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SUMMARY 

The dependence of some physical processes upon environmental 

flow and flow prediction is approached. Procedures for obtaining 

sufficiently accurate prediction methods for these processes 

are outlined. 
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ON OPTIMAL METEOROLOGICAL PREDICTION OF TRAJECTORIES 

THROUGH STOCHASTIC FLOW FTF.LDS 

1 INTRODUCTION 

When someone request a prediction of atmospheric (geophysical) 

flows, for the purpose of optimal control of a physical process 

or system, the forecaster will normally respond with one of the 

two alternative prediction methods: The most sophisticated avail­ 

able or the simplest and first that comes to his mind. Neither 

method may be "cost effective" for the user. It is not even given 

that the prediction will improve significantly the operation of 

the users process. 

We will discuss a simple approach towards estimating what are 

sufficiently accurate prediction methods for a class of physical 

processes. The processes are associated with trajectories of 

(ensembles of) particles or signals through geophysical fields, 

exemplified with the following subclasses. 

a): "Accidential pollution" Here an ensemble of (unfavourable) 

particles has been generated at a more or less precisely known 

location. The problem may be to estimate or predict geophysical 

flows so as to be able to extremize the effort to compensate for 

the effect of the polluting cloud (optimal distribution of 

warnings or equipment). 

b): "Predicted fire" When first round "fire" accuracy is desired, 

the atmospheric fields are in principle measured and predicted 

before the fire so that the launch conditions is appropriate 

for the actual atmospheric conditions. The object fired may be 

a ball, projectile, bomb, rocket or it may be the generation 

of a cloud of some material. In these processes a meteoro­ 

logical prediction is required so that the initial conditions 

for the trajectories can be chosen so as to extremize the 

effect sought. 



- 8 - 

c): "Ray tracing" In this subclass the problem is to determine 

the source of a signal that has passed through the atmosphere 

and is received at some location. It is required to estimate 

the "refractive index" in such a manner that optimal source 

location accuracy is achieved. The signal may be sound or 

electromagnetic waves and also a cloud. 

Traditionally, each subclass is accosiated with different com­ 

munities of scientists. Each has developed accurate, but compli­ 

cated models to describe the aspects of most traditional interest. 

The prediction aspect is common to all, and it is significant 

that it, to some degree, may be discussed in a general, simple 

manner. 

2 STOCHASTIC COMPENSATION 

Although we may control a physical process by means of initial 

conditions and measure its "effectiveness" at the end point of 

trajectories only, the problem is formulated along the lines 

proposed by system control theory. The most relevant concepts 

from this theory are covered by for instance Wiener (1), 

Pontryagin et al. (2), Meditch (3) and Box and Jenkins (4). 

An instructive review is given by Athans (5). 

2.1 Problem statement 

The trajectory of a particle is described by its position and 

velocity vector, x(T). The atmospheric (geophysical) fields 

along the trajectory is denoted by u(x(T)). The equation of 

motion is assumed to be of the form 

dx ( T ) = f [ X ( T ) , U ( X ( T ) ) ] 
d r 

x(t
0
) = initial conditions 

( 2 .1) 
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Here f may be a nonliear vector-valued function. Tis a time 

coordinate t and tare initial and "final" time coordinates, 
0 

respectively. It is assumed that for a given u, a unique 

solution x(t) exists which satisfies the initial conditions. 

In system control terminology xis the state variable and u 

is the disturbance. In the classical system control problems 

there is also a control vector. Our only possibility of 

controlling or compensate the trajectory is to vary the initial 

condition, x(t). The performance of the process is measured 
0 

with a scalar valued index v. The problem can be loosely formu- 

lated as follows: Estimate or predict atmospheric flow fields 

u(T) so that a performance index vis extremized. 

2.2 Separation of the problem 

System control theory provides a systematic and simple approach 

to the problem formulated above. Conditional to weak restrictions 

on the system and disturbance structure, it may be separated 

into the following simpler problems. 

2.2.1 Reference state 

Suppose that all the variables in Equation (2.1) were deterministic 

and known. Then this equation can be solved so that for each 

x(t) and u(T) there is one trajectory x(T), T > t . Given 
0 0 

u(T) one may compute the particular_x{t) that makes ·x(t) . 0 

a desired target value, or from known x(t) at some time, to 

track the signal backwards. A trajectory obtained with ''standard" 

u(t) is called a reference state or trajectory. In the accident 

class of problems, a), the reference trajectory may be chosen 

as the predicted, a purposely simple one. 

In the classical system control problem where there are control 

possibilities along the trajectory, the control that will bring 

the system along a reference trajectory is found by variational 

analysis, or if the admissible region of the control is limited, 

by Pontryagins maximum principle. 
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2.2.2 Deterministic controller ------------------------ 
The Equation (2.1) is normally nonlinear and complicated to 

solve. This is a sufficient reason for seeking a simpler 

approach. Often can small changes in atmospheric fields change 

trajectories only little, and as atmospheric field usually 

vary most over larger distances, the fOllowing hypoth~sis are 

stated: 

Hla: linearized equations are valid 

Hlb: atmospheric fields along the actual and reference 

trajectory are the same. 

When the pertubations from the reference state are denoted the 

same as the unpertubed variables, linearization of Equation (2.1) 

give. 

dx(-r) = d r 
af x(-r) + af u(-r) 
ax au 

x(t) = initial deviations. 
0 

( 2 • 2) 

The solution is 

x(t) 
t 

= A(t,to)x(to) + J 
t 
0 

af 
A(t,n) au u Ln l d n (2.3a) 

Here t and n are time or length coordinates along the 

reference trajectory. A(t,n) is the (known) state transision 

matrix. It is convenient to write Equation (2.3a) formally 

as 

X (L) ax(L) 
X ( 0) + ax(L) -L = u ax ( 0) au 

with 

-L L 
u = I K (L, n) u(n)dn 

0 

L 
1 = I K(L,n)dn 

() 

( 2 • 3b) 

( 2 • 4) 
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Under the hypothesis Hl, it is often convenient to consider Las 

the trajectory length. The matrices~;~~~, ~~(L) and K(L,n) are 

in principle known. A typical ballistic weight function K(L,n) 

for artillery projectiles is shown in Figure 2.1. 

0.20 

0.16 

0.12 ·. 

o.os 

0.0~ 

4 8 12 16 20 2L. 28 
-FLIGHT TIME (sec) - 

Figure 2.1: Components of the Ballistic weight Function for an 
Artillery Reference Trajectory. Maxima in the neigh­ 
bourhood of passage from supersonic to subsonic velocity. 
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Roughly, the hypothesis Hl implies that the particle is heavy 

and fast compared to air particles. In the other extreme 

H2: a particle follows the atmospheric flow. 

This idealisation do also enable a formally simple equation 

for the spatial coordinate of the particle 

t 
x(t) = x(t) + f u(x(T))dT 

0 t 
0 

(2.3c) 

In Equation (2.3a)or (2.3b) the flow variables are Eulerian 

and in (2.3c) they are Lagrangian. Lumley (6) has discussed 

under what conditions small particles experience appoximately 

an Eulerian field or a Lagrangian. Properties of functionals 

like (2.3a) and (2.3c) have been extensively discussed in the 

litterature. Unless explicitely stated, we will not distinguish 

between the two types. Formally the relation between x(t), u(T) 
0 

and x(t) may, in any of the two cases, be written as in 

Equation (2.3a) or (2.3b). 

In the subclass of problems where initial condition compen­ 

sation is required for target hit, the (deterministic minimum 

quadratic) compensator is obtained from Equation (2.3) by setting 

x(L) = 0. This gives 

X (0) = _ ( ax (L) ) ax ( 0) 
-1 ax 

au 
-L u ( 2 • 5) 

If the deviation, u(T) from a reference atmosphere were known 

prior to t
0
, Equation (2.5) would provide the appropriate adjust­ 

ment of the initial condition, x(O). In the accident class of 

problems Equation (2.3) would enable calculation of the deviation 

from some predicted, purposely simple trajectory. In the ray­ 

tracing class of problems the source is located at 
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( 2 • 6) 

so that if u(T); t < T < t and x(t) at some time, t, were known, 
0 

the trajectory along which x(t
0
), t

0 
< t were located could be 

computed. 

An example where neither of the hypothesis Hl or H2 are appli­ 

cable is for modelling of the trajectory of a nonguided model 

(paper) plane. It may be fast and heavy in relation to its 

surroundings, but it may still change its trajectory radically 

due to small changes of the surrounding flow. The use of these 

simple equations must therefore be justified in each problem to 

be analyzed. 

2.2.3 Stochastic_com2ensation 

In reality the geophysical fields are not deterministic and 

future values are not known. The separation principle provides 

the necessary modification to this situation. It states that 

the optimal stochastic control is achieved by combining the 

best predictor and the deterministic control. When the best 

predictor, ii, is introduced into the control Etjuations((2.5) 

and (2.6) the system deviation from the target values is, for 

the first two subclasses of problems, (a and b); 

(2.7a) 

and for the tracing problem, (c): 

X ( O) = _ [ ax (L) J-1 
ax ( O) 

ax(L) 
au [-L ~L] 

u - u (2.7b) 



- 14 - 

Sometimes it is convenient to imagine that x(L) and x(O) are 

realized as continuous functions of time. In the second subclass 

it is then imagined that a continuous flow of projectiles 

(rockets, bombs) are launced along the same reference trajectory 

like water from a garden house. 

2.3 Generalization to ensembles of particles 

Suppose that two identical heavy and fast particles are released 

with identical initial conditions, one at timet., and the other 
l 

at timet .. The difference in impact coordinates is 
J 

x(t.;L) - x(t.;L) 
J J 

L 
= f K ( L , n ) [ u ( n ; ti ) - u ( n ; t j )] d n 

0 
( 2 • 8) 

Except for rockets, the weight function K(L,n) will vary 

smoothly with n. Its support is approximately L/2. The integral 

will not change much before u has changed coherently over the 

support of K(L,n). The size of atmospheric eddies that can 

contribute to a coherent change are larger than approximately 

( 2 • 9) 

With a mean wind, U, it takes a characteristic time 

f Lit R1 L/2u (2.10) 

before the smallest of these eddies have changed significantly 

over the support of K(L,n). The eddies that can contribute to 

the difference u(n,t.) - u(n,t.) have timescale not much larger 
l l f 

than It. - t. I. For particles released such that It, - t. I< Lit, 
l J l J 

the integral above will therefore be small. All these particles 

will therefore have approximately the same x. 

If two particles are released simultaneously along approximately 

paralell reference trajectories from locations r. and r., 
l J 

analogeous arguments apply. All particles released such that 

Ir. - r. I < Lirf have approximately the same x. 
l J 
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In the case of light particles the hypotesis Hlb is not valid. 

The size of the ensemble grow with time because the Lagrangian 

velocity will vary from particle to particle "regardless'' of 

the initial size of the ensemble (turbulent diffusion). However, 

the functional (2.3b) is linear so that the motion of the center 

of gravity of the ensemble is described by the same kind of 

equation. x may thus also in this case be understood to mean 

the coordinates of the center of gravity of the ensemble. The 

smallest length and time scales that can contribute significantly 

to different center of gravity motion is as small as: 

(2.12) 

Here ab characterizes the size of the ensemble and u* is a 

characteristic velocity of the small scale fluctuations. However, 

even in this case it is the eddies of larger dimensions than the 

size of the trajectory, (L, t-t
0
), that can contribute most to 

the spatial location of the cloud. 

2.4 Geometry 

In the description so far, the spatial and time geometry of 

the problem has only been implicitly mentioned The deviation, 

x, should be assigned to a referenc (or predicted) trajectory in 

physical space and time. The predicted atmospheric field, u, 

should be assigned to the same trajectory and also to the geometry 

associated with the measurement procedure. Faced with this, we 

make two idealizations which usefulness must be justified. 

H3) All trajectories are the same within a resolution characteri­ 

zized by (6rf, 6tf). 

H4) All trajectories involved are of small length and time 

dimensions compared to other length and time scales in the 

problem. 

When the idealization H3 is used, we need not explicitly refer 

to trajectories, and when the idealization H4 is used, the trajec­ 

tories are represented as points in physical space and time. 
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2. 5 Scematic representation of the proc·ess 

At this stage it is convenient to illustrate schematically 

the physical process under discussion (Figure 2.2). 

ATMOSPHERE,___----. ,-------~• BALLISTICS 
u 

OTHER 
ERRORS 

+ 
REFEP.H.iCE X 

.. s_T_A_T.,..E...,... _ _. n x ,~ 
+ 

PREDICTOR 
a BJ\LLISTIC 

MODEL 

Figure 2.2: Feedforward Control of Trajectory Accu,racy. 
¼ - Atmospheric variables 
u - Predicted values 
x - Miss distance after adjustment 
v - Accu,racy norm 

The upper branch illustrates the actual effects of atmospheric 

variables on the trajectory. The lower branch illustrates how 

this is predicted. The difference between the two constitute 

the meteorological contribution to the ''miss distance". Tradition 

in meteorology is to be interested and discuss extensively only 

the first stage of such a process, that is to produce a predic­ 

tion,~- However, it is the effect of the prediction error that 

enables the benefit of the meteorological effort to be judged. 
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3 SIMPLIFIED SMALL SCALE DESCRIPTION 

3 .1 Gross characteri·stic·s of atmospheric flows 

Some general properties of atmospheric flows are useful when 

measurement and prediction methods are discussed. Atmospheric 

flows are four-dimensional, stochastic fields governed by 

nonlinear, conclosed equations. It is obvious that the tools 

available to discuss the majority of such flows are not sharp. 

We must therefore be satisfied with less than stringent argu­ 

ments. To focus attention at the most relevant scales of motion 

to us, it is stated that the typical horizontal distances and 

times between measurement locations and the particle trajectory 

are assumed to be of the order 

Ir - r I < 0(100 km) 
0 1 

(t - t I < 0( 6 hr) 
0 1 - 

( 3 .1) 

The vertical extent of the trajectories are of the order 

z < 0(1 km) ( 3 • 2) 

Atmospheric fluctuations of scales larger than these characteri­ 

stic distances are corrected for when compensating the trajectory 

for the prediction. With the particular choice above, it is 

smaller scales than the smallest synoptic scales of motion that 

can contribute to system error. 

HS): Atmospheric variables usually have most energy associated 

with the larger scale fluctuations. The pressure is most domi­ 

nantly red, but also horizontal velocity components and 

"passive" scalars are. The exception is the vertical velocity 

component. 

H6): Atmospheric fields normally vary much more rapidly along 

the vertical than along horizontal coordinates. 



- 18 - 

3.1.1 Flow field variables 

The meteorological idealization H6 enables the quasistatic 

approximation to be used, as for instance discussed by 

Eliassen (7). From vertical profiles of temperature and moi­ 

sture and surface pressure, the profiles of pressure and den­ 

sity may be computed by means of the hydrostatic equation. 

To be spesific the variables that suffice to characterize the 

atmosphere for our purpose are thus: 

Velocity components (u' v, w) = (u I u I u ) 
I 2 3 

Temperature T = u 
4 

Pressure at ground level Po = u 
5 

Moisture Pv = u 
6 

The refractive index for electromagnetic and sound waves are 

known when these variables are given, as indicated by for 

instance Tatarskii (8). Although the above variables are related 

through the equations of motion, they may probably be considered 

stochastic independent for most practical problems. 

3.2 Ballistic model simplifications 

In functionals of the kind 

-L u 
L 

= J K(L,n)u(n)dn 
0 

( 3. 4) 

it is the details of the normalized weight function K(L,n), 

the filtering of small scale variations, that causes analytical 

complexity. Besides being of complex shape for one reference 

trajectory for one kind of particle, it may vary considerably 

from one reference trajectory to another and from one kind of 

particle to another~ Unless otherwise stated, it is assumed that 

the ballistic operator used, -L , is the simplest or most 

convinient one to give a small enough error Rf2• 
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( 3. 4) 

As atmospheric fluctuations have more energy at larger scales 

than Land K(L,n) usually do not amplify the effect of small 

scale eddies, we may-normally use a very simple operator_-L 

such as for instance 

-L f u = fu(n)dn 
6r . 

( 3. 5) 

3.2.1 Predicted_traiectory_simelifications 

With the meteorological idealisation H6, we may introduce a 

simpler expression for the predicted deviation 

-L 
A 

u 
L 

= f K(L,n){i(n)dn 
0 

( 3 • 6) 

The time and horizontal scale covered by the trajectory are 

characterized by (t - t
0
) or 6rf. The vertical scale is z. 

When Z is not small relative to 6rf, the particle is usually 

heavy and fast so that the flight time (t - t
0
) is small relative 

to other time scales of relevance. The meteorological ideali­ 

sation H6 may then be spesified to a statement involving that 

u(T) varies much more over z than over 6rf. The integral (3.6) 

may then be transformed into an integral along the height 

coordinate only. 

-L z A A 

f u '.::! K(Z,z)u(z)dz 
0 

( 3 . 7) 
-z A 

= u 

When Z is much less than 6rf ~ L/2, the hypotesis H6 is not 
A 

applicable as above. If then u is predicted constant over L 

it may as well be prediced constant over Z. That is 
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::;:Z A 

u "" u ( 3 • 8) 

Also for the predicted trajectory it is assumed that the operator 

used, -Z, is a simple one satisfying an inequality of the type 

< R 2 
p ( 3. 9) 

Again the details of K(Z,z) will normally not be of a shape that 

amplify the effect of atmospheric fluctuations smaller than z. 
We may th~2efore normally use simple approximations for the 

operator~ such as for instance integration over the support 
f Of K ( Z, Z) : 6 Z • 

-z 
A f ~(z)dz 

6Zf 
(3.10) 

Both Rf2 and Rp 2, and thus the approximations allowed, may vary 

with what aspect of the problem that is studied. 

In some cases it may be useful to have an explicite expression 

for the difference between the operators-Land -z. This is 

obtained by noticing that the operators are roughly low-pass 

filters with cut-off at approximately 1/1:!,rf and l/6Zf respectively. 

That is 

( 3 .11) 

1/~rf 
f </>(k)dk 

l/1:!,rf 

(3.12) 
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3.3 The response of measurement systems to atmospheric fluctuations 

A measured atmospheric variable um is the output variable of a 

system that responds to the atmospheric field u. There exist an 

extensive meteorological literature on the response characteri­ 

stica of different sensors. Propellers and wanes have for instance 

been discussed by Mc Cready (9). The response of balloons and 

parachutes have been discussed by Fichtl (10,11) and Mc Cready (12). 

Remote sensing techniques have been reviewed by Kjelaas (13). 

The measurement system that can be of any use to compensate out 

systems are low pass systems. That is: atmospheric variations 

of scales larger than some lower limit, the response distance, 

are faithfully recorded. In our problems the responce distance 

is usually much smaller than other length scales. Some measure­ 

ment systems are contaminated by self-induced fluctuations. 

Self-induced fluctuations are definitely non-desired and it is 

assumed they may cheaply be avoided. For our purpose, the measure­ 

ment methods are therefore characterized by the measurement 

error E only, so that 

m 
U = U + E (3.13) 

3.4 Local prediction method 

A meteorological measurement is commonly accepted as meaningful 

without hesitation. However, this is only so if significant 

information about a flow field can be deduced from it. It is 

reasonable to believe that there are an infinite number of 

possible local flows satisfying the constrains set by a measure­ 

ment. In the language of information theory (Shannon and 

Weaver 14) it is reasonable to believe that one measurement 

only convey limited information about a certain flow. The 

idealization H6 enables increased (apparent?) value of a measure­ 

ment. 
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A consequence of this idealization is that meteorologists 

almost always try to measure and predict vertical profiles 

of atmospheric variables. It is understood that the fields 

are predicted constant in a horizontal area around the measure­ 

ment site. From a measurement at one point or along (balloon) 

trajectory, information is thus obtained about the flow in a 

relative large volume of physical space. 

3.4.1 Geometric idealization ---------------------- 
In the case when Lagrangian or quasi-Lagrangian measurement 

techniques are applied, a geometric idealisation analogous 

to H4 have to be used to avoid the analytic difficulties 

associated with assigning the measured value to a trajectory 

The trajectory used for the measurement is characterized by a 

time 6tm and height Zm as illustrated in Figure 3.1. The hori­ 

zontal distance covered is given when the mean wind U is. These 

variables enables estimates of the interval where the local 

prediction method must be used: Atmosperic fields are predicted 
A m m constant, u = u, at least over times 6t and horizontal dis- 

tances 6rm = U6tm. The measured variables are assigned to the 

"center of gravity" of the trajectory (r , t). If the measure- 
1 1 

ment height Zm is higher than Z, the vertical component of the 

vector r is set equal to Z. If Zm < z, it is set equal to Zm. 
1 

This geometrical idealisation is consistent with the use of 

the local prediction method over scales 6tm and 6rm. 
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1 
I 
,-· z 
I 

Figure 3.1. Ballon trajectory in a vertical plane parallel to 
the mean wind vector. 

An approximate expression for the system error caused by this 

idealisation is estimated by 

(3.14) 

with variance 

~ (,ax~ (A m A m) au I Dl l ur , ts t 

~ (~~) 2 f ¢11 (k)dk 
i/6rm 

Here Dis the structure function and¢ is the spectrum of u. 

(3.15) 

When the error given by Equation (3.15) is small enough, the 

geometric idealization H4 may be used in the meaninq referred 

to above. 
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The vertical resolution of a measured profile need not be better 

than to resolve variation that are stationary over times ttm 

and horizontal distances trm. In fully developed turbulence this 

scale is of the order trm. In stable stratified flows it is 

normally smaller, as required by H6. 

3.4.2 Vertical_velocity_is_Eredicted_zero 

H7): The vertical velocity has most energy at isotropic scales 

of motion, smaller than the height above the ground. 

Therefore it is almost impossible to obtain a measurement of this 

variable that is representative over large enough horizontal dis­ 

tances. If the vertical velocity measurement is to be of any 

value it must be done in the immediate neighbourhood of the 

system trajectory. This is, with present day technology, associ­ 

ated with unacceptably high cost. It is therefore decided not 

to measure vertical velocity. Instead it is always predicted 

to be zero. With this prediction the system variance contribution 

from the vertical velocity is approximately 

1/trf 
R 2 ~ (ax ) 2 f 
W au3 <I> 3 3 (k) dk (3.16) 

0 

3.5 Small scale response 

It has been indicated that a detailed discussion of the system 

responce to the smallest scales of atmospheric fluctuations may 

be complicated. These fluctuations are the least important in 

causing system error. In some cases their effects need therefore 

only to be roughly estimated. 
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The effects of the larger scales are more simply described 

when the time and spatial scales are much larger than 

6.t ::: max 

6.r ~ max (3.17) 

We may then predict the fields constant over (6.r, 6.z, 6.t) and 

assign uL to a coordinate (r
0

, t
0

) and um to a coordinate 

(r1, t1). In the equation 

-z 
x(L) æ ~~ [uL - ~] (3.18) 

it may then be allowed to use very simple expressions for the 

operators-Land -z. The most essential aspects of the trajec­ 

tories is then parametrizized by the coordinates (ri, ti) and 

weight functions (ax/au). 

When R! is larger than R!, R~ and R; the approximations 

above are as accurate as they need to be. When this is not the 

case, the largest of these error will be a measure of the 

model accuracy. The model is appropriate if this error causes 

acceptable process performance. 
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4 A SIMPLE ACCURACY NORM 

When process performance or quality is to be measured,.the~e will 

be difficulties in agreeing upon its proper measure. The "utility" 

or "loss" of decision theory, Glahn (15), "entropy'' of information 

theory and "performance index" or "cost function" of system con­ 

trol theory are alle disputable quality measures. Contrary to the 

norms normally used in mathematics, these must primarily be chosen 

so as to have relevance to a particular system performance, not 

primarily to simplify the analysis. 

In system control it is traditional to use a performance index 

that is quadratic in the deviation, x, from some target trajec­ 

tory in phase space. It is simple, and making it small ensures 

that linearized system equations are valid (5). We will suggest 

that a simple quadratic measure also is of relevance for some 

of the problems we have set out to analyze. The cost would in our 

case be associated with obtaining the meteorological prediction. 

A very accurate prediction would imply a small deviation vector 

but possibly also a high cost. Such a prediction might therefore 

not be optimal. As the uncertainties in associating cost to a 

prediction method is very high, we will not discuss cost in this 

report, only bear in mind that it matters. 

The interest is restricted to processes where several, N ~ 0 (10), 

particles are released simultaneously along the same reference 

trajectory (approximately). Either because of purpose or random­ 

ness, the individual trajectories will be different. The dimen­ 

sion of the particle cloud along the coordinate j is dlenoted 

bys .. When the differential coordinate of particle i is denoted 
. J 

x~, and the differential coordinate of the senter of g~avity of 
J 

the ensemble is x., s. could be defined as the distance to a 
J J 

certain concentration of particles or as 

1 N . 
s. = N L (x: - x.) 2 
J i=l J J 

( 4 .1) 
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When Nis large enough it seems reasonable that there is a 

large probability of effect or danger inside the area or 

volume characterized bys.; j=l,2, ... M, while outside, the 
J 

probability of effect is small. This condition may be expressed 

with the positive scalar: 

M (x.) 2 
\)2 - ~ J 

- . l(s.)2 
J= J 

( 4. 2) 

as 

v2 < 0(1) ++ Effective 

v2 > 0(1) ++ Ineffective 
( 4 • 3) 

While the condition Iv! ~ 0(1) must be highly controversial as 

a condition for process effectiveness, it should be of some 

relevance for the allowable process accuracy. This provides 

a much more useful norm for process inaccuracy than just 

stating that it should be small. 

4.1 Examples of applicability 

4.1.1 WeaEon_delivery 

With modern fire control equipment the only significant contri­ 

bution to the mean point of impact error is the meteorological. 

The minimum size of a salvo is the ballistic dispersion. 

The relevant dimension, M, is often two spatial coordinates 

only. Either it is in a plane normal to the firing range or it 

is the horizontal plane. The relevance of the simple measure 

(4.3) for the effectiveness of an artillery salvo has been 

discussed by Eidsvik (16). The generalization to other types 

of salvo firings is trivial. 
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4.1.2 Traiectory_of_a_cloud 

Let us now address ourselves to aspects of the theme; Turbulent 

dispersion of puffs in the atmosphere. In this area meteoro­ 

logists have been concerned with accurate prediction of cloud 

size given the flow parameters. A measure like (4.2) may not seem 

relevant to the experts. However, we must recall that we are not 

primarily concerned with the prediction as such. The purpose is 

primarily to compensate or control a process in a nearly optimal 

manner. 

Suppose that a puff of toxic material has been released. 

Then our problem may be, with limited resouces, to distribute 

warnings and equipment, in time, to the areas where the danger 

is most immediate. It seems reasonable that the prediction 

accuracy of the most dangerous locations should then be as 

accurate as 

max ( v 2 ( t ) ) < 0 ( 1) t < t max 

Another reason why this prediction accuracy seems to be 

desireable is the possibility of directing detection equipment 

to,locations where positive detection is probable. Detection 

probability for non-remote sensors is high when v2 ~ 0(1) and 

low when v2 > 0(1). Knowing the trajectory up to a given time, 

seems to enable increased prediction accuracy for later times. 

(Feedback instead of feedforward). 

It is obvious that the above class of performance measures is 

not always relevant. For instance would a performance index 

relevant to the subclass of problems where the source of a signal 

is sought, be more complicated. It would reasonably be associated 

with the purpose of detection and would thus involve other systems 

than those associated with the trajectory and prediction methods. 

4.2 The approximate distribution of risk 

The stochastic variable v (risk function) has a distribution 

that is given when the distribution of the process variables 

are known. For the purpose of obtaining an approximate estimate 



- 29 - 

i of this distribution at a fixed time it is assumed that x. and 
i J 

x. - x. are normally distributed and stochastic independent with 
J J 

mean values 0 and variances a!i and a~i- Then 

(x . ) 2 a2. 
~ ~ F (1,N) 

asj 
( 4 • 4) 

where F(l,N) is a F-distributed variable. The performance index 

is then distributed approximately like 

M E (x.) 2 
v2 = F(l,N)L ( J)2 . 1 ab. J= J 

N ~ 0(10) ( 4 . 5) 

To obtain effect it is required that the probability of !vi < 1 

be large, say 

P(!-vl < 1) > 0.7 ( 4. 6) 

As long as N > 0(10), P turns out not to be affected very 

much by N. The condition above is approximately equivalent to 

the simpler condition on the cost function (expected risk): 

Ev2 < 1 ( 4 • 7) 

That is 

M E (x.) 2 

L J < 1 
. l(ab.)2 J= J 

( 4 • 8) 

A relevant accuracy norm is therefore a quadratic measure with 

all convenient properties of such. 

In the discussion above the time has been kept constant. When v 
over a time interval might be of relevance and spatial compo­ 

nents of x are the most essential, the "integral scales" of -v(t) 

is normally large or infinite. 
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4.2.1 Model_accuracy_reguirements 

It is now possible to formulate more precise requirements to the 

accuracy of modelling the process. The error of modelling should 

contribute to Ev2 with factors significantly smaller than one. 

R 2 R 2 R 2 
f _L m cr2 < O(l), 2 < G(l) and 02 < O(l) 
b ab b 

( 4 • 9) 

When these inequalities are fulfilled we have a sufficiently 

accurate model of the prosess. 

5 NONLOCAL PREDICTION METHOD 

Suppose now that the suggested simple description is accurate 

enough. Then a simple framework to discuss the error contri­ 

bution from the most important, energetic atmospheric fluctu­ 

ations of scales larger than 6t and 6r is available. 

5.1 Candidate methods 

For prediction over larger time and spatial distances than 

6t and 6r we may have to use sophisticated prediction methods 

to obtain !vi < 1. If so many observations are available 

that accurate enough initial conditions for the equations of 

motion can be constructed, we may think of dynamic prediction 

methods being used. For some processes this may be the appropriate 

class of prediction methods. However, for the class of processes 

considered such methods would .be too Lriac cu r a t.e .i f U1e synoptic 

network were used and too costly and time consuming if a denser 

network were used. A more realistic class of prediction methods 

for time and spatial scales 

O(6t) <lt
0 
- t

1 
!< 0(6 hr) 

O(6r) <Ir - r I< 0(100 km) 
•O 1 

( 5 .1) 

would be linear prediction schemes: 
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A m 
u ( z ; r , t ) = E cp • ku ( z ; r . , tk) o o . k J J 

J ' 

Here um(z;rj,tk) is the measured vertical profile at the spatial 

location rj and time tk. This class of prediction methods has 

been discussed by for instance Gandin (17). Box and Jenkins 

(4) and Akaike (18). cpjk is chosen so as to minimize the 

prediction error of u(z;r ,t). In principle cp .. is known when 
0 0 lJ 

the stochastic structure of um and the localities (r. ;t.) 
l J 

are given. Here we will only give a rough outline of how this 

( 5. 2) 

class of prediction methods enters formally in the description 

of our problem. The predicted variable of Equation (3.17) is 

-z 
li (r It ) = 

0 0 

z 
jK (L,T) E cp .kum(z;r. ,tk)dz 
o jk J J 

( 5 • 3) 

Another alternative (not more accurate) predictior of process 

output wo u Ld be proportional to 

z 
E cp*k.JK(L,z)um(z;r.,tk)dz 
jk Jo J 
-z 

= E. ¢* um (r.,tk) 
jk jk J 

" * -z( ) "11'* ,:--Z( ) = '-' <P . ku r . , tk + '-' "+' • k E r . , tk 
jk J J jk J J 

As the statistical properties of uz and um may be somewhat 

( 5. 4) 

different, cpjk f cpjk. However, as experience both from 

synoptic and mesoscale data indicate that there is no set of 

weight functions cpjk that provides significantly better predic­ 

tion than the next best, (Eidsvik 20,21), differences between 

cpjk and cpjk is not expected to have large effects on the 

prediction accuracy, at least not when discussing large scale 

effects. A useful approximation may therefore be 

( 5. 5) 

With the use of Equation (3.11), (5.4) and (5 .. 5) we obtain 

-z u (r ,t ) 
0 0 

~L ~b 
!::! u (r ,t ) + u 

0 0 
( 5. 6) 
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/', 
Tb 

E<j>jk (u 
T + Ez). u = (5.7) 

The process output error is then 

ax -L ~L A 
X (L) :::: a[{u (r ,t ) u (r , t ) } + uTb] ( 5. 8) U O 0 0 0 

Ev2 
M 2 ax. 2 L 

= E (ob.) - E (--1.S ) [E{u (r ,t ) 
· 1 J U p O o J= p p 

~L 2 u (r , t ) } p O 0 

A 
+ E{uTb}2] ( 5. 9) 

Under the hypotesis HS, 

if I I r . , tk) - ( r , t ) I I 
l p q 

- coherert measurement error. In the case of a 

the uTb - term will be important only 

= O(6r,6t) and/or a significant height 

small measurement 

error and I jr. ,t.) - (r ,t) I I >> o(6r,6t) the process output 
l J p g 

error becomes proportional to the prediction error of the normal 

atmospheric field. 

(5.10) 

At this stage it is possible to reexamine the neccessity of 

predicting the fields to be locally constant over intervals 

(6r,6t). By varying r and t (and (j> .• ) in equation (5.2) 
0 0 lJ 

a surface of the best predicted field would be obtained. 

If this surface shows significant variation'over distances of 

the order (6r,6t), given by Equation (3.16), this prediction is 

still probably not much more accurate than the simple local 

prediction. It may even turn out that the benefit of "optimal" 

non-local predition method may be marginal (19, 20, 21). 
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6 REMARKS 

Tradition in meteorology is to be interested and discuss exten­ 

sively how to produce a predition of flow variables. However, it 

is the users benefit of small prediction error that enables the 

quality of the meteorological effort to be measured. With proper 

interpretation of variables. Figure 2.2 illustrates quite gene­ 

rally the meteorological problem of finding a near optimal pre­ 

diction method for a particular process. We have given a broad 

outline of how this can be discussed for a particular class of 

processes. 

Some convenient approximations and idealizations are suggested. 

They need not be valid for all combinations of system and 

weather parameters. It is sufficient that they are so in a 

representative subspace of system parameter phase space for 

most weather. If for instance linearized system equations are 

good approximations over large intervals of atmospheric varia­ 

tions in a representative subspace of system parameter space 

and not in the complementary subspace, we are satisfied to 

develop near optimal prediction method for the simplest case 

and also use these methods for the analytically difficult cases. 
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