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Abstract

Omics-based technologies have enabled comprehensive characterization of our exposure to environmental chemicals (chemical
exposome) as well as assessment of the corresponding biological responses at the molecular level (eg, metabolome, lipidome,
proteome, and genome). By systematically measuring personal exposures and linking these stimuli to biological perturbations,
researchers can determine specific chemical exposures of concern, identify mechanisms and biomarkers of toxicity, and design
interventions to reduce exposures. However, further advancement of metabolomics and exposomics approaches is limited by a lack
of standardization and approaches for assigning confidence to chemical annotations. While a wealth of chemical data is generated
by gas chromatography high-resolution mass spectrometry (GC-HRMS), incorporating GC-HRMS data into an annotation framework
and communicating confidence in these assignments is challenging. It is essential to be able to compare chemical data for exposo-
mics studies across platforms to build upon prior knowledge and advance the technology. Here, we discuss the major pieces of
evidence provided by common GC-HRMS workflows, including retention time and retention index, electron ionization, positive
chemical ionization, electron capture negative ionization, and atmospheric pressure chemical ionization spectral matching, molecu-
lar ion, accurate mass, isotopic patterns, database occurrence, and occurrence in blanks. We then provide a qualitative framework
for incorporating these various lines of evidence for communicating confidence in GC-HRMS data by adapting the Schymanski
scoring schema developed for reporting confidence levels by liquid chromatography HRMS (LC-HRMS). Validation of our framework
is presented using standards spiked in plasma, and confident annotations in outdoor and indoor air samples, showing a
false-positive rate of 12% for suspect screening for chemical identifications assigned as Level 2 (when structurally similar isomers are
not considered false positives). This framework is easily adaptable to various workflows and provides a concise means to communi-
cate confidence in annotations. Further validation, refinements, and adoption of this framework will ideally lead to harmonization
across the field, helping to improve the quality and interpretability of compound annotations obtained in GC-HRMS.
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Introduction
Environmental risk factors are major determinants of health,
with current estimates suggesting that environmental exposures
are responsible for about 23% of global disease burden,1 with
chemical exposures responsible for one in six deaths.2 However,
research has historically prioritized the characterization of ge-
netic risk factors.1,3-6 Characterization of environmental factors
primarily relies on self-reporting or community-level exposures.3

Identifying and preventing or reducing harmful environmental

exposures could lead to significant reductions in global disease.

Assessment of the chemical exposome, which includes the com-

prehensive identification of endogenous and exogenous com-

pounds at the individual level, is essential to better understand

the link between the environment and human health.7

Hundreds of thousands of chemicals are used in commercial

and industrial applications. Once released into the environment,
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these chemicals often transform, increasing the number of po-
tential chemical exposures to millions of compounds. Traditional
methods for high-confidence annotation and quantitation re-
quire synthesized chemical standards for each analyte of inter-
est, semi-manual peak integration, calibration curves, and often
specific chromatographic methods. Therefore, based on cost and
feasibility, the diversity of chemicals existing in the exposome
presents a monumental challenge to traditional analytical meth-
ods, which typically interrogate less than 100 compounds.8,9 To
overcome this limitation, non-targeted analytical methods that
employ high-resolution mass spectrometry (HRMS) have been de-
veloped to screen and identify thousands of chemicals that may
be present in environmental and biological samples. These meth-
ods use HRMS evidence indicative of universal chemical proper-
ties to annotate structure and estimate chemical abundances,
and hence these methods are not solely focused on known or
commonly expected chemicals. Because non-targeted results are
more tentative than targeted results, a key need for such expo-
some research is to establish and apply transparency in instru-
mentation, data processing, and reporting criteria when
communicating research findings.

Confirming the molecular structure of identified compounds
using HRMS data remains a challenge. Due to limitations in scope
and spectral quality of chemical databases and the difficulty of
capturing mass fragmentation patterns for low abundance peaks,
the confidence of chemical annotations can vary widely.
Therefore, reporting may be limited to chemical formula, or even
simply a set of retention time and mass spectral measurements,
rather than an exact chemical structure. Chemical features that
are not fully characterized can provide novel insights in exposo-
mics research and links among environment, biological effects,
and disease. For example, chemical formulas assigned to accu-
rate mass features can aid in the characterization of unexpected
and previously unknown chemical exposures that can be priori-
tized for study in other populations and sample types to under-
stand their distribution in the environment. The advantage of
using this approach for identifying environmental exposures is
highlighted by the discovery of polychlorinated biphenyls (PCBs),
which are one of the most widely studied persistent organic pol-
lutants. Their initial discovery in environmental and biological
samples was based upon detection of unknown peaks in multiple
sample types, and it was their measurement across multiple
samples and recognition of their accumulation in the food chain
that led to the eventual identification of PCBs as highly persistent
pollutants.10 More recent examples of the use of non-targeted
mass spectrometry include the discovery of 6p-
phenylenediamine(PPD)-quinone as a chemical responsible for
fish die-offs,11 and products of a brominated pesticide transfor-
mation as responsible for eagle die-offs.12

When reporting annotations, it is essential to report measure-
ments within a consistent framework that allows interpretation
of the uncertainty in compound annotation. Defining a frame-
work for reporting the confidence of chemical annotations is es-
pecially important given the potential for high false-positive
rates and over-reporting in non-targeted and suspect screening
HRMS studies across various classes of compounds.13-16 One of
the first examples of a confidence scoring framework for non-
targeted environmental chemical profiling was proposed by
Schymanski et al.18 for liquid chromatography high-resolution
tandem mass spectrometry (LC-HRMS/MS).17 Gas chromatogra-
phy HRMS (GC-HRMS) provides complementary coverage of expo-
some chemicals that are of lower solubility, higher volatility, or
that are not ionized by LC-HRMS approaches19 (Table S1). The

applicability of Schymanski schema was reported to be limited
for GC-HRMS due to differences in ionization, data acquisition,
and data processing.20

Recently, a scoring framework for GC-HRMS using electron
ionization (EI) was proposed21 categorizing confidence of feature
identifications into four levels. Levels ranged from the most con-
fident annotations in Level 1 with confirmed identifications to
the weakest in Level 4 with features described only by exact
mass. While this framework provides an important first step in
defining scoring metrics for GC-HRMS, the parameters proposed
for assigning confidence levels are potentially subject to high
false-positive and false-negative rates. For example, Level-2 as-
signment requires isotopic distribution, while Level 3 is assigned
for exact mass matches to fragment ions. The necessity of an iso-
topic pattern match requires the molecular ion, which is often
not observed. Assignment of Level 3 is further challenged by the
requirement of an isotopic pattern and exact mass matches that
require exact mass libraries with known formulas, which are not
currently available for many compounds. The schema does not
incorporate retention index (RI), which we demonstrate to be an
essential piece of information for reducing false positives. Thus,
this approach may be suitable for databases with established,
high mass-accuracy fragmentation spectra, but may be limited
when applied to larger databases and in silico approaches.

Here, we present a new annotation confidence scoring frame-
work specific for non-targeted GC-HRMS that can be used to de-
termine and communicate confidence of chemical assignments
made using several strategies. The framework draws on input
from a community of GC-HRMS users and considers the breadth
of chemical evidence that can be obtained from these powerful
instruments. The current work focuses on environmental con-
taminants. While this framework can be applied to certain bio-
logical chemicals, the use of derivatization22 and class-based
mass or fragmentation patterns may be required.

Leveraging evidence from GC-HRMS to
reduce false positives and negatives
GC-HRMS provides data-rich evidence that can be used to iden-
tify structural annotation of detected features, including various
modes of ionization and fragmentation, accurate mass, retention
information, and isotopic pattern. It is important to understand
the unique advantages and limitations for each layer of evidence
to decide the necessary pieces of information for accurate assign-
ment of chemicals (Table S1).

Ionization
The most common ionization method used in GC-HRMS is EI.
Any molecule introduced to the source in this ionization mode is
theoretically ionized with equal efficiency. In practice, however,
on-column degradation, inlet/liner discrimination, and other fac-
tors23 can still cause total summed ion signal to be a factor of
chemical structure.

EI is a “hard” ionization method, meaning that each molecule
generates a spectrum with a high degree of fragmentation in
which only traces of the intact molecular ion are usually detected,
in most cases. In a GC–EI–MS analysis, each reported peak has an
associated fragmentation spectrum, which is reconstructed by a
deconvolution algorithm. Having fragmentation from all ions
makes it possible to generate annotation levels for every sample,
thereby improving confidence of chemical assignments.
Generation of fragmentation spectra for all ionized compounds
enables MS1 data to be used to confirm identified chemicals,
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eliminating the need for precursor selection and fragmentation by

tandem mass spectrometry (MS/MS). To establish reproducible EI

spectra libraries, ionization voltages of 70 eV are commonly used

and combined with libraries containing RI. RI and fragmentation

are often similar, irrespective of chromatographic method and in-

strument (within the same instrument type, eg, quadrupole time-

of-flight MS [Q-TOF-MS]), and therefore have been successfully

shared across laboratories.24

GC–EI–MS spectra provide key evidence for compound annota-

tion, yet several challenges may still lead to false positives. While

the diverse fragments observed in EI spectra allow for better

structural characterization, the spread of signal across fragment

ions can reduce overall sensitivity, often with no molecular ion

signal present. Without observation of the molecular ion, many

compounds can give similar spectra, even when they are not iso-

mers. Because there is rarely a high signal from the molecular

ion, ion selection followed by fragmentation cannot be applied in

GC–EI–MS. Therefore, GC spectra must be deconvoluted across

chromatographic time, often leading to the inclusion of artifact

peaks due to high background or co-eluting compounds.

Deconvolution can be a significant issue in increasing false nega-

tives and false positives.
Alternative ionization strategies can be used with GC-HRMS to

improve detection of the molecular ion, although these often lack

the robustness, sensitivity, and reproducibility of EI. These techni-

ques include positive chemical ionization (PCI), electron capture

negative ionization (ECNI), and atmospheric pressure chemical

ionization (APCI). The advantages and disadvantages of these

techniques are described in the Supplementary Information.

Accurate mass
Continual advances in high-resolution Orbitrap and Q-TOF-MS

instrumentation have enabled accurate measurement of mass-

to-charge ratios ranging from sub-ppm to 30 ppm mass accuracy

windows, and resolutions up to 240,000, to date. Accurate mass

(ability to measure the correct mass) and high resolution (ability

to distinguish close masses) provide additional evidence for com-

pound annotation, such as fine isotopic patterns. Unequivocal

formula prediction may be possible for low-mass fragments, es-

pecially when including isotopic patterns. Isotopic pattern and

mass defects can further be used to determine unique chemical

structures containing certain functional groups (eg, Cl, Br, and F),

aiding in the detection of unknown chemical exposures.
Suspect screening using accurate mass matching can reduce

false positives. The largest GC–EI–MS libraries (eg, NIST and Wiley)

include spectra acquired using unit mass instruments; only a

handful of smaller libraries are available for spectral matching us-

ing accurate mass. Algorithms can be used to reduce false positives

when matching experimental spectra obtained with GC-HRMS to

unit resolution libraries.25 One example is applying a high-

resolution mass filter (HRMF).26 The HRMF score corresponds to

the percentage of fragment ions with formulae that can be pre-

dicted when setting atom constraints for formula-matching to in-

clude only those contained in the proposed molecular formula.

Reverse HRMF (RHRMF) can also be used, but this approach limits

scoring to only peaks found in the library, ignoring other peaks in

the experimental spectra for scoring purposes. RHRMF reduces

influences of artifacts during deconvolution on scoring, hence re-

ducing false negatives, but may also increase false positives when

experimental peaks are real and not found in the library.

Retention index
Retention time is an orthogonal measurement that can improve

annotation accuracy when combined with EI MS spectral
matches. As retention time is influenced by column type, batch,
and manufacturer as well as the method temperature gradient,

standardized retention indices can be calculated using a series of
compounds that span the entire chromatographic run (eg, alka-
nes,27 fatty acid methyl esters28). Retention indices can also be

useful for identifying isomers with the same or similar EI spectra.
Compared with LC, GC retention times are typically more consis-
tent within and across laboratories.29,30 This increases the reli-

ability of RI calibrations and enables matching of experimental
retention indices to public libraries, as well as prediction of reten-

tion time indices using chemical properties.31-33

Retention indices provide key evidence to improve accuracy of
compound annotation. There are a few considerations when
implementing retention indices into a workflow. Methods using

linear gradients may be preferable, to reduce errors in RI calcula-
tion,34 although non-linear temperature gradients may still be
deployed with accurate RI calculated.31 While retention time in-

dices improve annotation confidence, their incomplete availabil-
ity in spectral libraries may limit their use. The largest libraries
(eg, NIST and Wiley) have a high percentage of chemicals without

RI information, limiting the search space and coverage if RI
matching is required. The current release of NIST libraries con-

tain predicted retention indices for many compounds; however,
these predictions may not be accurate for all chemical classes.32

Careful consideration of retention time indices is also necessary

depending on the chemicals being measured. For example, alka-
nes are not appropriate for calculating RI for persistent mobile or-
ganic compounds including per- and polyfluoroalkyl substances

(PFASs), organophosphate esters (OPEs), and certain polar com-
pounds amenable to GC.35,36

Compound metadata for improving candidate
ranking
While spectral and retention time information can be used to as-
sign a structure or substructure to a chemical, additional evidence

available from GC-HRMS can increase confidence of chemical
identifications. Study context and likelihood of exposure are also
important to consider. For example, a sizable portion of 100þmil-

lion chemical entries in PubChem have never been synthesized;
their existence is limited to a patent or database,37 or if synthe-
sized, were never generated at a large scale. Hence, tens of mil-

lions of these entries are irrelevant for exposomics studies and
will lead to false-positive annotations.38 To reduce false positives
and remove top-ranked compounds which are not likely to exist

in the environment, more-selective databases, such as the EPA
CompTox Chemistry Dashboard39 or PubChem Lite38 can be used.

For GC-HRMS, a more actionable solution, given that the NIST
and Wiley libraries are commonly used, is to include meta-data
on database, patent and/or literature occurrence (reference count-

ing), or production levels, for determining the likelihood that a
chemical exists in the environment. This can drastically reduce
false positives by removing unlikely candidates, and ease interpre-

tation by retaining chemical species with known information.39-41

This method is biased to better-characterized chemicals, and any
scoring methods are highly dependent on which databases or

algorithms are used for determining compound occurrences.
Hence, this method may lead to false negatives in the case of un-

common or unexpected chemicals, although the drastic reduction
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in false positives may far outweigh the potential concurrence of
missed compounds.

There are several tools that can provide meta-data on a chem-
ical’s likely occurrence, to improve non-targeted annotations in
exposomics, including: NHANES Predicted Exposures,41 Data
Sources,40 Number of PubMed articles containing chemical
name, Number of PubChem data sources, and CPDat Product
Occurrence Count.40

Peak filtering to remove background
contaminants and artifacts
Analytical artifacts can be introduced during sample collection,
transport, storage, preparation, extraction, and acquisition, as
well as through instrument noise. Complete physical removal of
contaminants is not possible, particularly when background and
artifact peaks overlap. Additional information, such as clustering
of fragments across multiple samples, can be used to identify
highly correlated fragments based on peak intensities. Matrix
effects in GC42,43 are important for determining the extent of
background noise. These matrix effects will depend on sample
type, concentration, preparation, and introduction, as well as on
the chromatography and acquisition strategies employed. These
factors can impact spectral matches and annotation confidence
and are challenging to incorporate into scoring metrics.

To account for these effects, blanks must be acquired and
accounted for in any assignment of confidence. Various types of
blanks can be used, including blanks collected in the field (field
blanks), blanks carried out through all extraction, sample handling
and storage (procedural blanks), solvent blanks, and instrument ac-
quisition without injection. While the use of all these different
blanks is important for diagnosing the source of background signal,
for most purposes a comprehensive blank which covers all steps in
which background can be introduced should be acquired. For exam-
ple, stripped matrix or similar solvent should be introduced in col-
lection vials during field work, and handled, shipped, and stored in
the same manner as samples. These blanks should then be
extracted using the exact same procedures during the same time(s)
as the samples are being extracted. At least four blanks should then
be stored identically and acquired on the instrument identically
and be acquired throughout the acquisition to account for any
changes in instrument background. After the proper blank is pre-
pared and acquired, the data from the blank should be properly
used to remove any background during data processing.

Multiple methods are available for blank filtering to remove
background contaminants and artifacts.44-49 One approach is
blank feature filtering where sample abundances are retained if
above a blank threshold and has been found to outperform most
other filtering methods.45,48 Blank feature filtering is ideally
conducted using field blanks that have been treated identical to
samples, undergoing the same transport, storage, sample prepa-
ration, and acquisition protocols. Using this method, the percen-
tile or average of samples must be greater than the blank feature
filter threshold (BFFthreshold) calculated as

BFFthreshold ¼ c � ðBaverage þ 3� Bstandard deviationÞ;

where c is a constant (usually ranging between 2 and 10) and B is
the blank signal.

A complimentary method to remove blank signatures is to look
for signals that do not behave like well-retained compounds.44,49

Many background signals (eg, column bleed) will not form sharp
peaks and/or will be highly variable in quality control samples
injected across the instrument run. Consistency of deconvoluted

spectra with respect to differing intensity in samples across batch
in quality control samples or pools can therefore be used to remove
background features (when many quality control samples are ac-
quired). Furthermore, quality control calibration curves can be used
to remove non-linear peaks, but this requires that the measured
compounds are generally within the linear range in the quality con-
trols.47 In this case, non-linear peaks at higher concentrations of
the quality controls likely indicate that the source of the chemical is
not from the sample, and if it is, that relative comparisons between
samples are challenging. All these methods which do not imple-
ment a blank sample will not remove a well-behaved chromato-
graphic peak which is a contaminant, and hence blank feature
filtering is recommended as well, if these techniques are used.

Other methods can be used to generate a unique signature for
compounds; therefore, rather than determine and remove blank
signals, the analytes can be determined uniquely and retained.
One such method is credentialing using isotopic labeling.46 This
method incorporates isotopic labeling into cell cultures, and
screens for the characteristic isotopic signals to only retain those
metabolites which are generated in the experiment, effectively
removing nearly all background. This method is specific to in vitro
studies, and hence to only a subset of internal exposome studies.

Compiling GC-HRMS evidence to
communicate annotation confidence
There are three approaches for communicating confidence in
annotations: non-probabilistic scores, probabilistic scores, and
qualitative assignments of confidence. Individual layers of
GC-HRMS evidence have community accepted standards for scor-
ing. For example, EI match scores are generally calculated using
dot-product or reverse dot-product, RI matches are usually based
on an absolute deviation, meta-data scores are based on num-
bers of instances, and HRMF scores are based on a percentage of
fragment formulae which can be predicted given the proposed
structures composite atoms. Cut-offs for spectral match scores,
RI delta, or other metrics based on experience, community ac-
cepted values, or optimized via experiments can then be assigned
to remove compounds unlikely to be true positives.

Combining different scores from various layers of GC-HRMS ev-
idence to communicate confidence is non-trivial. Weighted linear
models, neural networks, and mixed models, for example, have all
been used to combine spectral similarity and RI information to op-
timize a single match function.50,51 Scores determined using these
quantitative methods can improve candidate sorting compared
with qualitative methods; however, statistical and coding experi-
ence are required which may be beyond the expertise of most
users. Establishing harmonized algorithms and development of
user-friendly software would ensure consistency across different
user groups. Consistency across different software, workflows, and
laboratories is much easier to achieve using qualitative assign-
ment of confidence.13 Here, we introduce a qualitative means to
assign and communicate confidence of feature annotations
(Figure 1 and outlined below). We also show the use of more quan-
titative scoring metrics alongside qualitative methods for ranking
candidates within a certain qualitative confidence assignment.

Proposed system for assigning confidence
Level 1: Confirmed identification (retention time, EI spectra,
and reference masses) using in-house library

• Retention time matches standard database generated in-
house using the same method, background matrix, and
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instrument (spectra from certified reference standards, not

from an external library). Retention times should match

within the RSD of the associated standards (no more than 1%

deviation).
• Observation of 2þ EI spectral reference peaks from standards

at correct ratios (within 20%) or EI spectral match with

in-house library >600. Often more than two reference masses

and ratios are needed for confident annotation, 2 is mini-

mum. For high-throughput screening with automated data

extraction, verification of identity of each chemical in each

sample by these criteria may be impractical. In such cases,

procedures and assumptions should be clearly defined.

Advantage

• Confident identification for exact structure (with a few possi-

ble exceptions, especially enantiomers or structurally similar

isomers which cannot be separated by retention time).

Limitation

• Expensive to purchase, prepare, run, and generate database

for large number of chemicals. Standards may need to be

reacquired each experiment if retention times are not stable

between batches (eg, column clipping).
• Coverage is limited to standards available for purchase.

Synthesized standards are often too costly for routine library

building.

Level 2: Probable structure or close isomer using external
libraries (RI match, [molecular ion], and EI match to exact
mass library or including metrics incorporating accurate
mass information)

• Reverse dot-product EI spectral match (>600) and dot-

product (>500). As EI spectral prediction improves, predicted

spectra may also be used.
• NCI/PCI/APCI when spectra contain more information than EI

and at least five fragments are matched to a library database.
• RI match (<50 and <1.5%) or predicted RI (<100 difference)

using validated methods.
• Match to an exact mass library (reverse dot-product >600) or

using metrics incorporating exact mass (eg, high RHRMF

score [>75]).

Advantage

• Correct annotation or the assigned structure is a structurally

similar isomer (with certain exceptions).

Limitation

• RI match requirement may limit annotations if databases do

not contain many compounds with RI. Therefore, this assign-

ment of confidence is ideal when libraries have high RI cover-

age (experimental or predicted).
• In certain edge cases, RHRMF might lead to false positives

when gas phase reactions in Orbitraps lead to fragments

which cannot be predicted using molecular formula.

Level 3: Tentative candidate (EI accurate mass spectral
match or EI match with metrics incorporating accurate
mass) using external library; alternatively, RI match with
accurate mass fragment matches

• Reverse dot-product EI spectral match (>600) and dot-
product (>500). As EI spectral prediction improves, predicted
spectra may also be used.

• NCI/PCI/APCI when spectra contain more information than EI
and at least five fragments are matched to a library database.

• Match to an exact mass library (reverse dot-product >600) or
using metrics incorporating exact mass (eg, high RHRMF
score [>75]).

• Alternatively, when an RI match is within 100 (predicted or ex-
perimentally derived) but EI spectral match is based on accu-
rate mass in silico spectra, rule-based presence or absence of
ions (at least three, accurate mass), or observation of a molec-
ular ion (accurate mass), a Level-3 assignment can be made.

Advantage

• Widest coverage while assigning a possible structure.

Limitation

• High rate of false positives (both in terms of exact structure
and assigning a structurally similar isomer).

• Possibility of multiple peaks with similar fragmentation patterns
(ie, structurally similar isomers), but different retention times.

• In certain edge cases, RHRMF might lead to false positives
when gas phase reactions lead to fragments which cannot be
predicted using molecular formula.

Level 4: Chemical group or exact chemical formula
Level 4A: Identification of unequivocal chemical formula
from databases (PCI, NCI, or in certain cases, EI)

• Only one formula is possible given the exact mass of the pre-
cursor ion and isotopic distribution.
• OR multiple formulas are possible, but after only including

atoms which can predict all dominant fragment ions, only
one formula is possible for the molecule.

Level 4B: Possible chemical series (eg, homologous series
with repeating chemical constituents)

• Follows mass defect series (eg, using Kendrick mass defect52).
• Homologous series have linear retention indices—so detec-

tion via GC can be precise—even for variable temperature
programs.

• Has one or more fragments (with exact mass match) indica-
tive of class.
• OR shows defined subnetwork clustering in spectral simi-

larity networks.

Level 4C: Possible chemical class (chemicals grouped based
on structural motifs or similarity)

• Has one or more fragments (with exact mass match) indica-
tive of class.
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• OR clusters in chemical similarity networks.
OR other well-accepted class-specific method (eg, Lee index

for polycyclic aromatic hydrocarbons [PAHs]).53,54

Note: Levels 4A–C are not necessarily in order of confidence or

utility, for example in PFAS analysis the goal may be to find series

of 3 or more compounds (Level 4B). In non-targeted analysis

across all chemical classes molecular formula may be of more

importance (Level 4A). Note that for Levels 4B and 4C, one could

also have an exact formula match, these could be indicated as

Level 4AB/4AC.

Level 5: Unknown feature (retention time and reference
mass or deconvoluted spectra)

• Reproducibly detected deconvoluted spectra with reference

mass intensity or combined intensity of all spectral ions. This

feature may also have an annotation, and other information,

but does not fit any of the criteria to be deemed Level 1, 2, 3,

or 4.

Important considerations

1) To avoid annotation of background artifacts, peak filtering

conditions must be met for all confidence levels (eg, see dis-

cussion of blank feature filtering in the Supplementary

Information).
2) If ion selection and fragmentation with CID/HCD is

employed (eg, PCI, NCI, and APCI), then the Schymanski

schema can be used to assign confidence levels.
3) For large studies, it is important to account for spectral signals

across multiple samples—for example, was there only one

good spectral match in one sample for a study with 300

samples? This case often indicates a false positive (larger

sample size increases the number of detected features, en-

hancing the chance for matching noise in library spectra).

However, it is critical to note that in exposomics studies,

these features may represent unique exposures of interest.

Multiple injections of a single sample, when possible, could

aid in annotating rare chemical occurrences.
4) In reporting results, it should be clear whether multiple structures

have met the proposed criteria. If more than one structure

meets the criteria for an assignment of confidence level

other information can be used to discern the likely correct

annotation: for example, top hit has a significantly higher

evidence count (by factor of 10), the compound is the only

one expected for the matrix studied, the compound has a

much more accurate RI (by 30), the compound has a signifi-

cant higher reverse dot-product score (by at least 50), or the

compound has a much more accurate RHRMF score (by at

least 10). This is also where quantitative scoring metrics for

ranking candidates can be utilized (total scores). Note that

even if certain conditions above are met, there may still be

false positives (see the “Results” section). If multiple top-

hits still exist after applying our schema, the feature should

be flagged accordingly.
5) While we have not made necessary observation of the mo-

lecular ion for Level 2, especially since there is a RI match,

observation of the molecular ion provides additional confidence

and should be achieved when possible.

Comparison to the Schymanski schema for
LC-HRMS/MS
While our schema (Figure 1) is based on the Schymanski schema
for LC-HRMS/MS, it was modified to incorporate criteria specific
to GC-HRMS. Included criteria were selected based on feasibility
for replication across laboratories with the overall objective of
implementing a harmonized scoring rubric. In addition, we in-
clude blank feature filtering, or similar, as a necessary criterion
for all annotations, as well as chemical series and class-based an-
notation which is important in various fields.

Level 1—Criteria for GC-HRMS is similar to Schymanski Level
1 and provides compound identification. For GC-HRMS confi-
dence scoring, the molecular ion and MS2 is not required due to
fragmentation spectra available from MS1 when using EI.

Level 2—Criteria for GC-HRMS is similar to Schymanski Level
2; however, the use of retention indices has the potential to im-
prove annotation confidence and assign unambiguous structures
to isomers. The Schymanski schema states “spectrum–structure
match is unambiguous” (Level 2A) or “represents the case where
no other structure fits the experimental information” (Level 2B),
which may be too stringent of an interpretation given the evi-
dence provided. We would not confidently state this is true based
on the suggested criteria for either LC or GC.

Level 3—Criteria for GC-HRMS fit within the Schymanski
schema for Level 3, except predicted RI can be included as evi-
dence for Level 2 given the accurate predictions.

Levels 4A–C—These levels represent unequivocal formulae
and/or chemical series and chemical class, which are important
in applications where the exact structure is not known but the se-
ries or formula provides valuable information. For example, these
could be useful for polymers, PFAS, petrol chemicals, chlorinated
by-products, and other applications where repeating series and
discernable chemical classes of importance may be found.
Unequivocal molecular formula is the same as Schymanski Level
4. It is useful to note that there was no place for series/determi-
nation of chemical class in the original Schymanski schema.

Level 5—This is different than in Schymanski Level 5 in that
the exact mass of the feature cannot be discerned necessarily
from EI spectra. Level 5 for GC-HRMS scoring to any reproducibly
detected deconvoluted spectra which does not meet the criteria
to be ranked in any other level and remains after filtering for arti-
facts and background contamination (eg, above blank signal
thresholds).

Methods: estimating false positives and false
negatives for different confidence levels
using an open-source software
We developed a software tool, Scoring, Integrating total spectral
ion abundance, and Filtering for Gas Chromatography (SIF-GC),
to automatically assign confidence levels to features identified in
GC-HRMS data. The software performs all steps covered in the
described scoring framework, providing the user with an output
that includes RI, reverse similarity index, molecular ion, RHRMF
(or similar), and integrated peak areas, heights, or total spectral
ion abundance, for all samples and blanks. Our software initially
assigns Level 2, 3 (not using the alternate evidence of RI and at
least three accurate mass matches), or 5, and reports the top
molecule in terms of a weighted score or other metric for each
level. The software also indicates whether multiple hits exist for
each level (Level 1 is reserved for manual targeted techniques
and Level 4 may be project-specific and is not implemented at
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this time). The software then can be used to apply blank feature
filtering (user modifiable parameters), and further filter features
to only retain compounds with unique CAS-RN or other identi-
fiers and compound names (removing duplicates). Furthermore,
the SIF-GC software can be used to compute total spectral ion
abundance for all compounds given an average ratio of total
spectral ion abundance to peak area or height. All steps are auto-
mated for Thermo Compound Discoverer outputs, but they could
also work, with some minor adjustments, with other vendor plat-
forms. The SIF-GC software is open source and freely available at
innovativeomics.com/software/.

To evaluate the performance of our SIF-GC software, and our
schema for reporting confidence, we applied the tool to datasets
acquired from biological and environmental samples and investi-
gated the false-positive and false-negative rates assigned for
each level. The first dataset was of human serum samples spiked
with 112 standards (90 native and 22 isotopic labeled chemicals;
Table S1A), with a final concentration range of 6.7–33.6 ppb. The
spiked serum validation dataset consisted mainly of brominated
flame retardants, chlorinated flame retardants, organochlorine
pesticides, PAHs, oxygenated PAHs, nitrated PAHs, PCBs, poly-
chlorinated dibenzodioxins, and polychlorinated dibenzofurans.
The second dataset describes indoor and outdoor air samples col-
lected using passive samplers from homes near natural gas com-
pressor stations. A targeted panel of 81 standards (70 native and
11 isotopic labeled chemicals; Table S1B) with a final concentra-
tion range of 32–1000 ppb was assessed for these environmental
samples. This validation set consisted of alkaloid, benzodioxoles,
benzopyrans, brominated flame retardants, chlorinated hydro-
carbons, haloethers, nitroaromatics, nitrosamines, phthalates,
pyrethroids, organochlorine pesticides, organophosphates, PAHs,
PCBs, and volatile organic compounds. We compared compounds
assigned Level 1 (targeted methods used to confidently assign
compounds) with compounds assigned Level 2, 3, or 5 using the
SIF-GC software. A list of experimental protocols is provided in
the Supplementary Information.

Results: how confident are the confidence
levels?
We selected qualitative criteria that can be readily implemented
given common metrics provided by most GC open source and
vendor library search software. These common metrics included
RI (delta), spectral match (in this case, reverse similarity index
was used), and a metric incorporating exact mass (in this case,
RHRMF criteria was used). Using the SIF-GC software, we deter-
mined the false negative, false positive, and true positive rate
when utilizing our criteria for assigning confidence at Levels 2
and 3. For the human serum samples, of the 90 spiked unlabeled
standards which were detected by GC-HRMS, 80 were deconvo-
luted by Thermo Compound Discoverer. This highlights a poten-
tial source of false negatives; molecules of interested might not
have associated deconvoluted spectra when ion abundances are
low, peak shape is poor or there is spectral overlap from other
ions, background interferences are high, or other thresholds
specified by deconvolution algorithms are not met. Of these 80
chemicals, 61 were assigned a Level-2 annotation (76%), and of
these Level-2 annotations, the correct exact structure was only
identified for 28 compounds (46%). Hence, in absolute terms, us-
ing our scoring criteria, the highest level of confidence for suspect
screening, there was a 54% false positive for Level-2 assignments,
60% false-positive rate for Level-3 assignments, and 84% false-
positive rate for top-ranked assignments without Level-2 or -3

Figure 2. False-positive rates and number of assignments across each
confidence level for 81 observed unlabeled standards spiked into human
serum (A), and 19 Level-1 assignments from outdoor and indoor air
samples (B).

Figure 1. Proposed schema for assigning five levels of confidence in
compound annotation using common evidence provided by GC-HRMS.
Acronyms: retention time (RT), reverse search index (RSI), RI match
(DRI), and RHRMF.
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criteria (Figure 2A). Of the deconvoluted spiked standards, 19
(24%) had no Level-2 assignment and hence were considered
false negatives. In many cases, these false negatives are due to
unavailable libraries or RI values for the standard.

For air samples, there was a 22% false-positive rate for Level-2
assignments, 89% false-positive rate for Level-3 assignments, and
74% false-positive rate for top-ranked assignments without
Level-2 or -3 criteria (Figure 2B). It should be noted there was a
lower false-positive rate in air samples compared with the hu-
man serum samples. This difference is attributable the standards
used with each sample type: serum samples were spiked with a
mixture that was mainly comprised of halogenated isomers
which could not be distinguished by RI and EI spectra, whereas
the air samples included a wider range of chemicals. Therefore,
for exact structure, the air samples may be more representative
of the false-positive rate for Level 2 when the range of chemicals
being annotated is a cross a diverse array of structures, many of
which do not have close isomers.

Even when using RI, RHRMF, reverse search index, molecular
ion, and search index there are subtle isomeric differences (eg,
Figure 3), the exact structure often cannot be discerned using
GC–EI-HRMS (hence, the 54% false-positive rate in serum
samples and 22% false-positive rate in air samples). When subtle
isomeric differences in the position of methyl, chlorine, heteroa-
toms, and aromatic rings were not considered false positives,
13% of the 61 top-ranked Level-2 assignments in the spiked serum
were false positives, 25% of the top-ranked Level-3 assignments
were false positives, and 61% of the top-ranked assignments
without Level-2 or -3 criteria (Level 5) were false positives
(Figure 2A). Similarly, when not considering highly similar iso-
mers false positives, for air samples, 11% of the 18 top-ranked
Level-2 assignments were false positives, 79% of the top-ranked
Level-3 assignments were false positives, and 68% of the top-
ranked assignments without Level-2 or -3 criteria (Level 5) were
false positives (Figure 2B).

Application of the proposed GC-HRMS scoring framework in
datasets from biological and environmental samples highlighted
that: (1) RI is essential for confident assignments and (2) structur-
ally similar isomers often cannot be resolved even with a RI
match. Exact mass filters (eg, RHRMF used here) were also shown
to be valuable, especially when heteroatoms exist. There were
26% false positives using RHRMF (Level 3) compared with the 63%
false-positive rate identified without any filters for the validation
set containing mostly chlorinated species (Figure 2A). RHRMF
was also found to be valuable in the validation set containing
mostly phthalates and PAHs (Table 1).

A summary of each annotation filter, the number of candi-
dates retained, and the percentage of candidates removed after
applying the filters for air samples is shown in Table 1. The indi-
vidual filters which removed the most candidates on average

were requiring molecular ion (83% 6 14% removed), followed by
RI match< 100 (76% 6 10% removed), RHRMF> 75% (40% 6 27%
removed), and reverse search index (40% 6 12% removed)
(Table 1). These findings highlight the importance of the RI crite-
ria for removing false positives. When RI is combined with
RHRMF and reverse search index for a Level-2 assignment,
84% 6 8% candidates were removed on average. Hence, combin-
ing these three filters further lowers the false-positive rate. While
use of molecular ion was the most stringent filtering criterion, re-
ducing false positives, decreasing the false-positive rate must be
balanced against the increase in false negatives (number of cor-
rect candidates removed using the respective filter). Use of the
molecular ion drastically increased false negatives.

False negatives were designated when the correct assignment
(exact structural match) was removed by the respective filter.
Requiring the molecular ion led to 5 false negatives out of the 19
validated assignments (26%; Table 1), use of RI led to 11% false
negatives (2/19), reverse search index to 5% false negatives (1/19),
and RHRMF to 0% false negatives (data not shown). When RI, re-
verse search index, and RHRMF were combined (Level-2 assign-
ment), there were 16% false negatives (3/19; Table 1). The false
negative rate for requiring molecular ion may be even higher, as
this validation set consisted of PAHs and derivatives (over 50% of
validation set); PAHs have a high molecular ion signal. Therefore,
the generalized criteria we present do not necessitate the molec-
ular ion (RI removes many of the same candidates and the
false-negative rate of requiring molecular ion is too high), but
depending on chemical class, for example when looking at PAHs,
necessitating molecular ion may be a beneficial additional filter.
When adding molecular ion as a requirement for Level-2 assign-
ments, a slight decrease in false positives was observed, but a sig-
nificant increase in false negatives was also observed (Figure S1).

Concluding remarks: utility, potential
challenges, and future work
It is important to note that the assignment of confidence is based
on filters, and that often, multiple candidates remain even after
stringent filtering criteria. For example, in the outdoor and indoor
air dataset, only 2 of the 19 features with a Level-1 assignment
had a single candidate retained after Level-2 filtering, while the
remaining 89% of assigned features had more than one Level-2
candidate (Table 1). Current filter cutoffs are voluntaristic, based
on expert consensus. Optimization of filters may further reduce
false positives, while limiting false negatives, but this will be
compound-class and workflow specific. Furthermore, multiple
candidates will always exist for multiple features, regardless of
thresholds used to keep false negatives low. Therefore, ranking
algorithms are essential. When adding the Level-2 criteria to the
ranking algorithm from Thermo Compound Discoverer, a signifi-
cant number of false positives were removed without a signifi-
cant increase in false negatives, for both validation datasets
(Figure 2). Using search index scores for ranking (eg, dot product)
performed similarly, and hence simple scoring metrics can be
chosen which are not vendor-specific. Further ranking based on
meta-data can also be beneficial using information such as data-
base occurrence. For example, in the air samples evaluated, N,N-
diethyl-meta-toluamide (DEET) was observed, but a close isomer
which is not commonly found in the environment was ranked
first, while DEET was ranked second (both Level-2 assignments).
Database matching could be used to rank DEET higher; this com-
pound was expected, as individuals residing in residences where
air samples were collected reported use of this insect repellant.

Figure 3. Examples of 10 isomers (dimethyl naphthalene and ethyl
naphthalene) which were all assigned Level 2 for a single feature. The
dimethyl naphthalene species represented one of the highest abundance
features in air samples.
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We outline a qualitative scoring framework for assigning con-
fidence to chemical assignments in GC-HRMS data. The proposed
schema was developed to be actionable with easy implementa-
tion using most deconvolution and annotation algorithm out-
puts. Furthermore, we introduce an open access software tool
(SIF-GC) to automate feature scoring. The assignment of confi-
dence follows a five-level scoring framework that has been well-
established by Schymanski et al. for LC-HRMS/MS. The criteria
used to determine confidence for GC-HRMS are common metrics
in the GC field, including blank filtering, (reverse) spectral
matches, (R)HRMFs or exact mass spectral matches, RI, and mo-
lecular ion. Application of the proposed scoring system to envi-
ronmental and biological datasets resulted in a false-positive rate
of 11% and 12%, respectively, for Level-2 assignments, the high-
est level which can be assigned when using suspect screening
approaches based on our schema. The false-negative rate (re-
moval of the correct candidate) for Level-2 assignments was
found to be 16% for the air samples and 24% for the spiked hu-
man serum. When close isomers (eg, alternate positions of chlo-
rine atom(s) on PCBs, or methyl groups on PAHs) are considered
false positives, this false-positive rate becomes much higher (22%
for air samples and 54% for human serum). Hence, when using
suspect screening for GC, RI alone could not distinguish close iso-
mers in most cases. In this case, elution order, rather than RI, can
be valuable, although this is difficult to automate and implement
on a large scale.

While Level-2 assignments can provide relatively confident
annotations, at least at the level of isomers with subtle difference
from the exact structure, Level-3 assignments were more tenta-
tive, and confidence varied widely depending on structure.
Nonetheless, Level-3 criteria improved assignment confidence
over not using any criteria when chemicals with heteroatoms are
investigated. Furthermore, Level-4 assignments can be used to

assign chemical classes, when for example, all PAHs are of inter-
est, even when exact structure cannot be determined. It is impor-
tant to note that depending on matrix, acquisition methods, and
analyte classes, different false-positive and false-negative rates
may be determined. Future work applying the confidence levels
presented here to standard reference material could be used to
define quantitative levels of confidence a priori, eg, Level 1—95%,
Level 2—80%, and Level 3—50%.

The use of filtering criteria decreased the false-positive rate
when compared with common ranking algorithms alone (eg,
Thermo Compound Discover’s ranking algorithm). For the >100
molecules validated in this study, use of RI, reverse search index,
and reverse high-resolution mass filtering did not substantially
increase false negatives. Therefore, Level-2 annotations can be
exclusively considered for many suspect screening applications.
The requirement of molecular ion for EI increased false negatives
significantly and is only recommended for certain chemical clas-
ses that are highly stable (eg, most PAHs). It is important to men-
tion that the use of accurate mass—either through molecular ion
accurate mass matches, high-resolution mass spectral libraries,
RHRMFs, or other techniques—is beneficial for reducing false
positives. We did not discern between instruments with different
resolving power (our validation datasets were acquired at 40 000
and 60 000 for the air and serum samples, respectively), but this
may influence the false-positive and false-negative rates when
using Level-2 and Level-3 filters. Furthermore, Orbitraps and
other trap instruments may generate ions that cannot be pre-
dicted from molecular formula, and hence Q-TOFs may have a
lower false-negative rate in this regard.

While the criteria included in the proposed GC-HRMS scoring
framework substantially decreased false positives and can be
used to assign more confident annotations, other metrics may
also be explored, including chemical database occurrence (higher

Table 1. Summary of confidence in annotated chemicals detected in outdoor and indoor air samples

Unlabeled standard Number of candidates Correct
Level-2

Assignment

Molecular
ion

observed
for correct
candidate

Total
detected

Level 3,
all

criteria

Level 2,
all

criteria

Level 2,
RI

criteria

Level 2,
reverse
search
index

criteria

Level 2,
RHRMF
criteria

Correct
molecular

ion observed

Benz[a]anthracene 25 14 3 5 18 16 11 Yes Yes
Chrysene 39 19 3 4 33 24 11 Yes Yes
Fluoranthene 54 28 9 12 34 43 6 Yes Yes
Fluorene 33 29 7 9 32 29 7 Yes Yes
Acenaphthylene 33 23 7 12 33 23 5 Yes Yes
Naphthalene 40 32 8 11 40 32 9 Yes Yes
Phenanthrene 38 38 7 7 38 38 13 Yes Yes
Pyrene 53 23 7 7 36 34 6 Yes Yes
2-Chloronaphthalene 27 13 2 6 27 13 3 Yes Yes
Dibenzofuran 49 29 5 16 48 29 12 Yes Yes
Hexachlorobenzene 32 9 6 12 31 9 5 Yes Yes
Hexachlorobutadiene 32 2 1 2 26 2 1 Yes Yes
Tris(1-chloro-2-propyl) phosphate 20 5 3 7 17 7 0 No No
4,40-Dibromoocta-fluorobiphenyl 27 1 1 2 27 1 1 Yes Yes
Isophorone 49 46 19 19 49 46 8 Yes Yes
N-Nitroso-diphenylamine 46 35 4 4 46 35 23 No No
Butylbenzyl phthalate 21 7 4 7 18 7 3 Yes No
Diethyl phthalate 28 18 4 6 27 18 0 Yes No
Di-n-octyl phthalate 53 45 9 10 52 45 1 No No
Percent filtered 44 6 28 84 6 8 76 6 10 9 6 12 40 6 27 83 6 14

Individual layers of GC-HRMS evidence were not sufficient at differentiating between similar chemicals. Detected chemicals were filtered based on multiple criteria
including RI, reverse search index, RHRMF, and observation of the molecular ion. The number of retained candidates after applying all criteria for Levels 2 and 3 is
shown for individual chemicals as well as each Level-2 criteria. The overall percent of candidates removed is also presented.
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occurrence means it may be more likely to exist in samples),

peak shape, and use of ECNI, PCI, APCI, and other ionization

techniques for validation. Database matching may be especially

helpful when close isomers are observed, but only a common

isomer exists. Furthermore, even after Level-2 filtering, multiple

candidates were retained in nearly all cases. Therefore, more

quantitative scoring metrics for ranking need still be applied to

determine the correct candidate. We find that the total score

provided by Compound Discoverer, or simply using reverse

search index to rank candidates, works well in tandem with

Level-2 filters. The Level-2 filters were further found to reduce

false positives substantially when using either of these ranking

algorithms, than when using that ranking algorithm alone.

Furthermore, it is important to note that the cutoffs for scoring

metrics (RI and EI spectral match) presented herein may be re-

fined by future studies. For example, studies which comprehen-

sively examine all thresholds for a broad range of spectral data

to determine optimal cutoffs that would reduce false positives

and false negatives could be incorporated. Other criteria that

may help to increase identification confidence is the addition of

context-dependent metadata (eg, sample source) and isotopic

ratios. We encourage any future addendum to this article that

suggests other optimal cutoffs and includes additional criteria

for identification.
The proposed confidence scores provide a strategy for com-

municating levels of evidence that were used to predict annota-

tion of chemicals detected using non-targeted analysis. While

false positives were still present across all annotation levels, this

approach assists in identifying the likelihood that a match is cor-

rect and can be used to facilitate selection of potential com-

pounds for further evaluation and validation using additional

analytical techniques. Level-1 assignment (using standards) is

still necessary in most work with direct regulatory and policy

implications. This scoring framework can be easily extended to

GC-HRMS data for exposome analysis and provides a foundation

for linking annotations performed across multiple laboratories

and studies, and for building cumulative databases.
The framework for confidence reporting is essential for the

field to progress from fragmented study-specific outputs toward

comparative reporting that can be harmonized across studies.

This is only one aspect of workflow harmonization in non-

targeted analysis. Where possible, community accepted guide-

lines or best practices, and robust quality control procedures

across the entire non-targeted workflow are needed. Multiple

institutions and organizations are working toward this end in-

cluding The European Partnership for the Assessment of Risks

from Chemicals, Environmental Exposure Assessment Research

Infrastructure, Benchmarking and Publications for Non-Targeted

Analysis, and Metabolomics Quality Assurance and Quality

Control Consortium. These procedures will enhance interpreta-

tion and cross-laboratory integration of data, improve data qual-

ity (eg, less false positives and negatives) and transparency, and

allow for more rapid adoption in clinical, regulatory, and other

applied frameworks.
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