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Abstract: The increased availability of commercially-available low-cost air quality sensors combined
with increased interest in their use by citizen scientists, community groups, and professionals is
resulting in rapid adoption, despite data quality concerns. We have characterized three out-the-box
PM sensor systems under different environmental conditions, using field colocation against reference
equipment. The sensor systems integrate Plantower 5003, Sensirion SPS30 and Alphasense OCP-N3
PM sensors. The first two use photometry as a measuring technique, while the third one is an optical
particle counter. For the performance evaluation, we co-located 3 units of each manufacturer and
compared the results against optical (FIDAS) and gravimetric (KFG) methods for a period of 7 weeks
(28 August to 19 October 2020). During the period from 2nd and 5th October, unusually high PM
concentrations were observed due to a long-range transport episode. The results show that the
highest correlations between the sensor systems and the optical reference are observed for PM1, with
coefficients of determination above 0.9, followed by PM2.5. All the sensor units struggle to correctly
measure PM10, and the coefficients of determination vary between 0.45 and 0.64. This behavior is
also corroborated when using the gravimetric method, where correlations are significantly higher
for PM2.5 than for PM10, especially for the sensor systems based on photometry. During the long
range transport event the performance of the photometric sensors was heavily affected, and PM10

was largely underestimated. The sensor systems evaluated in this study had good agreement with
the reference instrumentation for PM1 and PM2.5; however, they struggled to correctly measure
PM10. The sensors also showed a decrease in accuracy when the ambient size distribution was
different from the one for which the manufacturer had calibrated the sensor, and during weather
conditions with high relative humidity. When interpreting and communicating air quality data
measured using low-cost sensor systems, it is important to consider such limitations in order not to
risk misinterpretation of the resulting data.

Keywords: air quality; low-cost sensors; field evaluation; gravimetric method

1. Introduction

PM can have significant effects on human health, including asthma, lung cancer,
and cardiovascular diseases. PM up to 10 µm in diameter (PM10) is able to penetrate the
bronchi, while PM with diameter up to 2.5 µm (PM2.5) can penetrate the lungs and enter
the circulatory system [1].

Traditionally, PM concentrations are measured at air quality reference monitoring
stations. In Europe, the requirements to set up an air quality monitoring station are defined
in the EU Air Quality Directive 2008/50/EC. The Air Quality Directive defines the type
of instrumentation, the minimum number of monitoring stations, the target pollutants
and the accuracy level required for the measurements. However, due to the substantial
costs associated with the setup and maintenance of such reference stations, the current
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monitoring network only offers monitoring at resolutions of 1–10 km in major European
cities and neither offers universal sampling coverage nor street-scale monitoring.

The increasing commercial availability of low-cost sensor technology for monitoring at-
mospheric composition is contributing to the rapid adoption of such technology by research
projects, public authorities, and self-organized initiatives (e.g., grass root movements, citi-
zen science activities, etc.). Low-cost sensors (LCS) can provide real-time measurements,
in principle at lower cost than traditional reference monitoring stations, allowing for higher
spatial coverage than the current reference methods. However, the generated data are
often of questionable quality, and not all of them provide meaningful air quality data [2–5].
Low-cost devices tend to be less sensitive, less precise and less chemically-specific to the
compound or variable of interest than reference methods [6–8]. PM low-cost sensors have
shown to be affected by relative humidity [9,10]. Despite this, the application of field
calibration techniques [10–12] as well as the assimilation of sensor data with modeling
data, has shown to significantly improve the sensor data quality [13,14].

There is a wide variety of commercial sensors for PM; however, they generally share
the same measurement principle. They measure light scattered by particles carried in an
air stream through a light beam. PM sensors using light-scattering can detect particles
with aerodynamic diameters of 0.3–10 µm. Particles with a diameter less than 0.3 µm
do not scatter light sufficiently, while particles with a diameter greater than 10 µm are
difficult to draw into the sensor [15]. The amount of scattered light is dependent on
particle parameters, such as size, shape, density, and refractive index. Thus, calibration
factors from the manufacturer, usually obtained under idealized laboratory conditions, may
not be appropriate for the environmental conditions where the sensors will be deployed.
Therefore, PM sensors should ideally be characterized under conditions close to the final
ones, before their deployment [16].

There are not yet standards for evaluating the performance of low-cost PM sensors,
and limited performance information is provided by the manufacturers. Characterization
of various PM sensors has been performed under different environmental conditions using
field co-location against reference equipment in different settings. Here, we present the
results of a selection of recent publications. For example, Badura et al. [17] conducted a
performance assessment for the PM sensors Nova SDS011, Winsen ZH03A, Plantower
PMS7003, and Alphasense OPC-N2, against a TEOM 1400a analyzer for almost half a year,
from 21 August 2017 to 19 February 2018 in Wroclaw (Poland). During the measurements,
the sensor output was found to be generally similar to TEOM data, but a significant
overestimation of the PM2.5 concentrations was observed for the raw sensor data. In
addition, high relative errors of the PM2.5 estimation were observed for concentration
ranges below 20–30 µg m−3, and a clear overestimation of outputs was observed above 80%
relative humidity. Rogulski and Badyda [18] also found that PM10 sensors overestimated
the reference values by 30–50%. Their results indicate that the degree of overestimation is
related to the meteorological conditions, in particular, relative humidity. Sayahi et al. [19]
evaluated the performance of the Plantower PM sensor 1003 and 5003 over a variety of
environmental conditions, concluding that the sensors were able to track PM2.5, and had
good correlation (R2 > 0.87) with the co-located reference instrumentation, although both
sensor types exhibited an overestimation of PM2.5 concentrations. Gao et al. [20] compared
the response of the Shinyei sensor in a polluted region of China (daily PM2.5 concentrations
between 330 and 413 µg m−3) during a 4-day study, concluding that the correlation to the
co-located optical reference instruments (R2 = 0.86–0.89) was higher than to gravimetric
measurements (R2 = 0.53).

This article presents the results of a 7 week colocated field comparison of three mod-
els of low-cost PM sensors, Plantower 5003, Sensirion SPS30 and Alphasense OPC-N3,
against optical and gravimetrical CEN (European Committee for Standardization), ap-
proved particulate matter analyzers that fulfill the criteria of European Standards and are
widely used in regulatory monitoring stations. The selected sensors are representative
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of two measuring principles: particle density distribution (Plantower 5003 and Sensirion
SPS30) and single particle counts (Alphasense OPC-N3).

The novelty of this paper is twofold: Firstly, we characterize not only the performance
of PM10 and PM2.5 sensor data as is typically done in the existing literature, but we also
characterize the sensor performance for PM1, which is not typically measured at reference
stations. Secondly, we characterize PM sensor data against a gravimetric sampling method,
allowing us to compare sensor data against the reference mass concentration for PM2.5 and
PM10. To our knowledge, there is very scarce literature characterizing PM sensor systems
against reference gravimetric methods.

PM sensors were evaluated in several respects. First, we tested the precision of sensors
in terms of reproducibility between units of the same sensor model (intramodel variability).
Second, the relationship to analyzers following approved standards and the linearity of
sensor responses were assessed. Third, the performance of the sensors in conditions with
high relative humidity (RH) was examined. Fourth, we characterized PM sensors against
PM10 and PM2.5 mass concentrations obtained from Kleinfiltergerät (KFG) filters.

2. Methodology
2.1. Performance Evaluation Methods

In the absence of an internationally or European-wide accepted standard protocol
for testing low-cost sensors, there is a lack of harmonization of the tests being carried
out. Consequently, the conditions of tests and the metrics reported are generally diverse,
making it difficult to compare the performance of sensor systems in different evaluation
studies. In this work, we evaluated the performance of the sensor systems in the field
against reference monitors. We employed widely used statistical measures (e.g., coefficient
of determination, RMSE and bias) for the comparison between the data collected by the
sensor systems and the reference monitors.

In particular, the mean bias (MB) and the root mean squared error (RMSE) were
computed as follows, with St indicating the sensor observations and Rt the reference
station observation at time t and N representing the number of observations:

MB =
1
N

n

∑
t=1

(St − Rt) (1)

RMSE =

√
∑N

t=1(St − Rt)
2

N
(2)

In addition to standard linear regression methods and the corresponding statistics
metrics, such as intercept, slope, and coefficient of determination, we also made use of the
Theil–Sen estimator [21,22], which is a non-parametric method for fitting a line to a set
of points that is robust against outliers in the data. It uses the median slope of all lines
through all pairs of points in the given data set.

2.2. Measurement Period

The characterization of the sensor systems consisted of a field co-location from 28 Au-
gust to 19 October 2020. Due to some technical issues, the data from the Airly sensors start
on 9 September. During the co-location period, we were able to gather a dynamic range
of environmental conditions in relation to weather and traffic conditions. In the period
between 2 and 5 October, high PM concentrations were observed due to a long-range
transport episode. This will be further discussed in Section 3.6.

Figure 1 shows the meteorological variability during the measurement period, with air
temperatures ranging from 3 to 23 degrees Celsius , with relative humidity between 30%
and 100% and atmospheric pressure between 983 and 1029 hPa.

During the co-location period, the hourly particulate matter concentrations mea-
sured with the FIDAS instrument varied between 0.5 and 131.5 µg m−3 for PM10, 0.2 and
44.5 µg m−3 for PM2.5 and 0.1 and 26.8 µg m−3 for PM1 at the reference station. The higher
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PM concentrations were measured during the long-range transport episode with hourly
maxima of PM10 of 122.2 µg m−3, PM2.5 of 42.9 µg m−3 and PM1 of 22.1 µg m−3.

Figure 1. Meteorological parameters during the co-location campaign: air temperature (top), relative
humidity (center) and atmospheric pressure (bottom).

2.3. Sensor Systems

Three commercially available sensor systems were selected for this research: AirSensEUR
(https://airsenseur.org/, accessed on 26 July 2021), Ensense (http://www.ensensetech.com/,
accessed on 26 July 2021) and Airly (https://airly.org/en/, accessed on 26 July 2021). Table 1
shows their characteristics. The three sensor systems have as output particulate matter mass
concentration in the fractions of PM1, PM2.5, and PM10. The AirSensEUR system integrates
the Alphasense OPC-N3 sensor, which claims to measure single particle counts (http:
//www.alphasense.com/WEB1213/wp-content/uploads/2019/03/OPC-N3.pdf, accessed
on 26 July 2021). Ensense integrates the Sensirion SPS30 sensor, which measures particle
density distribution (https://www.sensirion.com/en/environmental-sensors/particulate-
matter-sensors-pm25/, accessed on 26 July 2021) and Airly integrates the PM Plantower
5003 sensor, which also measures particle density distribution (http://www.plantower.
com/en/content/?108.html, accessed on 26 July 2021). Additionally, the three selected
sensor systems also measure temperature and relative humidity. All the units deliver
hourly averaged data but Ensense and AirSensEUR can be configured to deliver minute-
averaged data. The three units use General Packet Radio Service (GPRS) communication
to transfer the data to NILU’s sensor data platform, where it was downloaded through a
RestAPI for further analysis.

Table 1. Characteristics of PM low-cost sensor systems used in the research.

Sensor System Airly EnSense AirSensEUR (ASE)

Manufacturer Airly, Poland EnSense, Taiwan LiberaIntentio, Italy
Approximate price (€) 890 750 870

Dimensions (cm) 16.3 × 8.25 × 7.4 30 × 27 × 18 35 × 32 × 30
Weight (gr) 440 3000 10,000

PM sensor model Plantower 5003 Sensirion SPS30 Alphasense OPC-N3
Detectable size range (µm) 0.3–10 0.3–10 0.35–40

Estimated PMx concentration PM10, PM2.5, PM1 PM10, PM2.5, PM1 PM10, PM2.5, PM1

2.4. Measurement Site Description

For the evaluation, three identical units from each of the sensor systems described
above (a total of 9 sensor units) were co-located at the Kirkeveien air quality monitoring
station located in Oslo, Norway. The station is categorized as an urban traffic station, as it
is close to a street with busy traffic. The Kirkeveien station is equipped with CEN approved

https://airsenseur.org/
http://www.ensensetech.com/
https://airly.org/en/
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/03/OPC-N3.pdf
http://www.alphasense.com/WEB1213/wp-content/uploads/2019/03/OPC-N3.pdf
https://www.sensirion.com/en/environmental-sensors/particulate-matter-sensors-pm25/
https://www.sensirion.com/en/environmental-sensors/particulate-matter-sensors-pm25/
http://www.plantower.com/en/content/?108.html
http://www.plantower.com/en/content/?108.html
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gas and PM analyzers. PM10 and PM2.5 are routinely measured at the station using
Tapered Element Oscillating Microbalance (TEOM) (inertial measurement) with a Thermo
TEOM (EN12341). For this study, the station was also equipped with a FIDAS 200 (Palas
GmbH, Germany) measuring PM1, PM2.5 and PM10 fractions and two Kleinfiltergerät (KFG)
measuring PM10 and PM2.5 mass concentrations. The FIDAS provided also temperature
and relative humidity data.

The Kleinfiltergerät is an integrated, gravimetric method intended to provide a mea-
surement of either fine particle mass concentration (PM2.5) or coarse particle mass concen-
trations (PM10) over a 24 h sampling interval. An ambient air sample is collected by an
electrically powered sampler operating at a constant volumetric flow rate. Sample air is
drawn from the atmosphere at 38.33 L/min (2.3 m3/h) through an inlet designed to reject
insects and atmospheric precipitation and to be insensitive to wind speed and direction.
This sample filter is conditioned and manually weighed before and after sample collection
to determine the increase in mass. The net mass gain is divided by the measured sample
volume to determine the mass concentration of either PM10 or PM2.5.

The FIDAS is an EN 16450 approved instrument for regulatory measurements of PM10
and PM2.5. It uses optical properties to determine the particle size and derives the mass
from the obtained size distribution and an assumed particle density. The measured particle
size distribution is given in 64 bins (from 0.18 µm to 100 µm).

The Thermo Scientific™ 1405-DF TEOM™ Continuous Dichotomous Ambient Air
Monitor is a TEOM technique-based instrument. Such monitors measure real-time accu-
mulating mass, as air is drawn through a filter placed on the top of an oscillating glass rod.
The air flow rate through the filter is constant and the mass of the particles that attach onto
the filter influence the oscillation frequency, which in turn makes it possible to calculate
the particle mass and express this per volume of air.

3. Results and Discussion
3.1. Data Preparation

For the purpose of this research, data registered from 28 August 2020 to 19 October
2020 were used. We employed the sensor outputs related to PM10, PM2.5 and PM1 mass
concentrations (in units of µg m−3) as provided by the manufacturer. Our interest in this
research is to characterize “out-of-the-box” PM data offered by commercially available
sensor sytems, and for that purpose it was assumed that factory-calibrated PM outputs,
determined by the manufacturer, should reflect PM concentrations in the best way.

Sensor data were analyzed at two time scales, namely 1 h and 24 h averages. Those ag-
gregation levels are the ones usually employed to inform the public about air quality, and they
are also related to the air quality guidelines and thresholds for health protection defined
by the WHO (https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-
quality-and-health, accessed on 26 July 2021 ) and the EU Air Quality Directive [23].

3.2. Comparison of Optical and Gravimetric Reference Equipment

As mentioned before, during the co-location period, we employed optical and gravi-
metric reference instrumentation. Figure 2 shows the results of comparing both the refer-
ence method and reference-equivalent method (Fidas,TEOM) for PM10 and PM2.5, respec-
tively. The comparison for PM10 illustrates that both methods have a good agreement with
a coefficient of determination of 0.96. However, the optical method (FIDAS) underestimates
PM10 concentrations. In the case of PM2.5, both reference methods have a good agreement
(R2 = 0.94) but the optical method tends to overestimate the PM2.5 concentrations. This
observed underestimation of PM10 and overestimation of PM2.5 is larger during the two
days with higher PM concentrations (marked in green and yellow) that occur during the
long range transport episode.

Differences between concentrations measured by optical and gravimetric methods
were also found in previous studies. For example, Wanjura et al. [24] found a significant
positive linear correlation between total suspended particles (TSP) concentrations measured

https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
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by collocated TEOM and gravimetric samplers but observed that, in general, the TEOM
sampler measured lower concentrations than the collocated gravimetric TSP sampler.

Figure 2. Intercomparison of reference-equivalent (Fidas) to reference (KFG) method of PM10 and
PM2.5 mass concentration during the co-location period. Axes labels are shown here in units of
µg m−3. The color scale indicates total suspended dust measured by the FIDAS 200. The blue dashed
line indicates the 1:1 reference line, the red line, a linear regression fit to the data, whereas the green
line indicates the Theil–Sen estimator. In the top left corner, the corresponding statistics and R2 value
are provided.

3.3. Time Series

Figures 3 and 4 show respectively the time series of PM2.5 and PM10 for the 9 sensor
systems over the entire co-location period. They also show how these time series vary
in relation to the data from the reference instrument. In general terms, we can see that,
with exception of the EnSense system, both PM2.5 and PM10 tend to be overestimated,
compared to the reference.

For PM2.5, all three Airly systems are relatively close to the reference until ca. 15 Septem-
ber, after which all three units provide significantly higher measurements than the reference.
From 5 October, two of the Airly systems show again better agreement with the reference
data, while one (Airly_66) keeps overestimating PM2.5 concentrations. The EnSense sys-
tems underestimate the actual PM2.5 concentrations throughout the study period; however,
they follow the temporal variability of the reference instrument quite well, with the excep-
tion between 2 and 4 October (long-range transport episode), when the sensor systems
significantly underestimate the true PM2.5 concentrations. Finally, the PM2.5 measurements
by the AirSensEUR (ASE) systems in general follow the reference observations well but
severely overestimate them around 24 September.

As for PM10, the situation is quite similar with the exception of the Airly sensor
showing less of an overestimation as for PM2.5. EnSense systems underestimate PM10
concentrations, especially between 2 and 5 October. The ASE systems have, in general,
good agreement with the reference observations, including the high pollution episode in
2–4 October (long-range transport episode), but similar to what they did for PM2.5, severely
overestimate PM10 concentrations around 24 September. During that day, the meteorologi-
cal conditions show a drop in the atmospheric pressure and a relative humidity of 100%
(see Figure 1).
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Figure 3. Time series of the factory-calibrated PM2.5 signal of all sensors systems. The dashed black
line shows the reference data from the Fidas. The top panel shows the three Airly sensors, the center
panel the three EnSense sensors, and the lower panel the three AirSensEUR (ASE) sensors. Note that
the y-axis range varies from panel to panel for clarity. The dark gray box indicates an episode of
long-range transport.
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Figure 4. Time series of the factory-calibrated PM10 signal of all sensors systems. The dashed black
line shows the reference data from the Fidas. The top panel shows the Airly sensors, the center panel
the EnSense sensors, and the lower panel the AirSensEUR (ASE) sensors. Note that the y-axis range
varies from panel to panel for clarity. The dark gray box indicates a pollution episode resulting from
long-range transport.

3.4. Inter-Sensor Comparability

One of the first steps of the co-location study was to evaluate the consistency between
individual sensors. This is important because ideally, any potential correction of the data
to improve the accuracy should be valid for all sensors. Such an intercomparison between
sensor readings can most easily be carried out using a scatterplot matrix. Figures 5–7 show
this for the factory-calibrated PM2.5, PM10, and PM1 signals respectively.
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Figure 5. Sensor-to-sensor intercomparison of the factory-calibrated PM2.5 signal of all sensors
systems against each other during the co-location period. Axes labels are shown here in units of
µg m−3. The lower left panels show scatterplots of one sensor’s output against the other (with
the black dashed line indicating the 1:1 reference line and the red line a linear regression fit to the
data). The panels on the diagonal show the probability density function of the readings of each
individual sensors. The panels on the upper right show the Pearson correlation of the scatterplots on
the lower left *** means the correlation is significant.

For PM2.5 (Figure 5) the AirSensEUR and EnSense units exhibit an excellent inter-
sensor consistency within each 3-unit group with correlations greater than 0.99. The lowest
inter-sensor consistency is displayed by the three Airly units with correlations between
0.89 and 0.96. One of the Airly units clearly shows a significant offset, compared to the
other two units. When looking at the correlations between the three manufacturer groups,
EnSense units versus AirSensEUR exhibit typically correlations greater than 0.8, however
with slopes quite substantially below unity. The comparisons of the AirSensEUR units
against Airly exhibit quite a bit of scatter with correlations of 0.59 to 0.74; however, they
show slopes very close to unity. In contrast, the scatter plots of the EnSense units against
the Airly units display quite good correlations between 0.90 and 0.97; however, the slopes
substantially exceed unity.

As for PM10 (Figure 6) the situation looks similar in the sense that both the AirSensEUR
units and the EnSense units exhibit an excellent inter-sensor consistency with correlations
over 0.99 on average. The three Airly units exhibit slightly more scatter against each
other, with correlations around 0.97 to 0.99. In terms of correlations between the three
manufacturer groups, for PM10, the AirSensEUR units against the EnSense units show
significant scatter (correlation around 0.8) and a slope substantially less than 1. The EnSense
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units against the Airly units in contrast show a better correlation of over 0.95 but with a
slope substantially higher than unity.
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Figure 6. Sensor-to-sensor intercomparison of the factory-calibrated PM10 signal of all sensors
systems against each other during the co-location period. Axes labels are shown here in units of
µg m−3. The lower left panels show scatterplots of one sensor’s output against the other (with
the black dashed line indicating the 1:1 reference line and the red line a linear regression fit to the
data). The panels on the diagonal show the probability density function of the readings of each
individual sensors. The panels on the upper right show the Pearson correlation of the scatterplots on
the lower left. *** means the correlation is significant.

For PM1 (Figure 7) we can observe that both AirSensEUR and Ensense have an ex-
cellent inter-sensor consistency with correlations over 0.99. As with the other fractions,
the Airly units show more data scatter when compared to each other, which results in
correlations around 0.94 to 0.97. In terms of correlations among the different manufactur-
ers, for PM1 the comparison between Airly and AirSensEUR show correlations between
0.78 and 0.81 and a slope below 1. The comparison between Ensense and AirSensEUR
units show also scattered data and correlations between 0.77 and 0.81. The Ensense and
Airly units, similar to PM10 and PM2.5, show less scattered data and higher correlations,
with values between 0.95 and 0.98.
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Figure 7. Sensor-to-sensor intercomparison of the factory-calibrated PM1 signal of all sensors systems
against each other during the co-location period. Axes labels are shown here in units of µg m−3.
The lower left panels show scatterplots of one sensor’s output against the other (with the black dashed
line indicating the 1:1 reference line and the red line a linear regression fit to the data). The panels
on the diagonal show the probability density function of the readings of each individual sensors.
The panels on the upper right show the Pearson correlation of the scatterplots on the lower left. ***
means the correlation is significant.

The fact that Ensense and Airly units inter-compare better among themselves is most
probably related to the fact that both integrate PM sensors (Plantower and Senserion)
using the same measuring technique, photometry. The AirSensEUR integrates an optical
particle counter (Alphasense OPC-N3). Both methods are based on the principle of light
scattering, but the OPC analyzes the light scattered by a single particle, while the sensors
based on photometry analyze the light scattered by a cloud of particles. OPCs directly
measure the particle number concentration and particle size, allowing the assessment
of the particle mass, assuming that the particles are spherical and of a known density.
The response of photometers varies not only with PM concentration, but also with particle
size distribution, as they are not able to differentiate sizes. This results typically in a biased
measurement, as the ambient size distribution typically differs from the size distribution
used for calibration.

3.5. Comparison of Sensor Systems against Reference Instrumentation
3.5.1. Comparison of Hourly Averages

Hourly observations from the 9 sensor systems were evaluated against the FIDAS optical
reference-equivalent instrument during the co-location period at the Kirkeveien station.
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Table 2 shows that for PM10, the coefficient of determination varies between 0.45
and 0.64 for all the analyzed sensor systems. The slope is close to 1 for the AirSensEUR
systems, but Airly and EnSense have a lower slope around 0.5 and 0.2, respectively. Airly
systems have the lower biases (bias below 1.3 µg m−3), followed by AirSensEUR (bias ca.
3–4 µg m−3) and EnSense (bias ca. −8 µg m−3).

For PM2.5 (Table 3), the agreement with the reference observations is slightly higher
for EnSense and Airly systems, although all the sensor systems have coefficients of determi-
nation below 0.75. The linearity for PM2.5 is higher than for PM10 for all the sensor systems,
with slopes close to 1 for AirSensEUR and Airly, but around 0.5 for EnSense. In general,
the biases are also lower for PM2.5 than for PM10, with absolute values below 3 µg m−3,
except for the unit Airly_66.

The highest correlations between hourly sensor data and reference data are observed
for PM1 (Table 4). Ensense and Airly (except the unit Airly_66) have coefficients of deter-
mination above 0.9. For the AirSensEUR systems, the coefficients of determination are
around 0.6. Biases are also below 3 µg m−3, with the exception of the Airly_66 that has a
bias of 9.7 µg m−3. The slope is between 1 and 2 for all the units. Ensense units are the
ones presenting a slope closer to one, with values between 0.99 and 1.13.

The results show that, for the same sensor system, the agreement against the reference
data is usually very similar. However, this is not always the case, and some units have
higher biases, which indicates the benefit of testing all the units before deployment to
properly correct biases from individual sensor systems.

The sensor characterization shows that PM photometer sensors (Airly and EnSense)
have the highest correlations against reference data for PM1, followed by PM2.5, and lower
correlations for PM10. This characteristic is not shown for OPC sensors (AirSensEUR),
where the correlations vary between 0.5 and 0.6 for the three sizes evaluated. Although the
PM sensor units evaluated have the capacity to measure PM10, PM2.5 and PM1, they
have inaccuracies, some of them arising from the measuring method, that need to be
correctly characterized. Our study shows that photometric sensors capture very well PM1
concentrations but struggle to measure PM10. Thus, the use of those type of PM sensors
should be restricted to studies where the interest is in lower fractions (e.g., wood burning),
and should be used with extra caution where the main emissions are of PM10 (e.g., road
dust resuspension).

Table 2. Summary statistics of applying the sensor-specific linear regression models to the testing
period at Kirkeveien. Reference instrument is Fidas and component is PM10.

Bias STD RMSE Slope R2 TSl

ASE44 3.08 12.38 12.75 0.87 0.58 0.88
ASE75 3.6 11.54 12.09 0.84 0.6 0.85
ASE76 4.83 12.76 13.64 0.9 0.64 0.91

EnSense46 −8.44 14.22 16.53 0.15 0.48 0.23
EnSense47 −8.08 14.06 16.21 0.17 0.45 0.27
EnSense48 −8.29 14.16 16.4 0.16 0.46 0.25

Airly64 −1.21 12.35 12.4 0.5 0.54 0.85
Airly65 0.06 12.21 12.2 0.54 0.55 0.97
Airly66 −0.25 12.17 12.16 0.54 0.55 0.94
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Table 3. Summary statistics of applying the sensor-specific multilinear regression models to the
testing period at Kirkeveien. Reference instrument is Fidas and component is PM2.5.

Bias STD RMSE Slope R2 TSl

ASE44 0.57 5.7 5.73 1.01 0.55 0.88
ASE75 0.47 5.03 5.05 0.94 0.57 0.8
ASE76 1.04 6.06 6.15 1.02 0.57 0.89

EnSense46 −2.35 3.65 4.33 0.49 0.73 0.64
EnSense47 −1.97 3.49 4.01 0.55 0.72 0.73
EnSense48 −2.17 3.56 4.17 0.52 0.73 0.68

Airly64 1.37 4.17 4.39 0.91 0.68 1.52
Airly65 2.27 4.41 4.96 0.98 0.68 1.73
Airly66 7.89 6.77 10.39 1.15 0.57 1.95

Table 4. Summary statistics of applying the sensor-specific multilinear regression models to the
testing period at Kirkeveien. Reference instrument is Fidas and component is PM1.

Bias STD RMSE Slope R2 TSl

ASE44 2.25 6.2 6.6 1.88 0.59 1.22
ASE75 2.14 5.4 5.81 1.75 0.62 1.11
ASE76 3.02 6.72 7.36 1.92 0.62 1.23

EnSense46 −0.67 0.87 1.1 0.99 0.94 0.9
EnSense47 −0.3 1.1 1.14 1.13 0.94 1.04
EnSense48 −0.5 0.94 1.06 1.06 0.94 0.97

Airly64 3.19 4.18 5.26 2.02 0.9 2.14
Airly65 4.09 4.7 6.23 2.17 0.91 2.38
Airly66 9.71 7.31 12.15 2.6 0.78 2.67

3.5.2. Comparison of Daily Averages

In addition to the hourly characterization of the nine sensor systems against opti-
cal reference-equivalent equipment, we also conducted an evaluation of the daily mean
observations against the CEN gravimetric reference instrument (Kleinfiltergerät).

Figure 8 shows a comparison between the sensor systems and the KFG for PM2.5.
The Airly and EnSense sensor systems have slightly better correlations (R2 close to 0.9,
except for the unit Airly 66) than the ASE sensor system (R2 = 0.7). The Airly and ASE
sensor systems tend to overestimate PM2.5 concentration, which is shown in a positive
bias. The EnSense unit, on the other hand, seems to underpredict the PM2.5 concentration,
resulting in a negative bias around 1.5–1.9 µg m−3. The Theil slopes for ASE and EnSense
are close to one, while the Theil slope for Airly is close to 2.

Figure 9 shows the correlation plots of the PM10 measured with the PM sensors sys-
tems against the Kleinfiltergeraet. The coefficients of determination vary between 0.6 and 0.7
for all the sensor systems. The Theil slope is close to 1 for the AirSensEUR and the Airly
systems, and EnSense has a lower Theil slope of 0.3. EnSense systems tend to underestimate
PM10 concentrations resulting in a negative bias around 10 µg m−3. The bias for Airly
varies between −0.11 and −1.61. The AirSensEUR systems, on the other hand, show a
positive bias between 3.24 and 4.59 µg m−3.
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Figure 8. Sensor-to-KFG intercomparison of the factory-calibrated PM2.5 signal of the 9 sensors
systems against the KFG during the co-location period. Axes labels are shown here in units of
µg m−3. The dashed blue line represents the 1:1 reference line. The red line shows a linear regression
fit to the data (with the corresponding regression statistics and R2 value provided in the top left
corner), whereas the green line indicates Theil–Sen regression.

The results for PM10 are in line with previous research that highlighted the challenges
of measuring PM10 accurately with PM sensor systems. Tryner et al. [25] showed that
PMS5003 sensors (as the one integrated in the Airly sensor system) were less precise than
SPS30 sensors when comparing against reference equipment under laboratory conditions.
Kuula et al. [26] tested several PM sensors in the laboratory, concluding that the PMS5003
does not accurately distinguish between PM1, PM2.5 and PM10, and cannot be used to
measure coarse-mode particles (2.5–10 µm). This is in line with our results, where we
found that the most accurate and reliable results are achieved for the PM1 size fraction.

According to Kuula et al. [26], the ability of PM sensors to measure PM2.5 with reason-
able accuracy depends on the ambient size distribution found in the local environment.
For instance, if the ambient size distribution is stable, the PM sensor can be adjusted to
measure PM2.5 [16]. However, there is a risk of data misinterpretation when the sensor
measurement is extended to cover particle sizes that it cannot observe. In our study, such
limitations of PM sensor systems becomes very pronounced when the size distribution
changes in the time period between 2nd and 5th of October, where the PM concentrations
were dominated by long range transport of Asiatic desert dust and there was an observed
increase in the coarse fraction contribution.
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Figure 9. Sensor-to-KFG intercomparison of the factory-calibrated PM10 signal of the 9 sensors
systems against the KFG during the co-location period. Axes labels are shown here in units of
µg m−3. The dashed blue line represents the 1:1 reference line. The red line shows a linear regression
fit to the data (with the corresponding regression statistics and R2 value provided in the top left
corner), whereas the green line indicates Theil–Sen regression.

3.6. Long Range Transport of Aerosol and the Effect on Low Cost PM Sensor Systems

Highly elevated PM concentrations were observed during the period between 2nd and
5th of October (Figures 3 and 4). PM10 and PM2.5 concentrations reached over 120 µg m−3

and over 40 µg m−3 in Oslo, respectively, while rural background PM10 concentrations
reached 97 µg m−3 [27]. These concentrations are far greater than any other measured
during the co-location period and are among the highest measured in the reference stations
in Oslo and in Norway during the last years.

The size of this event compared to the climatological norms, coupled with the spatial
extent of the episode covering southern Norway, indicates an origin resulting from long
range transport. The examination of the Copernicus Atmospheric Monitoring Service
(CAMS) regional ensemble [28] and global data indicates a significant influence of crustal
dust transported over southern Norway originated in the region to the east of the Caspian
Sea in the Karakum and Aralkum deserts in Turkmenistan and Kazakhstan. In addition to
the dust, there was also a series of large wildfire events that occurred in eastern Ukraine that
also injected pyrogenic PM into the same weather pattern transporting air north westward
of Norway. In addition to the CAMS modeling products, the results from chemical analysis
of PM filter samples taken at rural background monitoring sites in Norway showed a large
contribution to the high PM10 levels from the coarse fraction (Groot-Zwaaftwink et al.,
in submission), which was attributed mostly to mineral dust. Evidence was also found of a
significant contribution of wildfire smoke to the more minor fine fraction.

During this period, the contribution of particles larger than 2.5 µm in size on the
overall mass of PM10 increased from an average of about 5.7 µg m−3 to 47.1 µg m−3.
The performance of the sensor units integrating photometric PM sensors (Airly and En-



Atmosphere 2021, 12, 961 16 of 20

sense) was heavily affected during the long range transport episode, where PM10 was
largely underestimated (Figure 9). Kuula et al. [26] already indicated that the PMS5003,
as the one integrated in the Airly sensor system, cannot be used to measure coarse-mode
particles (2.5–10 µm). The SPS30 PM sensor integrated in the EnSense unit provides 4 size
bins (0.3–1.0 µm, 1.0–2.5 µm, 2.5–4.0 µm, and 4.0–10 µm), which was shown by [26] to be
nearly identical, with valid detection ranges of approximately 0.7–1.3 µm. This explains
why there is very little variation in the PM10 output during the co-location period, showing
similar values for the long range transport episodes, compared to the rest of the measuring
period (below 15 µg m−3 daily means).

The AirSensEUR sensor system, on the other hand, integrated an Alphasense N3
OPC. The N3 OPC measures, according to the manufacturer, single particles counted in
24 size bins. Unlike most OPCs the N3 OPC does not include a pump to draw aerosol
samples through a narrow inlet tube, resulting in a very low sample flow rate of 280
mL/min produced by a micro fan [29]. The N3 OPC captures the long range transport very
well, only slightly overestimating PM10 concentrations (Figure 9). This is surprising, as
for the rest of the co-location period, the AirSensEUR only shows a moderate coefficient
of determination (0.5-0.6) against the reference instrumentation. Other evaluations also
corroborate that the N3 OPC has difficulties in measuring PM10 correctly, e.g., [17,30–32].

3.7. Evaluation of the Dependency on Relative Humidity

It was shown that low-cost PM sensors can be affected when operating under non-
optimal humidity conditions as specified by the sensor manufacturer (usually above 70
percent relative humidity), which results in an overestimation of the actual PM concen-
tration, e.g., [33,34]. Figure 10 shows the relationship between the three tested sensor
systems and relative humidity during the co-location period. Similar trends can be seen
for individual sensor units from the same manufacturer on PM10 and PM2.5. The Airly
systems, with the integrated PM Plantower 5003 sensor, show a strong change in bias for
relative humidity exceeding 70 percent. The EnSense sensor systems, with the integrated
Sensirion SPS30 PM sensor, show a small change in bias for relative humidity when exceed-
ing 85 percent, whereas the ASE sensor systems, with the integrated Alphasense N3 OPC,
show a significant increase in bias as relative humidity increases and a very sharp change
toward positive bias for relative humidity exceeding 90 percent.

The commonly used explanation for this within the sensor community is that this
error occurs because the low-cost PM sensor measures in ambient conditions, compared to
reference instrumentation, which measures dry particle concentration [33]. This ambient
versus dry condition sampling is usually confused with the hygroscopic growth of particles
and the resulting positive bias due to larger particles in the sampling system. However, in
nephelometry, this error is not due to hygroscopic growth but rather due to a change in light
intensity caused by the humidity in the sampling system. Similar to organic compositions or
black carbon, water absorbs infrared radiation and can cause an overestimation of particle
mass concentrations due to the reduced light intensity received by the phototransistor [35].

The key parameter to describe the influence of RH on the aerosol light scattering is
the scattering enhancement factor f (RH, λ).

f (RH, λ) =
σsp(RH, λ)

σsp(RHdryλ))
(3)

where σsp(RH, λ) is the scattering coefficient at a defined RH and wavelength λ and
σsp(RHdryλ) is the corresponding dry scattering coefficient. f (RH, λ) will increase with
increasing RH and will usually be larger than 1, if the particles do not experience significant
restructuring when taking up water [35,36].

Given the results obtained from the three different low cost sensor systems, only
the one from EnSense seems to have solved the RH dependency in their out-of-the-box
solution. This might be either related to the nephelometer integrated in the solution, or the
calibration algorithms from the sensor system provider.
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Figure 10. Absolute bias for (a) PM10 and (b) PM2.5 as a function of relative humidity. Each line
shows the Loess fit to the respective hourly observations. Note that the data from the long-range
transport episode in early October were removed from the underlying data.

4. Conclusions

Individual sensor systems from the same manufacturer have, in general, good consis-
tency between them, which means that corrections of the data to improve their accuracy
should be valid for all sensors without the need to co-locate all individual sensors. How-
ever, sensor systems from different manufacturers do not always exhibit similarly good
correspondence when inter-compared. We have observed that sensor systems using the
same measuring technique (photometry, i.e., Airly and Ensense) compare better among
themselves than when compared with sensor systems, using a different measurement
technique (optical particle counter, i.e., AirSensEUR).

The results from the evaluation from the nine sensor systems against an optical
reference-equivalent instrument (FIDAS 200) showed that the highest correlations between
hourly sensor data and reference data are observed for PM1. The sensors using photometry
have coefficients of determination above 0.9, while the sensors using OPC have coefficients
of determination of 0.6. PM2.5 is not as well captured by the sensors as PM1, and all the
analyzed sensor systems have coefficients of determination below 0.75. The units using
the OPC N3 have the lowest correlations. All the sensor units have difficulties in correctly
measuring PM10, and the coefficient of determination varies between 0.45 and 0.64. Thus,
the results of those type of PM sensors should be used with extra caution where the main
emissions are coarse particles contributing to the PM10 concentrations (e.g., road dust
resuspension, construction including road work, demolition, etc.).

The results from the comparison of daily mean observations against the CEN reference
(Kleinfiltergerät) instrument corroborates that the PM sensor systems can measure PM2.5
but struggle to measure PM10. The units using photometry (Airly and Ensense) have
slightly better correlation (R2 = 0.9) than the sensor system using OPC (AirSensEUR)
(R2 = 0.7). For PM10, the coefficient of determination varies between 0.6 and 0.7.

The comparison against reference instrumentation also shows that, for the same sensor
system, the agreement against reference data is usually very similar. However, this is not
always the case, and some units have higher biases, which indicates the benefit of testing
all the units before deployment to properly correct biases from individual sensor systems.
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The ability of PM sensors to measure PM with reasonable accuracy is linked to the
ambient size distribution found in the local environment. For instance, if the ambient size
distribution is stable, the PM sensor can be calibrated. In our study, such limitations of PM
sensor systems becomes very pronounced when the size distribution changes in the time
period between 2nd and 5th of October, where the PM concentrations were dominated
by long range transport of desert mineral dust. During this period, the contribution of
particles larger than 2.5 µm in size on the overall mass of PM10 increased from an average
of about 5.7 µg m−3 to 47.1 µg m−3. The performance of the sensor units integrating
photometric PM sensors (Airly and Ensense) was heavily affected by this, and PM10 was
largely underestimated.

When evaluating the dependency with relative humidity, the results show that the
analyzed sensor systems have different responses to the variation of the relative humidity.
The errors are due to the change in light intensity caused by the RH in the sampling
system. We observed that only EnSense seems to have solved the RH dependency in their
out-of-the-box solution. This might be either related to the nephalometer integrated in
the solution, or the calibration algorithms from the sensor system provider. The Airly
systems, with the integrated PM Plantower 5003 sensor, show a strong change in bias for
relative humidity exceeding 70 percent, whereas the AirSensEUR sensor systems, with the
integrated Alphasense N3 OPC, show very sharp change for relative humidity exceeding
90 percent.

The sensor systems evaluated in this study show good agreement with reference
instrumentation for PM2.5, particularly those using photometry as a measuring technique.
However, they might have difficulties to correctly capture PM2.5 concentrations when
the ambient size distribution is different from the one that the sensor system has been
calibrated for. This was the case during the long-range transport event. All the sensor
systems struggled to measure PM10, posing a risk of misinterpretation of the data when
the sensors are used to monitor such a particle size.
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