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SUMMARY 

Akaike's method for model identification has been used to 

identify "Markov" chain models for simple transformations of 

daily precipitation at three locations in southeast Norway 

and wind force and wave height at one location in the 

Norwegian Sea. Attempts at identification of the horizontal 

wind vector as an autoregressive process have also been made. 

The estimated order of a model appears to increase with the 

sample size. It may also have a significant uncertainty. The 

analytical complexity of identified models may appear to be 

unnecessarily large for some purposes. 
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IDENTIFICATION OF MODELS FOR SOME TIME 

SERIES OF ATMOSPHERIC ORIGIN WITH 

AKAIKE'S INFORMATION CRITERION 

1 INTRODUCTION 

The most subjective, time consuming and difficult aspect in 

the analysis of stochastic time series is usually the identi­ 

fication of a convenient model. The real, unknown statistical 

properties of a time series may be extremely complicated and 

beyond our reach. The identification must then be restricted 

to a search for a parsimonious model that is sufficiently 

complete compared to the purpose at hand and the available 

information. Different models of the same time series may 

even turn out to be useful according to the purpose of the 

analysis. The problems of model identification are illustrated 

in, for instance, the classical book of Box and Jenkins (1). 

Akaike (2) has suggested an objective method of model identi­ 

fication. He argues that the Kullback-Leibler mean information 

(3) establishes a reasonable cost function that allow an effi­ 

cient search of a model for general application. The only in­ 

formation about the time series used for identification is 

the available data. Akaike's method has given reasonable re­ 

sults in some applications. We will apply it for the purpose 

of an exploratory identification of time series of atmospheric 

origin. 

2 THEORY 

Since Akaike's identification method involves a measure of 

quality, its justification must be based on usefulness in 

applications rather than on rigorous theoretical considerations. 
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We will therefore only give a short, lighthearted outline of 

the theory, which is more fully described by Akaike (2,4,5,6) 

and Tong ( 7 ) . 

2.1 Akaike's information criterion 

Let the true, unknown distribution of the stationary vector 

u be g(u). One of the parametric families suggested to approxi­ 

mate this distribution is f(u/0), where e is the parameter 

vector. Akaike argues that a most sensitive criterion for 

discriminating between deviations of f(u/0) from g(u) is the 

Kullback-Leibler mean information (3) (see also Shannon and 

Weaver ( 8) ) . 

I (g; f("/0)) = Jg(u)ln g(uJ du - fg(u) ln f(u/0)du ( 2 .1) 

As both gand fare probability distribution functions, 

I(g;f(•/0))~ 0, with equality only if f(u/0) = g(u). A simpli­ 

fication of equation (2.1) is obtained by assuming that 

g(u) = f(u/Me) and that 60 = e-Me is close to zero. A Taylor 

expansion of ln f(u/0) in equation (2.1) then gives 

I(M0;0) ½60.60. Jg (u) a1n f a1n f du ~ 
l. J ae. ae. 

l. J 

= ½60.60. J .. 
l. J l. J 

= ½ 11 6e I I ( 2 . 2) 

A 

The estimate of Me, ke, must be restricted to a given n~mber,k, 

of independent parameters. That is, the components of ke span 

a space Rk of smaller dimension than RM, the space spanned by 
A A 

the components of Me. When ke = Eke (the expected value of k0) 

and 

( 2 • 3) 

are introduced into equation (2.2) we have 

A A A 

2I(Me; ke) = I I ke-Mel I + I Ike-kei I + const (ke-ke) ( 2 • 4) 
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The mean of the last term vanish. As ✓N(ke-ke) is asymptotically 

Gaussian with zero mean and variance matrix J_J (2), the quad­ 

ratic form NI Ike-kei I is chi-squared distributed with k degrees 

of freedom. Equation (2.4) then gives 

A 

2N•E{I(Me; ke)} :e NI Ike-Mel I + k (2.5) 

A 

When I(Me;ke) is adopted as the risk function in the model 

building, the associated cost function (expected risk) is 

given by equation (2.5). It remains to estimate the cost, or 

more precisely, to estimaEe 

du ( 2 • 8) 

It may be shown (4,7) that a likelihood ratio statistics, which 

for independent observations reads, 

N 
= -2 E 

i=l 
ln ( 2 • 9) 

is asymptotically noncentral chi-squared distributed both for 

independent and dependent observations. The noncentrallity 

parameter is NI Ike-Mel I and the degree of freedom is"' (M-k). 

An unbiased estimate for the cost function 2E{I(Me;ke)} is 

therefore 

(2.10a) 

The central variance of AIC(k) is proportional to that of 

(2.11) 

which may be large when I Ike-Mel I + 0 and N➔00 
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The statistics (2.10a) is the estimate of the cost function 

suggested by Akaike. The constant, unknown M must be chosen 

"reasonably" large. With fixed M, some terms of equation (2.10a) 

become constant, so that various versions of AIC aFe used. 

AIC(k) ~ knM - 2(M - k) (2.10b) 

AIC(k) ~ - 2 ln (max likelihood) + 2k (2.10c) 

As the number of independent parameters, k, in a model increases, 

the fit to the data increases and knM decreases. However, the 

uncertainty of the model, characterized by 2k-M,will then in­ 

crease. The best approximating model is the one which achieves 

the most satisfactory compromise between fit and uncertainty, 

i.e.,the minimum AIC model. 

The above measure should be applicable to model identification 

quite generally. However, as the likelihood or likelihood ratio 

must be computed, the search for model is restricted to a para­ 

metric family. 

2.2 Markov chain 

Suppose that u(t) = {1,2, ... s} is a scalar variable in discrete 

time and discrete, finite state space. It is assumed that u(t) 

is a chain of order p: 

P{u(t)/ ..... , u(t-1)} = P{u(t)/u(t-p), .. ,u(t-1)} (2.12) 

It is convenient to call this a"Marko~'chain even if p>l. 

The identification consists in deciding on the value of p. 

Bartlett (9), Hoel (10) and Good (11) have designed statistical 

tests for this dec.ision. Tong (7) has derived the AIC. ~ul==> 
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Under the hypothesis H: the chain is r-dependent, the likeli­ r 
hood function is: 

N-r 
L{r) oc TI P{u(t+r) = 1/u{t) = i, ... u(t+r-1)= k} 

t=l 

oc 
N-r 

TI P" kl­ t=l J.J •• 
(2.13) 

The observed number of transitions over the states i+j ... k+l 

isn .. kl That is 
l. J • • • 

L(r) oc TI pnij •. kl 
. . k l ij .. kl ]. , J • • , 

(2.14) 

Maximum likelihood estimates for the parameters of the process, 

P. . kl are ]. J • • , 

P.. kl = J.J •• 
n.. kl J.J .• 
n .. k ]. J •• 

n.. k ]. J •• = L n, . kl 1 ]. J •• (2.15) 

The maximum likelihood function is thus 

L(r,P) cc TI 
i,j .. k,l 

,,.n.. kl p ]. J •• 
ij .. kl (2.16) 

Under the hypo t.hes ts- Hr-l: the chain is (r-1) -dependent, 

corresponding expressions are obtained. With 

" " 
P'ij .. kl = Pj .. kl (2.17) 

the likelihood ratio for testing H 1 within H is thus r- r 

A r-1 r = L(r-1,P) 
L(r,P) (" ) P:. "kl = TI .,,_ i J •• 

ij .. kl Pij .. kl 

n.. kl ]. J •• (2.18) 
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By repeated use of equation (2.18) it is observed that 

PAM= A • A M-lAM p p+l p+l p+2 .... (2.19) 

(2.20) 

which may be computed from the frequency counts n .. kl ]. J • • • 
It is known (10) that pnM is, under HP' asymptotically 

chi-squared distributed with degrees of freedom v=(s-1) (sM-sP). 

The AIC measure is then obtained from equation 2.10b as 

AIC(p) = 
M p 

n -2(s-l)(s-s) p M (2.21) 

In order to judge how well defined the minimum of AIC is, we 

consider a measure for the random variation of neighbouring 

AIC-s. From e9uations (2.20) and (2.21) we have 

p-1 2 AIC(p-1) - AIC(p) = p-lnp - 2s (s-1) (2.22) 

Under the p-1 -hypothesis, _1 n is a chi-squared variable with 
-1 2 p p 

sP (s-1) degrees of freedom (9). The standard deviation of 

AIC(p-1)-AIC(p), taken as the approximate measure of random 

variations, is then 

(2.23) 

which is usually much smaller than ffv, a result of the depend­ 

ence between neighbouring AIC-s. 

Although it may be illogical to use classic hypothesis testing 

when none of the suggested hypothesis are probably correct (2), 

it is comforting if an identified model passes commonly. used 

tests at a reasonable significance level. In terms of the like- 

lihood ratio test, H is rejected r 
level a if pnM > y*(a). As v ~30, 

of pnM approaches a Gaussian with 

ation ✓2v. 

within HM at significance 

the chi-squared distribution 

mean vand standard devi- 
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That is: 

pnM-v 
✓Tv + n(0,1) as v ~30 (2.24a) 

so that H is accepted at a if p 

(2.24b) 

Here y.(a) £ {~,2} for reasonable choices far a. 

The Markov chain model is convenient when it is possible to 

divide the state space into a few classes. Few assumptions are 

necessary. However, as the size of the state space increases 

above two, the number of parameters increases tremendously with 

increasing order. 

2.3 Autoregressive process 

A more effective choice of parameters may be possible if u(t) 

is assumed to be a continuous, nearly Gaussian vector of dimen­ 

sion d in descrete time .. It is assumed that u (t) is a linear 

autoregressive process 

p 
E A(i) u(t-i) = a(t) 
i 

A . . ( n) u . ( t-n) = a . ( t) 
l.J J l. 

(2.25) 

Here A(i) are dxd matrixes with A(0) = I; a(t) is the d-dimen­ 

sional, white, one step ahead prediction error; E a(t) = 0, 

E{a(t) a' (t)} = G. The number of independent A(i)-components 

and G-components is d2•p and d2, respectively. The likelihood 

function is 

L(a; ke) 
N 

= ((2IT)d!Gi)-½Nexp {-½ E a' (t)G-1a(t)} 
t=l 

(2.26) 
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which gives 

N 
-2ln L(a;ke) a: N ln IGi + E a' (t) G-1a(t) 

t=l 
(2.27) 

Akaike (12) shows the maximum likelihood estimate of G to be 

G = 
1 N 
N E a(t) a'(t) 

t=l 
(2.28) 

At this value of G the -2 log likelihood function becomes 

" " 
-2ln L(a;k8) a: N ln IGi (2.29) 

The AIC measure (2.10c) may now be written 

" 
AIC(p) = N ln IGi + 2 (p+l)d2 

" 
a: N ln IGi + 2 p•d2 (2.30) 

This identified model is the same as the one identified with 

the minimum one step ahead prediction error (2) 

FPE(k) ~ IGi (1 + ~k) 

ln FPE(k) ~ ln IGi + ~k 

~ AIC(k) · N-1 

(2.31) 

" 
When IGi is unbiased there is consequently a tendency for 

FPE(k) and AIC(k) to decrease with N. The decrease is highest 

for the largest k, so that there will be a tendency to identify 

a higher order model when N increases. 

It is necessary to estimate the coefficients A, before G (and a) 

can be estimated. For this purpose Akaike (13) uses the Yµl- 

Walker equations, derived by minimizing the error: 
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E a~ =A .. (n)A.k(m) E{u. (t-n)uk(t-m)} 
1 1J 1 J 

= Aij(n) A1k(m) Qjk(n-m) (2.32) 

The coefficients that minimize this error are found by differenci­ 

ating _ with respect to the coefficients Ars(t); r,s,t > 0: 

cl Ea. 2 
1 

clA ( t) rs 

clAij (n) 
= Qjk(n-m) { clA (t) Aik(m) 

rs 
clA.k(m) 

+ Aij (n) clA
1 

(t)} 
rs 

= QJ. k (n-m) { cS. • cS. • o t A. k (.m) a r ]S Il 1 

= 2 A . (n) Q. (n-t) 
rJ JS 

p 
= 2 L A (n) Q(n-t) 

n=O 
(2.33) 

At the minimum the derivatives are zero so that 

p 
[ A(n) Q(n-t) = 0 

n=O 

The matrix Gis found from 

for t = 1, 2 •.• p 

G .. ~ Ea.a. = Aik(n) A. (m) Qkp(n-m) 1J 1 J JP 

= Aik(t) Ajp(n) Qpk(n-t) 

p 
= Aik ( t) L A (n) Q(n-t) 

n=O 

(2.34) 

(2.35) 

By equation (2.33) the last sum is zero unless t=O so that 
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G .. = o.k A. (n) Q k(n) 1J 1 JP P 

= A. (n) Q . (n) 
JP pi 

(2.36) 

With the covariance matrix estimated from the data 

A 1 
Q .. (m) = N 1J 

equation (2.34) 

N-m 
E u . ( t) u . ( t +m) 

t=l 1 J 

is used to estimate A; G .. is then 
1J 

(2.37) 

obtained from equation (2.36). 

As illustrated by,for instance Eidsvik (14,15),the Yul-Walker 

equations may be ill-conditioned. That is, the solution, A(i), 

varies considerably due to small variabiens of the estimated 

covariance. 

3 APPLICATIONS 

Akaike's theory of model identification is applicable for a 

large sample and a stationary process. For geophysical time 

series, containing seasonal and possibly climatic variations, 

these are conflicting requirements. Subjective judgement is 

needed in order to reach a compromise so that the sample size 

is maximized and effects from seasonal variations are minimized. 

3.1 Daily precipitation, Southeast Norway 

3.1.1 Occurrence and nonoccurrence 

The occurrence and nonoccurrence of daily precipitation is 

a process that has traditionally been discussed in terms of 

Markov·chaiR models· (Gab~iel and Neuman !(16), Nordø_ (17), 

Katz (18), Gates and Tong (19) and Chin (20)) .. The observation 

period that has been available for these studies is less than 
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30 years of data. Available to us are data from ca 80 years at 

the stations Hedrum and Nordodal in SE Norway, and from ca 60 

years at Røldal in SW Norway. When using Akaike's identification 

method, a long time series is valuable because the theory is 

only asymptotically valid, and we do not know how a "small sample 

estimate" converges toward the "true" value. 

To avoid seasonal variations as much as reasonable, models are 

identified for each month of the year. Figure 3.1 shows histo­ 

grams of the estimated order at the three stations. There was 

apparently no systematic variation of the order with the time 

of the year. The differences between the histograms are prob­ 

ably not significant so that the order is identified as 2 or 3 

for all months and all stations. 

To obtain an impression of the randomness of the AIC estimates, 

the likelihood ratio statistic, pnM' for each month and station, 

is plotted in Figure 3.2. Asymptotically pnM is x2(0,v) when 

Hp is true. If it is assumed that all chains are of the same 

order, and that the sample size is large enough, the scatter 

at the accepted p-value in Figure 3.2 should be approximately 

given by a x2(0,v) distribution. The data indicate that the 

sample mean value is significantly higher than v, especially 

for small p. Therefore the chains are probably not of the same 

order, or the sample size is not large enough. Yet, if the 

limiting distribution and classical hypothesis tests had been 

used, many of the tested models would have been accepted at 

a high significance level. Approximately half of the identified 

models (order 2 or 3) would be accepted at a higher significance 

level than 15%. 

The only way to increase the sample size is to include more 

than one month in the analysis. This is done at the risk of 

introducing significant seasonal variations. To minimize this 

effect, the attention is restricted to 2 or 3 winter months and 

2 or 3 summer months only. Figure 3.3 shows the estimated order 

for different definition of the summer and winter season. 
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The estimated order shows a tendency to increase with the 

length of the interval defining the season. The reason is 

either seasonal variations and/or a methodological tendency 

to underestimate the order when the sample size is small. 

Figure 3.4 illustrates the variation of AIC with the number 

of years used for analysis. The last 30 years tend to give 

much the same AIC curves as the largest samples size. However, 

there also seems to be a tendency for a lower order model 

to be identified in the 30 year sample. The last 10 years 

sample may give significantly different AIC curves. As the 

AIC minima for the 10 years data are low, use of these data 

would indicated that chains of the order 1 or 2 should be 

accepted at a high significance level. A change of model 

during the last 30 years suggests a climatic change during 

this time interval, which is considered to be unlikely. The 

above results do therefore indicate that a large sample size 

is needed to give stable estimate of the order of the Markov 

chain for the occurrence and nonoccurrence of daily precipitation. 

With 25 years of precipitation data at many localities, Chin (20) 

found the estimated order to be relatively stable after approxi­ 

mately 10 years of data. Our estimates indicate that not even 

30 years of data may be enough. Figure 3.3 also indicates that 

the minima of AIC does not tend to be well defined compared to 

the measure (2.18) so that the estimated order has a significant 

uncertainly. It follows that the estimated order is probably 

not suited as a variable to describe nonstationary or nonhomo~ 

geneous effects as discussed in (19) and (20). 

Although the statistical properties (transition probabilities) 

of the identified chains are of interest, a discussion of this 

is not considered to be a topic for this report. However, 

the estimated transition probability matrixes are shown in 

Table A.l of the Appendix. It is also noticed that the occur­ 

rence and nonoccurrence of daily precipitation may sometimes 

be predicted with remarkable accuracy with only information 

on the precipitation history of the last few days. 
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3.1.2 Nonoccurring,_EreciEitation_less_and_more_than 

conditional mean 

To obtain a rough quantitative modelling of the amount of daily 

precipitation, the state space is increased to s = 3 such that 

u = 1 is "no precipitation", u = 2 is "precipitation less than" 

-, and u = 3 is "precipitation larger than" the estimated con­ 

ditional mean precipitation given the occurrence of precipi­ 

tation. 

Figure 3.Sa illustrates the variation of the identification 

statistics for the winter season. There is a fairly well defined 

minimum of AIC at p = 2 for all stations. However, only at one 

of the stations is this model accepted at a reasonable high 

significance level. At the other stations no model is accepted 

at a reasonable level. Figure 3.Sb illustrates the results for 

the summer season. For the two stations, where a low order 

Markow chain is most easily accepted in terms of significance 

level, the minimum of AIC is located at 1, 2 or 3. 

With use of only the 30 last years of data, 1 or 2 order models 

were accepted at a large significance level at all stations. 

The large difference between the estimates of knM based on 30 

years and ca 80 years of data could indicate that knM has not 

reached its asymptotic distribution with 30 years of data. 

The estimated transision probability matrixes are presented 

in Table 3.2. It is indicated that the amount of daily precipi­ 

tation can not usually be accurately predicted by information 

on the history of the precipitation only. 
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3.2 Wind force and wave height, Norwegian Sea 

In the last years, new oil industry systems are being constructed 

to operate in the Norwegian Sea. For "optimal" design and opera­ 

tion of such a system it is desirable to know how it responds 

to its environments. A reasonably complete analysis of this pro­ 

blem is normally complicated even for the simplest system. 

We shall not embark on an analysis like that. However, it is 

useful to have preliminary ideas about the structure of some 

critical environmental conditions. It is suggested that the 

wind force and the (resulting) wave height impose restrictions 

of the very rough characteristics shown in Table 3.1 (Håland (21)). 

A rough idea of the stochastic structure of the "general" opera­ 

tion conditions may then be obtained by considering the "opera­ 

tional conditions" to be a Markov chain withs= 3. 

Table A. 3: Classificati·ons of wind velocity and wave height (not 
necessarily consistent! of some relevance to operations 
at the sea. 

Wind Wave Operational characteristics 
velocity height 

(m/s) (mJ . 0 < u < 8 0 < u < 1.3 Few difficulties 

8 < u <14 1.3 < u < 4 Difficulties to some systems - 
14 < u 4 ~ u Difficulties to many systems - 

Separate analyses are done for wind velocity and wave height. 

The data used are from the weather ship "Polarfront". Sampling 

interval is 3 hrs. Twenty-eight years of data are available. 

The identification statistics for wind are shown in Figure 3.6. 

AIC show a well defined minimum at p ~ 3 both for the summer and 

winter season. This model is also accepted at a high significance 

level. The estimated transision probability matrixes are presented 

in Table A.3. For the case when one class is very unlikely, there 

may be few observations or none of sequences involving this state. 

This explains the nonphysical zero- and one-probabilities. 

The identification statistics for wave height are shown in 

Figure 3.7. A second and third order model is clearly accepted 
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for the summer and winter data, re spec t.Lve Ly . The estimated 

transision probability matrixes are presented in Table A.4. 

Table A.3 indicates that the wind force is a nonlinear process. 

Once it has stayed small (or large) for some time, this state 

has a tendency to last. Nevertheless, wind components are usually 

considered to be nearly Gaussian (and linear). The covariance 

structure of the horizontal wind vector is shown in Figure 3.8. 

It is observed that the lag has to be larger than 12 before 

significant deviations from the exponential autocovariance law 

are encountered. This suggest that an AR(l) process is a reason­ 

able approximation for each velocity component. The figure also 

illustrates that the small, maximum cross covariance occur at 

lag 7. The AR-model will have to be of a large order to 

describe this small effect properly. 

4 

( Knots] 2 

100 
8 

6 

4 

0 . 10 20 30 

Figure 3.8: Covariance of the horizontal velocity components. 
Polarfront (Dec, Jan, Feb). Mean value over 28 years. 

Figure 3.9 shows that the minimum of AIC(p) has not been reached 

before p=ll. The tendency of local minima for smaller p do even 

indicate that AIC(p) would continue to decrease for p>l2. As 

illustrated by Table 3.2, the decrease of the one step ahead 

prediction error from the nonstationary random walk model to the 

stationary AIC-identified model of the order 11 is very small. 
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Table 3.2: Estimated prediction varianc~ G .. ,for three linear 
prediction schemes. Horizontal~Y,Jind vector Polarfront. 
(Des, Jan, Eeb . ) 

,.. ,.. ,.. 11 
u(t)=climatic u ( t):=u (t-1) u(tl=-E A(i)u(t-i) 

mean i=l 
(knots2) (knots2) (knots2) 

Variable l 2 1 2 1 2 
no. 

1 240.0 0.58 55.0 -3.6 52.0 -3.3 

·- 
2 0.58 286.0 -3.6 50.7 -3.3 48.8 
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The minimum (and random walk) 3 hour prediction error of 

Table 3.2 is typically 3.5 m/s. As the combined effect of 

measurement error and small scale turbulence is most probably 

of the order 1-2 m/s, this is judged to be an accurate pre­ 

diction. Therefore, for some purposes of prediction over lead 

times a few hours, it appears as the random walk model, with 

its simplicity, may be the model to prefer, in spite of Akaike's 

advice. However, as the prediction variance increases linearly 

with the lead time for this model, Table 3.2 shows that it is 

useless when the lead time is larger than approximately 

5 6t = 15 hours. 

4 CONCLUDING REMARKS 

To decide on the usefulness of Akaike's identification method, 

diagnostic checking should have been done. Unfortunately, time 

was not available for this. 

It is indicated that the order of a "Markov" chain for the 

occurrence and nonoccurrence of precipitation should be larger 

than the traditionally accepted first order. The identified 

model order for this process increase with the sample size. 

With large sample size, the minima of the AIC curves are not 

well defined so that the estimated orders appear to have a 

significant uncertainty. The sample size normally available 

for this process (30 years) may be two small for stable 

estimates. The best approximating "Markov" chain for the pro­ 

cess: nonoccurrent, precipitation less and larger than the 

conditional mean, has been estimated as a second order chain. 

The likelihood statistics indicate that any low order Markov 

chain model of this process could be inaccurate. 

The wind velocity and wave height at Polarfront have been trans­ 

formed to discrete variables in such a way as to be of some 

relevance to operation of systems on the sea. The transformed 
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variables have been modelled by "Markov" chains. Both for wind 

velocity and wave height well defined orders are identified. 

The identified models appear to be accurate. Representation of 

the horizontal wind vector as an autoregressive process gives 

a very slow decrease of Akaike's cost function with the order. 

Although a finite order "Markov" chain and an autoregressive 

process can, by proper transformations, be represented as 

first order (Markov) processes, there is, for some purposes, 

a great increase in analytical complexity with increasing order. 

It appears as the increase of model accuracy with the order 

may, for some purposes, not be worth the associated increase 

of analytical difficulty. This is one factor not taken into 

account in Akaike's method. But then, it would also be peculiar 

if one simple measure could relieve us of all the problems of 

model identification. 
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Table A.1: Transition p~obability matrixes før the AIC-identified 
models for occurrence and nonoccu.rrence of daily 
precipitation. 

Final January - February June - July 
State 

Initia Hedrum Nordodal Røldal Hedrum Nordodal Røldal 
Cha i n 

1 2 1 2 1 2 1 2 1 2 1 2 
I 
I 

' 1 1 1 1 83 17 78 22 81 19 78 22 77 23 76 24 

1 1 1 2 45 55 49 Sl 30 70 52 48 42 58 34 66 

1 1 2 1 75 25 75 25 69 31 69 31 67 33 61 39 

1 1 2 2 42 58 41 52 23 77 43 57 39 61 29 71 

1 2 1 1 73 27 73 27 74 26 69 31 69 31 67 33 

1 2 1 2 I 51 49· 41 49 25 75 42 58 33 67 34 6'6 

1 2 2 1 68 32 62 38 57 43 71 29 66 34 68 32 

1 2 2 2 41 59 40 60 22 78 44 56 38 62 27 73 

2 1 1 1 75 25 78 22 

2 1 1 2 39 61 41 59 

2 1 2 1 65 35 61 38 

2 1 2 2 45 55 36 64 

2 2 1 1 71 29 70 30 

2 2 1 2 43 57 39 61 

2 2 .;. 1 67 33 69 31 
- 2 2 2 2 33 67 38 62 

Marginal 64 36 62 38 47 531 65 35 59 41 51 49 
l 
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Table A.2: Transision probility mat;rixes for the AIC-identified models 
for nonoccurence, less a;nd larger daily precip~tation than 
the oondi.t-ional: mean. 

"'-~Final January - February June - July 
State ·Hedrum Nordodal·· Røldal Hedrum Nordodal Røldal ·, 

I~itia~ 
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 IC'hain '"- 1 2 3 

1 1 80 15 6 76 17 7 79 17 4 76 16 7 75 18 7 72 20 8 

1 2 47 37 15 48 36 16 32 51 17 56 28 17 43 36 20 36 43 21 

1 3 36 30 34 36 33 31 13 42 45 34 42 24 30 45 25 17 46 37 

2 1 70 19 11 70 22 8 62 31 7 71 19 11 67 21 12 

2 2 42 43 15 44 39 17 31 48 22 44 38 18 47 35 18 

2 3 29 38 33 29 35 36 8 47 45 37 40 23 31 42 27 

3 1 65 24 10 64 20 15 48 34 18 69 22 9 65 19 16 

3 2 44 32 24 51 26 23 32 43 26 51 35 13 37 41 22 

3 3 35 31 34 35 30 35 11 38 51 39 37 25 27 38 34 

Marginal 64 23 13 62 24 14 47 34 18 65 23 12 59 27 14 51 32 17 

Cond. 6.4 4.0 9.1 7.0 5.6 5.7 
mean 
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Table A.3: Transition probability matrixes for the AIC­ 
identified models of wind velocity at Polarfront. 

l = (u < 8 m/s), 2 = (8 m/s ~ u < 14 m/s), 
3 = ·(14 m/s ~ u). 

~ 

Winter Summer 

1 

e 

n 1 2 3 1 2 3 

1 1 1 81 19 0 91 9 0 

1 1 2 20 69 10 29 70 1 

1 1 3 3 26 71 0 25 75 

1 2 1 68 28 3 70 30 0 

1 2 2 13 73 14 19 79 2 

1 2 3 3 24 72 6 38 56 

1 3 1 50 50 0 33 33 33 

1 3 2 5 68 26 25 75 0 

1 3 3 0 16 84 0 14 86 

2 1 1 74 24 3 84 15 0 

2 1 2 22 68 9 31 67 1 

2 1 3 3 25 72 0 67 33 

2 2 1 67 31 2 75 24 0 

2 2 2 14 74 12 15 82 3 

2 2 3 1 31 68 1 38 60 

2 3 1 33 50 17 100 0 0 

2 3 2 8 70 22 6 87 7 

2 3 3 1 25 74 0 42 58 

3 1 1 65 30 4 50 50 0 

3 1 2 9 82 9 33 33 33 

3 1 3 0 14 86 33 33 33 

3 2 1 67 30 3 92 8 0 

3 2 2 13 71 16 16 76 8 

3 2 3 0 33 67 0 63 38 

3 3 1 47 39 13 I 100 0 0 

3 3 2 10 67 23 6 85 9 

3 3 3 1 18 81 1 29 69 

Marginal 27 44 28 60 37 3 
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Table A.4: Transition probability matrixes for the AIC-identified 
models of wave height at Polarfront. 

1 = (u < 1. 3 m) , 2 = (1.3 m :S u < 4 m), 3 = (4 m :Su) 

--· - --· ----- ·-· 

~ 

Winter Summer 

1 2 3 1 2 3 

1 1 1 82 17 0 90 10 0 

1 1 2 12 85 3 17 83 1 

1 1 3 0 29 71 0 0 100 

1 2 1 75 24 1 83 17 0 

1 2 2 10 85 5 9 90 1 

1 2 3 0 7 93 0 28 72 

1 3 1 33 33 33 100 0 0 

1 3 2 0 100 0 5 90 5 

1 3 3 0 13 87 1 27 72 

2 1 1 78 21 0 

2 1 2 13 81 6 

2 1 3 0 0 100 

2 2 1 76. 24 1 

2 2 2 5 90 5 

2 2 3 1 19 81 

2 3 1 67 33 0 

2 3 2 5 87 7 

2 3 3 1 19 80 
- 

3 1 1 71 29 0 

3 1 2 8 75 17 

3 1 3 0 0 100 

3 2 1 54 38 8 

3 2 2 8 84 8 

3 2 3 0 21 79 

3 3 1 61 33 6 

3 3 2 7 80 13 

3 3 3 1 15 84 

Marqinal 19 62 19 48 50 2 


