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� Aethalometer and levoglucosan
methods used to estimate the
contribution of wood smoke to PM10

in London.
� Annual mean PM10 from wood
burning in London was 1.1 mg m�3.

� PM was most likely from a mixture of
wood types burnt as decorative or
secondary heating.
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Ahead of measures to incentivisewood heating, the current level of wood burning in Londonwas assessed
by two tracer methods; i) a six week campaign of daily measurements of levoglucosan along a 38 km
transect across the city duringwinter 2010, ii) a three year (2009e2011)measurement programme of black
carbon and particulatematter fromwood burning using differential IR andUV absorption byAethalometer.
Mean winter levoglucosan concentrations were 160 � 17 ng m�3 in central London and 30 � 26 ng m�3

greater in the suburbs,with good temporal correlation (r2¼ 0.68e0.98) between sampling sites. Sensitivity
testing found that the aethalometerwood burning tracermethodwasmore sensitive to the assumed value
of the Ångström coefficient for fossil fuel black carbon than it was to the Ångström coefficient for wood
burning PM, and that themodelwas optimisedwithÅngströmcoefficient for fossil fuel blackcarbonof 0.96.
The aethalometer and levoglucosan estimates of mean PM from wood burning were in good agreement
during thewinter campaign; 1.8 mgm�3 (levoglucosan) and 2.0 mgm�3 (aethalometer); i.e. between 7% and
9% of mean PM10 across the London transect. Analysis of wood burning tracers with respect to wind speed
suggested that wood burning PM was dominated by sources within the city. Concentrations of aethal-
ometer and levoglucosan wood burning tracers were a greatest at weekends suggesting discretionary or
secondary domestic wood burning rather than wood being used as a main heating source. Aethalometer
wood burning tracers suggests that the annual mean concentration of PM10 from wood burning was
1.1mgm�3. To put this in a policy context, this PM10 fromwoodburning is considerablygreater than the city-
widemean PM10 reduction of 0.17 mgm�3 predicted from the first two phases of the London Low Emission
Zone which was introduced to reduce PM from traffic sources.
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Fig. 1. Sampling locations for levoglucosan. Locations are colour coded according to
mean concentrations (ng m�3). Aethalometer measurements were undertaken at
Kensington and at a site 2 km north of the Greenwich sampling location. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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1. Introduction

Air pollution from domestic wood burning has long been
recognised as an important contributor to poor ambient air
quality in Scandinavian and alpine regions of Europe where wood
burning is routinely used for residential space heating (Puxbaum
et al., 2007; Yttri et al., 2005). However, recent evidence is sug-
gesting that biomass burning might be more widespread. Fuller
et al. (2013) highlighted PM10 from wood burning in three ma-
jor European cities: London, Paris and Berlin, and Caseiro et al.
(2009) estimated that wood burning was responsible for around
10% of wintertime PM10 in Vienna. In Flanders, Belgium wood
burning has been estimated to contribute between 5 and 6% of
annual mean PM10 in six cities and up to 13% in rural areas
(Maenhaut et al., 2012). In southern Europe, wood combustion is
estimated to comprise 60% of residential energy use in Portugal
but accounts for almost 99% of domestic PM10 emissions (Borrego
et al., 2010).

Across the European Union, the use of biomass (including wood)
in heating looks set to rise by 57%e111% between 2010 and 2020, as
the 27 member states are committed to obtain 20% of their energy
requirements from renewable sources, including biomass, as part of
a raft of proposals to reduce CO2 emissions (Wagner et al., 2010). In
response to these targets, the UK Department for Energy and
Climate Change has announced the world’s first renewable heat
incentive, which will provide a financial incentive to switch from
fossil fuel to renewables as part of a strategy to ‘de-carbonise’ the
generation of heat in domestic, business and industrial premises in
the UK (DECC, 2011). Additionally, the so-called Merton Rule
requiring 10% onsite renewable energy in large new developments
is now part of the UK planning policy (Merton, 2009). Further, there
is a risk that increased fossil fuel prices may contribute to an in-
crease in biomass burning; in Denmark Glasius et al. (2006) found
that increasing fossil fuel costs contributed to doubling of wood
stoves and boilers over a ten year period.

There is considerable uncertainty concerning the likely magni-
tude of the change in air pollution concentration arising from an
increase in wood burning. The impact will depend not only on the
uptake of wood burning but also on the type of boilers installed,
howmuch they will be used in practice and the type of wood used.
Any estimation of changes to PM10 concentration from installed
capacity is likely to be further confounded by burning of wood in
existing fire places; a source where knowledge is scarce.

The current study sought to determine the existing contribution
of wood burning to PM10 in London so that the impacts of increased
biomass burning can be quantified in the future. The measurement
strategy employed 1) a six week campaign of daily filter based
wintertime measurements of levoglucosan, an acknowledged
wood burning tracer and 2) three years of highly time resolved
(15 min mean) measurements of wood burning tracers using
aethalometers. Measurements of PM10, particulate sulphate and
ethane were also made to inform source attribution.

2. Methods

2.1. Filter sampling and measurement of levoglucosan, mannosan
and galactosan

Sampling for levoglucosan, mannosan and galactosan was car-
ried out during the middle of the 2010 winter heating period.
Sampling took place between 18th January and 28th February at
five urban background monitoring sites situated along a 38 km
transect across the city, as well as at a site (Islington) located within
20 m of a modern wood pellet boiler used for heating an education
centre (for map details see Fig. 1). Daily samples were collected
onto quartz fibre filters (47 mm, QM-A, Whatman) using Partisol
(Thermo, 2025) samplers. The sample flow was checked using a
traceable flow meter (Bios model DC-HC-1 Rev E). Sampling un-
certainties due to flow calibration have been assumed to be 1.7%
(k ¼ 1, w1s), as in EN14904.

Quantification of the levoglucosan, mannosan and galactosan
was performed according to the method described in Dye and Yttri
(2005). Briefly, a 2 cm2 punch from each quartz fibre filter was
soaked in tetrahydrofuran (2 ml) and subjected to ultrasonic
agitation (30 min). The filter extract was then filtered through a
syringe filter (0.45 mm) to remove PM and filter parts. Each filter
was extracted twice. The extracted volumes were pooled and
evaporated to a total volume of 1 ml in an N2 atmosphere. Before
analysis the sample solvent elution strength was adapted to the
mobile phase by adding Milli-Q water (0.8 ml). The concentrations
of levoglucosan, mannosan and galactosan were determined using
High Performance Liquid Chromatography (HPLC) in combination
with HRMS-TOF (High Resolution Mass Spectrometry Time-of-
Flight) operated in the negative electrospray mode. The com-
pound separation was performed with two series-connected
reversed-phase C18 columns (Atlantis dC18, Waters). Levogluco-
san, mannosan and galactosan were identified on the basis of
retention time and mass spectra of authentic standards and
quantificationwas performed using isotope labelled standards. The
limit of quantification at a signal to noise ratio of ten was approx-
imately 30 ng of injected levoglucosan. Uncertainty due to the
laboratory determination of levoglucosan was estimated at 5%
(k ¼ 1, w1s) which was assumed to be non-random. If random
uncertainty from the punch is considered, the uncertainty in indi-
vidual samples was estimated at 11% (k ¼ 1, w1s). Combined with
the smaller sampling uncertainty an overall uncertainty of 11%
(k ¼ 1, w1s) was expected for daily measurements of levoglucosan
concentrations. Following the methods in ISO 11222, for the 42 day
mean concentrations an uncertainty of 5.2% (k ¼ 1, w1s) is
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expected. Identical uncertainty was assumed for mannosan and
galactosan.
2.2. Estimates of PM10 from wood smoke using IR/UV absorption

When compared with black carbon from road transport sour-
ces, brown carbon from wood smoke has a greater absorption in
the UV wavelength compared to IR. If the wavelength dependent
absorption (the Ångström coefficient) of black and brown carbon
is known, then the wavelength dependent absorption of unknown
mixtures of carbon particles in ambient air can be disentangled to
apportion black carbon (BC) between fossil fuel and wood burning
and to provide a tracer for PM from wood burning (Wang et al.,
2011; Kirchstetter et al., 2004; Sandradewi et al., 2008a). Magee
AE-21 dual wavelength aethalometers (Hansen, 2005) measured
the IR (880 nm) and UV (370 nm) absorption of sampled PM
during 2009 and 2010 at two urban sites in London: in North
Kensington (Kensington) where levoglucosan sampling also took
place and in Greenwich, (2 km north of the levoglucosan sampling
site). Aethalometer measurements were subject to spot darkening
corrections using the Virkkula et al. (2007) method. This adjusts
the measured absorption so that the measurement immediately
before a tape advance is equal to that immediately after the tape
advance.

Briefly, it is assumed that the total absorption (Babs) at a wave-
length l is a combination of absorption due to fossil fuels; Babs (ff)
and wood burning; Babs (wb) (1)

Babs l ¼ BabsðffÞ þ BabsðwbÞ (1)

The wavelength dependent absorption of light (Babs) by aerosols
is proportional to l�a where a is the Ångström exponent such that:

BabsðffÞ ð370Þ=BabsðffÞ ð880Þ ¼ ð370=880Þ�aff (2)

BabsðwbÞ ð370Þ=BabsðwbÞ ð880Þ ¼ ð370=880Þ�awb (3)

Values of around 1 have been found for the Ångström exponent
of fossil fuel black carbon from road transport (aff). Values of
around 2 have been reported for the Ångström exponent of PM
fromwood smoke (awb) (Kirchstetter et al., 2004; Sandradewi et al.,
2008a). By solving (1)e(3) unique values for Babs (wb) (880) and
Babs (wb) (370) can be found for any aethalometer measurement of
black carbon. Babs (wb) (880) allows equivalent black carbon con-
centrations to be apportioned between the fossil fuel and wood
burning sources i.e.

Babsð880Þ ¼ BabsðffÞ ð880Þ þ BabsðwbÞ ð880Þ (4)

Additionally, Babs (wb) (370) has also been used as a tracer for
total PM fromwood burning (Sandradewi et al., 2008b; Favez et al.,
2009; Sciare et al., 2011). Babs (wb) (370), Babs(ff) (880), Babs(wb)
(880) and PM from wood burning were calculated for each
15 min mean aethalometer measurement.
Fig. 2. Daily mean concentrations of levoglucosan and mean temperature.
2.3. Other air pollution measurements

The Tapered Element Oscillating Microbalance - Filter Dynamics
Measurement System (TEOM-FDMS, Thermo) was used to measure
PM10. PM10 instruments were independently calibrated and audited
twice yearly by the National Physical Laboratory or Ricardo-AEAT
plc. Sulphate was measured on daily PM10 filter samples by the
UK Particle Numbers and Concentrations Network using ion chro-
matography (Beccaceci et al., 2011). Ethanewasmeasured using gas
chromatography (Perkin Elmer) by the UK Hydrocarbon Network
(Yardley et al., 2011).

2.4. Meteorological measurements and analysis

Wind speed measurements (Gill, Windsonic) were made on a
5 m mast at the Bexley site at the east end of the levoglucosan
transect. The mast was situated in an open grass area free from
obstructions to a distance of approximately 20 m. Ambient tem-
perature was also measured at the site at a height of around 2 m.
Meteorological measurements at Bexleywere assumed to represent
conditions along the whole levoglucosan sampling transect which
largely followed the line of the tidal Thames estuary.

3. Results and discussion

3.1. Levoglucosan

Levoglucosan was employed as the most recognized marker for
tracing emissions of particulate matter from biomass burning for
several reasons: it is emitted in high concentrations, it is not pre-
sent in the vapour phase, it is associated with fine aerosols exclu-
sively, and, until recently it was not thought to be selectively
removed from the atmosphere (Simoneit et al., 1999). More
recently, chamber studies by Hoffmann et al., (2010) and Hennigan
et al. (2010) found evidence of levoglucosan being depleted
following from reaction with the OH radical. However, this is not
likely to be a major sink when tracing local sources during
wintertime. Concentrations of levoglucosan (Fig. 2 and Table 1)
showed substantial daily variation, between 43 � 9 ng m�3 and
729 � 160 ng m�3 (k ¼ 2, w2s). Mean concentrations of levoglu-
cosan ranged from 160 � 17 ng m�3 in central London to
190 � 20 ng m�3 (k ¼ 2,w2s) in the east and west London suburbs
as shown in Fig. 1; a difference of 30 � 26 ng m�3 (k ¼ 2, w2s) or
19 � 16% of the inner London concentration. Correlations (r2) be-
tween daily levoglucosan measurements at pairs of sites were
lowest between inner London sites and those in the suburbs (0.68)
and highest between the two inner London sites (0.98). A
maximum (r2) of 0.89 was found between suburban sites. Corre-
lations (r) between the levoglucosan concentrations and temper-
ature were low, ranging between �0.15 and �0.22 suggesting that
where biomass is being used, it is not being used as a main or sole
heating source. Levoglucosan measured at the Islington site was
within the range of the other sites in the study despite its proximity
to a wood chip burner, however wind only blew from the direction



Table 1
Minimum, mean, and maximum levoglucosan along with mean concentrations of
mannosan and glactosan at each sampling site. Sites are listed from west to east
along the transect.

Site ng m�3

Levoglucosan Mannosan Galactosan

Min Mean Max Mean Mean

Ealing 57 � 6 190 � 21 490 � 55 24 � 6 11 � 3
Kensington 48 � 5 180 � 20 397 � 44 24 � 5 11 � 2
Westminster 40 � 4 162 � 18 385 � 43 22 � 5 10 � 2
Islington 56 � 6 171 � 19 385 � 43 24 � 5 10 � 2
Greenwich 53 � 5 180 � 20 430 � 48 23 � 5 10 � 2
Bexley 52 � 5 190 � 21 729 � 82 24 � 5 10 � 2
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of the wood chip burner (�20�) for 6% of the sampling period.
Additionally it is possible that the sampling sitewas too close to the
wood chip burner for the buoyant burner plume to be detected.

With considerable variation expected in atmospheric dispersion
it is difficult to draw conclusions about levoglucosan sources from a
short measurement campaign. Derwent et al. (1995) suggested the
use of ambient ethane, which arises from leakages in the natural
gas distribution network, as a tracer for dispersion of diffuse urban
sources. Measurements of ethane were made at the kerbside in
central London as part of a measurement programme that began in
1998. To disentangle the effects of dispersion from variations in
emissions, simple regression models (using standard major axis
regression) were constructed using ethane as a predictor of the
daily mean levoglucosan concentration. A separate model was
constructed for each levoglucosan sampling location using data
from all of the other sites. The variation in the mean relative re-
siduals [(measured � prediction)/prediction] for each weekday are
shown in Fig. 3. It is clear that the levoglucosan concentration is
greater than predicted at weekends; by up to 30% on Saturdays and
up to 54% on Sundays, suggesting greater emissions when
compared with weekdays.

In the absence of data on wood consumption, ratios of anhy-
drous sugars can point to the type of wood being burnt (Schmidl
et al., 2008). Mean levoglucosan to mannosan ratios were 7.1e7.8
across the six London sites suggesting a mixture of hard and soft
wood burning.

3.2. Sensitivity testing of the aethalometer wood smoke model

The aethalometer method for tracing of wood burning PM de-
pends on differences between the values of the wavelength
Fig. 3. Mean relative residual levoglucosan from ethane regression model, averaged by
day of week.
dependent absorption (the Ångström coefficient) a for fossil fuel
black carbon and for brown carbon from wood burning. It is how-
ever unclear how the assumptions about the values of a for fossil-
fuel black carbon and wood burning brown carbon affect the esti-
mates of wood burning PM using this approach. A series of sensi-
tivity tests were therefore undertaken using the measurements
from the Kensington aethalometer. Additionally, comparison of the
aethalometer and levogluocosan methods at Kensington, provided
further opportunities to conduct sensitivity testing of the aethal-
ometer model. Clearly measurements from both methods should
be correlated but the magnitude of the levoglucosan and Babs (wb)
(370) cannot be usefully used to test variations in aff and awb since
both require the applications of further factors before an estimate
of PM mass concentration can be obtained. However, it is expected
that zero (or null) concentrations of both tracers should occur at the
same time. Although zero measurements were not present in the
dataset, the regression intercept of levoglucosan on Babs (wb) (370)
should be zero if the methods are consistent and both tracers
experience the same rate of atmospheric removal.

By varying aff and awb by 10% from the commonly used values of
aff ¼ 1.0 and awb ¼ 2.0 it was found that mean values of the wood
burning tracer Babs (wb) (370) was more sensitive to changes in aff
(þ20% at aff ¼ 0.9 and �26% at aff ¼ 1.1) than it was to changes in
awb (�10% at awb ¼ 2.2 and þ16% at awb ¼ 1.8). Increasing awb by
50% to 3.0 led to a decrease in Babs (wb) (370) by 30%.
Fig. 4. Upper panel shows the standard major axis regression intercept of levoglucosan
tracer Babs (wb) (370) as a function of aff. Lower panel shows the aethalometer wood
burning tracer Babs (wb) (370) as a function of aff. In both cases measurements were
made at Kensington. Bold lines show results with awb ¼ 2 and dotted lines indicate
results when awb was varied between 1.8 and 2.2.
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Using aff ¼ 1.0 and awb ¼ 2.0, correlations (r2) between levo-
glucosan and Babs (wb) (370) were good (0.79) and, as expected
from solution to Equations (1)e(3), this did not vary when awb was
varied between 1.8 and 2.2. Fig. 4 (upper) shows how the reduced
major axis (RMA) regression intercept varied as aff was varied be-
tween 0.2 and 1.3. It was found that a levoglucosan (RMA) regres-
sion intercept of zero was only possible at an aff value of 0.96,
consistent with the literature estimates of aff. At this value the
intercept became insensitive to variations in awb. Looking at this
test another way, this use of aethalometer and levoglucosan mea-
surements to derive an aff; a physical property of ambient black
carbon that was consistent with literature estimates, contributes to
the validity of the aethalometer method to trace wood burning PM.
Fig. 4 (lower) shows the effect of a varying aff on the magnitude of
Babs (wb) (370), with awb additionally varied between 1.8 and 2.2 as
suggested by Kirchstetter et al. (2004). It can be seen that the
sensitivity of Babs (wb) (370) to changes in awb were fairly constant
for values aff < 1 but it became insensitive to changes in awb as the
aethalometer model broke down and produced large negative in-
tercepts of levoglucosan on Babs (wb) (370) and as Babs (wb) (370)
approached zero with values of aff above 1.2.
3.3. Wood smoke tracers and wind speed

Relationships between wind speed and pollutants have been
explored extensively by Jones et al. (2010) who found differing
wind speed dependences for local and distant sources. To investi-
gate the origins of wood smoke PM in London, daily mean levo-
glucosan and mean Babs (wb) (370) across the study sites were
compared to daily mean wind speed according to 0.25 m s�1 wind
speed intervals. The top 5% of wind speed measurements were
excluded from the analysis due to the relative scarcity of observa-
tions, which could induce large uncertainty in the averaging pro-
cess. To aid interpretation, daily mean concentrations of sulphate at
Kensington were included in the analysis as a tracer for long range
PM transport, whereas daily mean ethane concentrations and ab-
sorption due to fossil fuel black carbon, Babs (ff) (880), were used as
tracers of diffuse urban sources.

As shown in Fig. 5, the mean concentration of sulphate was
greatest for wind speeds between 1 and 2 m s�1. A similar rela-
tionship was found by Smith et al. (2001) who concluded that the
long range transport of PM10 into London is notmaximalwhenwind
speeds are lowest, but instead wind speed is required for advection
Fig. 5. Relative, mean concentration of levoglucosan, sulphate and ethane along with
the black carbon wood burning tracer Babs (wb) (370) and the black carbon fossil fuel
tracer Babs (ff) (880) averaged by wind speed.
to take place. By contrast, the mean concentration of levoglucosan
and Babs (wb) (370) showed greatest concentrations at lowest wind
speeds and decreased with increasing daily mean wind speed,
consistent with that of ethane and Babs (ff) (880), suggesting that
wood smoke PM in London was mainly from diffuse urban sources
and not advected into the city from more distant source regions.

3.4. Quantifying PM from wood burning

Both levoglucosan and aethalometer methods provide mea-
surements of wood burning tracers, which require multiplication
by factors to provide estimates of PM from wood burning.

For levoglucosan, a range of factors are reported in the literature.
Further, emissions ratios of PM are known to vary according to the
wood burnt. Having reviewed a wide range of laboratory tests,
Puxbaum et al. (2007) suggested a factor of 7.35 to convert levo-
glucosan to organic carbon with an additional factor of 1.4 to esti-
mate the organic mass for fresh wood burning. This is similar to the
factor of 10 (range 5.5e14) estimated by Szidat et al. (2009).
However, it is clear from the studies reviewed in Puxbaum et al.
(2007) that wood burning also gives rise to elemental carbon (EC)
emissions. These studies show a mean elemental carbon to levo-
glucosan emissions ratio of 0.9 (range 0.1e2.4, from five studies).
An additional EC to levoglucosan factor of 1 was therefore included
to provide a levoglucosan to PM emissions ratio of 11.

Other studies have derived factors to estimate PM from wood
burning for the aethalometer model using linear regression with
ambient elemental and organic carbon concentrations. A factor of
675,000 mg Mm�2 was chosen as a mean based on the studies by
Favez et al. (2009, 2010), Sandrewi et al. (2008a,b) and Sciare et al.
(2011) (range 541,000e810,000 mg Mm�2, at 470 nm). This is
similar to the value of 632,420 mg Mm�2 derived for the UK by
Harrison et al. (2012). This factor was converted to the 370 nm
channel response using equation (3). Fig. 6 shows good agreement
between the time series of estimated PM at Kensington using both
methods, although, the aethalometer model notably un-
derestimates the levoglucosan method on 22nd and 29th January
and 18th February. RMA regression between the two variables at
Kensington gives:

½PMwood Aethalometer� ¼ð0:95� 0:0Þ ½PMwood levo�
þ ð0:06� 0:14Þ; r ¼ 0:92 n ¼ 42:
Fig. 6. Daily mean wood burning PM at Kensington using levoglucosan and aethal-
ometer methods.
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Fig. 7. Equivalent black carbon concentrations apportioned between fossil fuel and wood burning at Kensington. Concentrations were averaged by hour, day of week, and month
using Openair (Carslaw and Ropkins, 2012).
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A slightly worse agreement was obtained between the Green-
wich aethalometer and levoglucosan estimates of PM from wood
burning, which may be due to their 2 km separation distance:

½PM wood Aethalometer� ¼ ð0:78� 0:05Þ ½PM wood levo�
þ ð0:06� 0:13Þ; r ¼ 0:89 n ¼ 42:

During the wintertime levoglucosan sampling campaign, the
mean estimated concentration of PM from wood burning at Ken-
sington was 1.8 mg m�3 from the levoglucosan method and
2.0 mg m�3 from the aethalometer model; corresponding to
approximately 8% of the total PM10 concentration (22.7 mgm�3) and
approximately 12% of PM2.5 (16.4 mg m�3). Based on the levoglu-
cosan sampling, PM fromwood burning comprised between 8% and
10% of the mean PM10 across the London transect during the
wintertime sampling period.
3.5. Aethalometer estimates of equivalent black carbon and PM
from wood burning 2009 to 2011

Fig. 7 shows equivalent black carbon concentrations from fossil
fuel and wood burning, calculated using Equation (4) and
assuming same mass absorption coefficient applies to equivalent
black carbon from both origins. The default aethalometer value of
16.6 m�2 g�1 was applied following analysis by Butterfield et al.
(2011) which showed good agreement (linear regression gradi-
ents between 0.86 and 1.25, r2 range 0.55e0.94) between
aethalometer black carbon using this default value and elemental
carbon measured using a NIOSH protocol at UK three locations,
including Kensington (Butterfield et al., 2011). Each panel shows
mean concentrations averaged over different time periods. The
upper panel shows a clear weekday traffic profile in the equivalent
black carbon from traffic, with a pronounced morning peak which
is not present at weekends. By contrast equivalent black carbon
from wood burning shows elevated concentrations during the
evenings with greatest concentrations at weekends. The monthly
contributions of wood burning to equivalent black carbon varied
seasonally; from 23% during January and December to 11% during
May and July.

Looking at the aethalometer estimates of total PM from wood
burning during the three years 2009e2011, it was found that the
mean PM from wood burning at Greenwich was 1.1 mg m�3; 5% of
the mean PM10. At Kensington, the mean PM from wood burning
was 1.2 mgm�3; 6% of the mean PM10. The monthly contributions of
wood burning to PM10 varied seasonally; from 10% during January
to 2% during August.

4. Conclusions

The combination of levoglucosan and aethalometer mea-
surements as wood burning tracers provided new insights into
sources of ambient airborne particles in London. Good agree-
ment was found between the two methods in terms of their
temporal correlation and the magnitude of the estimated PM
from wood burning. By using levoglucosan measurements to
constrain sensitivity testing it was shown that the aethalometer
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model was optimised at an Ångström exponent (aff) of 0.96 for
black carbon from fossil fuel; very close to the value of 1.0 ex-
pected from other experimental literature, further confirming
the validity of the aethalometer approach. At a value of
aff ¼ 0.96, a �10% change in awb varied the estimates of wood
burning PM by �10% and þ16%.

Although the 2010 wintertime concentration of levoglucosan in
London (184 ng m�3) was at the low end of wintertime measure-
ments in other European urban areas (60e900 ng m�3 across 15
studies reported in Szidat et al., 2009), both levoglucosan and
aethalometer measurements suggest that PM from wood burning
already makes an important contribution to wintertime PM10
concentrations in London. New government financial incentives
and requirements for new building are highly likely to lead to an
increase in PM10 from this source. Analysis of the relationship be-
tween wood smoke tracers and wind speed indicated that wood
burning PM was not related to long range transport but instead
arose from sources within London. Both methods suggested that
wood smoke PM10 was greatest during evenings and also at
weekends, which also reflected local domestic burning. Poor cor-
relations between wood burning tracers and daily mean tempera-
ture suggest that Londoners are burning wood as a decorative or
secondary heating source rather than as a primary form of heating.
This secondary heating is unlikely to merit investment in specif-
ically designed wood stoves but likely reflects the UK practice of
burning wood in existing fire places and grates originally designed
for coal burning (a practice noted in Lee et al., 2005). Smoke Control
Areas, introduced to almost all of Greater London under the 1956
Clean Air Act, should prohibit the burning of wood unless it is
carried out in a specifically designed and authorised boiler or stove
(Defra, 2010). The evidence of widespread wood burning in London
may suggest that smoke control legislation is no longer effective.
Increases in PM10 from wood burning risks undermining other
polices aimed at achieving compliance with EU Limit Values. For
example the first two phases of London’s Low Emission Zone, the
largest such scheme in the world, were estimated to achieve a
London-wide mean PM10 reduction of 0.17 mg m�3 (TfL, 2008);
considerably less than the annual mean concentration of 1.1 mgm�3

estimated to arise from wood burning.
The aethalometer measurements also suggested some sum-

mertime sources of wood smoke, as have been previously observed
(Puxbaum et al., 2007; Saarikoski et al., 2008). The presence of a
summer-time wood burning raises the possibility that garden
waste burning, patio wood burners and other summertime sources
also make measurable contributions to London’s PM10. Another
possibility is a small contribution from long-range transport that
was not apparent during our winter campaign.

Levoglucosan measurements suggested slightly greater wood
burning in suburban London when compared to the central area,
similar to the spatial gradients found in Berlin by Wagener et al.
(2012) but importantly wood burning was not confined to the
outer suburbs.

Toxicological evidence also gives rise to concerns about health
effects from increased wood burning (Bølling et al., 2009). Addi-
tionally, domestic wood burning takes place where people live and
at times when they are at home. Coupled with poor winter night-
time dispersion, Reis et al. (2009) suggested that even modest
wood burning in densely populated residential areas may lead to
PM exposures comparable to those from traffic sources.
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