in neurodevelopment (Herbstman et al., 2010; Chao 
et al., 2011; Gascon et al., 2012) and reproduction (Chao 
et al., 2010; Harley et al., 2010). The atmospheric fate of 
PBDEs (i.e., deposition, degradation, long range transport) 
is strongly influenced by their physical chemical properties 
and meteorological factors (particularly temperature, wind 
speed and direction) which drive, not only their distribution 
between the vapour and particulate phases, but also their 
atmospheric dispersion and transport. Although several 
studies have reported the occurrence and levels of PBDEs 
in the atmosphere (Lee et al., 2004; Li et al., 2009; Birgul 
et al., 2012; Martellini et al., 2012a; Piazza et al., 2013), 
there is scarce data about the gas/particle PBDE distributions 
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and PBDE air concentrations in Italy and only few studies 
in general reporting on the partitioning of PBDEs in the 
atmosphere (Shoeib et al., 2004; Chen et al., 2006; Cetin 
and Odabasi, 2008, Lin et al., 2012). Measuring the ambient 
concentrations of particle-bound contaminants is important 
for evaluating the adverse health effects arising from the 
inhalation of suspended particulate matter in urban areas. 

Florence is the most populous city in Tuscany, with 
approximately 370,000 inhabitants. It is a major production 
and commercial centre in Italy, with industrial establishments 
manufacturing a variety of products, spanning from furniture, 
rubber goods, leatherwork, high fashion clothes, chemicals, 
food and building materials and is also characterised by 
important emissions from traffic/vehicles (Martellini et al., 
2012b). Notwithstanding the big production of goods that 
contain flame retardants, this category of pollutants has never 
been studied in a comprehensive way, in this area. Hence, the 
main aims of this study were to study the occurrence of 
PBDEs in an urban and an industrial area of Florence, 
Italy, in order to assess the seasonal variations and to better 
understand the interactions of PBDEs between the gas and 
particle phase, as well as to assess human exposure to PBDEs. 
 
MATERIALS AND METHODS 
 
Sampling  

The air sampling campaign was undertaken in June and 
December 2011. Air samples were simultaneously collected 
at an urban centre and industrialised area in Florence. The 
samples were collected at open spaces (at around 4 m from 
the ground) of various buildings. The industrial site was 
located close to establishments where electronic/electrical 
equipment, plastics and other goods suspected to contain 
flame retardants are produced. 

Meteorological parameters such as wind speed, wind 
direction, rainfall and temperature were monitored during all 
the sampling campaign. For the calculation of the prevailing 
wind directions only measurements with wind speed > 0.5 
m/s were used. 

Air samples were collected using a high volume air 
sampler (TE-1000BL X PUF, Tisch environmental Inc., 
USA) as described in Cincinelli et al. (2007, 2009, 2012). 
In summary, the air was drawn at a flow rate of 12 m3/h 
through a Quartz fiber filter (QFF, size 102 mm, SKC, 
Eighty Four, PA, USA) to collect particles and then through 
two polyurethane foam (PUF) plugs (height 75 mm, diameter 
65 mm, SKC, Eighty Four, PA, USA) to collect vapour phase 
compounds. The back half of the second foam plug served 
as an indicator of breakthrough of vapour phase compounds 
through the front plug. Sampling events were restricted to 
12 h to avoid large changes in air temperature in an attempt to 
minimize volatilization artefacts from particles on the filter. 

Before sampling, the QFFs were baked at 450°C for 12 h 
and stored in aluminium foil packages in a dessicator until 
used. The PUF cartridges were cleaned by Soxhlet extraction 
for 24 h in acetone followed by 24 h in petroleum ether. 
PUF plugs were dried into a vacuum dessicator, placed in 
glass jars and stored in plastic bags in a freezer. Cleaned 
and prepared QFFs and PUF were transported to the field 

in their containers without allowing exposure to ambient air. 
After sampling, PUF and filters were placed into containers 
brought back to the laboratory and stored in the dark at –20°C 
until analysed. 
 
Sample Preparation and Analysis 

Samples were Soxhlet extracted for 24 h with acetone 
followed by 24 h in hexane. Both extracts were combined 
and reduced in volume to 1 mL by rotary evaporation 
followed by blow down under a high purity nitrogen stream. 
Extracts were cleaned up by silica column chromatography 
with the addition of anhydrous sodium sulphate. Total 
suspended particulate (TSP) concentrations  were determined 
by weighing the filters under controlled temperature and 
moisture conditions (25°C, 50% RH) before and after sample 
collection. 

Samples analysis were performed on an Agilent 6890 gas 
chromatograph coupled to an Agilent 5973 mass spectrometer 
operating in negative chemical ionization (NCI) and selective 
ion monitoring (SIM) mode as described elsewhere (Dickhut 
et al., 2005). The samples were subsequently analysed for 
BDE-209 using a DB-5MS capillary column, 15 m, 0.25 
mm i.d., 0.25 µm film thickness. Quantification of tri- to 
hepta-BDE (BDE-28, BDE-47, BDE-99, BDE-100, BDE-
153, BDE-154, BDE-183) was carried with the internal 
calibration procedure, whereas BDE-209 was quantified 
with the external standard method. 
 
Materials 

The PBDE analytical standards were purchased from 
Wellington laboratories Inc. (Ontario, Canada).  

All organic solvents were pesticide grade and obtained 
from Supelco (Bellefonte, PA, USA). 
Other chemicals were of analytical grade. 
 
Quality Control 

In order to prevent any possible photolysis of PBDE 
analytes, special care was taken to avoid exposure of 
samples to light during their storage and analysis. The sample 
preparation and treatments were conducted under/reduced 
light conditions and all glassware was wrapped in aluminium 
foil. Prior to extraction, each sample was spiked with a 
known amount of 3,3′,4,4′-tetrabromodiphenyl ether (BDE-
77) to monitor the analytical recovery efficiency. Average 
recovery of surrogate standard was 82 ± 13% for PUF and 88 
± 7% for filter samples. The recoveries of target compounds 
were also tested by spiking experiments (n = 5) and average 
recovery efficiencies were between 82 ± 7% for BDE-28 
and 98 ± 6% for BDE-153. Laboratory blanks showed no 
detectable PBDE concentrations. A breakthrough test was 
made by using a second half PUF in series with the first 
PUF and no breakthrough was observed. The limit of 
detection (LOD) for individual PBDEs were between 0.05 
pg/m3 (BDE-28) to 0.6 pg/m3 (BDE-209).  
 
RESULTS AND DISCUSSION 
 
Atmospheric Concentrations 

Gas and particle phase concentrations of individual 
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PBDEs at both sites are reported in Table 1, whereas the 
mean concentrations are presented in Fig. 1.  

The mean total (gas + particle phase) PBDE concentrations 
were 42.8 ± 7.8 and 89.0 ± 21.1 pg/m3 in the urban and 
industrial sites, respectively. In all samples, BDE-209 was 
the most abundant, followed by BDE-47 and BDE-153 in 
the industrial site, and by BDE-99 in the urban site. These 
congeners are typically reported as the most abundant, 
something in agreement with the fact that they were the 
dominant ones in the most broadly used technical formulations 
that are decabromodiphenylether, pentabromodiphenylether 
and octabromodiphenylether (La Guardia et al., 2006). This 
difference in the abundance of BDE-153 between urban 

and industrial sites, can be considered as a first indication 
that the sources that affect these two sites are different.  

In the present study, BDE-209 accounted for 58% of the 
total PBDEs in the industrial site and 53% in the urban. In 
literature studies BDE-209 normally dominates the PBDE 
profiles, and can account in some cases for > 80% (Rahman 
et al., 2001; Law et al., 2006; Stapleton et al., 2006; Su et 
al., 2007; Cetin and Odabasi, 2008; Venier and Hites, 2008; 
Wilford et al., 2008; Wang et al., 2010a; Lin et al., 2012; 
Lin et al., 2012b; Shoeib et al., 2012; Tu et al., 2012), 
being in good agreement with the share in the global market 
of the deca-formulation, which at least for the year 2001, 
accounted for 83.3% of the overall PBDE production

 
Table 1. Gas and particle-phase concentrations (pg/m3) in urban and industrial sites in Florence (Italy). 

 8-Jun 9-Jun 10-Jun 11-Jun 15-Jun 16-Jun 2-Dec 6-Dec 14-Dec 15-Dec 16-Dec 17-Dec
URBAN SITE 
Gas phase             

BDE-28 3.30 2.32 1.98 2.76 1.22 1.25 1.15 0.98 1.08 1.08 1.02 1.44 
BDE-47 7.98 5.01 5.48 5.91 6.13 5.01 3.20 3.89 3.65 3.45 3.64 2.89 
BDE-99 3.95 3.02 2.67 2.98 2.89 2.34 2.68 2.90 1.99 1.68 1.96 1.09 
BDE-100 0.84 0.67 0.64 0.76 0.71 0.68 0.84 0.68 0.89 0.62 0.60 0.69 
BDE-153 0.45 0.43 0.55 0.41 0.44 0.47 0.64 0.48 0.48 0.51 0.54 0.56 
BDE-154 0.44 0.53 0.57 0.32 0.41 0.46 0.42 0.34 0.54 0.46 0.43 0.49 
BDE-183 0.52 0.42 0.56 0.38 0.45 0.35 0.45 0.56 0.47 0.54 0.39 0.27 
BDE-209 1.30 1.45 1.38 1.09 1.17 1.40 1.34 1.37 1.76 1.05 1.54 0.67 
ΣPBDEs 18.8 13.9 13.8 14.6 13.4 12.0 10.7 11.2 10.9 9.4 10.1 8.1 

Particle phase 
BDE-28 0.89 0.74 0.56 0.65 0.56 0.36 0.24 0.21 0.34 0.43 0.23 0.34 
BDE-47 4.76 2.98 3.06 3.45 3.48 3.15 0.75 1.99 1.03 0.89 1.01 1.34 
BDE-99 3.02 2.12 2.03 2.87 2.86 2.78 0.79 0.73 0.88 0.93 0.73 0.64 
BDE-100 0.64 0.42 0.94 1.05 0.99 1.03 0.99 0.78 1.04 0.83 0.86 0.98 
BDE-153 0.99 0.88 1.23 0.97 0.84 1.07 0.88 0.66 0.67 0.87 0.77 0.76 
BDE-154 0.68 0.76 0.64 0.88 0.67 0.77 0.96 0.89 0.87 0.98 0.65 0.88 
BDE-183 2.89 2.56 2.29 3.04 3.14 2.45 1.23 1.67 1.58 1.23 1.85 1.56 
BDE-209 25.54 24.76 17.42 23.67 24.56 21.46 20.54 23.65 18.64 17.09 16.56 22.53
ΣPBDEs 39.4 35.2 28.2 36.6 37.1 33.1 26.4 30.6 25.0 23.2 22.7 29.0 

INDUSTRIAL SITE 
Gas phase             

BDE-28 6.32 4.56 7.23 4.45 5.66 7.45 2.34 3.45 2.07 3.65 2.02 3.44 
BDE-47 9.47 7.61 9.58 8.72 7.23 9.02 5.23 5.89 4.65 5.39 3.39 6.89 
BDE-99 4.34 3.93 3.20 3.60 3.22 3.34 2.31 2.05 2.30 1.98 1.58 2.34 
BDE-100 2.02 1.79 1.10 0.99 1.28 1.29 1.24 1.04 0.73 0.83 0.99 0.88 
BDE-153 3.84 2.59 1.82 2.37 2.45 2.10 1.69 2.76 2.60 2.40 1.13 0.46 
BDE-154 3.29 2.97 1.59 2.03 1.87 1.67 1.77 2.89 2.21 3.78 1.05 0.40 
BDE-183 2.80 1.40 1.20 1.60 1.43 1.32 1.89 1.77 1.60 2.50 0.70 0.30 
BDE-209 1.11 1.24 0.87 1.30 1.65 1.10 1.78 5.87 1.54 1.76 1.54 1.90 
ΣPBDEs 33.2 26.1 26.6 25.1 24.8 27.3 18.3 25.7 17.7 22.3 12.4 16.6 

Particle phase 
BDE-28 0.87 0.65 0.83 1.00 1.12 0.90 0.98 0.84 1.00 0.77 0.99 0.87 
BDE-47 4.12 3.43 3.57 3.70 3.86 3.87 2.60 1.88 1.54 1.46 1.84 1.76 
BDE-99 2.10 2.30 1.91 1.28 1.88 1.89 0.84 0.89 1.02 1.05 1.08 0.98 
BDE-100 1.03 1.53 1.19 0.77 0.93 0.05 0.89 1.24 0.78 1.21 0.99 0.81 
BDE-153 4.12 5.12 4.19 4.05 4.07 5.34 3.55 2.55 3.56 4.13 3.54 3.87 
BDE-154 2.78 2.17 2.57 2.38 2.56 2.07 1.88 2.54 1.29 2.26 2.98 2.31 
BDE-183 3.20 3.32 2.31 4.09 3.60 3.30 2.80 3.66 2.69 3.40 4.72 4.02 
BDE-209 78.05 52.78 67.42 69.54 54.21 57.54 30.62 23.76 47.67 38.08 39.24 42.52
ΣPBDEs 96.3 71.3 84.0 86.8 72.2 75.0 44.2 37.4 59.5 52.4 55.4 57.1 
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Fig. 1. Mean concentrations of BDEs in the urban and industrial sites in Florence, Italy. 

 

(La Guardia et al., 2006). In the present study, the relatively 
low percent of BDE-209 is likely attributed to debromination, 
or simply to a different BDE mixtures consumption behavior 
in the Tuscany region (or in Italy in general). However, if 
BDE-209 was debrominated, this would probably lead to 
formation of lighter PBDEs, and we would probably observe 
considerably higher concentrations of the penta-BDEs 
(#99 and #100). To explore this further, we plotted the 
concentrations of BDE-47 (tetra-BDE) vs BDE-99 both in 
gas and in particle phases (Fig. 2). From the subfigures 
presented, we note that the levels of BDE-47 are in all 
samples higher (or in few cases equal) than BDE-99. Similar 
concentrations of BDE-47 and BDE-99 is expected, because 
these two congeners were at the same levels in the technical 
formulations. Thus, their similar levels also in real samples 
can be perceived also as an evidence that no (or limited) 
debromination of heavier PBDEs takes place, because if 
that was happening, the ratio of BDE-47 to BDE-99 would 
be “disturbed”. 

At the present study, the seasonal variation was also 
studied and is presented in Fig. 3. It can be seen that the 
lighter and more volatile BDEs (BDE-28, BDE-47 and 
BDE-99) exhibited much higher concentrations in the 
summer period in both the industrial and the urban sites. 
BDE-100, BDE-153 and BDE-154 were almost at the 
same levels in both seasons at the urban sites, and were 
slightly higher in the summer at the industrial sites. 
Opposite trends finally are observed for BDE-183 and BDE-
209. The higher summer concentrations for semivolatile 
organic compounds that are contained in household products 
(e.g., PCBs, PBDEs) have been observed in various cases, 
and is likely to be attributed to emission rates enhanced due 
to the higher temperatures, contrarily to what is observed 
for POPs that are characterised by higher emissions in the 
winter due to space heating activities etc. (Katsoyiannis et 
al., 2010; Katsoyiannis et al., 2011).  

In order to compare PBDE levels observed in the present 
study with data reported in the literature, the sum of the six 
most frequently monitored congeners (Σ6PBDE, sum of 
BDE-28, -47, -99, -100, 153, -154) was used (excluded 

BDE-209). Σ6PBDE concentrations levels in the urban 
(12.1–27.9 pg/m3) and industrialized (21.6–44.3 pg/m3) sites 
in Florence are moderate and they are fully comparable to 
values found for other urban and industrialized air samples 
collected in Athens and Heraklion, Greece (3–41 pg/m3) 
(Mandalakis et al., 2009), Birmingham, UK (10–33 pg/m3) 
(Harrad et al., 2004), Kyoto, Japan (1.5–52 pg/m3) (Hayakawa 
et al., 2004); Izmir, Turkey (4.5–64 pg/m3) (Cetin and 
Odabasi, 2008), Chicago, USA (34–77 pg/m3) (Strandberg 
et al., 2001). Instead, there exist in literature studies where 
much higher concentrations were reported for other urban 
sites such as Lake Maggiore, Italy (101 pg/m3) (Mariani et 
al., 2008) and Guangzhou, China (76–3600 pg/m3) (Chen 
et al., 2006). The study of Birgul et al. (2012) reported 
levels of Σ6PBDEs at the order of < 5 pg/m3 for the year 
2010, in four sites in the UK, however they reported that at 
the same places, the levels of PBDEs have decreased 
substantially over the last 10 years. 

If we instead compare the concentrations of BDE-209 with 
other sites, the Florence concentrations can be considered 
among the highest ones in Europe, however, they are orders 
of magnitude lower from what has been measured in China 
(concentrations up to 6900 pg/m3, Li et al., 2009). 
 
Gas-Particle Partitioning 

Concentrations in the gas phase were always lower than 
the respective in the particulate phase. Total PBDE 
concentrations in the gas phase ranged from 8.10 to 18.8 
pg/m3 and from 12.4 to 33.2 pg/m3 for urban and industrial 
sites, respectively, and in the particulate phase from 22.7 
to 39.4 pg/m3 and from 37.4 to 96.3 pg/m3 for urban and 
industrial, respectively. 

BDE-28 and BDE-47 were present predominantly in the 
gas phase (urban, 13 and 37.8%, respectively; industrial 
18.6 and 30.1%, respectively), BDE-99, -100, -153, -154, -
183 were present in both phases at similar concentrations, 
whereas deca-BDE (BDE-209) was found predominantly in 
the particulate phase and was the most abundant congener 
for the total PBDEs at all sampling sites, contributing 70.5 
and 74.9%, respectively. 
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Fig. 2. BDE-47/BDE-99 ratio in the gas- and particle- phases in urban and industrial sites in Florence, Italy. 

 

 
Fig. 3. Seasonal variation in PBDE concentrations (winter/summer air concentrations). 

 

The distribution of semivolatile organic compounds 
(SVOCs) between the gas and particulate phases in air is 
commonly defined using the particle/gas partition coefficient 
Kp (Pankow, 1994) defined as Kp = (F/TSP)/A where F and 
A are the concentrations of SVOCs associated with particles 
and gas phase (pg/m3) respectively, and TSP is the 
concentration of total suspended particulate matter in air 
(µg/m3). In the present study, average TSP concentrations 
were in the range 47.5–86.2 µg/m3 and 58.2–98.5 µg/m3 in 
the urban and industrialised sites, respectively. Two different 
mechanisms have been proposed to describe the association 

of SVOCs with particles, that is, adsorption into the 
aerosol surface and absorption into the organic matter.  

The adsorption model, also known as the Junge-Pankow 
(J-P) model, relates the particulate fraction (ϕ) of SVOC 
adsorbed on the particulate matter to the subcooled liquid 
vapour pressure (P°L, Pa) of the pure compound, the 
particulate surface area per unit volume of air (θ, cm2 aerosol 
cm–3 air) and a constant (c, Pa cm), as shown in the following 
equation ϕ = cθ/(P°L + cθ). Parameter c depends on the 
heat of desorption from the particulate surface, the heat of 
vaporization of the compound and the moles of adsorption 
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sites on the aerosol. Values of c = 0.172 Pa cm and θ = 1.1 
× 10–5 cm2/cm3 for urban air were used (Bidleman, 1988) 
in this study. In Fig. 4 the particulate fractions (ϕ) of PBDEs 
predicted by the J-P model with the measured ϕ data 
calculated as the amount of the chemical in the particulate 
phase divided by the total amount of the chemical (ϕ = 
F/(A + F)) are compared. 

As also observed in other studies (Chen et al., 2008) and 
for other classes of SVOCs (Cotham and Bidleman, 1995; 
Harner and Bidleman, 1998; Lee and Jones, 1999; Helm and 
Bidleman, 2005), the J-P model tends to overestimate the 
particulate sorption. In particular, the disagreement between 
the experimental and theoretical data for the industrial site 
may be attributed to the choice of the θ and c values which 
were more specific for urban sites and as suggested by 
Junge (1977) and Pankow (1987) may vary with the class 
of SVOCs. 

The octanol-air partitioning coefficient (KOA) model is 
also suggested as an alternative to P°L for describing 
absorption of SVOC to particles (Harner and Mackay, 
1995; Finizio et al., 1997). SVOCs would dissolve in the 
organic matter in the atmosphere, which exists both as 
primary and as secondary organic aerosols (Lohmann and 
Lammel, 2004). The KOA can be used to predict Kp with 
the assumption that the predominant distribution process is 
absorption (Harner and Bidleman, 1998). KOA–based 
absorption model relates Kp to KOA and the organic matter 
fraction (fom) in aerosols according to the following equation 
log Kp = logKOA + logfom – 11.9 (Harner and Bidleman, 
1998). Temperature dependent KOA values of the PBDE 
congeners were calculated using the regression parameters 
(A and B) given by Harner and Shoeib (2002) (Log KOA = 
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Fig. 4. Comparison of the measured particulate fractions (ϕ 
× 100%) of PBDEs with theoretical predictions of the 
Junge-Pankow model for industrial and urban sites. 

A + B/T). The fraction of SVOCs on particles (ϕ) is then 
calculated as ϕ = KpTSP/(1 + KpTSP). Sample specific 
organic matter contents and TSP concentrations were used 
in calculations for both sites. The KOA based model seemed 
to fit the PBDE data better than the J-P model (see Fig. 5). 
The best agreement between measured particulate fractions 
and those calculated by the equilibrium partitioning model 
was found for BDE-28 and BDE-47. All the other PBDE 
congeners were slightly overestimated by the model, although 
the summer data were closer to values predicted by the 
absorption model than the winter data.  

Both mechanisms, adsorption onto the aerosol surface and 
absorption into the aerosol organic matter, drive gas-particle 
partitioning of SVOCs and lead to a linear relationship 
between log Kp and log P°L (Pankow and Bidleman, 1992) 
expressed as: 
 
logKp = mr logP°L + br (1) 
 
where the slope mr and t-intercept of the trend line br are 
constants (Pankow, 1994). The values of log P°L for PBDE 
congeners were calculated from the Clausius-Clapeyron 
equation (Log P°L = A/T – B). The regression parameters 
A and B were obtained by Tittlemier et al. (2002) using the 
average ambient temperature during each sampling time. The 
regression parameters were not available for BDE-209. 
When plotting log Kp values against log P°L a slope mr of –1 
is expected for either adsorption and absorption model. 
However a variety of mr values unequal to 1 have been 
reported for various SVOCs which is attributed to sampling 
artefacts or non equilibrium conditions and/or difference in 
sorbent effects (Bidleman and Harner, 2000). The slope mr 
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Fig. 5. Comparison of the measured particulate fractions (ϕ 
× 100%) of PBDEs with theoretical predictions of the KOA 
absorption model for industrial and urban sites. 



 
 
 

Cincinelli et al., Aerosol and Air Quality Research, 14: 1121–1130, 2014 1127

also contains information about the type and factors that 
determine the sorption process. The y-intercept of the trend 
line (br) depends mainly on the properties associated with 
SVOCs. 

Fig. 6 shows the regression data of logKp versus log P°L 
for PBDE measured in the industrial and urban sites. In 
Table SI1 (Supplementary Information) the mr, br and r2 
values are reported for each sampling date. Significant 
linear correlations between log Kp and log P°L were obtained 
with r2 in the range 0.49–0.954 (p < 0.05) and 0.668–0.949 
(p < 0.05) for industrial and urban site, respectively, with the 
regression parameter mr ranging between –0.469 and –0.162 
(industrial) and between –0.388 and –0.228 (urban) and 
parameter br in the range –4.757 and –2.921 for industrial 
and –3.861 and –3.026 for the urban site. The correlation 
coefficients were similar for both sites suggesting that an 
equilibrium state could not be established probably due to 
the fresh PBDEs continuously emitted from local sources 
as observed also by Chen et al. (2008) for gas-particle 
samples collected in Guangzhou (China). Good correlations 
were also obtained plotting log Kp against log KOA, with r2 
ranging between 0.35 and 0.94 (industrial) and 0.64–0.86 
(urban). However the mr values were ranging from 0.165 
to 0.615 and from 0.31 and 0.51 for industrial and urban sites, 
respectively) (see Table SI1, Supplementary Information), as 
observed in other studies (Chen et al., 2008). 

According to Goss and Schwarzenbach (1998), mr < –1 
suggests surface adsorption, whereas –0.6 absorption by the 

organic matter and between –1 and –0.6 coexistence of both 
mechanisms, mr values suggested that absorption process 
should be the dominant sorption process in this study. 

 
CONCLUSIONS 
 

The present study gave an overview of the status of air 
pollution by PBDEs in the city of Florence, Italy. BDE-
209 was the most compound and was routinely analyzed in 
all samples collected. Based on the concentrations found 
for all studied PBDEs in the two sites, it can be extracted 
that industrial and urban sources are slightly different to 
each other, however in good agreement with the known 
global pattern describing the consumption rates of the 
technical mixtures that is decabromodiphenyl ether, 
pentabromodiphenyl ether and otabromodiphenyl ether. 

The industrial site exhibited higher concentrations that 
the urban site, and presented also some differences in the 
overall PBDE profile, suggesting that the primary sources 
that mainly affect these two sites are probably different.  

The measured particulate sorption of PBDEs was 
compared to the predictions from Junge-Pankow (J/P) model 
and KOA absorption model. While the Junge-Pankow model 
tends to overestimate the particulate sorption, the KOA based 
model seemed to fit the PBDE data. 

Given the big production of goods where flame 
retardants are massively added, the emissions from vehicles 
and industrial applications, and the fact that PBDEs in the

 

 
Fig. 6. Plots of log Kp versus Log P°L for industrial and urban sites. 
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Florence atmosphere are at the highest-end of air 
concentrations around Europe, it is rather reasonable that 
monitoring continues to take place, in order for the 
Authorities to have all necessary information and decide the 
necessary measures and also in order for some temporal 
trends to be registered. 
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Table SI1. Regression data of Log Kp versus Log P°L and Log KOA versus Log P°L for industrial and urban sites. 

 

 

 

Log Kp vs Log P°L

Sampling date Industrial site Urban site

mm/dd/yy m b r2 Significance (p) m b r2 Significance (p)

06/08/2009 -0.2466 -3.2436 0.9284 <0.005 -0.3348 -3.2831 0.9231 <0.005
06/09/2009 -0.3107 -3.4942 0.8946 <0.01 -0.3168 -3.3036 0.8544 <0.025
06/10/2009 -0.355 -3.5688 0.9065 <0.01 -0.2901 -3.1074 0.878 <0.01
06/11/2009 -0.2851 -3.3259 0.848 <0.025 -0.3883 -3.4937 0.9488 <0.005
06/15/2009 -0.2861 -3.3048 0.954 <0.005 -0.2869 -3.0261 0.8463 <0.025
06/16/2009 -0.3885 -3.9581 0.4939 <0.005 -0.2278 -3.3113 0.7067 <0.05
12/02/2009 -0.1615 -2.9214 0.6019 <0.005 -0.3395 -3.1511 0.9321 <0.005
12/06/2009 -0.2075 -3.3498 0.7586 <0.05 -0.2972 -3.7268 0.7394 <0.05
12/14/2009 -0.209 -3.3427 0.759 <0.05 -0.2715 -3.6055 0.6681 <0.05
12/15/2009 -0.2102 -3.3398 0.6566 <0.05 -0.2565 -3.4878 0.7739 <0.025
12/16/2009 -0.2818 -3.4711 0.8156 <0.025 -0.3005 -3.8613 0.7731 <0.025
12/17/2009 -0.4689 -4.7572 0.7999 <0.025 -0.2918 -3,701 0.839 <0.025

Log Kp vs Log KOA

Sampling date Industrial site Urban site

mm/dd/yy m b r2 Significance (p) m b r2 Significance (p)

06/08/2009 0.3416 -5.8912 0.9354 <0.005 0.4246 -6.4401 0.781 <0.025
06/09/2009 0.4106 -6.617 0.811 <0.025 0.3920 -6.1859 0.6802 <0.05
06/10/2009 0.5008 -7.4928 0.9359 <0.001 0.3724 -5.8987 0.7515 <0.05
06/11/2009 0.3687 -6.0975 0.7391 <0.05 0.5115 -7.3755 0.8572 <0.025
06/15/2009 0.3854 -6.2622 0.8915 <0.001 0.3550 -5.6388 0.672 <0.05
06/16/2009 0.5006 -7.7193 0.4252 <0.005 0.4375 -6.4338 0.8061 <0.025
12/02/2009 0.2147 -4.5936 0.511 <0.05 0.4112 -6.9992 0.6821 <0.05
12/06/2009 0.2811 -5.5668 0.6654 <0.05 0.3825 -6.6791 0.6378 <0.05
12/14/2009 0.1651 -4.117 0.3478 <0.05 0.3365 -6.0879 0.6397 <0.05
12/15/2009 0.3002 -5.777 0.6395 <0.05 0.3131 -5.8022 0.6366 <0.05
12/16/2009 0.3586 -6.2019 0.627 <0.05 0.3979 -6.9671 0.642 <0.05
12/17/2009 0.6149 -9.5128 0.6511 <0.05 0.3900 -6.7655 0.7088 <0.05


