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Abstract

Many planning, scheduling or multi-dimensional packing problems involve the design
of subtle logical combinations of temporal or spatial constraints. Recently, we introduced
GEQCA-I, which stands for Generic Qualitative Constraint Acquisition, as a new active
constraint acquisition method for learning qualitative constraints using qualitative queries.
In this paper, we revise and extend GEQCA-I to GEQCA-II with a new type of query,
universal query, for qualitative constraint acquisition, with a deeper query-driven acquisi-
tion algorithm. Our extended experimental evaluation shows the efficiency and usefulness
of the concept of universal query in learning randomly-generated qualitative networks, in-
cluding both temporal networks based on Allen’s algebra and spatial networks based on
region connection calculus. We also show the effectiveness of GEQCA-II in learning the
qualitative part of real scheduling problems.

1. Introduction

Qualitative reasoning about time or space is essential for many practical Artificial In-
telligence problems, such as automated planning (Belhadji & Isli, 1998), task scheduling
(Barták, Salido, & Rossi, 2008), and multi-dimensional packing problems (Crainic, Perboli,
& Tadei, 2012). In this context, qualitative calculus provides an algebraic framework that
establishes relations between entities (or pairs of entities) through a language that is jointly
exhaustive and pairwise disjoint. Examples of qualitative calculus include Point Algebra
(Vilain & Kautz, 1986b) and Allen’s Interval Algebra (Allen, 1983) for reasoning about
temporal tasks, and Region Connection Calculus (RCC) (Randell, Cui, & Cohn, 1992) for
reasoning about topological relationships between spatial regions. Constraint satisfaction
techniques and constraint programming (CP) are well-suited frameworks to model and solve
qualitative constraint networks.

However, in many practical situations, complex problems are not represented as con-
straint networks and are solved solely based on historical records and manually crafted
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solutions. Furthermore, inter-relationships among entities may only be known locally and
between pairs of entities, leaving the implications for other pairs of entities unknown.

To facilitate the modelling of CP problems, the concept of constraint acquisition (CA)
was introduced for learning CP models. CA can be achieved through passive learning from
a set of complete labelled example assignments (Bessiere, Coletta, Koriche, & O’Sullivan,
2005), or active learning with specific queries that aid in classifying complete assignments
(Bessiere, Coletta, O’Sullivan, & Paulin, 2007).

Several state-of-the-art active CA algorithms exist, including: QuAcq (Bessiere, Co-
letta, Hebrard, Katsirelos, Lazaar, Narodytska, Quimper, & Walsh, 2013), an interactive
query-based approach also known as exact learning (Bshouty, 2018), which asks complete
or partial queries to reduce the set of possible satisfiable constraints from a given constraint
language; MultiAcq (Arcangioli, Bessiere, & Lazaar, 2016), an extension of QuAcq that
learns the maximum number of constraints violated by a given negative example; T-Quacq
(Addi, Bessiere, Ezzahir, & Lazaar, 2018), which places a bound on the query-generation
time to speed up CA; MQuAcq-2 (Tsouros, Stergiou, & Bessiere, 2019), which leverages
the structure of learned models by focusing queries on quasi-cliques of constraints; and
ClassAcq (Prestwich, Freuder, O’Sullivan, & Browne, 2021), which utilizes a Naive Bayes
classifier to differentiate solutions from non-solutions and acquire constraint models in a
passive manner.

Other notable approaches for learning constraint models include ModelSeeker (Beldiceanu
& Simonis, 2012, 2016), which can acquire global constraints, and the general frameworks of
constraint learning (De Raedt, Passerini, & Reso, 2018) and constraint synthesis, which are
based on mixed linear integer programming (Pawlak & Krawiec, 2017). The issue of han-
dling incorrect responses to queries is also a significant challenge in interactive CA (Tsouros,
Stergiou, & Bessiere, 2020).

However, standard active CA algorithms face difficulties in handling qualitative con-
straints since managing disjunctions of general relations over variable pairs can result in an
exponential increase of the constraint search space.

Moreover, although the number of possible inter-relations is limited, controlling the
number of queries asked to the user or the time allocated to generate these queries is a
crucial aspect of the adoption of CA techniques in practical applications (Bessiere, Koriche,
Lazaar, & O’Sullivan, 2017).

Learning qualitative temporal constraints has been initiated by (Mouhoub, Marri, &
Alanazi, 2018) in LQCN. LQCN follows the active learning version of Conacq by consid-
ering each qualitative constraint between time intervals as a concept to learn using mem-
bership queries. Then, the consistency of the network as a whole is maintained using path
consistency and by considering the composition table as background knowledge. Further,
LQCN was extended to the RCC8 algebra in (Mouhoub, Marri, & Alanazi, 2021) but its
generalization to other algebras is not straightforward without further development and
correctness proofs. In particular, understanding which fundamental property of an alge-
bra is necessary to generalize CA to other qualitative reasoning is not easy. Also, using
background knowledge beyond the only composition table can be beneficial, in cases more
information about the network is available (e.g., task durations, resource limits, pre-crafted
constraints). These elements are crucial to complete the constraint propagation step and
further filter the queries to generate.
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Recently, in (Belaid, Belmecheri, Gotlieb, Lazaar, & Spieker, 2022), we have introduced
Generic Qualitative Constraint Acquisition coined as (GEQCA-I), which is a generic active
CA algorithm for learning any kind of constraints between pairs of entities in a qualitative
reasoning problem. GEQCA-I is a correct method in CA that acquires any kind of quali-
tative constraint network. It combines qualitative queries, time-bounded path consistency
(PC), Path-Lex, a novel search heuristic and extends background knowledge propagation
to learn any qualitative constraint network. Our approach differs from classical active CA
algorithms in three ways. First, it handles the disjunction of qualitative constraints effec-
tively through the usage of queries and path consistency. Second, it generalizes the concept
of CA for qualitative constraint networks by building its theoretical framework on the JEPD
(Joint Exhaustive and Pairwise Disjoint) property. Third, it solves CP models to reduce
the number of queries using extended background knowledge.

In this paper, our revision and extension of GEQCA-I to GEQCA-II are threefold:

1. We introduce a new type of query, universal query, motivated by real-world scenarios
and revise GEQCA-I accordingly. We provide a sound and complete query-driven
CA algorithm to propagate any information through path consistency. This paper
contains a full theoretical analysis of GEQCA-II;

2. We propose another constraint selection heuristics, named Path-Weighted. We ex-
perimentally evaluate which constraint selection heuristics perform better for learning
qualitative networks;

3. We provide an extended experimental evaluation of GEQCA-II on temporal and
spatial qualitative networks, which answers four research questions related to the
comparison between GEQCA-I and II. We also address qualitative networks extracted
from real-world scheduling problems.

The paper is organized as follows: In the next section, we introduce the necessary
background material required to understand the paper; In Section 3, we introduce the
concept of universal query and present GEQCA-II, our generic approach to learning qual-
itative constraints in CA. In Section 4, we conduct experiments with our implementation of
GEQCA-II to evaluate its effectiveness and performance. Finally, we conclude the paper
in Section 5.

2. Background

2.1 Qualitative Calculus

A Qualitative Constraint Network (QCN) is a finite set of (binary) constraints C expressed
on X, where X is a finite set of variables representing temporal or spatial entities (points,
intervals, regions, etc.). For instance, an interval variable Xi is a pair of endpoints (X−i , X

+
i )

on the real line where X−i < X+
i holds.

A QCN is built on a language Γ, which stands for a finite set of jointly exhaustive and
pairwise disjoint (JEPD) binary relations (e.g., before, after, contains, part-of, etc.) defined
over an infinite domain D (e.g., a topological space for Region Connection Calculus or a
real line for Allen’s Interval Algebra). The 13 basic relations (resp., the 8 basic relations) in
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Figure 1: (a) Overview of the 13 basic relations in Allen’s Interval Algebra (Allen, 1983) as
named in Krokhin et al. (2003) and (b) the 8 basic relations in Region connec-
tion calculus. These relations resemble the possible temporal/spatial qualitative
queries, the oracle is asked.

Allen’s Interval Algebra (resp., in RCC8) are illustrated in Figure 1.(a) (resp., Figure 1.(b)).

Formally speaking, Γ = {r1, . . . , rm} and |Γ| = m. Bear in mind that the relational
algebra generated by Γ is finite, and it is closed under (weak) composition, converse and
contains the identity. A binary constraint Cij = {rk1 , . . . , rkd}, is a disjunction of d basic
relations in Γ between Xi and Xj . Note that Cji represents the inverse constraint (with
inverse relations) of Cij (i.e., Cji = C−1

ij ). Here, Cij is interpreted as (Xi rk1 Xj) ∨ . . . ∨
(Xi rkd Xj) and |Cij | = d. We denote by ⊥ the empty constraint (i.e., the constraint defined
by the empty set) and by > the universal constraint (i.e., the constraint defined by a set
containing all basic relations of the calculus). Size(C) =

∑
(Cij∈C|i<j)

|Cij | denotes the total

number of basic relations in C.

The QCN satisfiability problem is the problem of deciding if there exists a tempo-
ral/spatial solution (i.e., an interpretation of the variable entities satisfying all constraints)
of a given QCN.

Example 1. Figure 2 illustrates a temporal QCN with C1 using Allen’s Interval Algebra, a
spatial QCN with C2 using RCC8 and for each of the two QCNs, a possible solution. In C1,
the constraint between the two intervals X1 and X2 is C12 = {p, m, o}. The inverse of C12
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Figure 2: Illustrative examples of temporal QCN with C1 and spatial QCN with C2 and
the corresponding possible solutions.

is C21 = {pi, mi, oi}. The size of C1 and C2 is size(C1) = 25 and size(C2) = 19, where
the universal constraint > is of size 13 (resp., 8) in Allen’s algebra (resp., in RCC8).

2.2 Qualitative Constraint Acquisition

A CA-Agent is a constraint acquisition algorithm (a.k.a., learner or inducer in Machine
Learning) defined to acquire constraints from data. In active learning, the CA-Agent needs
to share some common knowledge, materialized by the vocabulary (X,D) in our context,
with an oracle to communicate through queries. An assignment e on X is rejected by a
constraint network C if and only if there is at least one constraint Cij which rejects eij =
(vi, vj), the projection of e on (Xi, Xj). eij violates Cij iff for each rk ∈ Cij , (vi, vj) 6∈ rk. If
(vi, vj) does not violate Cij , then (vi, vj) |= Cij . An assignment e on X, which is accepted
by C, is a solution of C. Sol(C) denotes the set of solutions of C. In addition to the
vocabulary (X,D), the CA-Agent owns the language Γ from which it can build constraints
on specified sets of entity variables.

Given a vocabulary (X,D), a qualitative concept is a Boolean function f over D|X|, i.e.,
a mapping of each complete assignment e to a value in {true, false}. A representation of a
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Figure 3: An example of two time intervals including background knowledge.

qualitative concept f is a QCN, C for which f−1(true) = sol(C), denoted by f = sol(C).
The oracle qualitative concept is a concept fQ that returns true for e if and only if e is a
solution to the problem that the oracle has in mind. The target network, denoted as T ,
is a QCN representing the concept fQ. It is worth noting that fQ may correspond to an
empty concept fQ = ∅. In this case, any unsatisfiable QCN can serve as a candidate for
representing the empty concept.

Oracles, teachers, or domain experts can serve as sources of information for learning,
but they are not necessarily human-based oracles (Angluin, 1988; Valiant, 1984). The
information that needs to be learned is assumed to be known by an oracle, which can be a
program in some cases (Menguy, Bardin, Lazaar, & Gotlieb, 2022) or a crowd collectively
answering queries (Lazaar, 2021). In many cases, this source of information is composed
of multiple locally consistent pieces of knowledge that collectively form the concept to be
learned, denoted as fQ. However, this composed concept may not be entirely coherent and
may not have a clear solution, resulting in an empty concept (fQ = ∅). To represent the
locally consistent part of the concept fQ for the pair (Xi, Xj), we use the notation fQ[i, j].

We now define convergence, which is a crucial property of CA. Given a set E of examples
labelled by the oracle as true or false, we say that a network C agrees to E if C accepts
all examples labelled true and rejects all examples labelled false. The learning process has
converged on the network L if (i) L agrees to E and (ii) for every other network L′ agreeing
to E, we have sol(L′) = sol(L). Hence, if the learning process has converged, we guarantee
that sol(L) = fQ. If there is no such L found, then we say that the learning process has
collapsed. For instance, it happens when fQ is an empty concept (i.e., fQ = ∅).

In practical applications, it happens that the structure of the problem is known, as well
as some quantitative constraints, or some models of durative tasks/actions and their precon-
ditions/effects. In CA, that information type can be presented as background knowledge,
noted K. From K, we can deduce an extended qualitative knowledge KQ by using constraint
propagation or the resolution process. Hence, the concept to learn fQ is subsumed by KQ

(i.e., fQ ⊆ KQ).
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Example 2. Let us consider the example presented in Figure 3 under Allen’s Interval
Algebra. We have two time intervals X1 and X2, and background knowledge K which states
that (i) X1 and X2 have a duration of two and three time units each (ii) the schedule can
take a maximum of four time units. From (i), we can deduce that X1 cannot contain, be
equal to, be started by, or be finished by X2. From (ii), we can deduce that X1 cannot
precede, meet, be preceded by, or be met by X2. What remains as basic relations between
X1 and X2 represents the deduced qualitative knowledge:

KQ : (C12 = {o, d, s, f, oi})

Note that standard version space-based approaches such as Conacq (Bessiere et al.,
2017) and QuAcq (Bessiere et al., 2013) are not suitable for qualitative reasoning, as (i)
the acquisition is based on a finite domain and (ii) only languages closed under conjunction
can be considered.

3. GEQCA-II: Constraint Acquisition via Qualitative Queries

We first recall the concept of the qualitative query introduced in (Belaid et al., 2022) and
then, we introduce a new type of query, namely universal query. In the following, we make
the hypothesis that GEQCA-II has access to a perfect oracle (human or program) that
always answers queries correctly. We further discuss this hypothesis in 4.5.

Definition 1 (Qualitative Query). Given a qualitative concept fQ on (X,D) under Γ, a
qualitative query Q-Ask(Xi{r}Xj) takes as input a constraint with a unique basic relation
r ∈ Γ on a pair of variables (Xi, Xj), and outputs ”yes” if ∃eij ∈ r that satisfies fQ[i, j]
and ”no” otherwise.

Please note that the JEPD property guarantees that for any given pair of variables
(Xi, Xj), each possible value pair (vi, vj) is contained in exactly one relation r ∈ Γ. As a
result, we can infer that, when considering a pair of entity variables (Xi, Xj) and a basic
relation r ∈ Γ, a qualitative query answers the question of whether Xi {r} Xj holds or not.
It is worth noting that a positive response to the qualitative query Q-Ask(Xi, r,Xj) does
not necessarily imply that eij can be extended to form a solution for the qualitative concept
to be learned. The existence of such a solution cannot be guaranteed. In fact, determining
whether eij can be extended to a solution is an NP-complete problem (Vilain & Kautz,
1986a; Maddux, 1994).

In some practical scenarios, the oracle may provide information showing that a universal
constraint exists between two entities, Xi and Xj , something that allows any basic relation
to hold between them. This gives rise to a new type of query called the universal query.

Definition 2 (Universal Query). Given a qualitative concept fQ on (X,D) under Γ, a
universal query U-Ask(Xi, Xj) takes as input a pair of variables (Xi, Xj), and outputs
”yes” if ∀r ∈ Γ : ∃eij ∈ r that satisfies fQ[i, j] and ”no” otherwise.

Once again, by utilizing the JEPD property of Γ, a universal query can answer the
question of whether all basic relations in Γ hold between a pair of entity variables (Xi, Xj),
sequentially or otherwise. In other words, the universal query can determine whether all
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possible basic relations between Xi and Xj are allowed. The concept of qualitative and
universal queries in GEQCA-II can be explained and motivated by considering the following
simple usage scenario.

Example 3. Consider a professional architect with experience in building modern-style
houses. This architect is responsible for scheduling between 50 to 100 distinct construction
tasks and wishes to acquire a general constraint model that can be used for any construction
project. At the beginning of the process, the architect can answer ”universal queries” to
determine which tasks are independent1 from each other. For example, a positive response
to the query U-Ask(”carpentry”, ”build the walls”) would validate all relations between
”carpentry” and ”build the walls”, and there would be no need to ask qualitative queries
between these two tasks. After that, ”qualitative queries” can be used to detect the exact al-
lowed relations between dependent tasks. For instance, if the architect positively answers the
query Q-Ask(”build the walls” {precedes} ”put the roof”), this would validate the ”precedes”
relation between the task of ”build the walls” and the task of ”put the roof”.

3.1 Description of GEQCA-II

GEQCA-II is presented in Algorithm 1. GEQCA-II takes as input a vocabulary (X,D)
of n entity variables, the Γ language of binary basic relations, a background knowledge K
and a timed boundary parameter cutoff.

Initially, GEQCA-II sets the possible constraints between entities of the network L to
the universal constraint > (line 4). The value of τ is then assigned to cutoff in order
to ensure that the waiting time between two queries does not exceed the time limit of
cutoff. Subsequently, GEQCA-II iterates over L to reduce the constraints to sets of basic
relations that are equivalent to the concept being learned fQ (lines 6-18). To accomplish
this, GEQCA-II first selects a Cij and, in the case of Cij = >, presents a universal query
on (Xi, Xj) to the oracle (line 7). If the universal query is answered positively, the universal
constraint between Xi and Xj is retained.

If there is no universal constraint between Xi and Xj , then at least one basic relation
must be removed. To accomplish this, GEQCA-II performs two steps. First, the propagate
procedure is applied to reduce Cij by propagating K on it in τ (line 8). For example, in a
temporal context, if ”Xi and Xj tasks have respective duration of 1 and 2 hours”, which
is deduced from K, then the propagate procedure removes Equals, Contains, Started-by,
and Finished-by from Cij . The value of τ is then updated by deducting the time used
in K propagation. Second, GEQCA-II iterates over the remaining basic relations of Cij

(lines 10-16). Each basic relation r is checked in τ to ensure its consistency with the already
learned network L and K (line 11). If the relation is not consistent, meaning that τ is
sufficient to prove that there is no solution (s = ∅), it can be removed (line 14). Otherwise,
the resolution finds a solution or τ is insufficient, and in both cases, the basic relation is
presented to the oracle under a qualitative query Q-Ask(Xi, r,Xj) (line 13). Finally, the
value of τ is updated by deducting the time consumed by the solve process (line 12).

If the oracle answers no, then GEQCA-II removes r from Cij (line 14). If Cij is reduced
at line 8 or line 14, then GEQCA-II eliminates non-feasible relations from L by maintaining
path consistency using the PC function, with a time limit of τ . If Cij is reduced to the empty

1. Independent from user perspective, but they can be indirectly dependent.
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Algorithm 1: GEQCA-II: Constraint Acquisition via Qualitative Queries.

1 In: vocabulary (X,D); Γ language; background knowledge K; parameter cutoff;
2 Out: a learned network L;

3 begin
4 L← {Cij = > : i < j};
5 τ ← cutoff;
6 foreach Cij ∈ L do
7 if (Cij = >) ∧ (U-Ask(Xi, Xj) = yes) then continue;
8 change← propagate(K, Cij , τ)
9 update(τ);

10 foreach r ∈ Cij do
11 s← solve(L ∪ K ∪ Xi{r}Xj , τ)
12 update(τ);
13 if (s = ∅) ∨ (Q-Ask(Xi{r}Xj) = no) then
14 Cij ← Cij \ {r}
15 change← true;
16 if s 6= ∅ then τ ← cutoff;

17 if (Cij = ⊥) ∨ (change ∧¬PC({Cij}, τ)) then
18 return ”collapse”

19 Function PC(Q, τ):

20 while (Q 6= ∅) ∧ (τ has not yet elapsed) do
21 pick Cij in Q
22 foreach Xk ∈ X \ {Xi, Xj} do
23 ∆1 ← Cik ∩ composition(Cij , Cjk); if ∆1 = ⊥ then return false
24 ∆2 ← Cki ∩ composition(Cki, Cij); if ∆2 = ⊥ then return false
25 if Cik 6= ∆1 then Cik ← ∆1; Q← Q ∪ {Cik}
26 if Ckj 6= ∆2 then
27 Ckj ← ∆2; Q← Q ∪ {Ckj}

28 if Q = ∅ then update(τ);
29 return true

constraint⊥ in line 14, or if an inconsistency is detected by PC (lines 23 and 24), it shows that
the space of possible networks collapses because of an empty concept (fQ = ∅) (line 18).
In lines 19-29, we present the PC function (Mackworth, 1977), which is a time-bounded
path consistency incremental propagator with a cubic complexity in the number of entity
variables. PC returns true when a fixpoint (transitive closure) is reached by propagating
qualitative knowledge, or when τ has elapsed, and false when any inconsistency is detected.
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3.2 Theoretical Analysis

In this section, we establish the correctness of the GEQCA-II algorithm (Algorithm 1) in
learning any constraint network that represents a qualitative concept over the Γ language.
We prove that GEQCA-II is sound, complete, and terminates.

Let (X,D) be a vocabulary of n entity variables, Γ be the set of basic relations, fQ
be a qualitative concept, and let KQ ⊇ fQ be knowledge deduced by a given background
knowledge K, then the following propositions and Theorem 1 hold.

Proposition 1 (Soundness). The network L returned by GEQCA-II is such that fQ ⊆
sol(L).

Proof. Suppose there exists an example e ∈ fQ that is not a solution of L, i.e., e 6|= L,
then there must be at least one constraint Cij ∈ L for which the projection of the solution
eij does not satisfy Cij , i.e., eij 6|= Cij . This implies that there is a missing relation r∗ in
Cij such that eij ∈ r∗. The missing relation r∗ is unique due to JEPD property of the Γ
language. Since the propagate procedure (line 8) and the consistency check (line 11) are
based on a background knowledge that subsumes fQ (KQ ⊇ fQ) and the PC function is
sound (Allen, 1983; Vilain & Kautz, 1986a), the only place where r∗ can be removed from
Cij is at line 14 due to a negative answer on a qualitative query. Furthermore, a qualitative
query on a consistent relation between a given pair of entities cannot be answered with no.
Therefore, removing a basic relation from L cannot cause L to reject an example accepted
by fQ.

The soundness property of GEQCA-II ensures that it generates a constraint network L
that preserves the solution of the target concept fQ (sol(L) ⊆ fQ). Consequently, it avoids
the removal of any basic relation that is part of a solution or could be extended to form
one. Consider, for example, the set of basic relations S = {p, o,m} between Xi and Xj ,
representing relations participating in solutions of fQ. The soundness property ensures the
acquisition of a constraint Cij that wholly encompasses the set S (S ⊆ Cij , as illustrated
by Cij = {p, o,m, f, s}). Importantly, it guarantees that no constraint C ′ij will be generated
in a manner that C ′ij ∩ S 6= S (for instance, C ′ij = {o,m, s}).

Proposition 2 (Completeness). The network L returned by GEQCA-II is such that
sol(L) ⊆ fQ.

Proof. Suppose there exists e ∈ sol(L) \ fQ. Here, L accepts solutions rejected by the con-
cept fQ, which means that at least one constraint Cij ∈ L needs to be restricted further
to make e 6|= L. To restrict Cij further, we need to remove at least one relation r∗ from
Cij . If Cij = >, GEQCA-II submits a universal query to the oracle at line 7. The query is
negatively answered as r∗ ∈ Cij . If r∗ is not removed using K propagation (lines 8 and 11)
or using PC, it is presented to the oracle as a qualitative query. Since r∗ is inconsistent on
(Xi, Xj), the qualitative query on r∗ can only be negatively answered. Thus, we conclude
that keeping a basic relation in L cannot cause L to accept an example rejected by fQ.

The completeness property of GEQCA-II ensures that the resultant constraint network
L does not introduce new solutions concerning the target concept fQ (i.e., sol(L) ⊆ fQ). For

250



Query-driven Qualitative Constraint Acquisition

example, if the basic relations between Xi and Xj , forming part of the solutions of the target
concept, are denoted as S = {p, o,m}, the completeness property ensures the acquisition
of a constraint Cij such that the basic relations in Cij \ S are not part of the solutions of
the target concept (e.g., Cij = {p, o, s} with s representing a globally inconsistent relation
between Xi and Xj).

Proposition 3 (Termination). GEQCA-II terminates.

Proof. The GEQCA-II algorithm iterates over all pairs of entities, which results in n(n−1)
2

iterations (line 6). For each pair of entities, if a universal query is negatively answered
in line 7, GEQCA-II iterates over the language Γ (line 10). Since the size of the pair of
entities and Γ is finite, and the propagate and solve procedures as well as the PC function
are time-bounded, the algorithm is guaranteed to terminate.

Theorem 1 (Correctness). The network L returned by GEQCA-II is such that sol(L) =
fQ.

Proof. Correctness immediately follows from Propositions 1, 2, and 3.

Proposition 4 (Waiting time). GEQCA-II learns a network L, or collapses, with a waiting
time not exceeding cutoff time bound between two queries.

Proof. If cutoff =∞, the proposition holds trivially. However, if cutoff <∞, GEQCA-
II asks a universal query at each iteration of its main loop (line 6). If the query is positively
answered, GEQCA-II asks a new universal query with negligible time between the queries.
If a universal query is negatively answered, GEQCA-II calls the propagate function (line 8)
and enters the inner loop in line 10 by asking a series of qualitative queries. Between two
queries, propagate, solve, and PC are executed in a time t < τ , where τ is initialized to
cutoff (line 5) and only decreased by the update function after each call to the three pro-
cedures/functions. If a qualitative query is asked, τ is reset to cutoff at line 16. If τ is
reduced to 0, GEQCA-II will ask a query at the next iteration where propagate, solve,
and PC cannot be called, and then τ is reset to cutoff. Thus, the waiting time between
two queries will never exceed the cutoff time-bound.

Complexity of GEQCA-II in terms of queries.
We analyze the complexity of GEQCA-II in terms of number of queries. It is worth

noticing that there are two types of queries involved. The first type is universal queries,
which are submitted to the oracle in line 7 of Algorithm 1. The second type is qualitative
queries, which are submitted to the oracle in line 13 of Algorithm 1.

Given a vocabulary (X,D) of n entity variables, a language Γ of m basic relations, a
qualitative concept fQ, qualitative knowledge KQ ⊇ fQ deduced from a given background
knowledge K, a number k of basic relations pruned using K and PC propagation, and the
number p of universal queries positively answered, GEQCA-II asks O(n(n−1)

2 ) universal
queries and exactly η = (α− β − θ) qualitative queries, where:

• α = mn(n−1)
2 : m relations per pair of entities;
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• β = k: pruned relation using K and PC;

• θ = mp: number of relations between independent entities.

3.3 Strategies

To optimize GEQCA-II further, we can improve the constraint selection process at line 6
by using more sophisticated heuristics. By selecting constraints in different ways, we can
significantly impact both K and PC propagation, leading to fewer queries needed to reach
convergence. While several heuristics have been proposed for solving qualitative networks,
such as the weighted heuristic (van Beek & Manchak, 1996), our goal is to learn these
networks. To that end, we introduce two dedicated constraint selection heuristics, the
Path-Weighted and Path-Lex heuristics, which are based on traversing the line graph
of the QCN. The line graph is a graph derived from the QCN, where each edge of the
original graph is represented as a vertex in the line graph. Two vertices in the line graph
are adjacent if and only if their corresponding edges in the original graph share a common
endpoint (Ore, 1987). In our context, the QCN is constructed on n entity variables Xi as
vertices and n(n− 1)/2 constraints Cij as edges. In the corresponding line graph L(C), Cij

and Cjk are vertices that share the edge Xj . The Path-Weighted heuristic traverses the
line graph in a way that minimizes the weight of the selected constraints, while the Path-
Lex heuristic builds a complete path to maximize the impact of PC and the transitivity
between constraints.

3.3.1 Path-Weighted Heuristic

Algorithm 2 outlines our heuristic for selecting constraints to form a path traversing the
line graph of a QCN C, with the aim of maximizing the path length. Given the last selected
constraint Cij and the QCN C, Path-Weighted starts by updating the set of visited nodes
(line 2). Next, it computes the set of entity variables Xk that have at least one non-visited
constraint with either Xi or Xj (line 3). If this set is empty, it means that all constraints
involving Xi or Xj have already been visited. In such a case, Path-Weighted randomly
selects a new starting point for a path from the non-visited constraints (line 4). Otherwise,
Path-Weighted selects the constraint linked to Xi or Xj with the minimum weight as
the next constraint in the path (line 5, with MinWeight function detailed in lines 7-12).
The weight of each constraint is an estimate of how much the basic relations will restrict
other constraints, and it is computed as the sum of the weights of involved basic relations
(van Beek & Manchak, 1996). Finally, Path-Weighted returns the selected constraint to
be used in the next iteration (line 6).

3.3.2 Path-Lex Heuristic

Algorithm 3 presents our second heuristic for selecting constraints forming a path travers-
ing the line graph of the corresponding QCN, C, while maximizing its length. Similar to
Path-Weighted, Path-Lex begins by updating the set of visited nodes (line 2), and then
computes the set of entity variables Xk that have a non-visited constraint with Xi or Xj

(line 3). However, unlike Path-Weighted, Path-Lex selects the next constraint to visit
in a lexicographic manner (line 4). Specifically, given the last visited constraint Cij and
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Algorithm 2: Path-Weighted constraint selection heuristic

1 Function Path-Weighted(C, Visited, Cij):

2 Visited← Visited ∪ {Cij}
3 Y ← {Xk ∈ X|Cik 6∈ Visited ∨ Ckj 6∈ Visited}
4 if Y = ∅ then ∆← pick Ckl ∈ C \ Visited
5 else ∆←MinWeight(Y, Visited, i, j)
6 return ∆

7 Function MinWeight(Y, Visited, i, j):
8 min←∞
9 foreach Xk ∈ Y do

10 if (Cik 6∈ Visited) ∧ (Weight(Cik) < min) then ∆← Cik;
min←Weight(Cik)

11 if (Ckj 6∈ Visited) ∧ (Weight(Ckj) < min) then ∆← Ckj ;
min←Weight(Ckj)

12 return ∆

Algorithm 3: Path-Lex constraint selection heuristic

1 Function Path-Lex(C, Visited, Cij):

2 Visited← Visited ∪ {Cij}
3 Y ← {Xk ∈ X|Cik 6∈ Visited ∨ Ckj 6∈ Visited}
4 k ← lex(Y )
5 if Cik 6∈ Visited then ∆← Cik

6 else if Ckj 6∈ Visited then ∆← Ckj

7 else ∆← tossUp(Cik, Ckj)
8

9 return ∆

the Xk lexicographically selected at line 4, if both Cik and Ckj are non-visited constraints,
the path is extended with one of them in a random manner (line 7). The idea behind this
approach is to ensure that the traversal of the line graph covers the QCN efficiently, while
prioritizing constraints that are likely to have a significant impact on K and PC propagation.

In summary, Path-Weighted and Path-Lex are two dedicated constraint selection
heuristics that aim to maximize the length of a path traversing the line graph of a QCN
C while ensuring that constraints with a high impact on K and PC propagation are visited
early on. These heuristics have been shown to significantly improve the number of queries
needed to reach convergence as compared to more brute-force approaches.
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Figure 4: Visualization of the illustrative example and the relations intended by the oracle.
Given duration of the time intervals are chosen arbitrarily but obey the imposed
relations on the ordering.

3.4 Illustrative Example

To illustrate our approach, let an Allen’s interval-based network with four time intervals
X = {X1, X2, X3, X4} and a time concept fQ, which captures the oracle’s intention. The
time concept can be expressed as follows: “X1 overlaps X2, X1 precedes, meets, or overlaps
X3, X2 overlaps or finished by X3, X2 precedes or meets X4, and X3 meets X4. For X1

and X4, there is no specific intention.”
The oracle’s intention defines an ordering of the time intervals but allows one for some

flexibility in the exact placement and duration of the intervals. To illustrate the prob-
lem, Figure 4 depicts the intervals, the user’s intention, and arbitrary lengths for the time
intervals.

Figure 5 depicts the QCN of our example and its corresponding line graph in parts
(a) and (b), respectively. Part (c) of the figure illustrates the use of Path-Weighted as
a constraint selector, where wk

ij represents the weight of constraint Cij at iteration k of
GEQCA-II. Initially, C24 is randomly selected, since all constraints have the same weight
as the universal constraint (i.e., ∀Cij ∈ C : w1

ij = 34). For the second iteration, Path-
Weighted randomly selects C34. Afterwards, the possible relations for C23 are reduced by
PC and it gets selected in the third iteration. In the fourth iteration, constraints C12 and
C13 are the remaining non-visited constraints that are connected to C23 (i.e., constraint at
the current iteration). Constraint C12 is randomly selected, since it has the same weight as
C13 (PC did not cause any change in their weights).

Finally, C14 is selected as its weight w5
14 = 3 is the minimum among the non-visited,

connected constraints, before C13 is selected in the sixth and last iteration. It results in the
following path traversing the line graph:

Path-Weighted : C24 → C34 → C23 → C12 → C14 → C13

Figure 5.(d) illustrates the use of Path-Lex. In this heuristic, the line graph is traversed
in a lexicographic order, where constraints are visited following the lexicographic order of
their variables. The resulting path is as follows:

Path-Lex : C12 → C23 → C13 → C14 → C24 → C34
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Figure 5: QCN example with four entity variables (a), its corresponding line graph (b) and
illustrative examples of the use of Path-Weighted (c) and Path-Lex (d).

To illustrate the use of GEQCA-II on the example, we apply the Path-Lex heuris-
tic. We first demonstrate the behavior of GEQCA-I (without universal queries) and then
present GEQCA-II. Table 1 displays the learned relations after each iteration.

Iteration 1: The oracle is queried 13 times for all possible relations of C12 and restricts
it to requiring that interval 1 overlaps interval 2. Since all other pairs still allow all 13 basic
relations, no further reduction can be calculated at this point.

Iteration 2: The oracle is queried 13 times for the possible relations of C23 and restricts
it to requiring that interval 2 overlaps or is finished by interval 3. Given the information
already collected, the path consistency algorithm infers that for the pair of (1, 3), only the
relations precedes, meets, and overlaps are possible.

Iteration 3: This pair is then queried next on the remaining three relations, which are
all confirmed by the oracle.

Iteration 4: The oracle is queried 13 times until it is discovered that no specific relations
are intended for C14.

Iteration 5: After querying on C24 in and confirming that interval 2 should precede
or meet interval 4, the path-consistency method infers a first set of relations on pair (3, 4),
on which the oracle has not yet been queried. Additionally, even though the oracle has
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no intention for C14, we already identify through PC that, given the other answers, only a
precedes relation is possible for this pair.

Final iteration 6: The oracle is queried five times to further reduce the relations to
the intent that interval 3 should meet interval 4, and GEQCA-II finishes after 60 queries.

If we consider the same example, but under the availability of universal queries, the total
number of queries reduces to 51. Universal queries are asked at iteration 1, 2, 4, and 5.
Three of these pairs are dependent, but C24 is independent and the single universal query is
therefore sufficient at iteration 4. At iteration 3 and 6, no universal query is asked because
it is already known that some relations do exist.

Iteration C12 C13 C14 C23 C24 C34

1 o > > > > >
2 o p, m, o > o, fi > >
3 o p, m, o > o, fi > >
4 o p, m, o > o, fi > >
5 o p, m, o p o, fi p, m p, m, o, fi, di
6 o p, m, o p o, fi p, m m

Table 1: Illustrative example of GEQCA with the Path-Lex heuristic. A gray background
highlights the pair i, j on which the oracle is queried. Bold values show a change in
the relations, either due to the queries or the following path consistency algorithm.
> marks pairs with the full |Γ| = 13 basic possible relations in Allen’s calculus
(see Figure 1(a)).

4. Experiments

This section presents an experimental evaluation of the revised GEQCA-I, which we refer
to as GEQCA-II. We compare GEQCA-II with classical GEQCA-I (Belaid et al., 2022)
when learning temporal constraints based on Allen’s Interval Algebra with |Γ| = 13 (see
Figure 1(a)), and learning spatial networks based on RCC8 with |Γ| = 8 (see Figure 1(b)).
Before reporting on the experiments, we compare different constraint selection heuristics to
determine the most promising one. The evaluation aims to answer the following research
questions:

• RQ1: Which constraint selection heuristic performs better for learning qualitative
networks using GEQCA-I?

• RQ2: Is GEQCA-II useful for learning qualitative networks, and how does it compare
with GEQCA-I and LQCN?

• RQ3: Is GEQCA-II capable of learning the qualitative part of real-world scheduling
problems, and how does it compare with GEQCA-I?

• RQ4: What is the impact of a bounded time limit between two queries on the oracle
effort?
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Experimental Evaluation Protocol. In our experiments, we follow a protocol adapted
from (Nebel, 1997; Renz & Nebel, 2001) to generate random instances for both the Allen
and RCC8 calculi. We start by instantiating each pair of nodes with an initial consistent
relation. To create inconsistent instances, we randomly select three nodes and replace the
relation on one pair with one not in the composition of the other two pairs, as derived from
the composition table. We then follow the A(n,d,s) procedure (Nebel, 1997; Renz & Nebel,
2001) and verify the consistency or inconsistency of the generated instances using the GQR
reasoner (Gantner, Westphal, & Wölfl, 2008). If the instance is not consistent, we restart
the process.

We vary the number of nodes n, the average degree d, which denotes how many other
nodes have specified relations, the average label size l, which denotes the number of relations
specified between nodes, and whether the instance is satisfiable or not (SAT/UNSAT). The
maximum degree is limited by the number of nodes, and the maximum average label size
is limited by the size of the calculus. The average label size of the instances describes their
density. When there are many pairs of nodes with the universal relation, i.e., a high average
label size, we refer to these instances as having a higher density because there are more
alternatives in the oracle’s intention. This is in comparison to instances where only a few
relations are possible between pairs of nodes, which we refer to as sparse.

We refer to Allen instances as Allen n d l {SAT, UNSAT} i, and RCC8 instances as
RCC8 n d l {SAT, UNSAT} i, where i is the instance number. We provide the exact parame-
ters for all experiments when they are discussed. We generated 40 instances per algebra and
triplet (n, d, l), with 20 instances being SAT and 20 being UNSAT. The values of n, d, and
l were chosen from the sets {10, 25, 50, 100}, {(n− 1), (n/2)}, and {1, (|Γ|/2)}, respectively,
except for n = 100, where only 4 instances were generated per algebra and triplet. In total,
we generated 968 instances.

The algorithms GEQCA-I and GEQCA-II were implemented in Java, and the Choco
solver2 was used for the solve procedure at line 11 in Algorithm 1. The code and complete
description of each instance can be found at the following public repository: https://

github.com/lirmm/ConstraintAcquisition/tree/GEQCA.

All tests are run on an Intel core i7, 2.8GHz with RAM of 16GB.

4.1 [RQ1]: Constraint Selection Heuristics

For our first experiment, we evaluate the effectiveness of different constraint selection heuris-
tics. We compare four heuristics: (i) Lex - the lexicographical heuristic, (ii) Weighted
- the weight-based heuristic, and our (iii) Path-Weighted and (iv) Path-Lex heuristic
presented in Section 3.3. We use each heuristic with three basic settings: (1) GEQCA-I
is used as described in (Belaid et al., 2022) (2) K is empty, and (3) the PC function runs
until a fixpoint is reached (cutoff =∞). As mentioned in (Belaid et al., 2022), employing
the Weighted heuristic in GEQCA-I is equivalent to using LQCN (LearningQCN) as
proposed in (Mouhoub et al., 2018, 2021). This equivalence enables us to compare our work
with LQCN in the experiments.

Figure 6 shows the results of GEQCA-I using the different heuristics on 240 SAT and
240 UNSAT instances for Allen’s Algebra and RCC8. The instances are generated with

2. https://choco-solver.org/
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Figure 6: Comparison of GEQCA-I performance (eF: oracle effort) on QCN instances
using different heuristics.
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n ∈ {10, 25, 50}. For each learned instance, we report the oracle effort eF which represents
the ratio of queries that need to be classified by the oracle according to Qmax, the maximum
number of queries (i.e., Qmax = mn(n−1)

2 , where n is the number of entities and m is the
number of basic relations). The oracle effort is calculated as eF=(Q+ + Q−)/Qmax.

The results show the effectiveness of using the Path-Lex and Weighted heuristics for
learning SAT and UNSAT instances, respectively. The Path-Lex heuristic shows better
performance in learning SAT instances by enhancing the impact of PC. In contrast, the
Weighted heuristic, being the most efficient in solving QCN, detects inconsistencies early
in the learning phase, resulting in less effort. However, our path-based heuristics remain
competitive for UNSAT instances.

On the densest instances where the PC function is not significantly involved during the
learning process, we observed that Path-Lex outperforms the other heuristics on Allen’s
instances, with 99 instances showing more than 90% effort, compared to 111 for Lex, and
118 for both Path-Weighted and Weighted (LQCN). On RCC8 densest instances, the
Weighted heuristic performed the best (LQCN), with 168 instances showing more than
90% effort, compared to 171 for Path-Lex, 175 for Lex and 185 for Path-Weighted.

Let us now take a closer look at the experiments. The first parts of Table 2 and Table 3
present the results for selected instances per configuration. For each instance and each
heuristic, we report the total number of positive qualitative queries (Q+), the total number
of negative qualitative queries (Q−), and the required oracle effort (eF).

The number of positive qualitative queries (Q+) represents the basic relations validated
by the oracle in L. As PC is called at each iteration and can remove previously validated
basic relations, the size of the returned L can be smaller than Q+ (i.e., size(L) ≤Q+).
Our observations on SAT instances reveal that different heuristics lead the oracle to val-
idate different sets of basic relations. For instance, the size of the learned network L for
Allen 25 12 6 SAT 20 is bounded above by a range of 1, 022 to 1, 502, depending on the
heuristic used. However, on UNSAT instances, using the Weighted (LQCN) heuristic
leads to a lower number of validated basic relations before reaching the collapse state.
For example, Weighted (LQCN) collapses on Allen 25 12 1 UNSAT 19 after validating
42 basic relations, while the other heuristics require validating between 138 and 677 basic
relations.

The number of negative qualitative queries (Q−) gives us an indication of the impact of
PC. A higher number of removed basic relations using PC results in fewer negative queries.
We can observe that Path-Lex enhances the performance of PC by rapidly forming tri-
angles in the line graph. For instance, in Allen 100 99 1 SAT 1, Path-Lex requires only
7, 740 negative queries while the other heuristics require between 8, 316 and 17, 168 negative
queries.

When considering the set of 484 UNSAT instances, the average effort required by Path-
Lex, Path-Weighted, Weighted (LQCN), and Lex is 48.60%, 45.09%, 38.09%, and
83.11%, respectively. In this case, Weighted (LQCN) clearly outperforms the other
heuristics. However, for the set of 484 SAT instances, the average effort required by Path-
Lex, Path-Weighted, Weighted (LQCN), and Lex is 82.78%, 86.43%, 84.32%, and
83.94%, respectively. Given that the main focus is on learning SAT instances, Path-Lex
is the most efficient heuristic for learning QCNs. Therefore, we will use Path-Lex in the
rest of the experiments.
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Figure 7: Comparison of Effort Required by LQCN, GEQCA-I, and GEQCA-II on QCN
instances.
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4.2 [RQ2]: Effectiveness of GEQCA-II Compared to LQCN and GEQCA-I

For our second experiment, we evaluate the effectiveness of GEQCA-II in comparison to
GEQCA-I and LQCN. We employ GEQCA-II and GEQCA-I with three basic features:
(i) selection of pairs in line 6 of Algorithm 1 is carried out using the Path-Lex heuristic; (ii)
K is empty; and (iii) the PC function is executed until a fixpoint is reached (cutoff =∞).
The sole distinction is the utilization of universal queries (line 7 of Algorithm 1) in GEQCA-
II.

Figure 7 illustrates the performance of LQCN, GEQCA-I, and GEQCA-II on 240
SAT and 240 UNSAT instances for Allen’s Algebra and RCC8, with instance sizes n ∈
{10, 25, 50}. The results are presented in terms of the oracle effort eF, which represents the
ratio of asked queries to the maximum number of possible queries. It is worth noting that
the use of universal queries in GEQCA-II can lead to an effort greater than 100% for some
instances. Specifically, we calculate eF=(Q+ + Q− + UQ+ + UQ−)/Qmax, where UQ+ is the
total number of positive universal queries and UQ− is the total number of negative universal
queries.
Tables 2 and 3 show the performance of GEQCA-II on a selected set of instances for each
configuration. Along with Q+, Q−, and eF, we include the total number of positive universal
queries (UQ+) and negative universal queries (UQ−) for GEQCA-II.

On SAT instances, GEQCA-II outperforms GEQCA-I and LQCN, achieving an aver-
age effort of 71.25% compared to 83% and 84.54%, respectively. When additional universal
queries are used, GEQCA-II reduces the effort needed by LQCN and GEQCA-I by ap-
proximately 5% on 75 instances, 10% on 25 instances, and more than 15% on 50 instances
for Allen’s Algebra (Figure 6.(a)). For instance, it reduces the effort by 40% and 38% on the
instance Allen 25 24 6 SAT 20 (Table 2) compared to LQCN and GEQCA-I, respectively.
Similarly, on RCC8 SAT instances (Figure 6.(c)), GEQCA-II reduces the required effort
by approximately 20% on half of the instances. For example, it reduces the effort by 80%
on the instance RCC8 100 50 6 SAT 3 (Table 3).

In cases where there are many universal constraints in the problem instances (i.e.,
dense instances), GEQCA-II outperforms both GEQCA-I and LQCN, achieving an effort
greater than 90% on only 52 Allen’s Algebra instances (or 88 RCC8 instances). In contrast,
GEQCA-I and LQCN require an effort greater than 90% on 99 and 119 Allen’s Algebra
instances (or 171 and 168 RCC8 instances), respectively. However, on instances with few
or no universal constraints (i.e., sparse instances), GEQCA-II is essentially equivalent to
GEQCA-I, except for the additional universal queries it asks.

On UNSAT instances (Figure 7.(b) and (d)), GEQCA-II is more or less equivalent to
LQCN.

In summary, the results confirm that using universal queries can decrease the effort
required for instances with universal constraints. This effect is most pronounced in dense
instances where there are more universal constraints between entities. However, on sparse
instances where there is a few or no universal constraints, GEQCA-II performs similarly
to GEQCA-I, except for the additional universal queries it asks.
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Figure 8 presents a comparison of the oracle effort, eF, of GEQCA-II with LQCN and
GEQCA-I on Allen SAT instances of size 25, for two scenarios: (a) variable label size of 1
and variable degree from 1 to 24, and (b) degree of 24 and variable label size from 1 to 13.
This comparison strengthens our observations.

In Figure 8.(a), we observe that GEQCA-II significantly reduces the oracle effort com-
pared to LQCN and GEQCA-I, especially for smaller degree values, where there are more
pairs with the universal constraint. For example, for degree d = 1, GEQCA-II requires
only 12% effort, while LQCN and GEQCA-I require more than 99%. This improvement
is due to the use of universal queries, which prevent GEQCA-II from asking |Γ| additional
qualitative queries if a given pair of entities are independent. However, for higher degree
values, GEQCA-II requires more effort. For degree d = 21, GEQCA-II requires less than
1% additional oracle effort compared to GEQCA-I (41.3% vs 40.8%) and is still better
than LQCN (41.3% vs 43.7%).

In Figure 8.(b), the average degree d = 24, which means that there are no universal
constraints (in average) between entities. This scenario puts GEQCA-II in the most ex-
treme conditions where universal queries are useless. For smaller average label sizes (from
1 to 5), the effort of GEQCA-II is close to GEQCA-I (requires only 2% additional ef-
fort on average) and even outperforms LQCN (requires 10% less effort on average). For
average label sizes in the middle range (from 6 to 11), GEQCA-II requires slightly more
effort compared to LQCN and GEQCA-I (only 4% additional effort on average). However,
for larger label size where universal constraints start to appear, GEQCA-II significantly
reduces the effort, especially when label size = |Γ| (13 in Allen’s case), where GEQCA-II
reduces the effort to only 7% compared to 100% using LQCN and GEQCA-I. This case
highlights the usefulness of universal queries since more pairs of entities are related by the
universal relation.

4.3 [RQ3]: Effectiveness of GEQCA-II vs GEQCA-I for Learning the
Qualitative Part of Real-world Scheduling Problems

For our third experiment, we aim to evaluate the effectiveness of GEQCA-II and GEQCA-
I in a real-world context by learning temporal constraints of the Resource Constrained
Project Scheduling Problem (RCPSP) (Hartmann & Briskorn, 2010). In this experiment,
we do not consider LQCN as it does not utilize the background knowledge. We use pub-
licly available RCPSP instances3 and consider the problem structure with task durations,
resource requirements, and resource capacities as background knowledge K, denoted by K1.
It is worth noting that K1 can be propagated at line 8 of GEQCA-II. Additionally, some
constraints, such as the cumulative global constraint and deadline constraints, may already
be known by the oracle. We refer to the background knowledge that includes the cumulative
and deadline constraints as K2. The information in K1 ∧K2 can be propagated at line 11
of GEQCA-II.

In Table 4, we present the oracle effort for 5 scheduling instances using GEQCA-II and
GEQCA-I with the Path-Lex heuristic, a cutoff time of 3, 600s, and different background
knowledge (K) settings: ∅, K1, and K1∧K2. Additionally, we report the maximum waiting

3. https://github.com/MiniZinc/minizinc-benchmarks/tree/master/rcpsp
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Figure 8: Comparison of Effort Required by LQCN, GEQCA-I, and GEQCA-II on Allen
SAT instances of size 25 with: (i) fixed average label size of 1 and variable degree
(from 1 to 24) and (ii) fixed degree of 24 and variable average label size (from 1
to 13).
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Instance
GEQCA-I GEQCA-II

Lex Weighted (LQCN) Path-Weighted Path-Lex Path-Lex
Q+ Q− eF Q+ Q− eF Q+ Q− eF Q+ Q− eF Q+ Q− UQ+ UQ− eF

Allen 10 9 1 SAT 19 45 308 60% 45 320 62% 45 380 72% 45 226 46% 45 268 0 20 57%
Allen 10 9 1 UNSAT 7 29 193 37% 11 133 24% 21 145 28% 5 49 9% 5 49 0 4 10%
Allen 10 9 6 SAT 14 276 304 99% 276 304 99% 276 304 99% 266 290 95% 276 302 0 43 106%
Allen 10 9 6 UNSAT 13 208 289 84% 15 33 8% 213 287 85% 15 36 9% 26 32 0 3 10%
Allen 10 5 1 SAT 17 157 232 66% 157 232 66% 273 252 89% 157 192 59% 32 232 13 19 50%
Allen 10 5 1 UNSAT 12 101 115 36% 75 91 28% 47 61 18% 29 93 21% 3 29 2 3 6%
Allen 10 5 6 SAT 18 401 172 98% 401 172 98% 422 162 99% 403 172 98% 143 168 20 21 60%
Allen 10 5 6 UNSAT 20 303 152 77% 102 46 25% 225 91 54% 45 25 13% 18 32 0 3 9%
Allen 25 24 1 SAT 9 300 1,120 36% 300 1,204 38% 300 1,428 44% 300 948 32% 300 964 0 70 34%
Allen 25 24 1 UNSAT 7 36 281 8% 17 50 1% 2 29 0.8% 2 29 0.8% 2 29 0 2 0.8%
Allen 25 24 6 SAT 7 1,711 1,877 92% 1,757 1,965 95% 1,752 1,953 95% 1,676 1,799 89% 1,686 1,801 0 216 95%
Allen 25 24 6 UNSAT 19 789 924 43% 792 918 43% 1,424 1,670 79% 413 479 22% 425 495 0 63 25%
Allen 25 12 1 SAT 16 1,072 912 50% 1,116 970 53% 1,502 1,096 66% 1,022 928 49% 307 930 57 74 35%
Allen 25 12 1 UNSAT 19 644 566 31% 42 37 2% 677 596 32% 138 41 4% 12 109 5 9 3%
Allen 25 12 6 SAT 20 2,827 1,030 98% 2,832 1,030 99% 2,833 1,028 99% 2,809 1,011 97% 977 1,066 138 133 59%
Allen 25 12 6 UNSAT 20 1,353 558 49% 729 282 26% 742 282 26% 492 276 19% 232 277 20 37 14%
Allen 50 49 1 SAT 17 1,225 3,050 27% 1,225 3,512 30% 1,225 4,934 38% 1,225 2,756 25% 1,225 2,966 0 232 27%
Allen 50 49 1 UNSAT 1 108 1,150 7% 157 986 7% 138 1,549 10% 16 34 0.3% 16 34 0 3 0.3%
Allen 50 49 6 SAT 3 6,203 6,527 80% 6,812 7,453 89% 6,829 7,420 89% 6,035 6,177 77% 6,112 6,243 0 584 81%
Allen 50 49 6 UNSAT 4 642 757 8% 43 56 0.6% 82 101 1% 92 110 1% 92 110 0 14 1%
Allen 50 25 1 SAT 15 3,353 2,708 38% 3,429 2,790 39% 4,729 3,216 50% 3,365 2,670 37% 1,225 2,966 0 232 27%
Allen 50 25 1 UNSAT 17 1,075 897 50% 21 61 0.5% 312 421 4% 88 85 1% 13 121 7 10 0.9%
Allen 50 25 6 SAT 3 10,999 4,203 95% 11,007 4,207 95% 11,009 4,200 95% 10,951 4,168 95% 4,713 4,155 477 485 61%
Allen 50 25 6 UNSAT 18 9,396 3,450 80% 659 240 5% 3,780 2,529 62% 1,452 598 13% 566 596 69 77 8%
Allen 100 99 1 SAT 1 4,950 8,316 20% 4,950 9,064 21% 4,950 17,168 34% 4,950 7,740 19% 4,950 7,992 0 636 21%
Allen 100 99 1 UNSAT 1 808 5,039 9% 110 746 1% 112 666 1% 813 2,453 5% 813 2,425 0 189 5%
Allen 100 50 1 SAT 1 11,946 7,428 30% 12,098 7,584 30% 15,086 10,352 39% 11,382 6,994 28% 4,639 7,196 559 582 20%
Allen 100 50 1 UNSAT 1 9,187 6,609 24% 6,062 3,533 15% 5,459 4,045 14% 2,850 1,973 7% 495 1,901 175 157 4%

Table 2: Comparison GEQCA-I using different heuristics vs GEQCA-II using the best heuristic on Allen instances. eF: Oracle
effort, Q+: positive qualitative queries, Q−: negative qualitative queries, UQ+: positive universal queries, UQ−: negative
universal queries.
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Instance
GEQCA-I GEQCA-II

Lex Weighted (LQCN) Path-Weighted Path-Lex Path-Lex
Q+ Q− eF Q+ Q− eF Q+ Q− eF Q+ Q− eF Q+ Q− UQ+ UQ− eF

RCC8 10 9 1 SAT 10 45 245 80% 45 249 81% 45 249 81% 45 223 74% 45 218 0 18 78%
RCC8 10 9 1 UNSAT 4 11 74 23% 7 38 12% 22 122 40% 8 49 16% 7 48 0 5 16%
RCC8 10 9 4 SAT 2 173 178 97% 173 178 97% 173 178 97% 173 181 98% 173 181 0 41 109%
RCC8 10 9 4 UNSAT 14 36 43 21% 9 16 6% 58 55 31% 13 20 9% 17 22 0 4 12%
RCC8 10 5 1 SAT 14 154 162 87% 160 163 89% 160 166 90% 154 146 83% 47 142 14 18 61%
RCC8 10 5 1 UNSAT 1 95 54 41% 76 88 45% 17 20 10% 35 22 16% 9 20 5 3 10%
RCC8 10 5 4 SAT 3 254 105 98% 254 105 99% 254 105 99% 248 97 95% 95 105 20 25 68%
RCC8 10 5 4 UNSAT 17 235 90 90% 195 82 76% 190 79 74% 73 41 31% 77 88 15 20 55%
RCC8 25 24 1 SAT 5 300 1,493 74% 300 1,611 79% 300 1,605 79% 300 1,478 74% 300 1,509 0 141 81%
RCC8 25 24 1 UNSAT 13 97 651 31% 170 834 41% 171 751 38% 71 401 19% 71 431 0 50 23%
RCC8 25 24 4 SAT 16 1,180 1,177 98% 1,180 1,177 98% 1,179 1,176 98% 1,174 1,153 97% 1,156 1,152 3 261 107%
RCC8 25 24 4 UNSAT 10 511 515 42% 49 54 4% 139 159 12% 132 148 11% 131 150 0 31 13%
RCC8 25 12 1 SAT 3 1,205 944 89% 1209 942 89% 1,206 963 90% 1,219 941 90% 371 941 105 115 63%
RCC8 25 12 1 UNSAT 9 651 465 46% 449 239 28% 250 235 20% 382 277 27% 62 277 40 38 17%
RCC8 25 12 4 SAT 5 1,793 599 99% 1793 599 99% 1,794 599 99% 1,792 599 99% 617 599 147 147 63%
RCC8 25 12 4 UNSAT 5 1338 447 74% 989 372 56% 997 372 57% 593 209 33% 193 209 50 49 20%
RCC8 50 49 1 SAT 5 1,225 6,207 75% 1,225 6,404 78% 1,225 6,454 78% 1,225 6,150 75% 1,225 6,189 0 579 81%
RCC8 50 49 1 UNSAT 2 700 4,561 53% 466 2,660 32% 467 2,673 32% 191 1,204 14% 191 1,204 0 163 15%
RCC8 50 49 4 SAT 2 4,860 4,850 99% 4,860 4,852 99% 4,860 4,845 99% 4,859 4,850 99% 4,828 4,849 4 1,152 110%
RCC8 50 49 4 UNSAT 7 3,789 3,767 77% 3,062 3,038 62% 3,138 3,133 64% 707 2,264 30% 1,703 1,723 0 419 39%
RCC8 50 25 1 SAT 7 4,990 3,824 90% 4,999 3,852 90% 4,997 3,848 90% 4,996 3,839 90% 1,212 3,802 471 462 60%
RCC8 50 25 1 UNSAT 8 887 667 15% 776 536 13% 713 489 12% 188 145 3% 20 145 21 20 2%
RCC8 50 25 4 SAT 9 7,253 2,522 99% 7,253 2,522 99% 7,250 2,523 99% 7,253 2,522 99% 2,510 2,524 593 616 63%
RCC8 50 25 4 UNSAT 4 3,378 1,120 45% 696 217 9% 704 217 9% 1,117 349 15% 381 349 92 89 9%
RCC8 100 99 1 SAT 3 4,950 29,003 87% 4,950 28,905 85% 4,950 28,994 85% 4,950 28,980 85% 4,950 28,986 0 3,248 93%
RCC8 100 99 1 UNSAT 3 3,883 21,209 63% 4,537 23,481 70% 4,549 23,619 66% 1,951 11,374 33% 1,951 11,374 0 1,281 36%
RCC8 100 50 1 SAT 3 21,154 16,459 95% 21,137 16,441 95% 21,118 16,439 94% 21,154 16,482 95% 722 4,218 625 590 15%
RCC8 100 50 1 UNSAT 3 18,368 14,486 83% 9,729 7,479 43% 10,310 7,832 45% 19,325 15,055 86% 3,788 15,052 1,943 1,997 57%

Table 3: Comparison GEQCA-I using different heuristics vs GEQCA-II using the best heuristic on RCC8 instances. eF: Oracle
effort, Q+: positive qualitative queries, Q−: negative qualitative queries, UQ+: positive universal queries, UQ−: negative
universal queries.
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time between two queries, denoted as Tmax. Each scheduling instance is labeled by the
number of tasks it contains (e.g., sch 30 1 refers to instance 1 with 30 tasks).

Table 4 provides insights into the performance of GEQCA-I and GEQCA-II on schedul-
ing instances. Firstly, we observe that GEQCA-II significantly reduces the oracle effort on
all instances when K= ∅. For instance, on sch 60 1, GEQCA-II requires only 12% of the
effort needed by GEQCA-I (99%), which is due to the presence of independent tasks in
these instances. This highlights the usefulness of the universal query in establishing task in-
dependence (e.g., more than 1, 600 UQ+ on sch 60 1). Secondly, using the problem structure
K1 in the propagate procedure reduces the effort of the oracle for GEQCA-I. This reduc-
tion corresponds to a 38% average decrease in the number of queries (i.e., 30,528 queries).
This reduction is significant when tasks are classified as locally independent using universal
queries but not globally. In such cases, K1 drastically reduces the number of qualitative
queries asked by GEQCA-I. However, this reduction has no effect on GEQCA-II, where
globally inconsistent relations are removed using PC during the acquisition process. Finally,
we observe that the oracle effort is reduced when background knowledge is used, especially
with known constraints such as cumulative and deadline constraints (K= K1∧K2), for both
GEQCA-I and GEQCA-II. For instance, on sch 60 1, the effort was reduced from 99%
to 62% with GEQCA-I and from 12% to 10% with GEQCA-II.

Using K1∧K2 in the solve procedure, in addition to using K1 in the propagate procedure,
results in a small but insignificant improvement (average effort of 56% instead of 59% using
GEQCA-I and average effort of 11% instead of 14% using GEQCA-II). However, under
K= K1 ∧ K2, the waiting time between two queries can reach the cutoff of one hour on
sch 60 3 due to the solve procedure that spends more than an hour trying to prove the
consistency of a relation with the network. Note that with K= ∅, the waiting time exceeds
7 seconds with a PC call, while the propagate procedure can increase the waiting time to
more than 9 seconds under K=K1.

Comparing GEQCA-II to GEQCA-I, we observe that GEQCA-II spends less time
between two queries than GEQCA-I does on most instances. For instance, on sch 30 2,
Tmax reaches 393 seconds using GEQCA-I, whereas it is only 187 seconds using GEQCA-
II. This is due to the higher number of calls of the solve procedure in GEQCA-I compared
to GEQCA-II. The universal queries used in GEQCA-II prevent calling the solver on
independent tasks, which reduces the waiting time.

4.4 [RQ4]: Time Limit Impact on GEQCA-II

In this section, we evaluate the performance of the oracle with respect to a time limit
between two queries. As presented in Table 4, the waiting time (Tmax) can sometimes
exceed the one-hour limit, which could be impractical in some scenarios. In (Lallemand
& Gronier, 2012), it is suggested that a cutoff time of 2 seconds is reasonable for human
users. Therefore, we conducted a new experiment with a cutoff time of 2 seconds using
GEQCA-II. Table 5 displays the results of this experiment.

Table 5 presents the oracle effort on five scheduling instances using GEQCA-I with
the Path-Lex heuristic, a cutoff time of 2 seconds, and K values of ∅, K1, and K1 ∧K2.
Interestingly, we observe that the oracle effort remains unchanged with or without a cut-
off, as shown by comparing Table 4 to Table 5. We analyzed the two learning processes
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Instance
GEQCA-I GEQCA-II

∅ K1 K1 ∧K2 ∅ K1 K1 ∧K2

eF Tmax eF Tmax eF Tmax eF Tmax eF Tmax eF Tmax

sch 30 1 95% 0.79 55% 0.91 53% 1.18 17% 0.86 17% 0.83 13% 0.92
sch 30 2 98% 0.62 52% 0.90 48% 393.08 17% 0.78 17% 0.83 12% 186.80
sch 60 1 99% 4.80 65% 8.51 62% 13.00 12% 5.82 12% 7.16 10% 7.83
sch 60 2 99% 7.72 64% 8.08 61% 12.55 12% 4.67 12% 6.88 10% 6.95
sch 60 3 98% 5.94 59% 9.66 57% 3,600 12% 5.63 12% 7.47 10% 3,600

Table 4: GEQCA-I vs GEQCA-II acting on RCPSP instances (with cutoff = 3, 600s,
Tmax in seconds, eF: oracle effort).

Instance
GEQCA-II

∅ K1 K1 ∧K2

eF Tmax eF Tmax eF Tmax

sch 30 1 17% 0.86 17% 0.83 13% 0.92
sch 30 2 17% 0.78 17% 0.83 12% 2
sch 60 1 12% 2 12% 2 10% 2
sch 60 2 12% 2 12% 2 10% 2
sch 60 3 12% 2 12% 2 10% 2

Table 5: GEQCA-II acting on RCPSP instances (with cutoff = 2s, Tmax in seconds, eF:
oracle effort).

and found that GEQCA-II efficiently prunes the basic relations using PC within the cutoff
time. Subsequently, the PC propagation spends the remaining time proving the transitive
closure of the network. Propagating the problem structure with K = K1 is also not a
time-consuming process. We also observed that the oracle effort is the same even when
using K = K1 ∧ K2 on sch 60 2 and sch 60 3. This is because the solve procedure can
be time-consuming without removing any relation, either because a solution is found after
a significant time resolution (e.g., 187 seconds on sch 30 2), or because the time limit is
reached without proving the existence of a solution (e.g., one hour on sch 60 3). These
observations demonstrate that GEQCA-II is an effective CA-Agent even when subjected
to a time limit on the time window between two submitted queries.

The RCPSP instances are formulated using precedes and meets relations. Addition-
ally, we note that GEQCA-I and GEQCA-II learn twice as many precedes constraints
compared to the ones in the benchmarks, thanks to the PC procedure which reduces a
considerable number of full constraints to precedes. This leads to a faster optimal solution
search using networks obtained from GEQCA-I and GEQCA-II compared to the ones in
the benchmarks.

4.5 Discussion and Limits

In conclusion, our revised approach GEQCA-II shows a higher effectiveness in learning
qualitative constraints as compared to the classical GEQCA-I and LQCN. This is mainly
due to the new universal query that significantly reduces the number of queries raised
to the oracle. The extension addresses the limitations of GEQCA-I in learning dense
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instances and the qualitative part of real scheduling problems. Furthermore, both GEQCA-
I and GEQCA-II offer a cutoff option to minimize the waiting time between two queries.
Assigning the cutoff time to 2 seconds is a reasonable choice.

Note that GEQCA-II may not be suitable for interactive processes when a large number
of queries (e.g., thousands) are required and only a single person can answer these queries.
Hopefully, as said above in the paper, oracles can also be an automated system (equipped
with a non-CP representation of the concept) or a crowd of users. In these cases, the
oracle can only check the consistency of information with the concept being learned. For
example, expert systems can easily verify the answers to queries, but they may not be
able to solve complex queries. An example of an automated oracle in CA is provided in
(Paulin, Bessiere, & Sallantin, 2008), where a CA-Agent and a robot interact to acquire
sensorimotor behaviors. Another example is provided in (Menguy et al., 2022), where
the oracle consists of a program under analysis and its postcondition, which automatically
responds to the queries submitted by the CA-agent. It is also possible for the oracle to
consist of a community, such as thousands of people or collaborative robots, who share the
same concept and are capable of answering questions from any CA-agent (Lazaar, 2021).
Furthermore, it is possible to inherit constraints from a past or obsolete model that needs
updating. GEQCA-II can easily handle such cases with its incremental calculation of L.

There are several ways in which GEQCA-II can be improved:

• Use other types of queries: In some practical scenarios, the oracle can provide
more informative answers to queries. For example, the oracle can provide all the
relations that are allowed on a given pair or all pairs on which a given relation is
allowed. Incorporating such query types could improve the efficiency of GEQCA-II.

• Account for incorrect answers: GEQCA-II assumes that the oracle always pro-
vides correct answers to queries. However, in practice, it may not be the case. To
address this issue, we may consider that the oracle answers queries with incorrect
answers according to a certain probability distribution. This could lead to a proba-
bilistic version of qualitative CA, which would enable the acquisition of soft constraints
enforced with probability restrictions.

• Constraint selection heuristic: While Path-Lex and Path-Weighted are effec-
tive in practice, they may not be suitable for all problems. Combining these heuristics
with other dynamic entity-selection heuristics could be interesting. For example, using
weights that are dynamically adjusted based on the current status of the acquisition
process could be a promising approach.

5. Conclusion

In this paper, we presented GEQCA-II, an extension of GEQCA-I, a correct and generic
active CA-Agent that can learn any qualitative network using qualitative queries, path con-
sistency, and exploration of background knowledge. The key contribution of GEQCA-II is
the incorporation of a new type of query called the universal query, which helps to reduce
the number of queries required and improves the efficiency of the CA process. Our ex-
perimental results demonstrate that GEQCA-II requires only a limited number of queries
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to the oracle within a reasonable amount of time, making it a practical and efficient ap-
proach. We also showed that GEQCA-II overcomes the limitations of GEQCA-I and
LQCN on dense instances. Furthermore, we highlighted the generality of GEQCA-I and
GEQCA-II, which can be used to learn not only temporal but also spatial networks. Over-
all, GEQCA-II presents a promising approach to active constraint acquisition in qualitative
reasoning. Future work could explore further enhancements with new query types and real-
world applications. The generality of GEQCA-I and GEQCA-II opens up avenues for
their application in various domains beyond qualitative reasoning.
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