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Soil organic carbon (SOC) is vital for terrestrial ecosystems, affecting biogeochemical 
processes, and soil health. It is known that soil salinity impacts SOC content, yet the 
specific direction and magnitude of SOC variability in relation to soil salinity remain 
poorly understood. Analyzing 43,459 mineral soil samples (SOC < 150 g kg−1) collected 
across different land covers since 1992, we approximate a soil salinity increase from 1 
to 5 dS m−1 in croplands would be associated with a decline in mineral soils SOC from 
0.14 g kg−1 above the mean predicted SOC ( SOCc = 18.47 g kg−1) to 0.46 g kg−1 below 
SOCc (~−430%), while for noncroplands, such decline is sharper, from 0.96 above 
SOCnc = 35.96 g kg−1 to 4.99 below SOCnc (~−620%). Although salinity’s significance 
in explaining SOC variability is minor (<6%), we estimate a one SD increase in salin-
ity of topsoil samples (0 to 7 cm) correlates with respective SOC  declines of ~4.4% 
and ~9.26%, relative to SOCc and SOCnc . The SOC  decline in croplands is greatest 
in vegetation/cropland mosaics while lands covered with evergreen needle-leaved trees 
are estimated with the highest SOC  decline in noncroplands. We identify soil nitrogen, 
land cover, and precipitation Seasonality Index as the most significant parameters in 
explaining the SOC’s variability. The findings provide insights into SOC dynamics 
under increased soil salinity, improving understanding of SOC stock responses to land 
degradation and climate warming.

soil organic carbon | soil salinity | environmental impact | carbon cycle | biogeochemistry

Soil organic carbon (SOC) is a crucial component of terrestrial ecosystems and plays a 
significant role in numerous biogeochemical processes (1). It constitutes a dynamic pool 
of carbon intricately linked to climate regulation, nutrient cycling, and soil health (2). 
Soil carbon is the main component of soil organic matter (SOM), which encompasses 
various organic materials (OM) derived from plant and animal residues, microbial biomass, 
and other decomposed organic substances (3, 4).

Soil salinity is a measure of the concentration of soluble salts in the soil solution (5, 6). 
Salinity can occur naturally in certain regions due to arid or semiarid conditions, leading 
to the accumulation of salts through processes like mineral weathering or anthropogenic 
activities like irrigation and improper land management (7). Excessive soil salinity is a 
significant environmental issue worldwide (8), negatively impacting soil fertility, plant 
growth, and overall ecosystem productivity (9–11).

Explaining the interplay between soil salinity and SOC content is essential for under-
standing the potential impacts of soil salinity on carbon sequestration, climate change 
mitigation efforts, and the stability of terrestrial carbon stocks (12). However, the rela-
tionship between soil salinity and SOC content, particularly in field conditions and at 
large geographical scales, is intricate and can exhibit variable effects (13, 14). The net effect 
of soil salinity on SOC content indeed remains complex which necessitates further research 
to gain a complete understanding (12, 15, 16).

High salinity levels can inhibit microbial activity, reducing the decomposition of OM 
in the soil (17–19). This slowdown in decomposition rates can result in the accumulation 
of SOC, as OMs persist for longer periods before being fully broken down (20). Elevated 
soil salinity can induce the flocculation of clay particles into aggregates, potentially limiting 
substrate availability and slowing down the decomposition of SOM (12). Moreover, soil 
salinity can promote the binding of organic carbon to soil particles through cation bridging 
at higher electrolyte concentrations. As a result of this enhanced carbon stabilization, 
saline-sodic soils demonstrate lower SOC loss than sodic soils (21). All these mechanisms 
are expected to lead to SOC accumulation/increase over time.

On the other hand, moderate to high salinity can negatively impact vegetation, reducing 
plant biomass, and root exudates (15, 22, 23). In highly saline environments, plant growth 
and productivity may be limited due to the osmotic stress caused by excess salts (24, 25). 
Fewer OMs and litter entering the soil from plants lead to a potential decline in the SOC 
content (26). Additionally, salinity-induced soil degradation, such as surface crusting, can 

Significance

Soil organic carbon (SOC) is 
integral to terrestrial ecosystems, 
influencing soil health and 
ecological processes. Soil salinity, 
a growing concern due to climate 
change and human activities, can 
have either detrimental or 
beneficial effects on SOC. This 
analysis sheds light on the 
intricate relationship between 
salinity and SOC, revealing that 
soil salinity is negatively 
correlated with SOC content. 
Such insights are vital for 
addressing global challenges, 
including land degradation and 
climate change.

Author affiliations: aThe Climate and Environmental 
Research Institute NILU, Kjeller 2027, Norway; bInstitute 
of Biological and Environmental Sciences, School of 
Biological Sciences, University of Aberdeen, Aberdeen 
AB24 3UU, United Kingdom; and cInstitute of Geo-
Hydroinformatics, Hamburg University of Technology, 
21073 Hamburg, Germany

Author contributions: A.H., P.S., and N.S. designed 
research; A.H., P.S., and N.S. performed research; A.H. 
contributed new reagents/analytic tools; A.H. analyzed 
data; and A.H., P.S., and N.S. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS. 
This open access article is distributed under Creative 
Commons Attribution License 4.0 (CC BY).

Although PNAS asks authors to adhere to United Nations 
naming conventions for maps (https://www.un.org/
geospatial/mapsgeo), our policy is to publish maps as 
provided by the authors.
1To whom correspondence may be addressed. Email: 
ahas@nilu.no or nima.shokri@tuhh.de.

This article contains supporting information online at 
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.​
2317332121/-/DCSupplemental.

Published April 26, 2024.

OPEN ACCESS

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 8
9.

8.
19

8.
12

4 
on

 M
ay

 3
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

89
.8

.1
98

.1
24

.

mailto:
https://orcid.org/0000-0002-6470-0490
https://orcid.org/0000-0002-3784-1124
mailto:
https://orcid.org/0000-0001-6799-4888
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.un.org/geospatial/mapsgeo
https://www.un.org/geospatial/mapsgeo
mailto:ahas@nilu.no
mailto:nima.shokri@tuhh.de
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2317332121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2317332121/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2317332121&domain=pdf&date_stamp=2024-4-26


2 of 9   https://doi.org/10.1073/pnas.2317332121� pnas.org

increase soil erosion rates, leading to the loss of OM and reducing 
SOC (16, 27). Extreme salinity can lead to shifts in microbial 
communities (18). Some halophilic (salt-loving) microorganisms 
may become dominant, which could impact the decomposition 
of SOM differently than in nonsaline soils, potentially affecting 
the SOC content (18).

The Significance of Soil Salinity in Predicting 
SOC

The net effect of soil salinity on the SOC content is thus a balance 
between the positive and negative influences. It depends on the 
specific interacting factors, including climate, soil type, vegetation, 
land use practices, and other soil physicochemical properties.

We analyzed a vast dataset comprising 43,459 soil samples from 
diverse biomes and land covers, particularly Europe, collected 
since 1992. The soil samples were collected from various depths 
and were obtained from well-established soil profile databases such 
as LUCAS (28) (n = 31,168) and WoSIS (29) (n = 12,291). These 
samples included soil salinity measurements, represented by soil–
water extract electrical conductivity (EC) (dS m−1) and SOC con-
tent (g kg−1) at each sampling location. The primary objective of 
our research was to examine the correlation between soil salinity 
and SOC in mineral soils (SOC < 150 g kg−1) by controlling other 
environmental parameters that could explain the variability in 
SOC. Our assumption was that a steady-state balance exists 
between soil, land, and climate at the sampling locations over 
extended periods. However, this assumption may not necessarily 
be valid, especially in croplands, where over short time scales land 
and crop management practices may play a more significant role 
in explaining the variability in SOC. Accordingly, we separated 
the analysis into croplands (n = 25,634) and noncroplands (n = 
17,825). The interpretation of the developed statistical analysis 
enabled us to identify additional significant environmental factors 
and their relationship with SOC content.

To account for the complex nature of soil systems, we consid-
ered several critical environmental factors that may interact with 
and are correlated with the behavior of OC in the soil including 
climate, vegetation cover, land use practices, soil texture, soil 
physio-chemical properties, drainage patterns, soil moisture levels, 
and land management strategies. We employed general additive 
models (GAMs) to investigate the relation between soil salinity 
and SOC content while considering potential nonlinear patterns 
and interactions with other parameters. Given the innate correla-
tion between these variables at large scale and the possibility of 
concurvity, or fundamental associations between these variables, 
we first ranked covariates based on their minimum redundancy 
and maximum relevance to SOC using MRMR (Minimum 
Redundancy Maximum Relevance) algorithm (30). For two major 
land covers, croplands, and noncroplands, we fitted separate 
GAMs to the SOC of soil samples with SOC < 150 g kg−1, as the 
target variable.

In both cases, certain environmental variables were identified as 
the most influential in explaining SOC variability (SI Appendix, 
Fig. S1). Specifically, the covariates identified as significant in both 
croplands and noncroplands were soil total soil nitrogen (N) content 
(g kg−1), land cover, sample depth (cm), sand content (%) in the 
fine earth fraction (particles < 2 mm), soil pH (measured in aqueous 
solution), and precipitation Seasonality Index (SI)— representing 
the variation in precipitation throughout the year within an area. 
Soil salinity emerged as one of the primary covariates in both land 
types. Moreover, leaf area index (LAI) was found to be significant 
for croplands, while topographic hill slope emerged as influential 
for noncroplands. One result here is that the precipitation SI emerges 

as a more significant covariate compared to annual precipitation and 
long-term air temperature.

Using GAMs allowed us to discern the specific local significance 
of different variables, including soil salinity, in prediction of SOC 
contents at varying levels of soil–water extracts (Fig. 1). For every 
observation, the percentage of local covariate significance for pre-
dicting SOC was calculated by dividing the absolute effect of that 
specific covariate by the sum of the absolute effects of all other 
covariates, excluding the intercept. The results indicated that the 
local significance of soil salinity in prediction of SOC contents 
ranged from 0% to ~6% across different soil-water extracts. On 
average, the salinity’s mean significance in prediction of SOC 
content was ~1.13% (SD = ~0.94%). The low mean significance 
of salinity suggests that other factors, such as climate, land cover, 
or soil texture, may have more substantial effects in prediction of 
SOC contents.

The analysis of the most significant local covariates in prediction 
of SOC values revealed soil total N, land cover, and precipitation 
SI, and pH among main factors highly correlated with SOC con-
tent (Fig. 2). For a total of 30,216 observations, soil N emerged 
as the most significant covariate, with a mean importance of 
~15.35% (SD = ~8.51%). Similarly to Evans, Burke, and 
Lauenroth (31), our study suggests that there is a strong correla-
tion between SOC and N levels, given that N is a main component 
of soil OM (32). The results align with the findings of Xu et al. 
(33) or Doetterl et al. (34), who highlighted the significance of 
geochemistry as a key factor for soil C storage, in addition to 
climate. Similarly, for 1,660 soil samples, land cover exhibited a 
notable significance (mean importance of ~5.55%, SD = ~1.38%) 
followed by precipitation SI, for 645 soil samples (mean impor-
tance of ~3.82%, SD = ~2.52%), suggesting the primary factors 
explaining SOC variability are climate and land cover type. 
Previous studies have also identified soil moisture, clay content, 
or land cover as the primary covariates (32, 35–37).

Relation between Soil Salinity and SOC

We used the developed GAMs to estimate the Accumulated Local 
Effects (ALEs) (38) of each covariate on the predicted SOC con-
tents (Fig. 3). ALE plots allow understanding of how variation in 
each covariate influences the predicted outcome (SOC) while 
accounting for the interactions and nonlinearities with other 
covariates. We generated ALE plots for each covariate of interest. 
These plots display how the SOC deviates from the mean pre-
dicted SOC content as the covariate’s value ranges from its min-
imum to its maximum across the dataset.

Using ALEs, we found a general nonlinear decreasing trend in 
predicted SOC with an increase in soil salinity (Fig. 3A), for both 
crop and noncroplands. For croplands, ALEs are quantified by 
the equation ALE = 0.34 + −0.21EC + 0.01EC2 while for non-
croplands, ALE = −7.42 + 11.43exp(−0.31EC). In those equa-
tions, ALE represents the deviation of SOC from the mean 
predicted SOC (18.47 and 35.96 g kg−1 for croplands and non-
croplands, respectively), and EC is the soil salinity measured in 
dS m−1. This implies that higher soil salinity is associated with 
reduced SOC content, consistent with geographically specific 
investigations of Zhang et al. (39), Qu et al. (40), Setia et al. (41), 
and Zhao et al. (42). The equation also provides insight into the 
magnitude of the correlation between soil salinity and SOC con-
tent. For example, the equation for croplands suggests that a soil 
salinity increase from 1 to 5 dS m−1 is associated with a decrease 
in SOC from 0.14 g kg−1 above the mean predicted SOC (18.47 
g kg−1) to 0.46 g kg−1 below the mean predicted SOC. Such 
increase in soil salinity is associated with a stronger decrease of D
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5.95 g kg−1 (ALE = 0.96 to ALE = −4.99) for noncroplands with 
mean SOC = 35.96 g kg−1. This finding confirms that soil salinity 
has dominantly a negative correlation with SOC content when 
controlling for the role of other covariates explaining the variability 
of SOC. It is important, however, to note that this is a correlative 
analysis. We use the spatial distribution/variability of both varia-
bles to see how they are correlated. Other factors, not included in 
their multivariate analysis, might affect the distributions of both 
variables (i.e., SOC and soil salinity).

The ALEs also reveal the relations between SOC and other 
relevant soil and environmental parameters. The source soil profile 
databases also have documented a nearly linear relationship 
between SOC and N (28) (Fig. 3D). For both crop and noncrop-
lands. the partial dependence between SOC and sample depth 
shows a negative association between depth and SOC, aligning 
with findings from previous literature. These relationships not 
only validate the effectiveness of the GAM developed for our study 
but also shed light on other critical questions regarding interac-
tions between carbon dynamics in the soil and the atmosphere.

High acidic soils (low pH) often have slower decomposition 
rates, leading to higher SOC content, while highly alkaline soils 
(high pH) can promote decomposition and reduce SOC accumu-
lation (43, 44), which is to some extent reflected in the results 
presented in Fig. 3C. While some studies suggest a strong positive 
correlation between precipitation and SOC (31, 45, 46), others 
demonstrate the minimal to no impact that precipitation has on 
SOC (34, 47). The ALEs calculated here (Fig. 3 E and F) reveal 
that at low to moderate precipitation SIs, the relation between 
SOC precipitation SI is complicated, while in highly humid or 
high vegetation environments, characterized by elevated SI or LAI, 
the presence of abundant vegetation does not necessarily result in 

increased SOC content [e.g., Spain (48) or Lu, Gilliam, Guo, 
Hou, and Kuang (44)]. This counterintuitive phenomenon can 
be attributed to specific factors and processes influencing carbon 
dynamics in these ecosystems. Accelerated erosion, high decom-
position rates, rapid leaching of OM, the presence of high-quality 
and easily decomposable litter, prolonged waterlogging, and anaer-
obic conditions contribute to an accelerated net loss of SOC 
despite the vegetation cover.

Our findings indicate that the role of soil texture in influencing 
SOC stocks is complex and varies with different fractions of the 
soil (Fig. 3B). Specifically, we observed that increase in soil sand 
content is positively correlated with SOC content, especially in 
the 0 to 20% and 60 to 100% ranges. Similar trends are observed 
in other studies such as Vos et al. (49) and Yang et al. (50). At low 
SOC levels, clay and silt particles predominantly hold the SOC. 
However, as SOC content increases, the proportion of SOC in 
the sand fraction also rises (50). This suggests that only soils with 
a high sand fraction have the ability to retain high levels of SOC. 
Diverse contrasting positive and negative correlations between soil 
texture and SOC content have been reported (47, 51–54). The 
range of these relationships highlights the significance of SOC 
composition (55, 56) and clay type (57) as critical factors in the 
interplay between SOC and soil texture, especially at lower SOC 
levels.

Topsoil Organic Carbon Content Response to 
Increased Salinity

For dominant land cover types (shown on the Insets, Fig. 4), we 
employed the fitted GAMs to estimate the topsoil OC (0 ~ 7 
cm) content in soil sample locations as a result of a 1 SD increase 

Fig. 1.   Vertically averaged local significance of soil salinity in prediction of SOC content using GAMs. Soil salinity is represented by EC of different soil–water 
extracts (dS m−1). For every observation, the percentage of local covariate significance for predicting SOC was calculated by dividing the absolute effect of that 
specific covariate by the sum of the absolute effects of all other covariates, excluding the intercept.
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in soil salinity (Fig. 4). For croplands, the 1 SD increase in soil 
salinity corresponds to an approximately 263.2% increase in the 
median salinity (relative to original median = 4.32 dS m−1), 
while for noncroplands, it represents a nearly 245.24% increase 
in the median (original median = 3.83 dS m−1). The predictions, 
along with 95% CIs, were made both before and after the 
increase in salinity levels. Before the 1 SD increase in soil salinity, 
the 95% CIs for the predictions showed a median range of 12.48 

and 22.78 g kg−1, for crop and noncroplands, respectively. 
However, after the increase in these parameters, the median 95% 
CIs were, respectively, 12.78 g kg−1 for soil salinity of croplands 
(SI Appendix, Fig. S2) and 21.6 g kg−1 for noncroplands 
(SI Appendix, Fig. S3). The results indicated higher uncertainty 
in the estimates for soil samples located in latitudes above 55°N, 
particularly in regions like Scandinavia and the northern United 
Kingdom.

Fig. 2.   Covariates with the highest local significance in predicting SOC content using the GAMs. (A) the covariates with the highest significance in prediction of 
topsoil (0 to 7 cm) SOC content at each observation location. (B) box plot of the local significance of covariates at various depths. The boxes include the median, 
lower and upper quartiles, and nonoutlier minimum and maximum values. Outliers are calculated as values more than 1.5 times the IQR away from the top or 
bottom of the box. For every observation, the percentage of local covariate significance for predicting SOC was calculated by dividing the absolute effect of that 
specific covariate by the sum of the absolute effects of all other covariates, excluding the intercept.
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For croplands, fitted GAM estimated a 1 SD increase in soil salin-
ity is correlated with a decrease of approximately ~4.4% in the mean 
topsoil OC content of the soil samples (Fig. 4A), relative to the 
current mean predicted SOCcurrent of ~17.87 g kg−1. On the other 
hand, a 1 SD increase in soil salinity of samples located in noncrop-
lands was estimated to be correlated with an increase of approxi-
mately ~9.26% in the mean topsoil OC content (Fig. 4B; SOCcurrent 
= ~36.01 g kg−1), in line with Setia et al. (13), who also estimated 
that world soils may lose 6.8 Pg of SOC by the year 2100 due to the 
projected increase in saline soils. To evaluate this, they used a mod-
ified Rothamsted Carbon model (58). Our results also indicated the 
variability in the relationship between soil salinity and SOC at 

different land covers. For croplands, the decrease in SOC in associ-
ation with soil salinity was found to be little more noticeable (mean 
= ~−5.75%; SOCcurrent = ~23.71 g kg−1) in lands covered by a mosaic 
of natural vegetation and cropland (tree, shrub, herbaceous cover 
>50% while cropland <50%) and less in irrigated croplands (mean 
= ~−3.78%; SOCcurrent = ~13.16 g kg−1). However, for the noncrop-
lands, the largest association was estimated for evergreen needle-leaved 
tree cover (mean = ~−14.25%; SOCcurrent = ~44.4 g kg−1) and the 
lowest was estimated for grasslands (mean = ~−4.58%; SOCcurrent = 
~33.57 g kg−1).

In conclusion, this study provides insights into the complex 
interactions between soil salinity and SOC content across 

Fig. 3.   ALEs of covariates on predicted SOC content using the fitted GAMs. The Y-axis represents the deviation of GAMs’ predictions from the mean predicted 
SOC (18.47 and 35.96 g kg−1 for croplands and noncroplands, respectively) as the covariate varies from its lowest to highest values. Panels show the relation 
between SOC and (A) soil salinity, (B) soil sand content, (C) soil pH, (D) soil nitrogen content, (E) precipitation Seasonality Index, (F) Leaf Area Index, (G) terrain slope, 
(H) land cover type, and (I) soil depth, respectively. The ALE plots are computed by dividing the covariate feature into 200 sections. The covariates’ distribution is 
represented by the horizontal boxes close to the x-axis. The boxes represent the median, lower, and upper quartiles, and nonoutlier minimum and maximum 
values. Outliers are determined as values that exceed 1.5 times the interquartile range (IQR) away from either side of the box.
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various land covers. The findings indicate that environmental 
factors that significantly explain SOC variability varying across 
different geographical regions and land use types. These results 
contribute to our understanding of the dynamics of SOC stor-
age and have implications for land management strategies to 
mitigate the effects of changing environmental conditions on 
SOC levels. Analyzing the relationship between SOC content 
and soil salinity provides policymakers with insights to make 
informed decisions regarding sustainable land management, 
climate change mitigation, and agricultural practices. By inte-
grating these findings into policies and management strategies, 
policymaking can use the results to promote soil health, enhance 
carbon sequestration, and contribute to global efforts to combat 
climate change.

Methods

We began by gathering soil profile data from soil databases, including meas-
urements of SOC and soil salinity. Additionally, we acquired a complete dataset 
of various environmental and soil physio-chemical properties that are known to 
correlate with the SOC pool over medium- to long-term periods.

Following the preparation of the dataset, we selected and used the most sig-
nificant parameters as an input for developing GAMs. Using the GAMs, we could 
recognize the specific correlation between soil salinity and SOC content while 
accounting for the effects of other environmental and physio-chemical factors.

Soil Profile Data. We collected soil profile data, focusing on salinity measure-
ments represented by EC (the ability of a soil–water extract to conduct electrical 

current: dS m−1) and total SOC content (g kg−1) in the fine earth fraction. The 
fine earth fraction refers to soil particles that are smaller than 2 mm in size. 
We obtained the data from two primary sources: the LUCAS 2015 (59) (https://
esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data, accessed on 03-2024) 
and LUCAS 2018 (28, 32) (https://esdac.jrc.ec.europa.eu/content/lucas-2018-
topsoil-data, accessed on 03-2024) topsoil survey data inventories, covering 
European Union countries, and the ISRIC—WoSIS Latest (dynamic) Standardized 
datasets (29, 60), providing global soil salinity measurements (https://www.isric.
org/explore/wosis/accessing-wosis-derived-datasets, accessed on 03-2024).

The total SOC content in LUCAS inventories is measured using the ISO 
11265:1994 Dry combustion method, while the soil salinity is determined using 
the ISO 11265:1994 method, which involves measuring the EC between metal 
electrodes in an aqueous extract of soil with a specific soil-to-water ratio (1:5 
soil mass to water volume). On the other hand, the WoSIS dataset from ISRIC 
provides soil salinity measurements globally using different soil–water extract 
ratios: 1:2 (ELCO20), 1:2.5 (ELCO25), 1:5 (ELCO50), and saturated paste (ELCOSP) 
since 1920 to 2016.

Parameters Correlated with SOC. SOC content can be correlated to various 
geochemical and environmental parameters. These parameters can interact with 
each other and affect the dynamics of OC in the soil. We considered the following 
in our analysis:
Climate. Factors such as temperature, precipitation, and evapotranspiration 
influence the activity of soil microorganisms responsible for OC decomposition 
(31, 45, 61, 62). To consider the role of precipitation, freezing days, and potential 
evapotranspiration on soil processes, we employed the CRU TS vs. 4.07 gridded 
monthly dataset at 0.5° spatial resolution (63). We used air temperature from 
the ERA5 monthly averaged data, providing air temperature records from 1940 

Fig. 4.   Impact of 1 SD increase in soil salinity on topsoil (0 to 7 cm) organic carbon (OC) content at the location of soil profiles/samples, (A) in croplands and (B) 
in non-croplands. The maps show the GAMs’ predicted increase in topsoil OC levels resulting from a 1 SD rise in soil salinity, indicating the sensitivity of topsoil 
OC to changes in salinity. The right-side panels show a higher zoom level in Europe, where the data derived from the LUCAS topsoil dataset are predominantly 
located. The box charts include the median, lower, and upper quartiles, and nonoutlier minimum and maximum change values for major land cover types. 
Outliers are calculated as values more than 1.5 times the interquartile range (IQR) away from the top or bottom of the box.
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to the present at 0.25° spatial resolution (64). The calculation of the precipita-
tion SI for each year was based on Walsh and Lawler (65) method, using the 
following equation: SI = (1∕12)

∑n=12

n=1
�Pi − R∕12� , where Pi represents the 

monthly precipitation for month i (January to December). R is the total annual 
precipitation for the particular year under study, and n is the total number of 
months (12 mo in a year).
Nitrogen. Since N is a main component of soil OM (32), the spatial-temporal 
distribution of N can closely correlate with that of OC. The total N content (g 
kg−1) of the soil samples was directly derived from three sources: LUCAS 2015, 
LUCAS 2018 topsoil survey data inventories (the total N includes ammonium-N, 
nitrate-N, nitrite-N, and organic N, measured using the ISO 11261:1995 method, 
modified Kjeldahl method), and the ISRIC—WoSIS Latest Standardized datasets 
(Kjeldahl method) (29, 66).
Vegetation. The density of vegetation cover can significantly impact SOC content, 
especially through litter inputs (67, 68). High soil salinity can impact plant pro-
ductivity and growth. However, we address vegetation cover as a distinct variable, 
averaged over the long term. The relationship between soil salinity and vegetation 
response is intricate, particularly at lower salinity levels (ELCOSP < 4 dS m−1). 
Furthermore, salinity is just one of the factors influencing vegetation. For exam-
ple, other nutrients such as phosphorus and potassium availability also affect 
plant growth and development. We used LAI as a proxy to vegetation health and 
density. We used Version v3.0 10-daily gridded data from 1981 to the present 
(69), obtained from the Copernicus Climate Change Service, Climate Data Store 
(CDS). This dataset provided us with LAI at a horizontal resolution of 1/30° (~4 km, 
sensor: AVHRR) for the period between 1982 and 1998 and at a higher resolution 
of 1/112° (~1 km, sensor: VGT) for the years 1999 to 2020. Human activities such 
as tillage, crop rotation, application of fertilizers, and organic amendments can 
affect SOC content (70). We assumed that the relation between SOC and crop 
rotation, tillage system, nutrient availability, and fertilizer usage are reflected in 
parameters such as LAI and soil N.
Soil texture. Soil texture refers to the soil’s relative proportions of sand, silt, 
and clay particles (53, 54). Soil texture affects factors like water-holding capacity, 
aeration, and microbial activity. The soil samples’ corresponding percentages 
of soil clay and sand in the fine earth fraction were obtained from LUCAS 2009 
(71) (https://esdac.jrc.ec.europa.eu/content/lucas-2009-topsoil-data, accessed 
on 03-2024) and LUCAS 2015 topsoil survey data inventories, as well as the 
ISRIC—WoSIS Latest Standardized datasets (29). Due to the absence of soil texture 
data in the LUCAS 2018 inventory, we used the samples and locations from the 
2015 campaign. This means we excluded locations sampled during the LUCAS 
2018 campaign that were not sampled in 2015.
Soil pH. Soil pH influences the activity of soil microorganisms involved in 
OM decomposition. The pH in H2O of the soil samples was obtained from 
three sources: LUCAS 2015, LUCAS 2018 topsoil survey data inventories (ISO 
10390:2005; glass electrode in a 1:5 [V V−1] suspension of soil in H20), and the 
ISRIC—WoSIS Latest Standardized datasets (29). WoSIS includes the soil-to-water 
ratio of the pH measurement solution as part of its metadata.
Drainage and soil moisture. The drainage characteristics and soil moisture 
regime can impact SOC content (36). Poorly drained soils with waterlogging 
conditions limit oxygen availability, leading to slower decomposition rates and 
higher SOC content (72). Conversely, well-drained soils may have higher decom-
position rates, potentially reducing OC levels. As representative indicators of the 
volume of water and soil moisture at varying soil depths (V V−1), we used ERA5 
monthly averaged data on single levels from 1940 to present (64) volumetric soil 
water at layers 1 (soil depth 0 to 7 cm), 2 (7 to 28), 3 (28 to 100), and 4 (100 to 
289) obtained from Copernicus Climate Change Service (C3S) CDS. Due to the 
challenges in acquiring reliable data on soil drainage properties, soil texture, and 
moisture data were assumed as a proxy for soil drainage capacity.
Topography. It influences various environmental factors that affect SOC dynamics, 
such as soil moisture, temperature, nutrient availability, and soil erosion rate 
(73). To account for the role of topography, we obtained topographic variables, 
including elevation and slope, at the location of each soil sample/profile. We used 
the MERIT DEM (https://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/, accessed 
on 03-2024)—Multi-Error-Removed Improved-Terrain Digital Elevation Model—
offering elevation data at a resolution of 3 arc s (~90 m at the equator) (74). The 
topographic data were processed and analyzed within the Google Earth Engine 
environment (75).

Land cover. Land cover changes, such as deforestation or conversion of natural 
ecosystems to agriculture, can lead to the loss of OC from the soil (70, 76). We 
used yearly land cover classification gridded maps from 1992 to the present 
(versions 2.0.7cds and 2.1.1) derived from satellite observations provided by 
Copernicus Climate Change Service (C3S) CDS (77) at 300 m resolution to identify 
the land cover dynamic globally. The dataset offers global land surface maps with 
22 classes, defined using the United Nations Food and Agriculture Organization’s 
Land Cover Classification System (LCCS). Due to data unavailability for land cover 
information before 1992, we limited our analysis to soil observations collected 
after 1992. Samples from the first four classes, 10, 20, 30, and 40 of the C3S 
LCCS were considered cropland observations, while the rest were categorized 
as noncroplands.

Statistical Analysis—GAM Fitting. The parameters explained above underwent 
initial data screening, which involved checking the plausible range of values 
(SI Appendix, Fig.  S4). Soil samples from WoSIS provided information on the 
upper and lower sampling depths. We calculated the mean of these depths and 
grouped the samples into four layers, following a similar approach to ERA5 rea-
nalysis (64) soil layers—see “Drainage and Soil Moisture” in Parameters Correlated 
with SOC. The soil volume of water data was then associated with each sample 
based on these layers. Although the LUCAS soil samples represented the physio-
chemical properties of the top 0 to 20 cm and their mean depth (10 cm) fell 
within group 2 (7 to 28 cm), we assigned all LUCAS data to group 1 (0 to 7 cm) 
for consistency and to align with the data’s characteristic representation of this 
specific depth range.

In essence, our assumption was that a steady-state balance exists between soil, 
land, and climate at the sampling locations, and our objective was to evaluate the 
variability of SOC in relation to soil salinity. Organic soil samples with a SOC above 
150 were excluded (n = 2,050). Specific parameters like climate-related factors 
and vegetation exhibit higher dynamism over time and may not directly relate 
to the SOC content at the time of sample acquisition. To address this and reduce 
noise in the data, we used the long-term average of these parameters on SOC 
content. We aggregated dynamic covariates to annual means or accumulations 
over a window size of 10 y (left side, i.e., 10 y before soil sampling date) and then 
associated these values with the corresponding soil samples.

To analyze the relationship between soil salinity and SOC, we fitted two GAMs 
(78), one for observations located in croplands and one for the ones in noncrop-
lands. We employed the MATLAB (79) “fitrgam” function (https://uk.mathworks.
com/help/stats/fitrgam.html, accessed on 03-2024) for fitting the models. We 
favored GAM over more interpretable models like generalized mixed linear mod-
els to capture the nonlinear interactions between the terms and the variable (SOC) 
and to handle the missing values. In a GAM, the relationship between the inde-
pendent variable and predictors can be nonlinear. This is achieved by introducing 
smooth (shape) functions of the predictor terms into a linear model (80). Important 
interaction terms can be represented by bivariate shape functions, allowing the 
incorporation of interactions between covariates (81). We avoided using more 
complex and flexible models like boosted ensembles of regression trees or Neural 
Networks to ensure the model’s interpretability. GAM models provide local effects 
of each term, offering insights beyond global predictor importance.

The GAMs assume an additive structure, requiring uncorrelated covariates 
in a nonlinear sense. Concurvity, similar to multicollinearity in linear models, 
introduces instability in GAM parameter estimates (82, 83). There might be 
innate correlations between selected covariates at large scale and the possibility 
of concurvity, e.g., increasing temperatures will impact vegetation, precipitation, 
and land management, all of which will feed back to SOC. To address model 
complexity and identify important covariates while minimizing redundancy, 
we applied the MRMR algorithm (30) using the “fsrmrmr” function in MATLAB 
(https://uk.mathworks.com/help/stats/fsrmrmr.html, accessed on 03-2024). This 
method, based on the Hilbert–Schmidt independence criterion, aims to address 
the issue of concurvity using the mutual information of the target variable and 
covariates and select a set of covariates that correlate well with the target vari-
able yet remain uncorrelated with each other (84). Low-ranked covariates were 
removed from the analysis if the coefficient of determination (R2) for the fitted 
models, including or excluding those covariates remained unchanged. Moreover, 
we assigned weight to covariates that ranked high in both croplands and non-
croplands to minimize the likelihood of chance findings. The results of covariate 
selection are presented in SI Appendix, Fig. S1.D
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To ensure data reliability, samples with over two missing covariates were 
excluded (SI Appendix, Fig. S5). During the fitting of the GAMS, we treated the 
soil-to-water ratio for measuring pH and the soil–water extract ratio for measuring 
soil EC as categorical variables, representing the methods used for pH and salinity 
measurements. We considered land cover as an additional categorical variable. 
The observations were given equal weight, and the response variable (SOC) was 
log10 transformed to address the right-skewness in the data. We included the 
interaction terms in fitted GAMs. While fitting the GAMs to the training sets, 
we optimized the hyperparameters using MATLAB’s built-in Bayesian optimizer 
with the “expected-improvement-per-second-plus” acquisition function. We 
employed a hold-out cross-validation scheme, with 25% of the data being held 
out for each evaluation. The objective function evaluation was repeated 30 times 
to ensure the robustness and reliability of the results.

The results of the 10-fold cross-validation for the final GAMs are presented 
in SI Appendix, Figs. S6–S9. For model in croplands: R2 = 0.83, RMSE = 6.57 g 
kg−1, Mean Absolute Error = 3.29 g kg−1, and Mean Bias = −0.63 g kg−1 and 
for model in noncroplands: R2 = 0.87, RMSE = 11.23 g kg−1, Mean Absolute 
Error = 6.56 g kg−1, and Mean Bias = −1.08 g kg−1. Estimating the effects of the 
covariates in predicting SOC when interactions are present can be challenging 
and complex. Therefore, for Figs. 1 and 2, which show the local significance of the 
covariates in predicted SOC values, we fitted separate GAMs excluding interaction 
terms. However, for the calculations of ALEs (38) and predictions of SOC result-
ing from changes in soil salinity, as shown in Figs. 3 and 4, we used the GAMs 
with interaction terms. These models demonstrated higher accuracy in predict-
ing SOC compared to the model without interactions. Note that the predictions 
were exclusively made for the soil samples with complete data of all covariates. 
In our analysis, for continuous variables, we opted to use ALE plots for assessing 
the role of covariates on the predicted SOC content. In datasets with interrelated 
or correlated covariates, ALEs are preferred to PDPs (partial dependency plots).

Study Limitations: Constraints and Considerations.

Concurvity. The MRMR algorithm, employed for covariate selection, focuses solely 
on assessing pairwise independence among features. Consequently, it cannot 
address scenarios where one feature’s accurate estimation relies on a combina-
tion of several other features. In essence, these algorithms do not account for 
multivariate concurvity (84).
Different native spatial resolutions. The difference in native spatial resolution 
of the covariates used in GAMs could introduce uncertainties and limitations 
in the interpretation of results. Covariates with coarser resolutions, such as cli-
mate data at the 0.5° spatial resolution, may capture regional or larger-scale 
climatic patterns but might not fully represent the microclimatic conditions 
directly influencing the soil sample location. Similarly, LAI data at a 4 km reso-
lution may provide an average representation of vegetation cover within a larger 
area, potentially overlooking finer-scale variations in vegetation density that 
could affect SOC content. In addition to the differences in spatial resolution, the 
coarse resolution of covariates such as temperature and precipitation may be a 
potential reason why they don’t emerge as important covariates in the MRMR 
algorithm, although precipitation SI (0.5°) was ranked as an important covariate 
for both crop and noncroplands. It is possible that many samples are labeled 
with the same air temperature and/or precipitation values, leading the algorithm 
to assume that these parameters cannot sufficiently explain the variability in 

SOC. This limitation necessitates the need for finer-resolution data. It would 
be intriguing to use land cover information gathered in LUCAS soil surveys as 
a potential substitute for the C3S LCCS data to remove the innate uncertainties 
of satellite products.
Simplified representation of vegetation. The vegetation in the study was pri-
marily represented by LAI and land cover which serve as proxies for vegetation 
density. However, the specific vegetation types and the litter input to the soil can 
also influence SOC dynamics (68, 85).
Geographical bias. Despite efforts to gather a global dataset representative of 
various land covers and biomes, most soil samples/profiles are located in Europe 
and originate from the LUCAS soil database. This geographical bias may limit the 
generalizability of the findings to other regions with different environmental 
conditions and management practices.
Limited control for soil aggregation. The study controlled for the role of soil 
texture, especially sand content, on SOC variation. Still, it did not account for soil 
aggregation—the clumping of soil particles into larger structures or aggregates. 
The content of coarse fragments (>2 mm) can serve as a proxy for soil aggrega-
tion tendency, which was not included in the analysis due to data unavailability.
Experimental errors in SOC measurements. Variation in SOC measurements 
may be attributed to systematic experimental errors related to the different meth-
ods used for measuring SOC content, such as the Walkley-Black Method, Dry 
Combustion, and Loss-on-Ignition. Similar limitations and advantages exist for 
other relevant covariates, particularly soil N content (e.g., Kjeldahl and modified 
Kjeldahl methods). More standardized and comprehensive measurement proto-
cols would enhance the accuracy and comparability of SOC data.
Causal analysis. Our analysis provides insights into the correlative relationships 
between soil salinity and SOC variability; however, further research is warranted to 
explore causality and address considerations related to the timescale. For instance, 
as soil salinity increases, plant communities may shift toward species more tol-
erant to salinity, keeping litter input into the soil. Similarly, microorganisms can 
adapt to long-term high salt exposure, undergoing genetic and physiological 
changes to cope with salinity stress, thereby maintaining metabolic activities and 
SOM mineralization (12, 18). This may involve longitudinal field experiments or 
controlled laboratory studies that manipulate soil salinity levels and monitor SOC 
dynamics over extended periods.

Data, Materials, and Software Availability. The codes used in this study were 
developed using the MATLAB programming interface and are available at https://
doi.org/10.6084/m9.figshare.23868531 (86). Previously published data were 
used for this work and appropriate acknowledgments and citations for the orig-
inal sources are provided in the “Parameters Correlated with SOC” section of the 
Methods section. The final input into the GAM, including the averaged values of 
covariates at the soil profile/sample locations over a 10-y window can be accessed 
at https://doi.org/10.6084/m9.figshare.23868531 (86).
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