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MESOSCALE WIND FIELD ANALYSIS, A SURVEY OF RECENT LITERATURE 

1 INTRODUCTION 

One of the most important requirements in mesoscale air quality 

modeling is an accurately specified mean wind field over flat 

or complex terrain. Analytical solutions for three-dimensional 

stationary flows in the atmospheric boundary layer over terrains 

may be obtained (Kao, 1980), however in most practical cases a 

numerical solution of the full Navier-Stokes equations is not a 

feasible way of constructing mass consistant wind fields. 

As a result, simpler objective analysis procedures are used. The 

most common approach for generating a discrete wind field consists 

of a two-step procedure. In the first step an initial field has to 

be established, the next step is to employ an objective analysis 

procedure to adjust the wind vectors of each grid point so that 

appropriate physical constraints are satisfied (Goodin et al, 1980). 

Another possible solution is to determine a stream function from 

the observed wind data. 

In populated areas the following data can usually be obtained 

(McRae et al., 1982): synoptic meteorological charts, geostrophic 

winds (Ug), terrain height (h), surface roughness (z
0
), tempera­ 

ture (T), relative humidity, surface winds and estimates at 850, 

700, 500 mb heights. The availability of this information is an 

important factor in selecting the procedures for applications. 

The general approaches used for wind field generation are 

shown in Figure 1. In the following different methods will be 

presented. 
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APPROACHES FOR GENERATING 
WIND FIELDS 

BASIC EQUATIONS OF M9TION 
(MASS. MOMENTUM, ENERGY; STATE) 

OBJECTIVE ANALYSIS 
PROCEDURES APPLIED 

TO FIELD MEASUREME~TS 

I 
AVERAGING OF TURBULEff 

FLUCTUATIONS 

I I 

DIRECT 
GENERATION 

BY INTERPOLATION 
WITH \!•U=O 
CONSTRAINT 

K-THEORY 
CLOSURE 
MODELS 

I HIGHER ORDER 
C~OSURE MODELS 

INT ERP OLA TI ON 
TO GRID 

VARIATIONAL 
APPLICATION OF 

CONSTRAINT 
·v•U=O 

Figure 1: Swnmary of approaches for generating wind fields. 
(After McRae et al, 1982). 
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2 BASIC EQUATIONS 

The mean state of the atmosphere is defined by the following 

meteorological variables (Drake, 1980): 

- Velocity field, U[u,v,w] 

- Density field, p 
- Pressure field, p 

- Temperature field, T 

- Phases of water, r. 
l 

- Solar radiation as a function of 

band widths, R. 
l 

- Correlations between mean fields, 

(2.1) 

c .. 
l] 

These quantities are governed by a following set of Reynolds­ 

averaged equations of motion: 

- thermodynamic equation 

- momentum equation 

- conservation of mass (continuity) equation 

- equation of state 

(2.2) 

These equations provide constraints, which should be satisfied 

for the wind field at each grid point. Since measurements of the 

variables described by (2.1) are rarely available, continuity 

equation is chosen as only one constraint in most practical 

applications. In this way the mass-consistant wind fields are 

generated. 



- 8 - 

The continuity equation can be written as: 

1:_ dp + div U = 0 
p dt ( 2. 3) 

where: 
div U =au+ av+ aw 

ax ay a z 

Two simplifications of the continuity equation (2.3) can be 

presented (Drake, 1980): 

- "anelastic" approximation of Ogura and Phillips (1962), which 

provides the following form of the continuity equation: 

w .£2. + div U = O 
p az (2.4) 

where p = p(z). The flow is incompressible and density-stratified. 

when the·depth of the domain his less than 1 to 3 km, p(z) can 

be .assumed to be constant. Thus, the flow is Lnc ompr-e s s Lb Le and 

nonstratified. Continuity equation takes the Boussinesq form: 

div U = 0 ( 2 • 5) 

In a mountainous terrain it may be necessary to consider (2.4), in 

other cases (2.5) can often be applied. 

3 THE DIRECT METHOD OF TWO-DIMENSIONAL WIND FIELD GENERATION 

From the well-known Helmholtz theory, separation into non-divergent 

and irrotational parts can be made for any vector field that is 

continuous and piecewise differential. The horizontal wind field 

(V) may be represented as the surn of two components: 

( 3 .1) 

where: 
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~1/J 
= k X 'ilh1/J is nondivergent 

V = 'ilhX is irrotational 
X 

1/J - stream function 

X - velocity potential 

The relative vorticity (s) and divergence (D) of V, are then 

given by the two Poisson equations: 

s = 'i72 1/J h 

D = 'il~ X 

( 3 • 2) 

Using the relationships between stream function and vorticity or 

between velocity potential and divergence, the wind field may 

be estimated, when D ands are known. Such methods are, however, 

dependent on boundary conditions, which are difficult to describe 

(usually boundaries are placed in data-sparse areas). 

This type of method was used by Grønskei (1973) to estimate the 

wind field over Oslo. The following set of equations were used: 

Within the region: 

( 3 • 3) 

f(T) represents an empirically estimated function which depends 

on the temperature differences between two height levels 

in the area 

s = v2 1/J = 0 h ( 3. 4) 

and on the boundary: 

X = 0 ( 3. 5) 

1jJ was estimated from observed winds 



- 10 - 

4 . THE TWO-STEP PROCEDURE TO GENERATE WIND-FIELDS 

As a starting point the boundaries of the region, the vertical 

extention and basic grid cell size must be chosen. Once the grid 

has been established, surface wind velocity measurement (for 2D 

and 3D approaches) and upper level wind data (for 3D approaches) 

are interpolated to specify initial values for each computational 

point (Goodin et al., 1980). The final step is to adjust the 

velocity field so that applied physical constraints are satisfied. 

4.1 Initial wind field 

The methods used to construct the initial wind field are different 

for 2- and 3-dimensional cases. 

- Two-dimensional (2D) approaches. 

!n this case a surface mean wind'. has to be established as a 

starting point for the objective analysis. The air is assumed to 

be well mixed within the chosen layer, and the computed surface 

wind is treated as a mean wind in this layer. (The vertical compo­ 

nent w is usually set to zero). 
0 

The most common method for obtaining the initial surface wind 

field is by simple interpolation of the station data to a finer 

mesh. However, more refined methods may also be used. They are: 

- the method described in section 3. 

- spectral method - where a family of surfaces of a periodic 

functional form (sine and cosine waves for Fourier analysis) 

is spectrally weighted to provide a des~red degree of approxi­ 

mation to the data points. 

- initial wind field generation by assuming a balance between 

Coriolis, pressure gradient and frictional forces. (Method used 

by Danard, 1977 and :McEwen et~l.; ~9B0). 
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- Three-dimensional (3D) approaches. 

First an initial surface wind field has to be computed. 

Since measurements of w rarely are available, this value is 
0 

assumed to be zero at each grid point. In the next step the 

vertical variations of the horizontal winds above each grid point 

are specified. The following procedure can be applied: 

a) The standard power law is used up to the height 

of the surface layer. 

b) Measured vertical profiles are used from there to the 

top of the grid or (if not available) a linear variation 

is assumed for the wind between the surface layer and 

the upper boundary (taken from the synoptic analysis). 

When measured upper air data are available, the horizontal velocities 

at each level can also be obtained from an interpolation of these 

data. The resulting field is used as the initial 3D wind field. 

In addition to this it can be mentioned that 

Trombetti and Tampieri (1983) recently deve­ 

loped a numerical method for objective inter­ 

polation of data in the height-time domain, 

when the time intervals of measurements are 

irregular, and the heights of the radio 

soundings are very different. However, this case 

will not be considered here. 

4.2 Methods for interpolation of sparse data 

The problem can be expressed as follows: given a bounded, two­ 

dimensional region, containing n error-free data with values Ck 

at locations xk = .[x,y], k = 1, .... n, develop a function f(~), 

which assigns a value C to any arbitrary location x. The assump­ 

tion is made, that measurements are given at roughly regular 

time intervals. 

a. The weighted interpolation method 

In this method the assumption is made, that the grid value is some 
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weighted average of the surrounding data values, (Goodin et al., 

1979). 

C .. 
l] 

n n 
= L ckwk(r)/L Wk(r) 

k=l k=l 
( 4 .1) 

where: 

Ck = measured value at the kth measuring station 

Wk(r) = weighting function 

r = distance from the grid point to the station 

Various forms of the weighting function W(r) have been used. At 

some distance, R, called "radius of influence" the weighting 

function goes to zero. 

lim W(r) -+ 0 

r -+ R 

( 4 • 2) 

That means that each measurement station has a fixed (or variable) 

"area of influence" (AF) among the grid points. For example for 

station number k: 

if (x.,y.) ¢ AF => Cij :f f (Wk) ( 4 . 3) 
l J k 

The most commonly used weighting functions are as follows: 

(i) W(r) 
R2-r2 

(Cressman, 1959) = 
R2+r2 

2 (ii) W(r) = exp(-0.lr) (Mac~racken and Sauter, 1975) - a 

Gaussian weighting scheme, which eliminates the domi­ 

nance of a measuring station near a grid point (used by 

Dickerson, 1978). 

(iii)W(r) = 1 (used by Sherman, 1978; Goodin et al., 1980). a r 
Different values for a may be chosen. The most common is to 

1 use distance-squared weighting W(r) = -::7· Figure 2 shows some 
r 

results of interpolation (for a one-dimensional case) using 

a= 1,2,10. Figure 3 presents some functional forms of W(r) = f (!:.) R 
which are used in practice. 
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C a) C b) C c) 

Figure 2: ResuZts of using different exponents in the weighting function 
W(r) = 1/ra. The three oases correspond to (a) 1/r. (b) 1/rlO 
and (a) 1/r2 (after Gordon and Wixom, 1978). 

W(~) 
W::l 

1. 0 i-.=---------":;__----------, 

W= 
2 2 

R - r 
2 2 

R + r 

2 
W=exp [-4(~)] 

·2 2 4 

W = [ \-r 2] 
R +r 

00 1.0 
r 
R 

Figure 3: Some examples of different weighting functions of the form 
W(r/R),. where Ris the radius of infZuenoe (after McRae et aZ, 
1982). 
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In most practical applications, the choice of an optimum radius 

of influence (R}, must be based on the average station separation 

(s}. For a 2-D area A, with n stations randomly distributed, we 

have: 

n d = A - average station density 

s = - average station separation 

( 4. 4} 

(4.5) 

It has been found that: 

- the optimum search radius R for large signal-to-noise 

ratios is 

~ ~ 1.6 (Stephens and Stitt, 1970} s ( 4 • 6) 

- the value of R should be overestimated rather than 

underestimated 

- each grid point must be within the radius of influence 

of at least one measurement station 

b. Least-squares polynomial interpolation 

The technique is based on the fitting of a polynomial by the 

method of least squares to the data points in an area surrounding 

the grid point at which the value is required. 

A second-degree polynomial, for example, can be expressed 

in the form: 

where the (xk,yk} are the measurement points (k=l,2, ... ,n; n > 6) 

and ck are the estimated values of Ck values at these points. 

In order to determine the six coefficients aij' independent 

observations of Ck at, at least 6 points, are clearly required. 
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The a .. coefficients have to be chosen so that the following form 
l] 

is minimized: 

n 
S = L 

k=l 
(C -c I) 2 

k k 

n i+j=2 . . 2 = L [Ck - L aiJ' x~yf] 
k=l i+j=0 

( 4 • 8) 

where Ck are the measured values fork= 1,2, ... ,n (n > 6). 

Thus we have to solve the set of six linear algebraic equations 

as 
~ 
l] 

= 0; where 0 < i+j < 2 ( 4. 9) 

for the coefficients a ... Having calculated the a .. values, the 
l] l] 

wind speed at any grid location (x,y) can be computed from: 

i+j=2 
C(x,y) = L 

i+j=0 

i j a .. X y 
l] 

(4.10) 

Higher-order polynomials can be used, but it requires more 

coefficients (that means more available data) and much more com­ 

puter time to solve the coefficient matrix. (The computer time is 

approximately proportional to m2, when mis the number of matrix 

elements). 

Instead of polynomial interpolation for the entire grid, subregions 

of the grid can be used. A simpler technique is to triangulate the 

region, using the station locations for the vertex positions. 

Another possibility is to use the planar divisions called V!oroni 

or Thiessen polygons, which are based on the assumption that each 

station measurement is associated with the loc'al region of the area 

nearer to the station in question, than to any other~ 

c. Optimum interpolation 

This general technique was first presented by Gandin (1965). 

The interpolation function is determined by the statistical proper­ 

ties of the wind field (covariance, correlation function). In 

order to calculate these statistical properties, historical 

records of data values have to be available. 

This method was used by Eidsvik (1978, 1981) to estimate the 

wind-field over Oslo. 
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d. Summary 

A short summary of the methods mentioned, is given in Table 1. 

Table 1: Swnmary of interpolation methods and their attributes. 
(After Goodin et al., 1979). 

Method Attributes Applications 

Weighted interpolation 1. Easy to implement 

2. May be modified if direc­ 
tional influence is 
important 

3. More features of the data 
are smoothed as m decreases Shepard (1968) 

2 2 
(a) W(r) = (R -r )m 

2 2 
R +r 

(b) W(r) 
m = exp(-ar) 

(c) W(r) -m = r 

4. Influence of a station be­ 
comes very localized as 
m (or a) increases 

5. Radius of influence R may 
be fixed or variable 

Cressman (1959) 

Endlich & Mancuso (1968) 

MacCracken & Sauter (1975) 

Hovland et al. (1977) 
Boone & Samuelson (1977) 

Least-squares poly­ 
nomial interpolation 

(a) Polynomial of de­ 
gree m fitted to 
full grid 

(b) Polynomials of de­ 
gree m fitted to 
subregions of grid 

1. Complex to implement Panofsky (1949) 

2. Resulting field depends 
strongly on distribution of 
data points when using (a) Akima (1975) 

3. Resulting field is smoothed 
as m decreases, when using 
(a) McLain (1974,1976) 

4. (b) fits data almost exact- 
ly Lawson (1977) 

5. Execution time increases 
with m 

Optimum interpolation 1. Complex to implement 

2. Much historical data may 
be required 

3. Statistics of the data 
assounted for 

Gandin (1963) 

Dartt (1972) 

Schlatter (1975) 

Franke (1977) has carried out an extensive comparison between eleven 

interpolation functions. His conclusion is that six points per 

region appears to give sufficient function definition. He recom­ 

mended one of McLain's (1974t distance weighted least squares 

methods. In this method the fitting function is a second degree 
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polynomial, and a weight (-in form W(r}. = 
to each data point (xk,yk). 

exp(r)l is attached 
r 

Goodin et al. (1979) have made a comparison of the interpolation 

methods applied to wind fields. They found that a second-degree 

polynomial fitting procedure with r-2 distance-weighting scheme, 

provided the best results. 

e. Influence of topography 

In the interpolation procedure, the influence of topography can be 

included to some extent. Shepard (1968) defined an effective 

distance r' by: 

2 2 ½ r' = [r + b(r) ] (4.11) 

where: 

r - distance between measurement points (xk, yk) 

and grid point (x., y.) 
l. J 

b(r) - length of "barrier" perpendicular to the line 

between (xi, yj) and (xk, yk) 

This concept is shown in Figure 4. 

' \ ' 
X.X. 
l J 

Figure 4: Concept of computing an effective distance between 
points which are separated by "barz-ier ". 
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This procedure can be used to include the influence of gross 

terrain features that have dimensions more than one grid cell 

length. 

4.3 Objective analysis procedure 

Once the initial wind flow has been established, the kinetic 

properties of the field are adjusted in the second step. As 

mentioned before, the constraint which has to be satisfied by 

the initial wind field is the continuity equation in the Boussinesq 

form: 

div U = 0 
0 

In other words, the divergence of the initial wind field has to 

be reduced. 

In this second step of the analysis, the values of the wind 

obtained from the first step at each grid po-tn t , are assumed to 

represent observed values at these points (U
0 
- observed wind 

vector) . 

Endlich (1967) used a point-iterative method (for 2D field) in 

which mesh values are altered locally to reduce two-dimensional 

divergence and retain the original vorticity of the field. This 

method has several advantages - explicit calculation of boundary 

conditions is not required, computations are relatively simple 

(10-15 iteration is needed to remove divergence) and converge 

well. Recently, van Egmond and Kesseboom (1983) used this method 

for smoothing the wind field in their mesoscale Eulerian grid 

model for the Netherlands. 

Liu and Goodin (1976) have proposed an iterative algorithm, 

similar to that of Endlich, in which the wind vectors at the 

measuring stations are held fixed as additional constraints. 

Sherman (1978) - for a three dimensional wind field called MATHEW; 

Dickerson (1978) - for a 2D vertically integrated version of 
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MATHEW called MASCON; McEwen et al. (1980) - for a 2D model; 

Davis and Bunker (1980), Pudykiewicz (1981) and Racher et al.ft. 

(1983) - for 3D models, have all adapted the variational calculus 

aoproach of Sas~ki· (1958,1970) for generating a mass-consistant flow. 

In the Sasaki method, the general variational analysis formalism 

defines an integral function whose extremal solution minimizes 

the variance of the difference between the initial and updated 

values of a variable, subject to physical constraints, in a 

least square manner. In this scheme subsidiary conditions which 

are to be satisfied exactly, are known as strong constraints; 

while conditions that are only approximately imposed, are weak 

constraints. 

In order to obtain a mass-consistant flow, the continuity 

equation is used as a strong constraint 

(4.12) 

The variational functional for a 3D approach may be expressed as 

follows (Sherman, 1978): 

E(u,v,w,A)=J [a2(u-u )2+a2(v-v )2+a2(w-w )2+A(~ul~vl~w)]dxdydz 
1 0 1 0 2 0 oX oy oz x,y,z . 

(4.13) 

where: 

A= the Lagrangian multiplier, which is a function 

of observational errors and deviations from 

the constraint, 

a2= the Gaussian 
2 -2 

precision moduli defined by a =½a· , where 

a2 is the error variance of the observed field, and 

a2 and a2 are related to the horizontal and vertical 
1 2 

wind velocities, respectively. 

U(u
0
,v

0
w
0

) - observed wind vector (w
0 

is usually assumed 

to be zero} 

U(u,v,w) - adjusted wind vector 
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The Euler-Lagrange equations associated with the minimalization 

of (4.13) are: 

u = u 
0 

+ 1 a:\ 
2a2 ax 

1 

(4.14) 

1 a>.. (4.15) V = V + -- ay 0 2a2 
1 

+ 1 a:\ 
(4.16) w = WO az 2a2 

2 

au av + aw = 0 
ax + ay a z (4.17) 

Substitution of (4.14-4.16) into (4.17) yields an equation for :\ : 

· ·a 2 t.. a2>.. 
a2 au av aw 

+ (--1..f a2:\ -2a2 (--..£ + ~ + 0 (4.18) -2 -2 + = az) 
ax ay a2 az2 1 ax ay 

2 
Equation (4.18) is solved for:\ with boundary conditions, and the 

adjusted velocity field is calculated from (4.14-4.16). 

At the boundary either:\ or the variation of the normal velocity 

component (~~) must be zero. 

The condition:\= 0 is used for open or "flow-through" boundaries, 

while~~= 0 describes closed or "no-flow-through" boundaries. 

The adjustment process is sensitive to the value chosen for 

(a /a )2 = (a /a )2. This value should be proportional to the 
1 2 2 1 2 

magnitude of the expected (w/u) (Sherman, 1978). For neutral 

conditions, (a /a )2 ~ 10-4. If this ratio is larger, the adjust- 
1 2 

ment is predominantly in the vertical component; if it is 

smaller, the horizontal adjustment dominates. 

More recently, Goodin et al. (1980) proposed a new procedure, 

which avoids most of the limitations of the algorithms presented 

before. A comparison between this method and the MATHEW wind 

field of Sherman (1978), is given in table 2. 
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Table 2: Comparison of attributes of three-dimensional divergence 
reduction procedures. (After Goodin et al., 1980). 

Attribute New technique MATHEW 
(Goodin et al., 19801 (Sherman, 1978) 

Coordinate system Terrain-following coordinates Coordinate system 
parallel to sea level 

Treatment of flow over Barriers to flow are used during Obstacle cells are used 
complex terrain procedure. Surface layer flow is to represent terrain. 

adjusted using V'2¢=D, where D They are treated as no- 
is magnitude of vertical pertur- flow-through 
bation (see section 6) boundaries 

Interpolation procedure 1/r 
2 
-weighting of station data 1/r 

2 
-weighting at sur- 

at surface. 1/r-weighting at face. Upper level values 
each level above surface are obtained from synop- 

tic analysis 

Treatment of horizontal Normal component of velocity at Program accepts a van 
boundary conditions boundary is adjusted according = 0 or A= 0 as boundary 
during divergence reduc- to value at adjacent interior conditions. Derivative 
tion procedure point. (Same procedure as at is approximated by three- 

all other interior points) point difference. 

Treatment of atmos- Number of smoothing passes Gaussian precision 
pheric stability through the interpolated field moduli, Cl1 ,Cl2, which 

at each level is related are functions of mea- 
to the stability at that level. surement errors, must be 
Amount of smoothing required for determined empirically. 
a given stability class is ob- 
tained empirically 

variable vertical grid Yes No 

Computer time required 25 000 points ( 100x50x5) 23 000 points (25x33x28) 
Divergence-+ 10-4s-l Divergence -+ 10-12s-l 

5 min on IBM 370 2-5 min on CDC 7600 
(20-50 min on IBM 370) 

The divergence reduction procedure proposed by Goodin et al., (1980) 

involves three steps: 

1) To reduce as much of the anomalous divergence as possible, at 

each level above the lowest layer, a simple five point 

smoothing filter, is used (both for the u and v field): 
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n+l u .. = 
l] 

0 20 ( n n n n n , • " n 
. u .. +u.+l .+u._1 .+u .. ·+i+u ... - ) (1-Bk)+Bku., . l] l ,J l ,J I,J 1,J-1 . ~,J 

(4.19} 

where Bk is a parameter which allows the user to keep the measured 

velocity at station k fixed (Bk=l) o~ keep only some of its original 
influence (Bk<l). Bk=0 at all non-measuring station points. 

The number of passes through the smoothing step is related to the 

atmospheric stability, and must be determined empirically. 

2) The vertical velocity above each level is computed from the 

divergence within that layer, and held fixed throughout the 

rest of the procedure. 

3) The remaining divergence which exists within each layer is 

reduced by application of a two-dimensional technique similar 

to that of Liu and Goodin (1976). 

It was found that 100 iterations were sufficient to refine the 

divergence reduction during the second step. 

The above techniques require an empirically determined parameter: 

(a /a )2 in the approach of Sasaki and number of passes in the 
1 2 

method of Goodin et al. (1980). A major advantage of the last 

technique is that it allows the boundary values to adjust in 

response to the interior flow. 

5 SHORT ALGORITHM FOR CONSTRUCTING WIND FIELDS 

5.1 

The procedure for generating a two dimensional (2D) wind field 

involves the following steps: 

A. The spatially sparse surface measurements are adjusted to a 

constant height above the surface using a standard power law 

( 5 .1) 
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the exponent pis determined by the atmospheric stability 

condtions, u1 is the measured wind velocity at a reference 

height z1. 

B. One of the interpolation methods is used to obtain an initial 

surface wind field from the available surface wind measurements. 

C. Local terrain-adjustment or thermal-adjustment techniques are 

employed to describe the "disturbance field", which is added 

to the initial surface wind field (see section 6). 

D. One of the objective analysis procedures are used to adjust 

the initial "disturbed" wind field such that a mass-consistant 

surface wind field is produced. 

5.2 

The first part of procedure for generating a three-dimensional 

wind field consists of the A, B, C, (or A,B,C,D) steps from the 

2D approach, and gives the initial surface mean wind field (or 

adjusted 2D wind field) as a starting point for the 3D calcu­ 

lations. The next steps are as follows: 

E: An initial 3D wind field is estimated using one of the 

methods described in section 4.1. 

F. This field is adjusted, while preserving mass-concervation, 

either by minimalization of the remaining divergence of the 

whole 3D field or by reducing the divergence at each horizontal 

level while maintaining a small vertical velocity above each 

level. 

A terrain-following ~ertical coordinate (sigma-coordinate) and a 

variable vertical grid spacing can be applied to this scheme. 
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6 MESOSCALE INFLUENCES ON WIND FIELD 

Anderson (1971) has proposed a 2D surface model which includes the 

perturbations of the wind field due to topographic and thermal 

effects. Each of these effects are treated separately and the 

solutions are added to obtain the net wind-field disturbance (see 

point 5.1; C). This adjustment procedure involves solution of the 

Poisson equation: 

(6.1) 

where: 

¢ - potential function of the perturbation 

f(x,y) - forcing function 

In the terrain-adjustment case, the forcing function can be 

expressed as follows: 

f(x,y) = ft Uv'h (6.2) 

where: 

H - upper boundary of the disturbed air 

h - local altitude of the surface 

U - unperturbed mean velocity a · a 
v' = [ax, ay] 

For the thermal effect, we can write: 

f(x,y) = A(Tg - T) 
H 

( 6. 3) 

where: 

A - constant of proportionality to be determined from 

observations 

T - ground temperature _g 
T - spatial mean value of T g 

Common applications of "thermal fields" are in connection with 

"heat island" in towns and thermal effects of various terrain 

types ("land-sea" breeze, "lake breeze" effects.) 
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The net wind field is calculated from 

V= V¢ ( 6. 4) 

where potential is composed of three components: 

<P =¢mean+ ¢topographic+ ¢thermal ( 6 • 5) 

In addition Anderson made the assumption, that the mean wind 

prevails outside of and on the boundary, but is perturbed within 

the region. This corresponds to zero potential at the boundary. 

7 NUMERICAL SOLUTIONS 

An important element of the wind field generation procedure involves 

repeated solutions of the Poisson equation and its associated 

boundary condition. Over the two-dimensional rectangle R(nxm), 

the system can be written as: 

(x,y) E R 

with the Dirichlet boundary condition 

f = 0 (x,y) E aR 

( 7 .1) 

where f and gare functions of x and y. The considered area 

of computation is shown in Figure 5. 
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FigUl'e 5: Area of computation with the grid system. 

Because solution of (7.1) is repeated many times, it is important 

to choose the most efficient numerical method. 

Methods for solving partial differential equations are not direct­ 

ly applicable to the system (7.1), but only to its finite diffe­ 

rence approximation. The second-order finite difference approxi­ 

mation scheme of (7.1) can be expressed as (McRae et al., 1982): 

f. l . - 2f. . + f ·+1 . ].- ,J J.,J ]. ,J 
( fix) 2 

f . = 0 O,J 

f. = 0 J.,O 

[M] ~ = h 

f . = 0 n, J 

f. = 0 i,m 

f .. 1-2f .. +fi.+l + ]. ' J - ]. ' J ,. J 
(6y)2 

2 <i< n-1 

2 < j < m-1 

1 < j < m 

where the matrix Mis given by: 

= g .. J.J 

( 7. 2) 

( 7. 3) 

1 < i < n 

If ~x = ~y, a block tridiagonal form can be used: 

( 7 • 4) 
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D I 

I D 

M = (7.5) 

I 

I D (n-2)x(m-2) 

and is composed of unit matrices I(n-2) and matrices D of 

the form: 

-4 1 

1 -4 

D = (7.6) 

1 

1 -4 

The numerical methods of solving the finite-difference equation 

(7.2) fall into two groups: 

A. Direct methods (exact solutions) 

Such methods were at first applied with the restriction that the 

number of grid points, (norm), could be expressed as n = 2k 

(k = 1,2,3 .. ). More recently, direct methods have been extended 

to other, even irregular regions (Temperton, 1979). The direct 

methods include: 

- methods based on Fourier decomposition in one dimension, 

using fast Fourier transform (FFT) techniques. 

- methods based on block-cyclic reduction 

In addition to these two methods, FACR(i) algorithm should be 

presented, which combines first two methods. 

- FACR(t) - Fourier analysis-cyclic reduction algorithm, which 

begins with t steps of cyclic reduction and resulting 

equations are then solved via the method of Fourier analysis. 
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The remaining unknowns are obtained by i steps of the back 

substitution phase. 

Advantages: solution does not involve any iterative steps and 

requires minimal storage 

FACR(t) is extremely fast. Swarztrauber (1977) has compared that 

for a 63 x 63 grid, the solution via the FACR algorithm requires 

roughly the same amount of time as five SOR iterations (see next 

section) . 

(Used by McRae et al., 1982; Pudykiewicz, 1981). 

B. Iterative procedures (approximate solutions) 

An initial guess off~. is needed, and this value is.then 
lJ 

corrected (according to a prescribed rule) during an iterative 

procedure until suitable convergence has been achieved. The most 

important methods are: 

- SOR - successive over relaxation method, which is a point 

iterative technique, involving successively applied local 

corrections to improve an approximate solution. The k+l ite­ 

ration can be written (for 6x = 6y): 

k+l k w k k k k 2 f .. =(1-w)f .. +-4[f.+l .+f. 1 .+f. ·+i+f .. 1-6x g .. ] lJ lJ l ,J l- ,J l,J l,J- l,J 
( 7 • 7) 

where w is a relaxation factor used to accelerate convergence of 

the iteration process (1 ~ w ~ 2). It was found that optimum 

value for w is l.6<w<l.8. 

A modification of this method in which the value of w is changed 

at each half-iteration, is called cyclic Chebyshev semi-iterative 

method (CCSI). 

Advantages: easy to program, has minimal storage requirements 

(Used by Sherman, 1978 in MATHEW and by McEwen et al., 1980). 

- Gauss-Seidel method, which is a SOR method with w = 1. 

Advantages: easy to implement. 

(Used by Endlich, 1967). 
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- ADI - alternating direction implicit method, which is a two­ 

step technique involving the solution of a tridiagonal set of 

equations along lines parallel to the x- and y-axes at the 

first and second step respectively. 

Advantages: requires little storage, very fast rates of con­ 

vergence may be attained. 

(Chosen by Goodin et al., 1980, as the most efficient in 

comparison to SOR and Fourier series method). 

C. Comparison 

Since 1965 it has become increasingly popular to solve discretized 

Poisson equations by direct rather than iterative methods. 

Direct techniques yield the exact solutions and do not accumulate 

errors, which may happen in time-dependent models when iterative 

methods are used (because of first-guess errors). 

8 ACKNOWLEDGEMENTS 

The author wishes to thank Dr. B. Ottar and Dr. K.E. Grønskei 

for their interest and valuable discussions. 

9 REFERENCES 

(1) Anderson, G.E. (1971) 

(2) Bengtsson, L. 
Temperton, C. (1979) 

( 3 ) Dav is , C . G . 
Bunker, S.S. (1980) 

"Mesoscale influences on wind fields". 
J.Applied Meteorology, 10, 377-386. 

"DifferencA approximations to quasi­ 
qeostrophic models". 
In: Numerical methods used in atmos­ 

pheric models. 
GARP Publications Series No. 17, 
WMO-ICSU, Vol II, 340-372. 

"Mass-consistent windfields - July· 22 
Geyser ' s area" . - 
In: A collection of papers based on 

drainage wind studies in the 
Geyser's area of Northern Cali­ 
fornia: Part I, ed. by M.H. 
Dickerson. R~p. UCID-188847 ASCOT- 
80-7, Lawrence Livermore National 

-Laboratory, Part o. 



- 30 - 

(4) Dickerson, M.H. (19781 

(51 Drake, R.L. (19801 

(6) van Egmond, N.D. 
Kesseboom, H. (1983} 

(7) Eidsvik, K.J. (1978) 

(8) Eidsvik, K.J. (1981) 

(9) Endlich, R.M. (1967) 

(10) Franke, R. (1977) 

(11) Gandin, L. (1965) 

(12) Goodin, W.R. 
McRae, G.J. 
Seinfeld, J.H. (19791 

"M.ASCON - A mas s cons,istent atmos­ 
pher,ic flux model fo:r regions with 

·complex te:r:ra;i,n". J. App l i ed 
Meteoro'l,øgy,· ·17, 241-253. 

"Mass-consistent modeling revisited". 
In: A cottection of papers based on 

drainage wind studies in the 
Geyser's are~ of Northern 
Catifornia. Part I.Ed by M.H. 
Dickerson. Rep. UCID- 
18884, ASCOT-80-7, Lawrence 
Livermore National Laboratory, 
Part N. 

"Mesoscale air pollution dispersion 
models - r. Eulerian GRID Model". 
Atm. En V. , 17 , 2 5 7 -2 6 5 • 

"On near optimal interpolation and 
extrapolation of atmospheric variables 
using f few measurement stations". 
Technical Note VM-295, Norwegian 
Defence Research Establishment, 
Kjeller. 

"On horizontal wind field estimation 
based on a few measurement stations in 
winter flow over Oslo". NILU, TN 6/81. 

"An iterative method for altering the 
kinematic properties of wind fields". 
J.Apptied Meteorotogy, ~, 837-844. 

"Locally determined smooth inter­ 
polation at irregularly spaced 
points in several variables". 
J.Institute of Mathematics and its 
Apptications, 19, 471-482. 

"Objective analysis of meteorological 
fields". 
Hydrometeor, )?ubl. House Leningrad. 
Translation Jerusalem, 242 pp. 

/ 

"A comparison of interpolation methods 
for sparse data: 
Applicatiqn to wind and concentration 
fields". ~.Apptied Meteorotogy, 18, 
761-771. - 



- 31 - 

(13) Goodin, W.R. 
McRae, G.J. 
Seinfeld, J.H. (1980) 

(14) Gordon, J.W. 
Wixom, J.A. (1978) 

(15) Grønskei, K.E., 
Joranger, E., 
Gram, F. (1973) 

(16) Kao, S.K. (1980} 

(17) Liu, C.Y., 
Goodin, W.R. (1976) 

(18) McEwen, J.N. 
Danard, M.B. 
Davidson, G.A. (1981) 

(19) McLain, D.H. (1976) 

(20) McR,ae, G.J. 
Goodin, W.R. 
Seinfeld, J.H. (1982) 

(21) Mitchell, A.R. (19691 

"An objective analysis technique 
for construct;i,ng th!l'.'ee-dimensional 
urban-scale w;i,nd fields". 
J.Appli'ed Mete~i;r>ø'l,ogy, 19, 98-108. 

"Shepard's method ~f metric inter­ 
polation to bivariate and multi­ 
variate interpolation". Math. Comput., 
'32, 253-264. 

"Assessment of air quality in Oslo, 
Norway". 
NILU, Intern rapport nr. 50/73. 

"An analytical solution for three­ 
dimensional stationary flows in the 
atmospheric boundary layer over 
terrain". 
In: A collection of papers based on 

drainage wind studies in the 
Geyser's area of Northern 
California. Part I.Ed by M.H. 
Dickerson. RRep. UCID-18884, 
ASCOT-80-7, Lawrence Liver- 
more National Laboratory. Part u. 

"An iterative algorithm for objective 
wind fields analysis". 
Mon. Wea. Rev., 104, 784-792. 

"Variationally adjusted surface 
winds". 
Boundary-layer Meteorology, ~, 473-483. 

"Two-dimensional interpolation from 
random data". 
Comput.J., 19, 178-181 (with Errata, 
page 384). - 

"Mathematical Modeling of Photo­ 
chemical Air Pollution". 
Pasadena, California Institute of 

Techology, EQL Report No. 18, 
63-130. 

"Computational methods in partial 
differential equations". 
London, John Wiley & Sons, 255 pp. 



- 32 - 

( 2 2 ) Ogur a , Y . , 
Phillips, N.A. (19621 

(23) Pudykiewicz, J.(19811 

(24) Racher, P. 
Le D;i.met, F.X. 
Roussel, J.F. 
Rosset, P. 
Mery, P. (1983J 

(25} Sasaki, Y. (19581 

(26) Sasaki, Y, (1970) 

(27} Shepard, D. (1968) 

(28) Sherman, C.A. (1978) 

(29) Stephens, J.J., 
Stitt, J.M. (1970) 

"Scale analy~~s of deep and shallow 
c0nvecti0n in the atmosphere". 

J.;Hm.Sci., ~' 173-179. 

"Wind field analys,is f0r regions 
with complex te:t'rain". 
Institute of Meteorology and Water 
Management, Warsaw, Poland, 60 pp. 

"A finite element flow model over the 
Alsace plain". 
In: Air pollution modeling and its 

application II, ed. by C. De 
Wispelaere, N.Y., Plenum Press, 
(NATO challenges of modern 
society, V0l. 3), 393-401. 

"An objective analysis based on the 
variational method". 
J.Meteor. Soc. Japan, 36, 77-78. 

"Same basic formalisms in numerical 
variational analysis". 
Mon.Wea.Rev., 98, 875-883. 

"A two-dimensional interpolation 
function for irregularly spaced data". 
Proc. 23rd ACM Nat.Conf., Las Vegas, 
517-524. 

"A mass-consistent model for wind 
fields over complex terrain". 
J. Applied Meteorology, 17, 312-319. 

"Optimum influence radii for inter­ 
polation with the method of successive 
corrections". 
Mon. Wea. Rev., 98, 680-687. 

(30} Swarztrauber, P.N.· (1977)"The method of cyclic reduction, 
Fourier analysis and the FACR 
algorithm for the discrete solution 
of Poisson's equation on a rectangle". 
SIAM Review, 19, 490-501. 



- 33 - 

(31) Temperton, C. (19791 

(32J Trombetti, F. 
Tampieri, F. (1983I 

"Di:t:ect method ;f;'or the solution of 
the discrete re~sson equatton: 
::;o.me co.mpar;i..pGns". 
J'.C()mputat-tøn$.Z 'l!liy$·i;cs,· 31, 1-20. 

"An ,interpolation method 0f randomly 
distributed atmospheric data in the 
high-t±me domain". 
Bøunåary-'laye'I' Meteørø logy,· 25, 
159-171. 



TLF. (02) 71 41 70 

- NORSK INSTITUTT FOR LUFTFORSKNING 
~)~if]f~~j~jQi~ti~~(~N-OR_G_E_S_T_E_KN_I..;.SK N_A_T_U_R_V_I_T-EN_S_KAP __ E_L_I_G_E_F_O_R_S_K_N_I_N_G_SRÅD) 

POSTBOKS 130, 2001 LILLESTRØM 
E;;LVEGT. 52. 

RAPPORTTYPE RAPPORT NR. 
Teknisk rapport TR 7/83 ISBN--82-7247-408-5 

DATO ANSV.SIGN. ANT. SIDER 

JUNI 1983 B. Ottar 33 

TITTEL PROSJEKTLEDER 

Mesoscale wind field analysis. 
K. Juda-Kuczka 

of literature 
NILU PROSJEKT NR. 

A survey r,ecent 0-8116 

FORFATTER(E) TILGJENGELIGHET** 

Katarzyna Juda-Kuczka 
A 

OPPDRAGSGIVERS REF. 

OPPDRAGSGIVER 

NILU 

3 STIKKORD (a maks. 20 anslag) 

Me so skala I Vind Litt.oversikt 

REFERAT (maks. 300 anslag, 5-10 linjer) 

TITLE Mesoscale wind field analysis. 
A survey of recent literature. 

ABSTRACT (max. 300 characters, 5-10 lines. 

Methods for constructing rnass-consistant wind fields are 

presented. Both two- and three dimensional cases are con- 

sidered. Initial wind field generation, adjustment 9roce- 

dures, mesoscale influences and numerical solutions are 

described. 

**Kategorier~ Aoen - kan bestilles fra NILU A 
Ml bestilles gjennom oppdragsgiver B 
Kan ikke utleveres C 

111 


