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Abstract we recorded and analyzed the atmospheric dimethyl sulfide (DMS) mixing ratios at a remote
Arctic location (Svalbard; 78.5°N, 11.8°E) during phytoplankton bloom periods in the years 2010, 2014, and
2015 and found varying regional relationships between the atmospheric DMS and the extent of exposure
of the air mass to the phytoplankton biomass in the ocean surrounding the observation site. The DMS
production capacity of the Greenland Sea was estimated to be a factor of 3 greater than that of the Barents
Sea, whereas the phytoplankton biomass in the Barents Sea was more than twofold than that in the
Greenland Sea. These apparently contradictory results may be induced by the occurrence of a greater
abundance of DMS-producing phytoplankton in the Greenland Sea than in the Barents Sea during the
phytoplankton bloom periods.

1. Introduction

Ocean biology may influence the Earth’s climate through its effects on atmospheric composition due to
the release of various organic compounds into the atmosphere (Gantt & Meskhidze, 2013; Meskhidze &
Nenes, 2006; O'Dowd et al., 2004; Yoon & Brimblecombe, 2002). In particular, sulfur-containing aerosols
provide an important source of cloud condensation nuclei in marine atmosphere in the polar region
(Andreae et al., 1995; Chang et al,, 2011; Chen et al,, 2012; Ghahremaninezhad et al., 2016). The production
of sulfate from the oxidation of dimethyl sulfide (DMS) was proposed as a negative feedback mechanism
by which phytoplankton can modulate the properties of marine clouds (Charlson et al., 1987). DMS is mostly
produced by marine phytoplankton and is the most abundant form of biogenic sulfur released from the
ocean (Lovelock et al., 1972; Stefels et al.,, 2007). Global oceanic DMS emissions have been estimated to be
18-34 Tg S yr ' (Lana et al., 2011), accounting for approximately 40% of the total sulfur flux (Simo, 2001).
Specifically, the emission of oceanic DMS has a discernable impact on aerosol formation in the Arctic atmo-
sphere during phytoplankton bloom periods (Park et al., 2017). As Arctic warming occurs in the future, the
decrease in sea ice may alter the abundance and species composition of phytoplankton (Wassmann,
2011). These changes may cumulatively have cascading effects on oceanic DMS emissions and sulfur aerosol
formation (Becagli et al., 2016; Dall’ Osto et al., 2017; Gabric et al., 2017; Levasseur, 2013).

Regional associations between oceanic DMS emissions and phytoplankton biomass (expressed here as chlor-
ophyll) can be useful in predicting oceanic DMS emissions from phytoplankton biomass data. However, an
intrinsic hurdle to establishing such associations is that the production of the DMS precursor, dimethylsulfo-
niopropionate (DMSP), is highly species-specific (Keller et al., 1989; Park, Lee, Shin, Jeong, et al., 2014), and the
conversion of DMSP to DMS is highly variable because this process occurs through complex processes (Kim
etal,, 2010; Park, Lee, Shin, Yang et al.,, 2014; Stefels et al., 2007). In practice, the atmospheric DMS mixing ratio
can undergo abrupt transition between high and low values in response to rapid changes in the origin of the
air mass reaching the site, or changes in meteorological conditions that determine the rate of emission of
DMS from the ocean and its subsequent breakdown in the atmosphere through various chemical processes
(Methven et al., 2001; Park et al,, 2013). Together, these factors make it difficult to establish the unique
relationship between atmospheric DMS and phytoplankton biomass.

The primary goal of the present study was to evaluate how the exposure of an air mass to phytoplankton bio-
mass relates to the atmospheric DMS mixing ratios of the air mass reaching the Svalbard observation site, and
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Figure 1. (a) The mixing ratios of atmospheric dimethyl sulfide (DMS) measured at the Zeppelin station in 2010, 2014, and
2015. (b—d) Monthly mean chlorophyll concentration during the month of April-May in 2010, 2014, and 2015, overlaid with
the 2 day air mass back trajectories collected at hourly intervals. The star symbol indicates the location of the Zeppelin
station (78.5°N, 11.8°E), Svalbard. The solid lines indicate the boundaries of the three subdomains: sea ice zone (north of
80°N), the Barents Sea (70°N-80°N, 16°E-50°E), and the Greenland Sea (70°N-80°N, 25°W-16°E).

to assess the relationships between the atmospheric DMS mixing ratio and the plankton biomass of the
ocean region surrounding the Svalbard site during phytoplankton bloom periods. This analysis examined
the atmospheric DMS mixing ratios determined continuously over a period of the phytoplankton bloom
(April to May) in each of the 3 years (2010, 2014, and 2015). The biological exposure of the air mass
reaching the observation site was estimated using meteorological parameters (air mass back trajectory,
altitude, and speed) and satellite chlorophyll concentration data obtained from the ocean basins supposed
to be sources for Svalbard DMS at the time of the atmospheric DMS measurements.

2. Materials and Methods
2.1. Data Sources (Atmospheric DMS, Chlorophyll, and Meteorological Parameters)

The atmospheric DMS analytical system was installed in March 2010 at an elevation of 474 m above sea level
on Zeppelin Mountain, Svalbard (78.5°N, 11.8°E). The atmospheric DMS mixing ratio was measured at 1-2 h
intervals from April to May in 2010, May in 2014, and April to May in 2015. The measurement periods approxi-
mately covered the phytoplankton bloom periods (e.g., Degerlund & Eilertsen, 2010; Sakshaug, 2004). The
analytical system includes a component for DMS trapping and elution and a gas chromatography equipped
with a pulsed flame photometric detector enabling DMS quantification (Jang et al.,, 2016). The detection limit
of the analytical system was about 1.5 pptv in an air sample volume of ~6 L (Jang et al., 2016). The oceanic
region adjacent to Svalbard was divided into three domains that included the sea ice zone (>80°N, low bio-
logical productivity), the Barents Sea (70°N-80°N, 16°E-50°E, epicontinental sea, high biological productivity),
and the Greenland Sea (70°-80°N, 25°W-16°E, deep ocean basin, high biological productivity) (Figure 1).

The phytoplankton biomass of the three-ocean domains surrounding Svalbard was obtained by calculat-
ing the chlorophyll concentrations from the Level-3 product of Aqua Moderate Resolution Imaging
Spectroradiometer at a 4 km resolution. The air mass back trajectories and meteorological parameters,
including the pressure of the air mass and marine boundary layer, were obtained using the Hybrid
Single-Particle Lagrangian Integrated Trajectories model (Draxler & Hess, 1998). The 2 day air mass back
trajectories and hourly positions were determined and combined with satellite-based chlorophyll concen-
tration data to show the 2 day evolution of the exposure of a given air mass to phytoplankton biomass.
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2.2. Calculation of Air Mass Exposure to Chlorophyll

The DMS mixing ratio of an air mass reaching Svalbard depends primarily on two factors: (i) the area of ocean
surface containing phytoplankton over which the air mass travels and (ii) the period of time during which the
air mass is in contact with that area (Arnold et al.,, 2010; Park et al., 2013). The shorter period of contact (i.e., a
greater air mass speed) means greater release of DMS and less oxidation of DMS in the atmosphere before it
reaches the Svalbard site. In addition, a shorter duration of contact between the air mass and the phytoplank-
ton biomass, in combination with a greater phytoplankton biomass per unit area, would result in a higher
DMS mixing ratio. The “air mass exposure to chlorophyll” calculated here reflects the influences of phyto-
plankton biomass and atmospheric DMS oxidation on the DMS mixing ratio of the air mass reaching
Svalbard. Note that we did not account for the effect of changes in the speed of the air mass because it is
considerably smaller than the effect of DMS oxidation.

In calculating the air mass exposure to ocean chlorophyll, we assumed that satellite-based chlorophyll con-
centrations are a good proxy for phytoplankton biomass (Siegel et al., 2013) and that phytoplankton biomass
was the major source of DMS to the marine atmosphere via enzymatic cleavage of phytoplanktonic DMSP to
DMS (Simé, 2001). Therefore, the air mass exposure to ocean chlorophyll provides a good measure of the
DMS production capacity of the ocean region through which air mass has passed. The air mass exposure
to ocean chlorophyll (E.y,)) at each time period over which we analyzed the atmospheric DMS mixing ratio
was calculated using equation (1), below. The number of measured atmospheric DMS mixing ratios was
888in 2010, 312 in 2014, and 941 in 2015.

% Chl,-e(#)
n

Ecn = m
Here Chl is the 8 day mean chlorophyll concentration within a radius of 25 km at a given time point (t = 1 to
48) along the air mass back trajectory, and n is the total number of time points for which valid chlorophyll
values are available. We limited our analysis of air mass back trajectories to 2 days prior to the arrival of
the air masses at the observation site because more than 60% of atmospheric DMS was reported to disappear
within 2 days following airborne delivery due to photooxidation (Leck & Persson, 1996; Sharma et al., 1999). In
a previous study the strongest correlation between air mass exposure to chlorophyll was found for a 2 day
transport history and atmospheric trace gas mixing ratios including DMS (Arnold et al., 2010). The term
e Y24 corresponds to the normalization of the photodecay, where a is the decay constant of DMS in
the atmosphere due to photochemical processes. A value of 0.43 was used for a (35% DMS loss per
day in Arctic atmosphere) (Leck & Persson, 1996).

For a given air mass back trajectory, the time points for which satellite-based chlorophyll concentration data
were not available were excluded from the calculation, and the time points for which the pressure of the air
mass was less than 850 hPa were assigned a zero chlorophyll value. A zero chlorophyll value was also
assigned to the time points when the air mass passed over the Svalbard islands or regions covered by sea
ice (Arnold et al.,, 2010).

2.3. Data Filtration

To avoid ambiguities in the relationship between the atmospheric DMS mixing ratio and the air mass expo-
sure to biology, three sequential data filtration procedures were used to remove inappropriate data
(Figures 2a-2e and S1). Any 2 day air mass back trajectory for which valid chlorophyll concentration data
were not available for >50% of the time points were excluded from our analysis (first filtration). Among all
2 day air mass back trajectories that were not excluded by the first criterion, those having 2 day mean air mass
speeds <3 m s~ were also excluded (second filtration). The second filtration was applied because the low-
speed air masses probably originated from coastal areas near Svalbard, or from fjords within Svalbard, where
satellite-based chlorophyll data were either mostly unavailable or highly unreliable (Figure S4). Finally, all air
mass back trajectories were grouped into one of three ocean domains by selecting only the 2 day air mass
back trajectories that had >90% retention in a given ocean domain (third filtration).

Calculation of a given air mass exposure to chlorophyll may have been biased by exclusion of time points for
which reliable chlorophyll values were not available. To minimize any undesirable effect of such data exclu-
sion, we used monthly mean chlorophyll values if 8 day mean chlorophyll values were not available. As a
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Figure 2. The mixing ratios for the atmospheric dimethyl sulfide (DMS) measured at the observation site as a function of
the air mass exposure to chlorophyll. (a) All data sets obtained from April to May in 2010, 2014, and 2015. (b) All data
shown in Figure 2a, excluding those corresponding to the 2 day air mass back trajectories for which valid chlorophyll data
were not available for >50% of the time points (first filtration), and the 2 day air mass trajectories having mean air mass
speeds <3 m 57! (second filtration). The color bar indicates retention percentage (%) of air mass trajectories in a given
ocean domain along the 2 day air mass back trajectory. (c—e) Data used for estimating the correlation between the
atmospheric DMS mixing ratios and the air mass exposure to chlorophyll; this shows all data in (Figure 2b excluding data
corresponding to air mass back trajectories that did not have >90% retention in a given ocean domain (third filtration).
(f) The daily mean atmospheric DMS mixing ratio as a function of the air mass exposure to chlorophyll shown in Figures 2c-2e.
Red symbols indicate the data set corresponding to the air mass that originated from the Greenland Sea. Blue symbols
indicate the data set corresponding to the air mass that originated from the Barents Sea. The error bars indicate 1 standard
deviation (16) from the daily mean values. The solid and dashed lines indicate the best fits and the 95% confidence
intervals, respectively.

result, approximately 25% of the measured atmospheric DMS mixing ratios were used in the estimation of the
correlation between the atmospheric DMS mixing ratios and the air mass exposure to chlorophyll (Figures 2
and S1). All of the 2 day air mass back trajectories used in the final estimation of the air mass exposure to
chlorophyll for 2010, 2014, and 2015 are shown in Figure S5.

3. Results and Discussion
3.1. Atmospheric DMS Mixing Ratios at Svalbard

The atmospheric DMS mixing ratio observed at Svalbard showed striking differences from season to season
and from year to year (Figure 1a). The DMS mixing ratios increased by 100-450 pptv in May 2010 and 2015,
with considerable short-term (less than a few days) and long-term (1 week) variability; however, the DMS mix-
ing ratios dropped rapidly by an order of magnitude and remained at that level thereafter. Throughout the
winter, from September to April, the atmospheric DMS mixing ratio was nearly undetectable (not shown in
Figure 1a, which was characterized by an analytical detection limit of 1.5 pptv DMS). Across all of the
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3 year data sets, the atmospheric DMS mixing ratios varied on a time scale of <1 week, which could be
explained in terms of the changes in the air mass origin, altitude, and speed (Park et al., 2013).

3.2. Phytoplankton in the North Atlantic Ocean Surrounding Svalbard

During the 3 years of observations (2010, 2014, and 2015), the phytoplankton biomass of the three ocean
domains surrounding Svalbard differed considerably (Figures 1b-1d, S5, and S6). During the growing season
between April and May, the phytoplankton biomass in the central Arctic Basin (sea ice zone) was the lowest
(Figures 1b-1d), which was most likely due to short growing season as a result of extensive sea ice coverage.
In contrast, the largest biomass was observed in the Barents Sea, followed by the Greenland Sea, which is a
pattern previously reported by Sakshaug (2004). For example, the satellite-based chlorophyll concentration in
the Barents Sea was >2 times the value found in the Greenland Sea (Figures 1b-1d and S5).

3.3. Relationship Between the Atmospheric DMS and the Air Mass Exposure to Chlorophyll

A positive correlation between the atmospheric DMS and the air mass exposure to chlorophyll was found
during the phytoplankton bloom periods of the observation years, from April to May in 2010, r = 0.44
(P < 0.05, n = 152) for air masses originating from the Greenland Sea; r = 0.62 (P < 0.05, n = 70) for air masses
originating from the Barents Sea (Figure 2c); in May of 2014, r = 0.57 (P < 0.05, n = 130) for air masses from
Greenland Sea (Figure 2d); and from April to May of 2015, r=0.55 (P < 0.05, n = 138) for air masses originating
from the Greenland Sea and from April to May, r = 0.54 (P < 0.05, n = 53) for air masses originating from the
Barents Sea (Figure 2e). More explicitly, the slope between the atmospheric DMS and the air mass exposure
to chlorophyll approximately corresponded to the DMS production capacity of the ocean region. The slopes
found in the Greenland Sea (88.4 for 2010, 37.5 for 2014, and 62.4 for 2015) were >3 times the values found in
the Barents Sea (14.2 for 2010, not available for 2014, and 27.4 for 2015) (Figures 2c-2f).

These results indicate the occurrence of a greater abundance of DMS-producing phytoplankton in the
Greenland Sea than in the Barents Sea, although the mean chlorophyll concentrations in the Barents Sea
observed during the same periods were approximately 2 times those observed in the Greenland Sea
(Figures 1b-1d). Given that direct measurements of the abundance and composition of phytoplankton
species were not simultaneously undertaken during our study period, we cannot substantiate our conclusion
that the Greenland Sea had greater number of DMS-producing phytoplankton species than did the Barents
Sea during the study period. Nonetheless, historical field observations confirm that in the Greenland and
Barents Seas the major phytoplankton species found during the bloom period were reported to be prymne-
siophytes Phaeocystis pouchetii and diatoms including Chaetoceros socialis, Skeletonema costatum, and
Thalassiosira spp. (Degerlund & Eilertsen, 2010; Sakshaug, 2004). The phytoplankton species differed strik-
ingly in their DMS production capacities. Prymnesiophytes are high DMSP producers and contained DMSP-
cleavage enzymes; thereby rapidly transforming DMSP to DMS. By contrast, the diatoms contain cellular
DMSP but lack DMSP-cleavage enzymes. Therefore, they produce little DMS (e.g., Keller et al., 1989; Park,
Lee, Shin, Jeong, et al.,, 2014; Stefels et al., 2007). In particular, the prymnesiophytes Phaeocystis pouchetii
was reported to be a dominant species in terms of DMSP and DMS productions in the Greenland Sea during
the spring bloom period (Gali & Simé, 2010), exhibiting an intracellular DMSP concentrations in Phaeocystis
10-100 times that of diatoms (Hatton & Wilson, 2007; Stefels et al., 2007).

The positive correlation between the atmospheric DMS mixing ratio and the air mass exposure to chlorophyll
is surprising and indicates that DMS emissions from the Arctic Ocean during the bloom periods over the three
years of observation were largely governed by DMS-producing phytoplankton (containing cellular DMSP and
the DMSP cleavage enzyme). However, in typical marine environments, low-DMS producing phytoplankton
(e.g., diatoms and nanoeukaryotes) are generally abundant. In such environments, other complex processes
(including grazing activity, bacterial degradation of dissolved DMSP, and cell lysis) are major contributors to
DMS production (Calbet & Landry, 2004), and the correlation between atmospheric DMS and air mass expo-
sure to ocean biology may deviate considerably from a simple positive correlation.

To further confirm our conclusion, we estimated the seawater DMSP concentration based on the chlorophyll
concentration and the vertical mixing regime (Gali et al.,, 2015) (Text S1 for more information). As planktonic
DMSP is the main precursor of DMS in the surface ocean, the DMSP to chlorophyll ratio is a good measure of
the relative contribution of the DMS-producing phytoplankton to total phytoplankton biomass. During our
observation periods (May in 2010, 2014, and 2015), the DMSP to chlorophyll ratio in the Greenland Sea
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Figure 3. (a) The 8 day mean dimethyl sulfide (DMSP) to chlorophyll ratios for May in 2010, 2014, and 2015. The blue
and red circles indicate the mean DMSP to chlorophyll ratio for the Barents Sea (70°N-80°N, 16°E-50°E) and the
Greenland Sea (70°N-80°N, 25°W-16°E), respectively. The error bars indicate 1 standard deviation (1) from the mean
values obtained in 2010, 2014, and 2015. Monthly mean DMSP to chlorophyll ratio during May in (b) 2010, (c) 2014, and
(d) 2015. The stars indicate the location of the Zeppelin station (78.5°N, 11.8°E), Svalbard.

was 50% greater than that in the Barents Sea (Figure 3). Application of this method to ocean regions
near Svalbard for the period 2006-2015 also revealed that the DMSP concentration was higher in the
Greenland Sea compared with the Barents Sea (see Figure 3 in Heintzenberg et al., 2017). Both direct
observations and diagnostic model results are consistent with our finding that the DMS production
capacity of the Greenland Sea was higher than that of the Barents Sea during phytoplankton bloom
periods in the Arctic Ocean.

Laboratory and field studies revealed that variations in the atmospheric DMS mixing ratio are highly corre-
lated with variations in light intensity: higher light intensity induces greater oxidative stress on oceanic phy-
toplankton, and thereby greater DMS production (Gali et al.,, 2013; Toole & Siegel, 2004; Vallina & Sim¢,
2007). Moreover, a higher wind speed at the air-sea interface will drive greater DMS release from a given
ocean domain (Zemmelink et al., 2004). As a result, any difference in the intensity of solar radiation and
the wind speed at air-sea interface could change DMS production and its release to the atmosphere (see
Text S1 for more information). In both the Greenland and Barents seas, solar radiation increased, whereas
wind speed decreased during the transition from April to May. However, we did not find any discernable
differences in these two parameters in the Greenland and Barents Seas (Figure S7). Consequently, the high
DMS production capacity of the Greenland Sea inferred from our analysis was likely to be associated with a
greater abundance of prymnesiophytes containing high DMSP content and DMSP cleavage enzyme,
whereas the low DMS production capacity of the Barents Sea appeared to be associated with a lower abun-
dance of DMS-producing phytoplankton but a greater abundance of other phytoplankton producing less
DMS, including diatoms.

3.4. Possible Enhancement of DMS Production in the Marginal Ice Zone

The marginal ice zone is biologically dynamic and commonly associated with intense phytoplankton blooms
(Oziel et al,, 2017). Therefore, the dynamic sea ice edge blooms of phytoplankton may have impacts on DMS
production and its subsequent release into the Arctic atmosphere (Hayashida et al., 2017). Several field
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studies have reported high DMS and DMSP concentrations near the Arctic marginal sea ice zone (e.g.,
Matrai & Vernet, 1997; Matrai et al., 2007). We evaluated possible enhancement of DMS production near
the marginal sea ice zones in the Greenland and Barents seas. In this analysis we determined whether
the air mass back trajectories that passed over the sea ice margins (15-80% ice-covered regions, as
defined by Stroeve et al., 2016 and Strong & Rigor, 2013) corresponded to elevated atmospheric DMS mix-
ing ratios. The results of this analysis did not indicate that DMS levels were elevated for those air masses
sweeping through the boundary layer over the sea ice margins (Figure S8). The absence of enhancement
of DMS production at the sea ice margins does not necessarily indicate the absence of such a mechanism,
as our analysis method was not sufficiently sensitive to detect signs of elevated DMS production and its
subsequent release. More elaborate analyses will be needed to investigate the possibility of enhanced
DMS production at the sea ice margins.

4. Conclusions and Implication

A total of 2,141 atmospheric DMS mixing ratios measured above the remote Arctic Ocean during phytoplank-
ton bloom periods over 3 years were analyzed in conjunction with data on the exposure of air masses reach-
ing the observation site (Svalbard) to ocean biology. A comparison of the atmospheric DMS mixing ratios
measured at Zeppelin with the air mass exposure to ocean biology of the Arctic Ocean region adjacent to
Zeppelin provided insights into the DMS production capacity of the Arctic Ocean. The approach described
here is a potentially useful tool for detecting changes in the regional and temporal DMS production capacity
of the Arctic Ocean.

In the future, a decrease in sea ice coverage across the Arctic Ocean may increase the annual primary produc-
tion (Arrigo et al., 2008). Moreover, phytoplankton blooms may occur at progressively earlier times during a
season (Kahru et al,, 2011). Such increases in the ocean primary productivity and an earlier onset might pro-
foundly change the oceanic production of DMS and its eventual release into the atmosphere (Levasseur,
2013). The DMS production capacity of the ocean depends critically on the phytoplankton species composi-
tion and the complex food web mechanisms (Stefels et al., 2007).
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