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Abstract: During the last two decades several nanoscale materials were engineered for industrial
and medical applications. Among them carbon nanotubes (CNTs) are the most exploited nanoma-
terials with global production of around 1000 tons/year. Besides several commercial benefits of
CNTs, the fiber-like structures and their bio-persistency in lung tissues raise serious concerns about
the possible adverse human health effects resembling those of asbestos fibers. In this review, we
present a comparative analysis between CNTs and asbestos fibers using the following four parameters:
(1) fibrous needle-like shape, (2) bio-persistent nature, (3) high surface to volume ratio and
(4) capacity to adsorb toxicants/pollutants on the surface. We also compare mechanisms underlying
the toxicity caused by certain diameters and lengths of CNTs and asbestos fibers using downstream
pathways associated with altered gene expression data from both asbestos and CNT exposure. Our
results suggest that indeed certain types of CNTs are emulating asbestos fiber as far as associated
toxicity is concerned.

Keywords: carbon nanotubes; asbestos; exposure; fiber toxicity; toxicity pathways

1. Introduction

The last few decades have seen an explosion of thousands of engineered nanomaterials
synthesized with precise size, shape and structural specifications. These nano-structured
materials are composed of different base materials (mainly carbon, silicon and metals, such
as gold, silver, titanium, cadmium and selenium) and have numerous novel and useful
properties as they have substantially more reactive atoms on their surfaces compared to
similar materials in the micro size range. Among the newly designed materials, carbon
nanomaterials are the most used engineered nanomaterials in the form of nanoparticles,
nanowires or nanotubes. Carbon nanotubes (CNTs) are hollow nanofibers of single (single
wall carbon nanotube—SWCNT) or multiple (multi-wall carbon nanotube—MWCNT)
layers of carbon atoms arranged in a honeycomb-like structure with two dimensions sized
in nanoscale, i.e., 1–100 nm while the third dimension is very long (sometimes up to
several millimeters in lengths), comparable to fibrous materials [1]. Due to their unique
electrochemical properties, effectiveness in heat conductivity, unusual strength (10-fold
stronger than steel and 1.2-fold harder than diamond) and very light weight [2], CNTs have
emerged as highly exploitable materials for a wide spectrum of industrial and medical
applications [3–7]. The global market of CNT, which was around $50.9 million in 2006 [8]
had increased to $4.47 billion by 2018 and is expected to reach around $15 billion by 2026 [9].
The properties responsible for the exponential growth in the application and production of
CNTs also raise potential concerns about potential adverse health effects. In particular, the
fiber-like structure, high aspect ratios (high length: width ratio), physiochemical durability
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and presumed bio-persistency in lung tissues are linked to past experience with hazardous
asbestos fibers, have brought these materials under scrutiny [10–16].

Various epidemiological and animal studies have shown that other non-asbestos
fibers, e.g., erionite, fluoro-edenite, organic fibers from plant origin and manmade vitreous
fibers that are more than 5µm in length and narrow enough to reach the distal lung upon
inhalation might conform to the ‘fibre pathogenicity paradigm’ and might be associated
with development of malignant mesothelioma [17–25]. These studies indicate that fiber
morphology is one of the main decisive factors responsible for malignant mesothelioma in
the exposed population. Several groups have pointed out the potential of CNTs to induce
malignant mesothelioma in a way similar to asbestos fibers [11,24,26–32].

Earlier studies revealed a high level of genetic damage in the lymphocytes of workers
exposed in an asbestos factory, particularly among workers who also smoked [33]. In one
study on male Fischer rats, Sakamoto and colleagues assessed the carcinogenic hazard of
MWCNTs (1 mg/kg body weight) compared to crocidolite (blue asbestos) (2 mg/kg body
weight) exposure. They found that after 37–40 weeks, 6 of the 7 MWCNT-treated animals
(85.7%) died or became moribund due to intraperitoneally disseminated mesothelioma
associated with bloody ascites, while all crocidolite-treated rats survived for 52 weeks
without any changes except deposition of asbestos. Their results suggest that MWCNTs
are capable of inducing mesothelioma at a high rate in normal male rats compared to
asbestos [24]. Similarly, Takagi and colleagues have demonstrated that MWCNTs form
fibrous or rod-shaped particles of length around 10–20 µm and induce mesothelioma in a
similar way to crocidolite [34].

Generally, the harmful effects of CNTs arise from the combination of various param-
eters that are known to be associated with fiber pathogenicity, and the following four
are of great concern: (a) high surface to volume ratio, (b) fibrous needle-like shape that
resembles asbestos, (c) bio-persistent nature of nanotubes and (d) capacity to adsorb toxi-
cants/pollutants on the surface. The first two parameters are invariably the same for any
type of fibrous structures capable of inducing acute pleural inflammation while the last
two depend on the chemical nature of fibers. The pathogenicity paradigm of long, thin and
bio-persistent fibers is shown in Figure 1.

CNTs have been listed by the International Chemical Secretariat (ChemSec) as so-
called SIN (‘Substitute It Now’) chemicals to be restricted or banned in the EU in November
2019 [35], www.sinlist.chemsec.org accessed on 15 January 2022). However, there are
numerous types of CNTs and they differ substantially in physico-chemical properties, and
so cannot be evaluated only on the basis of chemical composition [36]. MWCNT-7 has been
already classified as possibly carcinogenic to humans by IARC (Group 2B) [37]. CNTs have
a high aspect ratio which resembles that of asbestos and other fibers causing lung cancer
and mesothelioma.

High aspect ratio nanomaterials (HARN) are defined as nanofibers with two similar
external dimensions and a significantly larger third dimension (aspect ratio of 3:1 or greater)
and substantially parallel sides’ [38]. Not all HARNs are associated with mesothelioma [39],
and aspect ratio is not the only factor responsible for potential pathogenicity.

www.sinlist.chemsec.org
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Figure 1. Pathogenicity paradigm of long, thin, bio-persistent fibers on mesothelial cells and
macrophage. Fibers, once inhaled, induces cell injury either by piercing or internalization in mesothe-
lial cells, resulting in mutation and cell activation. On the other hands, foreign fibers recognized by
macrophages resulted in the incomplete phagocytosis due to length and bio-persistent nature. This
incomplete phagocytosis frustrates macrophages that result in elevated level of cytokines and ROS
which indirectly associated with the activation of cancer signaling pathways.

2. Do Asbestos and CNTs Have the Same Mechanism of Pathogenicity?

To identify the commonality between asbestos and CNT pathogenicity, it is impor-
tant to understand the mechanism by which asbestos induces asbestosis, bronchogenic
carcinoma and mesothelioma in humans. Bernstein and colleagues proposed that the
mechanisms of lung disease caused by certain fibers are numerous and include mainly
oxidative stress, inflammation and direct or indirect genotoxicity [40]. As reviewed by Na-
gai and Toyokuni, there are four main hypotheses (highlighted in Figure 2), regarding the
mechanisms of asbestos-induced pathogenicity [41]. (a) oxidative stress, (b) chromosome
tangling, (c) adsorption and (d) chronic inflammation. Various studies were conducted in
the past to support these hypotheses. Interestingly, several studies on CNTs have reported
similar mechanisms of action as discussed in the following text.
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Figure 2. The four possible mechanisms of asbestos/CNTs induced pathogenicity i.e., oxidative stress
theory, chromosomal tangling theory, adsorption theory and chronic inflammation theory are highlighted.

2.1. Oxidative Stress Theory

The first theory postulates the generation of reactive oxygen and nitrogen species
(ROS/RNS) as a consequence of injury to pleural mesothelioma cells injury due to exposure
to asbestos fibers [42–47]. Several studies also showed the formation of free radicals, accu-
mulation of peroxidative products and depletion of cell antioxidants in the keratinocytes
and bronchial epithelial cells exposed in vitro to SWCNTs [48–50] and MWCNTs [51–55].
Like asbestos, SWCNTs/MWCNTs contain high levels of Fe, Ni, Co, Mo and other tran-
sition metal impurities which are known to induce ROS/RNS formation. These metals
or metal mixtures are common components used in CNT synthesis, and all of these have
demonstrated toxicity [56,57]. In general, each CNT sample invariably contains three
classes of residual impurities from the synthesis process: metals, organics, and growth
support material. It is worth mentioning that even purified grade CNTs still contain
1–5% residual metal by mass [58]. The residual organics include various forms of bulk
carbon (amorphous soot particles or micro-structured graphite sheets) and other residual
organic molecules. Aluminate and silicate residues are shown to be present on CNTs as
they are used as materials to support the catalyst or growth region [59]. Furthermore, func-
tionalization of CNTs by the addition of certain surface molecule groups can modify their
specific toxicity [60,61]. Mainly the metals, organics and growth support materials present
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on CNTs, when they come into the contact with cells, result in oxidative stress [57,62–64]
and damage cellular macromolecules.

Oxidative stress induced by asbestos activates several signaling cascades that are
necessary for cell proliferation, such as, MAPK, NF-kB, AP-1 and ERK 1/2 [65–69] in dose-
and time-dependent manner. AP-1 and NF-kB (redox-sensitive transcription factors), which
are activated by asbestos/CNT exposure, regulate expression of several genes involved
in inflammation, proliferation, apoptosis and the carcinogenesis process. Several studies
report the mitochondria-mediated production of ROS, their localization and the resulting
damage in response to asbestos/CNT exposures [70–78].

In their study on male CD-ICR mice, Yang and colleagues showed accumulation of
SWCNTs in the liver, spleen and lung 90 days after a single tail vein injection with 40 µg,
200 µg or 1.0 mg of SWCNTs per mouse (10–30 nm diameter and 2–3 µm length, containing
impurities (wt%): Fe 0.4, Ni 3.0 and Y 1.3) [79]. Although no abnormal symptoms were
observed, reduced glutathione (GSH) levels were found in the liver and lungs of all exposed
groups along with increases in malondialdehyde (MDA) levels in the liver and lung indicating
that SWCNTs induce oxidative damage. In another study, Murray and colleagues measured
the dermal toxicity of purified/unpurified SWCNT both in vitro and in vivo using EpiDerm
FT engineered skin, murine epidermal cells (JB6 P+) and immune-competent nude SKH-1 mice.
Upon SWCNT exposure, the EpiDerm FT engineered skin, showed enhanced epidermal
thickness due to accumulation and activation of dermal fibroblasts. The unpurified SWCNTs
(with 30% Fe) exposure to JB6 P+ cells resulted in an increase in hydroxyl radical concentration.
Although no significant changes were observed in the AP-1 activation with the partially
purified SWCNTs (with 0.23% Fe), NF-kB was activated in a dose-dependent manner by
exposure to both unpurified and partially purified SWCNTs. Reduction in glutathione
concentration and oxidation of protein thiols/carbonyls were observed in SKH-1 mice due to
oxidative stress when they were exposed to unpurified SWCNTs (5 days, with daily doses
of 40 µg/mouse, 80 µg/mouse or 160 µg/mouse) [80]. These data highlight the role of
SWCNT-mediated oxidative stress in causing dermal toxicity.

In another study with industrial MWCNTs (6–24 nm in diameter and 2–5 µm in length,
containing 0.4 wt% Fe impurity), Thurnherr and colleagues exposed A549 human lung
epithelial cells and T lymphocytes for 2 h. They observed concentration-dependent levels of
ROS and decreased mitochondrial activities; however, no morphological changes in the cells
were noticed [81]. Fenoglio and co-workers exposed murine alveolar macrophages (MH-S)
with two distinct sets of MWCNTs with similar length (<5 µm) but different diameters
(9.4 and 70 nm). Both samples were internalized in the MH-S cells; however, the MWCNTs
with thin diameter generated a high level of ROS as measured by DCF-DA fluorescence in
comparison to those of larger diameter on a mass-dose basis, confirming that thin MWCNTs
are more toxic [82].

In a study on rat epithelial cells exposed to MWCNTs, researchers found induction of
mitochondrial apoptotic factors responsible for the reduced cellular ATP contents due to
the collapse of mitochondrial membrane integrity [83]. Zhou and co-workers have reported
changes in the mitochondrial transmembrane potential caused by localization of PL-PEG
functionalized SWCNTs in mitochondria of both tumor as well as normal cells [73], ulti-
mately leading to exaggerated ROS production due to collapse of mitochondrial membrane
potential. A dose- and time-dependent decrease in the mitochondrial membrane potential
due to generation of intracellular oxygen species was observed in rat macrophages and
A549 cells exposed to commercially available SWCNTs and MWCNTs with metal impu-
rities whereas no effect was detected with the CNTs treated with acid to remove residual
transitional metal traces [84]. These findings suggest that cells exposed to CNTs will have
dysfunctional mitochondrial activities. However, a study in A549 cells, in which the ROS
formation induced by MWCNTs was independent of mitochondrial activity as measured
by MTT assay, suggests that there are also other factors that generate ROS after CNT expo-
sure [85]. The ROS generated on exposure to fibers were shown to cause lipid peroxidation
as indicated by the synthesis of mutagenic compounds such as malondialdehyde (MDA)
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and 4-hydroxynenal. MDA formation was observed after exposure of HUVEC cells [86]
and A549 cells [85] to MWCNTs. High levels of MDA were also observed in rat blood
and bronchoalveolar lavage fluid after CNT exposure through intraperitoneal/intravenous
injections or via intratracheal instillation [86–88].

Several studies have shown that exposure to fibers causes depletion of intracellular
antioxidant defense by the generation of free radicals. The A549 cells when exposed with
crocidolite-like silicate fibers inhibited the pentose phosphate pathway (a key antioxidant
intracellular system) by the inhibition of glucose-6-phosphate dehydrogenase [89]. The
same cell lines when exposed to MWCNTs were also found to have reduced catalase and
glutathione activity [85]. SWCNTs also elicit the same effect in rat lung epithelial cells [90].

All these studies clearly indicate that both asbestos and CNT fibers share common
mechanisms of oxidative stress upon exposure.

2.2. Chromosome Tangling

Several studies have demonstrated the disruption of chromosomal structure, due to
asbestos fiber exposure at the time of mitosis, resulting in the inheritance of abnormal chro-
mosome by the daughter cells including mesothelial cells [91–96]. Trisomy of chromosome
11 was found in six out of eight Syrian hamster embryo cell lines derived immediately after
asbestos exposure [97]. Jiang and colleagues have demonstrated the direct interaction of
asbestos fibers with the chromosomes [98]. Exposure of cultured cells with chrysotile have
been shown to cause double strand breaks in DNA [99,100] along with intrachromosomal
deletion and DNA mutations [101]. Cortez and co-workers have identified aneuploid cell
formation, increased number of cells in G2/M phase and cells with multipolar mitosis in an
in vitro study of chrysotile-exposed lung cancer cells [102]. Various types of chromosomal
damage may be observed in cells presented with asbestos fibers, including chromosomal
breaks and fragments (micronuclei), exchange of chromosomal, lagging chromosomes,
segments between two chromosomes and chromosomal mis-segregation [103]. Some of the
asbestos fibers genotoxicity studies are highlighted in Table 1.

Table 1. Selected studies related to the asbestos induced genotoxicity.

Fiber Type Size Test System Key Findings Refs.

Crocidolite
asbestos

Length > 5 µm and
diameter < 2 µm

8-week-old transgenic F344 rats bearing
multiple copies of λlacI shuttle vectors.
Mutation frequencies after the administration
of 2 and 5 mg of crocidolite were analyzed in
DNA of omentum, a relevant target tissue for
mesothelioma carcinogenesis.

Reactive oxygen or nitrogen
species in crocidolite asbestos
fibers induces mutagenesis.

[104]

Crocidolite
asbestos

Mean length 10 µm and
mean diameter 0.21 µm

Human bronchial epithelial cancer (A549)
cell line was exposed to asbestos, silica and
TiO2 particles to analyze ROS, apoptosis and
DNA double-strand breaks.

Crocidolite has a greater
carcinogenic potential than silica
and TiO2, judged by its ability to
cause sustained genomic
instability in normal lung cells.

[100]

Crocidolite fibers Length 3.2 ± 1.0 µm and
diameter 0.22 ± 0.01 µm

Hamster hybrid (AL) cells, containinga
standard set of CHO-K1 chromosomes and a
single copy of humanchromosome 11
exposed to crocidolite fiber for various
periods of time.

Extra-nuclear targets play an
essential role in the initiation of
oxidativedamage in fiber
mutagenesis in mammalian cells.

[105]

Crocidolite fibers Length > 5 µm and
diameter < 3 µm

Transgenic male LacI mice to study the
mutagenesis potential of asbestos crocidolite.
Mice were exposed to an aerosol containing
5.75 mg/m3 crocidolite dust for 6 hr/day and
5 consecutive days.

Significant increase of the mutant
frequency of lung DNA after
nose-only fiber inhalation.

[106]

Chrysotile and
Crocidolite asbestos

Length > 4 µm and
diameter < 2 µm

Immortalized human SAE cells were treated
with chrysotile or crocidolite at
concentrations of 0.5, 1, 2 and/or 4 µg/cm2

for 12, 24 or 48 h.

Asbestos may initiate
mitochondria-associated ROS,
which mediate asbestos-induced
nuclear mutagenic events and
inflammatory signaling pathways
in exposed cells.

[107]
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Similar to the asbestos fibers, several carbon-based nanomaterials exhibit genotox-
icity [52,108,109]. MWCNTs were found to be genotoxic to human lung cells in vitro at
occupationally relevant dose [110–112]. Sasaki and colleagues analyzed MWCNTs with dif-
ferent shape and size and found that straight MWCNTs induce more polyploidy followed
by curved and tangled fibers in Chinese hamster lung cell line (CHL/IU) [112]. Siegrist
and colleagues showed cell cycle disruption, mitotic spindle disruption and aneuploidy in
human lung epithelial cell lines (BEAR-2B and SAEC) exposed to MWCNT-7, designed by
the International Agency for Research on Cancer, and two physiochemically-altered MWC-
NTs [111]. SWCNTs/MWCNTs (~1–25 nm diameter and ~500–1000 nm in length) have
been shown to disrupt chromosomal distribution during mitosis resulting in aneuploidy
in the daughter cells [113–117]. Li et al. observed that SWCNTs preferentially bind to the
major groove of DNA with GC preference [118]. The inhibition of DNA duplex association
and formation of telomeric i-motif was also observed due to the binding of SWCNTs at
the 5′-end major groove of DNA [119]. Mangum and co-workers showed the joining of
daughter cells of alveolar macrophages by the formation of carbon bridges composed of
CNTs [120]. CNT exposure significantly increased micronuclei in human primary small
airway epithelial cells (SAEC) indicating aneugenic events triggered by CNTs [121]. Sargent
and co-workers have shown mitotic spindle aberrations in SAEC exposed to 24, 48 and 96
µg/cm2 SWCNTs [114]. Moreover, fragmented centrosomes, disrupted mitotic spindles and
aneuploidy were observed in the SAEC exposed to SWCNTs for 24–72 h at doses equivalent
to 20 weeks of exposure at the permissible exposure limit for particulates [113]. In a study
by Zhu and colleagues on mouse embryonic stem cells, MWCNTs were shown to increase
the mutation frequency by 2-fold compared to the spontaneous mutation frequency. The
increased expression of the key base excision repair pathway enzyme 8-oxoguanine-DNA
glycosylase 1 (OGG1) and double strand break repair proteins (Rad51 and XRCC4) was
also observed with MWCNT exposure [122].

These studies clearly suggest that both asbestos and CNTs induce genotoxicity due to
disruption of chromosomal structure, mutations and double-strand DNA breakage. Table 2
shows some of the important genotoxicity studies after the exposure of SWNCTs/MWCNTs
in both in vitro and in vivo settings.

Table 2. Selected genotoxicity studies related to the exposure of carbon nanotubes.

Fiber Type Size Test System Key Findings Refs.

SWCNT and
MWCNT

SWCNT: (D) < 2 nm, (L)
4–15 µm
MWCNT: (D) 10–30 nm, (L)
1–2 µm

Urinary mutagenicity study in male
Fischer-344 rats by oral administration with a
single dose of 50 mg/kg body weight of
SWCNT or MWCNT.

No increase in urinary
mutagenicity were observed in rat
using Ames test. SWCNTs and
MWCNTs were deposited in the
lung and induced an acute lung
and systemic effect, which was
more pronounced in the
MWCNT exposure.

[123]

SWCNT and
MWCNT

SWCNT: (D) 0.8–1.2 nm, (L)
0.1–1 µm
MWCNT: (D) ~80 nm,
(L) 10–20 µm

C57BL/6 mice were exposed by pharyngeal
aspiration to vehicle, ultrafine carbon black,
SWCNTs or MWCNTs at a dose of 40 µg per
mouse and sacrificed 4 h postexposure.

Gene expression in lung and blood:
Upregulation of genes involved in
inflammation, oxidative stress,
coagulation, tissue remodeling.
Increased percentage of
polymorphonuclear leucocytes
(PMN) in blood and
bronchoalveolar lavage (BAL).

[124]

SWCNT (D) 10–30 nm, (L) 2–3 µm

Male CD-ICR mice were exposed to SWCNTs
using single tail vein injection at a dose of 40
µg/mouse,
200 µg/mouse and 1.0 mg/mouse.
Accumulation determination and
toxicological assays were carried out after 90
days post-exposure.

Inflammation: dose-dependent
thickening of the alveolar lining.
Particles deposition were observed
even after 3 months.

[79]
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Table 2. Cont.

Fiber Type Size Test System Key Findings Refs.

SWCNT Mean diameter 1.8 nm,
Medium length 4.4 µm

SWCNTs exposure to rat in single instillation
(1.0 mg/kg body weight) or repeated
intratracheal instillation
(0.2 mg/kg body weight) once a week for
five weeks.

Inflammatory response
(hemorrhage in the alveolus,
infiltration of alveolar
macrophages and neutrophiles),
but no DNA damage, in the lungs
in rats. SWCNTs were not
genotoxic in the comet assay
following intratracheal instillation
in rats.

[125]

SWCNT and
MWCNT

SWCNT: (D) 1.2–1.5 nm (L)
2–5 µm
MWCNT: (D) 10–30 nm (L)
0.5–50 µm

The mouse macrophage cell line RAW 264.7
were treated with different concentrations of
CNTs for 24, 48 or 72 h for cytotoxicity,
genotoxicity analysis and detection of ROS.

CNTs exposure increase ROS
production and are cyto- and
genotoxic to mouse macrophage
cell line. Due to CNTs exposure
necrosis and chromosomal
aberrations were detected,
although no inflammatory
responses were observed.

[126]

MWCNT (D) 10–15 nm, ~20 µm

Eight-week-old rats were subjected to
whole-body exposure to low (0.01 mg/m3),
middle (0.1 mg/m3), high-concentration (1
mg/m3) of MWCNT aerosol and clean air
control for 6 h/day for 5 days. Lung cells
were analyzed using comet assay for DNA
damages on day 0 and 1 month after
the exposure.

MWCNTs caused a statistically
significant increase in lung DNA
damage and genotoxicity at high
concentration when compared
with the negative control group on
day 0 with the lung burden
retained for 1 month
post exposure.

[127]

2.3. Adsorption Theory

The adsorption theory postulates the surface reactivity of fibers for certain proteins and
molecules. Due to the surface reactivity, many carcinogenic molecules may get adsorbed on fiber
surfaces from various environmental matrices. These molecules, once released into the cell after
fiber internalization, cause the pathogenicity. MacCorkle and co-workers demonstrated that
internalized asbestos fibers have high affinity to bind with proteins involved in the regulation of
cell cycle, cytoskeleton and mitotic process to induce aneuploidy and genotoxicity. However,
pre-coated asbestos fibers with protein complexes did not induce aneuploidy without affecting
fiber uptake by the cells [128]. Various known mutagens such as benzo(a)pyrene from cigarette
smoke have high affinity for asbestos [129–132]. Jiang et al. also showed that chrysotile fibers
accumulate iron from surrounding tissue, probably via a hemolysis process and that this catalytic
iron plays an important role in asbestos-induced carcinogenesis [98].

Like asbestos, toxicity of CNTs not only comes from their own structure but also from
the various toxic substances adsorbed on their surfaces. Highly hydrophobic surfaces of
CNTs have already been reported as strong adsorbents for various organic compounds such
as polycyclic aromatic hydrocarbons [133–137], phenolic compounds [138–140], chloroben-
zenes [141–144], dioxin [145,146] and other natural organic materials [147–150]. Moreover,
several studies highlight the adsorption potential of CNTs for heavy metals [151,152]. Al-
though many of these absorption studies underline a potential role for CNTs in cleaning
polluted water and other environmental matrixes, many of the adsorbed compounds have
also been responsible for inducing carcinogenesis and thus, the fate of these compounds on
the CNTs is still a matter of concern, as it is for asbestos fibers.

2.4. Chronic Inflammation

The last established theory of asbestos-induced carcinogenesis suggests the role of
persistent macrophage activation resulting in chronic inflammation as one of the major
events associated with the disease progression. Several studies have drawn similarities
between asbestos and CNTs for inducing inflammatory reactions in human lung epithelial
cells [10,153–157]. Rydman and co-workers explored the variation between two different
CNTs and asbestos in inducing pro-inflammatory reactions in C57BL/6 mice subsequent to
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single pharyngeal aspiration exposure [158]. In their experiment, they used long tangled,
and long rod-like CNT as well as crocidolite asbestos at a dose of 10 or 40 µg/mouse
and mice were sacrificed 4 and 16 hours or 7, 14 and 28 days after the exposure. The
study clearly indicates that long rod-like CNT is considerably more potent to induce lung
inflammation than asbestos and long tangled fibers, with the involvement of IL-1β in
mediating the inflammatory processes [158].

The long fibrous foreign materials are generally captured by macrophages and en-
trapped within lysosomes. However, these materials are not fully phagocytosed which
ultimately results in frustrated macrophages and further inducing of chronic inflammation.
In many clinical studies, these immune responses with chronic inflammatory conditions
were directly linked with the progression of malignant diseases. Glass fibers of length
~17 µm were found to play a major role in incomplete phagocytosis and to induce the
production of the pro-inflammatory mediators NF-κB and tumor necrosis factor alpha
(TNF-α) in mouse macrophages, However, short (~7 µm) fibers showed both complete
phagocytosis and less expression of inflammatory mediators [159]. Hsieh and co-worker
showed airway hyperactivity and air flow obstruction due to granulomatous changes
in the lung parenchyma up to six months after a single instillation of SWCNTs to the
intratracheal region of mice. They also identified up-regulation of cathepsin K, MMP12,
chemokines C-C motif ligands (CCL2 and CCL3) and macrophage receptors (Toll-like
receptor 2, macrophage scavenger receptor 1) [160]. Several previous studies also demon-
strated the activation of NF-kB and AP-1transcriptional machinery that stimulates many
proinflammatory cytokines, chemokines and the expression of genes involved in the in-
flammation and cell proliferation processes due to exposure to long fibers such as CNTs
and asbestos [161–164]. Among the highly expressed genes, COX-2 is mainly associated
with cell proliferation and inhibition of apoptosis [165–167]. Many other inflammatory
genes such as TNF-α, IL-8 and IL-1β are also regulated after exposure to CNTs and other
long fibers [168,169]. In a comprehensive study on the effects of pulmonary exposure to
10 commercial MWCNTs, Poulsen and co-workers found that inflammation and genotoxic-
ity were related to dose, time and physicochemical properties [170]. More specifically, they
found that MWCNTs with larger diameter and small BET surface area are associated with
increased genotoxicity and inflammation.

All these studies suggest that both asbestos and certain carbon nanofibers share
mechanisms underlying chronic inflammation which can mainly be attributed to their
fibrous structure.

3. Toxicogenomics Analysis of Altered Gene Expression Due to Asbestos and
CNT Exposure

Toxicogenomics is a field of science which helps in formulating hypotheses about
underlying mechanisms of toxicity by merging conventional toxicology and functional
genomics. Using genomics approaches, information regarding specific mechanisms at
a molecular level about nanomaterial distribution or toxicity towards multiple cellular
functions becomes clearer. Conventional toxicity assays are quick in predicting the impact
of exposure at the phenotypic level, but fail to formulate hypotheses about how such
changes affect human beings [171].

Various studies have been performed to investigate the toxic effect of asbestos and
CNT’s in different organisms using toxicogenomics studies; however, the results were
always controversial due to various factors such as length, diameter, surface area, purity
and tendency for agglomeration and dispersion in media [172–175]. As mentioned earlier,
many studies confirmed that CNTs of various size and shape induce ROS generation,
immune suppression and pulmonary fibrosis that is associated with an increased risk of
lung cancer. This is mainly due to the change in the gene expression profiles related to
oxidative stress response, cellular transport, metabolism and cell cycle regulation in both
in vivo and in vitro systems [176–182].
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In a 104-week long carcinogenicity study, Kasai et al. found that lung carcinomas
were significantly increased in a concentration- and dose-dependent manner in both male
and female rats exposed to MWCNT-7 [183]. Signaling pathways in the lung induced by
asbestos cause changes in gene expression, release of cytokines, blocking of mitochondrial
activities and apoptosis, ultimately leading to cancer [184]. In other studies, it has been
shown that when asbestos or CNTs come into the contact with macrophages, they start
inducing tumor necrosis factor (TNF), an inflammatory cytokine, and cause interleukin (IL)
up-regulation. The above-mentioned studies clearly show that TNF and interleukins (IL6,
IL8 and IL10) are up regulated by asbestos and MWCNT treatments.

Kim and his co-workers studied toxicogenomic effects of MWCNTs and asbestos (croci-
dolite) on 31,647 genes at the 50% growth inhibition (GI 50) concentration on normal human
bronchial epithelia (NHBE) cells [185]. These cells were exposed to asbestos and MWCNTs for
6 and 24 h. In total 1201 and 1252 genes were up-regulated, while 1977 and 1542 genes were
down-regulated by both asbestos and MWCNTs, after 6 and 24 h of exposure, respectively.
Interestingly, 12 mesothelioma and 22 lung cancer-related genes were differentially regulated
over two-fold by both asbestos and MWCNTs exposure in comparison to the negative control,
indicating the similarity between asbestos- and CNT-mediated toxicity mechanisms.

Asbestos and CNTs can also affect signaling pathway networks which regulate the
expression of genes associated with inflammatory response, apoptosis and oxidative stress.
Using single-cell RNAseq, Joshi and colleagues found that macrophage colony-stimulating
factor receptor signaling is essential in monocyte-derived alveolar macrophages and fibrob-
lasts during asbestos-induced fibrosis [186]. Different studies revealed that nanoparticles
interact with cell membrane elements responsible for the regulation of receptor-mediated
signaling pathways [187,188]. Mukherjee and colleagues proposed that SWCNTs interact
with Toll-like receptor 4 (TLR4) in the absence of a protein corona through hydrophobic
interactions and attract cytokine and chemokine cascades [189]. Many recent studies focus
on global mRNA and ncRNA expression profiles in the blood of workers exposed to CNTs;
they have found many differentially regulated genes involved in cell cycle regulation,
apoptosis and proliferation similar to those affected by asbestos fibers [178,180,190].

Nymark and colleagues exposed human bronchial epithelial BEAS 2B cells to MWC-
NTs and asbestos and found decreased mitochondrial membrane potential (MMP) for
MWCNTs at a biologically relevant dose (0.25 µg/cm2) and for asbestos at 2µg/cm2. They
also identified 330 gene signatures related to MWCNT- and asbestos-induced MMP, of
which 26 were already known for mitochondrial function [190]. In another study by Poulsen
and colleagues, both in vitro and in vivo experiments were performed and compared using
DNA array followed by gene-specific RT-qPCR assay after the exposure of lung epithelial
cells (FE1) and mouse models. In both models, oxidative stress, fibrosis and inflammation
related processes were altered with different sets of associated genes [191]. In a recent study
by Jiang and colleagues, effects of length, functional group and electronic structures of vari-
ous types of SWCNTs were observed in a toxicogenomic assay involving A549 cells. Their
toxicogenomic analyses suggest that short SWCNTs (0.5–2µm) had a higher toxicity level
than the long ones (5–30µm) while carboxylated SWCNTs induced greater genotoxicity,
chemical stress and protein damage compared with hydroxylated ones [192].

All the above studies suggest that toxicogenomic analysis is very helpful in analyzing
similarities and differences between the asbestos- and CNT-associated genes and biological
pathways. Together with adverse outcome pathway (AOP) analysis, describing mechanistic
information on toxicology response and toxicity initiation events, toxicogenomic studies
can be a useful tool for safety assessment of emerging nanomaterials [193]. We see a clear
picture of CNTs following in the footprints of asbestos in terms of toxicological outcomes
through similar cellular processes, cellular transport, metabolism, cell cycle regulation,
stress response, immune response, inflammatory response, genotoxicity and apoptosis in
both in vitro and in vivo settings [194].
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4. Conclusions

Several possible mechanisms have been proposed to define the toxicity and carcino-
genicity of fibrous materials including certain types of CNTs and asbestos fibers. These
include oxidative stress, chromosomal damage, adsorption of toxicants and pollutant and
chronic inflammation. These pathogenic theories include a variety of intrinsic and ex-
trinsic factors that modulate the biological responses. Among these, we have focused on
how asbestos fibers and CNTs enter non-phagocytic cells, which is important in mesothe-
lial/epithelial cell injury. Based on current evidence, all four theories hint towards the
carcinogenic outcomes and could extensively contribute to the explanation of the toxicity
of asbestos and certain nanomaterials. The profiles of gene expression upon exposure to
asbestos and CNTs provide important information on the pathways that are commonly
shared or unique to each fibrous type. Based on this discussion, it is evident that asbestos
and certain diameters and lengths of CNTs share common mechanisms for pathogenic-
ity and thus indicate an immediate need for the designing of a protocol to regulate the
industrial use of some CNTs to avoid a hazardous situation such as was witnessed with
asbestos fibers.
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