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Abstract. We conduct analyses to assess how characteris-

tics of observations of ozone and its precursors affect air

quality forecasting and research. To carry out this investiga-

tion, we use a photochemical box model and its adjoint in-

tegrated with a Lagrangian 4D-variational data assimilation

system. Using this framework in conjunction with pseudo-

observations, we perform an ozone precursor source inver-

sion and estimate surface emissions. We then assess the re-

sulting improvement in ozone air quality prediction. We use

an analytical model to conduct uncertainty analyses. Us-

ing this analytical tool, we address some key questions re-

garding how the characteristics of observations affect ozone

precursor emission inversion and in turn ozone prediction.

These questions include what the effect is of choosing which

species to observe, of varying amounts of observation noise,

of changing the observing frequency and the observation

time during the diurnal cycle, and of how these different

scenarios interact with different photochemical regimes. In

our investigation we use three observed species scenarios:

CO and NO2; ozone, CO, and NO2; and HCHO, CO and

NO2. The photochemical model was set up to simulate a

range of summertime polluted environments spanning NOx-

(NO and NO2)-limited to volatile organic compound (VOC)-

limited conditions. We find that as the photochemical regime

changes, here is a variation in the relative importance of trace

gas observations to be able to constrain emission estimates

and to improve the subsequent ozone forecasts. For exam-

ple, adding ozone observations to an NO2 and CO observ-

ing system is found to decrease ozone prediction error un-

der NOx- and VOC-limited regimes, and complementing the

NO2 and CO system with HCHO observations would im-

prove ozone prediction in the transitional regime and under

VOC-limited conditions. We found that scenarios observing

ozone and HCHO with a relative observing noise of lower

than 33 % were able to achieve ozone prediction errors of

lower than 5 ppbv (parts per billion by volume). Further, only

observing intervals of 3 h or shorter were able to consistently

achieve ozone prediction errors of 5 ppbv or lower across all

photochemical regimes. Making observations closer to the

prediction period and either in the morning or afternoon rush

hour periods made greater improvements for ozone predic-

tion: 0.2–0.3 ppbv for the morning rush hour and from 0.3

to 0.8 ppbv for the afternoon compared to only 0–0.1 ppbv

for other times of the day. Finally, we made two complemen-

tary analyses that show that our conclusions are insensitive

to the assumed diurnal emission cycle and to the choice of

which VOC species emission to estimate using our frame-

work. These questions will address how different types of ob-

serving platform, e.g. geostationary satellites or ground mon-

itoring networks, could support future air quality research

and forecasting.
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1 Introduction

Ozone is a hazard to human health (Mustafa, 1990; Pryor,

1992; WHO, 2013) and plants and animals (Murphy et al.,

1999; Fumagalli et al., 2001; Nali et al., 2002; Van Dingenen

et al., 2009) and a greenhouse gas (IPCC, 2007). Prediction

of ozone air quality on local and regional scales is key for

providing prior warning of impending ozone exceedances

(Dabberdt et al., 2004, 2006). Knowledge of the processes

that control the variability in ozone precursors is vital for un-

derstanding and predicting ozone air quality.

Currently, a wide variety of techniques are used to predict

ozone concentrations ranging from statistically based mod-

els (Gardner and Dorling, 2000) and neural networks (Yi and

Prybutok, 1996) to prognostic models of atmospheric pro-

cesses that include data assimilation (Grell et al., 2005; Otte

et al., 2005; Zhang et al., 2008; Kang et al., 2010; Maré-

cal et al., 2015). For prognostic models, uncertainties re-

sult from meteorology, the limitations of the photochemi-

cal mechanisms, wet and dry deposition, uncertainties in the

emissions of ozone precursors, and, for data assimilation, ob-

servation uncertainty (Dabberdt et al., 2004, 2006). Most cur-

rent statistical and data assimilation air quality forecasting

techniques rely primarily on surface observing networks, but

satellite observations are increasingly coming to the fore (La-

hoz et al., 2012).

Ozone pollution can develop under different polluted pho-

tochemical regimes. Under low to moderate levels of NOx
(NO and NO2) pollution, such as can be found in rural and

suburban environments, increases in NOx lead to propor-

tional increases in ozone, which is why this regime is classed

as NOx limited (Trainer et al., 1987; Sillman, 1993; Jacob

et al., 1993). Under much higher levels of NOx pollution,

i.e. those present in densely populated regions, increases in

NOx bring about decreases in ozone. Under these conditions,

the only means by which ground-level ozone can increase

are via increases in volatile organic compound (VOC) emis-

sions (Finlayson-Pitts and Pitts, 1997), and consequently this

regime is considered to be VOC limited. Further, studies

show that the sensitivity of ozone to either NOx or VOCs can

vary with time, e.g. during different days of the week (Blan-

chard and Fairley, 2001; Blanchard and Tanenbaum, 2003).

The priorities to monitor and observe ozone and its different

precursors therefore vary according to location and time.

Observations and models, and their combination through

data assimilation, comprise essential tools for air quality pre-

diction (Zhang et al., 2008; Strunk et al., 2010; Zhang et al.,

2012). Observations are an essential part of such systems,

so it follows that their characteristics could directly affect

their performance. We seek to address this connection in our

study. Given this, we will now attempt to review the relevant

characteristics of the current and planned (in the near term)

state of the air quality monitoring network in order to explain

the motivation for our work and, later, to place some of our

findings in context.

The US national surface air quality observing network

typically observes a wide range of chemical species. For

instance, surface monitoring sites within California (http:

//www.arb.ca.gov/adam/) have instruments that can measure

in situ ozone, CO, NO2, nitrogen oxide, particulate mat-

ter with diameters of 2.5 and 10 µm, sulfur dioxide (SO2),

methane, total hydrocarbons, and hydrogen sulfide. The sur-

face network is also usually able to make observations at

least at an hourly temporal resolution. However, due to the

spatial limitations of the surface air quality monitoring net-

work, space-borne remote-sensing observations, which typ-

ically have greater spatial sampling, are also able to sup-

port air quality research and operational air quality forecast-

ing (Lahoz et al., 2012).

Surface station in situ data are made at a high spatial res-

olution (a few metres up to a tens of kilometres), which is

typically much higher than most air quality models. As a

result, this introduces the problem of having representativ-

ity errors between the model, which is unable to represent

fine-scale variability, and the observations that can measure

this variability. This problem therefore limits the efficacy of

data assimilation and systems need to be carefully designed

to take this type of error into account.

For this study, the spatial characteristics of observations

from different platforms are not considered, but the advan-

tages satellite data offer in terms of increased spatial cov-

erage have been recognised. Consequently, various studies

have been conducted that highlight the benefits of satellite-

borne instruments for air quality research (Arellano et al.,

2006; Konovalov et al., 2006; Martin, 2008; Millet et al.,

2008; Jones et al., 2009; Bowman et al., 2009; Kurokawa

et al., 2009; Dufour et al., 2010; Duncan et al., 2010; Kopacz

et al., 2010; Fishman et al., 2010). Further, satellite observa-

tions of air pollutants have been used within data assimilation

models to advance air quality research (Sandu et al., 2003a;

Chai et al., 2007; Pierce et al., 2007; Zhang et al., 2008; Par-

rington et al., 2009).

Excluding the issue of spatial sampling, there are con-

siderable differences between remote-sensing observations

and the existing surface observing network. Each individual

ground station is able to observe a wider range of species

at the surface (see above) but only at a single point. On the

other hand, space-based remote-sensing techniques can only

observe a limited number of species that have relevance to

air quality (such as ozone, CO, NO2, SO2, CH4, glyoxal, and

HCHO), have coarser horizontal spatial resolution observing

with a footprint ranging from several to up to tens of kilome-

tres, and have (with current capabilities) only limited vertical

resolution and sensitivity to the surface or boundary layer.

Also, all of the studies cited above used instruments onboard

satellites in low earth orbit (LEO). Due to the orbital config-

uration, LEO-borne instruments are only able to observe the

same location on a far more infrequent basis compared to the

temporal sampling of the ground-based network.
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Instruments onboard geostationary (GEO) satellites can

also offer good spatial coverage (on the continental and re-

gional scale) without sacrificing temporal sampling. This

makes them potentially ideal to support future air quality

research and forecasting. However, in order to achieve this

goal, developments must be made to improve satellite in-

strument sensitivity to the boundary layer and surface gas

phase composition (Lahoz et al., 2012). Various strategies

have been proposed to achieve this aim (primarily for CO

and ozone). They typically consist of either combining wave-

length bands that have been previously exploited, i.e. ul-

traviolet (UV), visible (VIS), and IR (infrared) (Landgraf

and Hasekamp, 2007; Worden et al., 2007, 2010; Fu et al.,

2013; Cuesta et al., 2013), or by focusing on new wave-

length bands, i.e. the Chappuis bands for ozone in the vis-

ible range (Zoogman et al., 2011) that offer potential novel

benefits. The UV and the Chappuis band in the visible range

were combined theoretically to determine the benefit of such

an approach during the development of the TEMPO instru-

ment (Zoogman et al., 2014) and as part of a European ini-

tiative (Hache et al., 2014).

As a result of the perceived benefits, several GEO

missions are currently in the various stages of plan-

ning. These include the Geostationary Coastal and Air

Pollution Events (GEO-CAPE) planned by NASA to

cover the North American continent (http://science.nasa.gov/

earth-science/decadal-surveys/). Sentinel 4 (http://www.esa.

int/esaLP/SEM3ZT4KXMF_LPgmes_0.html) is planned by

ESA to cover Europe, and the Geostationary Environment

Spectrometer (GEMS) (Lee et al., 2009) is aimed at pro-

viding coverage of East Asia. Further, NASA’s decadal sur-

vey and Lee et al. (2009) state that GEO-CAPE and GEMS

will observe the following trace gases: ozone, CO (not with

GEMS), NO2, HCHO, and SO2.

GEO-based observations of trace gases are therefore be-

coming more relevant for the study of air quality and for

operational air quality forecasting. For the planned GEO

missions, various choices exist regarding which wavelength

bands to observe in, and these will influence the already lim-

ited range of observable species in the troposphere. In ad-

dition, instrument design choices affect how often observa-

tions can be made, at what time of day, and how well. For

instance, thermal infrared (TIR)-based instruments cannot

measure NO2, and UV–VIS instruments cannot observe dur-

ing the night-time. Thus, instrument design choices will af-

fect the future capabilities of these missions.

We have demonstrated that a range of possible capabili-

ties and characteristics exist for both the current and planned

air quality observing systems (ground and satellite based).

Within the scope of this paper, we study how the frequency

and specific timing during the day of observation, the species

that are measured, and how well they are measured affect the

ability to conduct air quality research and to aid air quality

forecasting using a data assimilation system. This interac-

tion between observation characteristics and data assimila-

tion system performance is interesting and needs to be stud-

ied. Therefore, addressing this question will be of interest to

the current air quality observing network and to the planned

or future GEO air quality focused missions. In order to do

this, we carry out a series of sensitivity analyses using dif-

ferent sets of pseudo-observations to test the influence that

various observation characteristics have upon the ability to

predict ozone within an idealised model. This model con-

sists of a photochemical box model, its adjoint, and a 4D-

variational data assimilation system set-up to constrain ozone

precursor emission uncertainties (NOx , CO, and VOCs). This

framework thereby mimics a state of the art air quality fore-

casting system. We conduct an uncertainty analysis using a

linear estimation technique for each of our sensitivity tests.

We are able to perform the uncertainty analysis owing to the

fact that we use a box model because it limits the size of

the matrices we solve for. Within the context of a summer-

time ozone pollution episode that emerges during stagnant

anticyclonic conditions, we attempt to address the following

specific questions:

– How does the ability to predict ozone vary across three

separate observing scenarios? The first uses only CO

and NO2 observations (CN), the second uses Ozone,

CO, and NO2 (OCN), and the third uses HCHO, CO,

and NO2 (HCN).

– What are the effects of both observing frequency and

the choice of when to observe on the prediction of ozone

within our framework?

– How does observation noise, when applied evenly onto

each observation, affect ozone prediction in our system?

– How are the results of these sensitivity tests affected

by photochemical regime (i.e., either NOx- or VOC-

limited regimes)?

– Ignoring ozone prediction, which combination of ob-

served species allows the best constraint on ozone pre-

cursor emissions?

In order to support our conclusions regarding the aims

above we carry out a variety of complementary analyses

– to demonstrate that the 4D-variational data assimila-

tion scheme can solve the full non-linear retrieval of the

emission parameters;

– to test the robustness of our methodology to choices re-

garding our assumed diurnal emission profile;

– to test whether the assumed VOC emission uncertainties

can be represented using different VOCs.

Section 2 describes all aspects of the methodology, Sect. 3

describes the results from each of the analyses, Sect. 4 dis-

cusses our results, Sect. 5 details our conclusions.
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2 Methodology

2.1 Overview

We use a photochemical box model run over 3 days to repre-

sent a worsening period of ozone air quality during a stagna-

tion event. Meteorological stagnation events under hot, sunlit

conditions over urban areas typically lead to poor ozone air

quality (Jacob et al., 1993; Valente et al., 1998). We assume

that the idealised mixing and transport represented in the box

model are sufficient to represent the meteorology during anti-

cyclonic conditions. For each of the different sensitivity tests

that we perform we use different sets of pseudo-observations

of ozone, HCHO, CO and NO2 (see Sect. 2.3 and examine

Fig. 3 to see an example of the pseudo-observations rela-

tive to the true ozone state) in order to separately constrain

the ozone precursor emissions with the 4D-variational data

assimilation system. The ozone precursor emissions have

known a priori errors. We then make a prediction of ozone

using the a posteriori emissions. Within the model frame-

work, days 1–2 represent the period over which observations

are made and the assimilation is carried out and the final day

represents the prediction and monitoring period. Within this

final phase, we compare the ozone prediction, based upon

the a posteriori emissions, to the ozone true state in order to

assess the assimilation performance. We support this assess-

ment using a range of statistics and diagnostics that shall be

discussed shortly.

The use of 4D-variational data assimilation to solve the

ozone precursor emission inversion problem is consistent

with the current state of the art in prognostic air quality fore-

cast modelling development. For example, the Community

Multi Scale Air Quality modelling system (Hakami et al.,

2007), the Sulfur Transport Eulerian Model (Zhang et al.,

2008), and Elbern et al. (2007) are all developing such as-

similation capabilities. Thus, our model framework is rele-

vant to and is reflective of the current and future direction of

air quality forecasting.

In order to establish the utility of more complex air quality

forecasting systems that might use 4D-variational data as-

similation, our prototype forecasting system is demonstrated

theoretically. Since the emission inversion problem that we

explore only becomes more complex as the model state space

increases and additional sources of uncertainty are intro-

duced, a failure to show sufficiently reduced prediction er-

ror in this simplified setting would indicate that more com-

plex systems are unlikely to fare better. Sufficient prediction

model error within our framework is therefore a necessary

but not sufficient condition for more complex 4D-variational

data assimilation forecasting systems using air quality obser-

vations to be successful.

One other advantage of selecting a photochemical box

model is that we are able to generate a Jacobian describ-

ing the model response to emission parameter perturbations,

which can be used within an analytical modelling framework

to conduct uncertainty analysis. It would be very difficult to

produce a Jacobian within regional or global chemical trans-

port models in a timely fashion given the size of the model

state space. Therefore, we use an analytic model (derived

from the photochemical box model) that is simplified relative

to the full assimilation framework. This is a linear estimation

technique based upon Rodgers (2000). To support our analy-

ses we calculate the following diagnostics using this method:

a posteriori ozone prediction error covariance, a posteriori

emission parameter error covariance, the emission averaging

kernel, and the associated degrees of freedom of signal.

The 4D-variational (4D-var) data assimilation and uncer-

tainty analysis using the linear estimation are therefore com-

plementary methods, and we use both techniques to achieve

our aim of exploring the effect of observing characteristics

on ozone prediction. In addition, we conduct a series of sup-

porting analyses to test some of our assumptions.

2.2 Photochemical box model

A pseudo 1-D photochemical box model was built using the

Kinetic Pre-Processor (KPP) (Damian et al., 2002; Daescu

et al., 2003; Sandu et al., 2003b). The model is not truly 1-

D in the vertical because we use a parameterisation to de-

scribe variability in the boundary layer height and mixing

volume. The Rosenbrock solver is used to integrate the KPP-

generated ordinary differential equations required to calcu-

late trace gas concentrations (Eller et al., 2009). The photo-

chemical mechanism consists of 171 gas phase species and

524 chemical reactions simulating the degradation of hydro-

carbons from C1 to C5 including isoprene and is based upon

the Master Chemical Mechanism v3.1 (Jenkin et al., 1997)

(http://mcm.leeds.ac.uk/MCM/). In addition, the model in-

cludes dry deposition for all relevant chemical species, it

contains a two-parameter photolysis scheme, and it simulates

the emission of ozone precursors including NOx , CO, and

VOCs.

Coastal urbanised southern California (SC) has histori-

cally been, and continues to be, an interesting area of study

for air quality owing to the large-scale urbanisation and pop-

ulation, the resulting anthropogenic emissions, and the mete-

orological conditions during summertime that are favourable

for the development of photochemical smog conditions. We

therefore set up the box model to study conditions that are

analogous to this region and environment. Consequently, we

situate the box model at 33◦ N, run it from 30 June to 2 July,

and use an atmospheric humidity equivalent to a volume mix-

ing ratio of 0.0162. In addition, we use anthropogenic (NOx ,

CO, and VOCs) and biogenic (isoprene) emissions that result

in a range of atmospheric mixing ratios typical for urbanised

SC.

The diurnal emission variability in anthropogenic

compounds is prescribed according to the Na-

tional Atmospheric Emissions Inventory (NAEI)

(http://www.naei.org.uk/emissions/) for an urbanised
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Figure 1. The various different profiles of the temporal variability emission factor, k(t), used in the analysis of the emission solution

sensitivity to diurnal emission variability. The red dashed and the solid black lines indicate the alternative and standard emissions variabilities,

respectively. The different profiles of variability are indicated at the top of each panel in bold text.

area (see Fig. 1), and the isoprene emission variability

is parameterised to correlate to solar zenith angle off-

set by 2 h to consider both temperature and photon flux

effects (Tingey et al., 1979; Tawfik et al., 2012). The

isoprene emissions have an average daily emission of

1.7× 1010 molecules m2 s−1 and an afternoon peak of

4.6× 1010 molecules m2 s−1, which yields modelled iso-

prene mixing ratios less than 10 pptv (parts per trillion

by volume) typical for this region. The diurnal variability

in the isoprene emissions is separate and distinct to the

anthropogenic VOCs. From now on, when we discuss VOCs

we are referring to anthropogenic VOCs unless otherwise

stated. The VOC speciation is defined according to NAEI

and the total peak emission of carbon via VOCs (excluding

isoprene) is 2.3× 1012 carbon atoms m−2 s−1 and the av-

erage emission is 1.2× 1012 carbon atoms m−2 s−1. These

anthropogenic VOC emissions are typical for urbanised

regions. Boundary layer dynamics are described with a

prescribed variability in mixing height ranging from 500 to

1500 m and mixing between the boundary layer and free

troposphere equivalent to a constant 10 % mass exchange

per hour. In our model, the vertical extent represents the full

depth of the boundary layer. Background free tropospheric

concentrations of long-lived species are assumed to remain

constant and are defined in Table 1.

The model is run under a range of photochemical condi-

tions typical for urbanised SC. This is achieved by varying

the NO emissions across nine different scenarios that span

the full range of modelled ozone responses with respect to

changing NOx concentration (i.e. from NOx- to VOC-limited

conditions). We use the same emissions for the other species

across all of these different NO emission scenarios. For the

purposes of the emission inversion, we define our ozone

precursor emissions in a simplified form (excluding emitted

species not considered in the inversion) as

Table 1. Background free-tropospheric concentrations of trace

gases mixed into the boundary layer in the photochemical model.

NMHCs indicate non-methane hydrocarbons.

Chemical species Background mixing ratio

Ozone 30 ppbv

NO 100 pptv

NO2 50 pptv

CO 80 ppbv

CH4 1.76 ppm

NMHCs 100–200 pptv each

φi(t)= xiEi(t), i = NO,CO,VOC, (1)

where xi represents the time-independent emission scaling

factors for the emitted species, i, and Ei(t) represents the

emissions with a prescribed and repeating diurnal cycle for

each emitted species. The emission inversion solves for xi ,

the time-independent emission scaling factors, which can be

represented as a vector, x, for the emitted species, i, as shown

by

[x]i = xi , i = NO,CO,VOC. (2)

Further, we define the true state of the emission scaling fac-

tors as xt . The variability in ENO(t) is shown in Fig. 2, and

this variability is represented by

Ei(t) = eik(t), (3)

where k(t) is the temporal variability emission factor for all

of the emitted species and ei is the time-independent emis-

sion for each species. Note then that all of the anthropogenic

emissions (NO, CO, and VOCs – Ei(t)) share the same tem-

poral variability. The variability in k(t) is shown in Fig. 1 as

www.atmos-chem-phys.net/15/10645/2015/ Atmos. Chem. Phys., 15, 10645–10667, 2015
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Table 2. Values of the different parameters and emissions used

in the photochemical box model. The emissions are shown with

the corresponding units of molecules m−2 s−1. Since k(t) is 1.89,

the average emissions, E(t), are a factor of 1.89 larger than ei .

For E(t)NO, the value shown outside the brackets is equivalent to

xNO = 1, and the values in the brackets (same units) denote the

range in the emissions that arise from using the full range of xNO

(0.5–2.5).

Model

variable Parameter or emission value

k(t) 1.89

xNO 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5

eNO 4.8× 1010 molecules m−2 s−1

eCO 2.6× 1012 molecules m−2 s−1

eVOC 4.3× 1010 molecules m−2 s−1

E(t)NO 9× 1010 molecules m−2 s−1 (4.5× 1010–2.3× 1011)

E(t)CO 5× 1012 molecules m−2 s−1

E(t)VOC 8.2× 1010 molecules m−2 s−1

Table 3. Simulated range in peak NOx mixing ratios that result from

the different photochemical scenarios using different xNO (0.5–2.5).

Also shown are the ranges of peak CO and HCHO that result from

emissions of CO and VOCs, respectively.

Chemical species Modelled peak mixing ratio range

NOx 4.0–24.0 ppbv

NO 1–11.3 ppbv

NO2 3–16.9 ppbv

CO 590–820 ppbv

HCHO 6.5–8.1 ppbv

the “standard emission variability”. Table 2 shows the values

of eNO, eCO, and eVOC used in our model simulations.

In the emission inversion calculations, we represent VOC

emissions via ethene emissions. We selected ethene because

it is a sufficiently reactive gas that is emitted in abundance

through the course of anthropogenic activity. Thus, the ad-

joint sensitivities to ethene emissions are sufficiently high to

allow the 4D-var system to find adequate solutions for the

VOC emission parameter. Table 2 describes the set-up of the

photochemical model for the range of different NO emission

scenarios that we investigate and shows the values of k(t),

and, for each species, e andE(t). Note that forE(t) the over-

bar indicates the mean value of a variable.

The NO emission scalings shown in Table 2 are chosen

to represent a wide range of photochemical conditions and

given the VOC burden in the model, xNO emission scalings

0.5, 0.75 and 1.0 represent NOx-limited conditions, 1.25, 1.5

and 1.75 represent transitional conditions, and 2.0, 2.25, and

2.5 represent VOC-limited conditions. The mixing ratios of

NOx that result from these different NO emission factors,

and the mixing ratios of CO and HCHO that result from the

CO and VOC emissions are all summarised in Table 3.

Figure 2. A schematic showing how both the a priori and a poste-

riori emissions relate to the true emissions of NO and the modelled

peak afternoon ozone that results from these emission variabilities.

Note that the same emission variability is used for all of the an-

thropogenic chemical species emitted in the model. The a priori

and a posteriori emissions are scaled relative to the true emissions,

and these differences can be characterised as being due to different

emission scaling factors (i.e. xNO) for the a priori, a posteriori and

true emissions. The solid black, green dashed and red dashed lines

show the truth, a posteriori, and a priori emissions, respectively.

2.3 Forecasting framework and 4D-variational data

assimilation

Several NOx emissions scenarios are simulated to cover a

wide range of photochemical conditions (xNO= 0.5–2.5).

Each emission scenario is represented mathematically as a

forward model, F(x, t), which represents the concentrations

as a function of time-evaluated emissions, x. Depending on

the scenario, either pseudo-observations of CO, NO2, O3,

or HCHO are used in various combinations (see Fig. 3 for

a representation of the ozone pseudo-observations relative

to the true state for ozone). In order to derive the pseudo-

observations the model true state is sampled at 3-hourly

intervals in the standard scenarios (used as default unless

specified) and at intervals between 1 and 24 h in scenarios

characterising the impact of observing frequency on predic-

tion error. The sampled species concentrations are then com-

bined with an additive-noise model to generate the pseudo-

observations, y, represented by

y = F(x, t)+n, (4)

where n is the noise

n= F(x)×β × ε, (5)

where F(x) is the average species concentration (values

shown in Table 4), β is the noise scaling factor, and ε is a ran-

dom number with a normalised Gaussian distribution with a

standard deviation of 1 and a mean of 0. The modelled con-

centrations for all species and times resulting from F(x) can

be represented as a vector, q,

q = F(x, t) (6)

or for specific species, z, at time t as qz(x, t),

qz(x, t)= [F(x, t)]z, (7)
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Table 4. Values of F(x) used to calculate y. The overbar indicates

that this represents the mean value.

F(x̂) Mixing ratio

Ozone 44.4 ppbv

CO 620 ppbv

NO2 6.5 ppbv

HCHO 3.9 ppbv

Table 5. Values of x and xa (in terms of unitless emission scaling

factor) used in the 4D-variational data assimilation model.

x xa

NO CO VOC NO CO VOC

0.5 1.0 6.5 0.475 0.95 0.1

0.75 – – 0.7125 – –

1.0 – – 0.95 – –

1.25 – – 1.1875 – –

1.5 – – 1.425 – –

1.75 – – 1.8375 – –

2.0 – – 2.1 – –

2.25 – – 2.3625 – –

2.5 – – 2.625 – –

where z can be O3, NO2, CO or HCHO. We define a priori

emission scaling factors, xa, with specified errors relative to

xt (Table 5 provides a summary of the values of x used for

both xt and xa), which are combined with the model to yield

the a priori model state, F(xa). Note that within our frame-

work the a priori is also the initial guess.

The assimilation is started at the first iteration with the for-

ward model using the initial guess and is thus described as

F(xa) after one iteration. A cost function, which is a scalar,

J (x), is then evaluated:

J (x)=
1

2
((y−F(x))TS−1

n (y−F(x))

+
1

2
(x− xa)

TS−1
a (x− xa)), (8)

where Sa is the a priori constraint matrix and Sn is the ob-

servation error covariance (where the superscript T indicates

the transpose). The 4D-variational data assimilation method

seeks the solution for x, x̂, that minimises J (x),

x̂ =minx J (x), (9)

such that the gradient of the cost function with respect to x is

0 if the solution x̂ is equal to the true state, xt , (though this

is never fully achieved):

∇xJ =KTS−1
n (y−F(x̂))−S−1

a (x̂− xa)= 0, (10)

where K is the Jacobian matrix (see Eq. 15) describing the

forward-model response to perturbations to the emission pa-

rameters and ∇xJ is the adjoint sensitivity (Daescu et al.,

Figure 3. A representation of the ozone prototype forecasting

framework and the 4D-variational data assimilation results for

scenario OCN with β = 0.1. The observation period covers the

first 48 h period of the assimilation, during which time pseudo-

observations are made (at a frequency of every 3 h in this case)

and are used within the assimilation. The observations are used to

constrain the emissions of ozone precursors, which in turn allows

the forecasting model to produce the a posteriori ozone prediction.

During the prediction and monitoring period the model true state

now plays the monitoring role allowing comparisons to be made to

the ozone forecast. The a posteriori ozone prediction represents the

forecast for ozone concentrations 1 day in the future. D represents

the a posteriori prediction model error and G represents the a priori

and initial-guess prediction error. The black solid line, red solid line,

green dashed line, and blue diamonds represent the truth, a priori, a

posteriori, and pseudo-observations, respectively.

2003; Sandu et al., 2003b), which was calculated by the

Rosenbrock solver (Eller et al., 2009) and which indicates the

sensitivity of the cost function to the emission parameters.

The cost function and its adjoint sensitivities are passed to

the quasi-Newton L-BFGS algorithm (Zhu et al., 1997). The

L-BFGS algorithm iteratively determines the optimal state

of x, x̂, that minimises the difference between the model and

observations subject to the a priori constraints.

Using the estimated emissions, x̂, the forward model,

F(x̂), provides the air quality prediction of the ozone con-

centration, qO3
(x, t), on the afternoon of the third day of the

simulation during the prediction and monitoring period. The

relevance of qO3
(x, t) to the prediction and monitoring pe-

riod is shown in Fig. 3.

Figure 2 shows how the a priori emissions, xa, relate to

the true emissions xt and the a posteriori emissions, x̂, af-

ter the 4D-variational data assimilation, as well as the a pri-

ori, the true and the a posteriori ozone levels (i.e. qO3
(xa, t),

qO3
(xt, t), and qO3

(x̂, t), respectively). The left panel of

Fig. 2 shows the a priori emission error for NO emissions

and the right panel shows the a posteriori NO emission er-

ror. The a posteriori emission parameter error can be defined

more generally as a vector x̃.
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x̃ = x̂− xt (11)

Figure 3 provides an example representation of the pseudo-

observation ozone prediction, qO3
(x̂, t), relative to the true

state, qO3
(xt, t), during the prediction and monitoring period

on the third day. In Fig. 3D represents the a posteriori ozone

prediction error at time tµ (tµ is 15:00 LT on day 3 during

the prediction and monitoring period), defined by

D = qO3
(x̂, tµ)− qO3

(xt, tµ). (12)

In Fig. 3 G represents the a priori ozone prediction error de-

fined by

G= qO3
(xa, t

µ)− qO3
(xt, tµ). (13)

The air quality prediction error over the entire prediction and

monitoring period for each of the species, z, can be defined

as a vector, q̃:[̃
qz
]
j
= qz(x̂, tj )− qz(xt, tj ) ,j = 3,6. . .21,24, (14)

where j is the hour of day on the third day during the predic-

tion and monitoring period.

2.4 Uncertainty analysis

2.4.1 Overview

The uncertainty analysis has two foci: the evaluation of the

performance of the emissions estimates and an estimation of

the a posteriori ozone prediction error. Note that there is a di-

rect synergy between these two analyses since uncertainties

in the emissions estimate directly impact upon ozone pre-

diction uncertainty. The diagnostics that we calculate in the

analysis of the emissions uncertainties include the a posteri-

ori emission parameter error, the emission averaging kernel

matrix, and the emission inversion degrees of freedom of sig-

nal.

2.4.2 The Jacobian matrix

The Jacobian matrix can be used to help characterise the vari-

ance in x̃ and q̃. Therefore, it is advantageous to determine

K. Within our framework, each element of K represents the

forward-model response, ∂qz(x, t)/∂xi , at time t and for ob-

served species, z, to perturbations in emissions of species, i,

in the case of the OCN scenario (using pseudo-observations

of ozone, CO, and NO2). It is defined by

K=



∂qO3
(x, t1)/∂xNO ∂qO3

(x, t1)/∂xCO ∂qO3
(x, t1)/∂xVOC

∂qO3
(x, t2)/∂xNO ∂qO3

(x, t2)/∂xCO ∂qO3
(x, t2)/∂xVOC

. . .

. . .

. . .
∂qO3

(x, tNt )/∂xNO ∂qO3
(x, tNt )/∂xCO ∂qO3

(x, tNt )/∂xVOC

∂qCO(x, t1)/∂xNO ∂qCO(x, t1)/∂xCO ∂qCO(x, t1)/∂xVOC

∂qCO(x, t2)/∂xNO ∂qCO(x, t2)/∂xCO ∂qCO(x, t2)/∂xVOC

. . .

. . .

. . .
∂qCO(x, tNt )/∂xNO ∂qCO(x, tNt )/∂xCO ∂qCO(x, tNt )/∂xVOC

∂qNO2
(x, t1)/∂xNO ∂qNO2

(x, t1)/∂xCO ∂qNO2
(x, t1)/∂xVOC

∂qNO2
(x, t2)/∂xNO ∂qNO2

(x, t2)/∂xCO ∂qNO2
(x, t2)/∂xVOC

. . .

. . .

. . .
∂qNO2

(x, tNt )/∂xNO ∂qNO2
(x, tNt )/∂xCO ∂qNO2

(x, tNt )/∂xVOC


=
∂F(x, t)

∂x
, (15)

where K has dimensionsNi×N .Ni is the number of species

in the emission factor state vector, x, and is thus always 3. We

define N as the total number of observations for all species:

N =Nt ×Ny, (16)

where Nt is the number of points in time at which the model

perturbations are sampled and Ny is the number of species

whose perturbations are used in the Jacobian. In the case of

Eq. (15) y=O3, CO and NO2; therefore, Ny = 3. y includes

HCHO in the HCN scenario.

Figure 4 plots columns of the Jacobian, and it shows that

ozone is more sensitive to changes in emissions during the

afternoon and that CO and NO2 respond to changes in emis-

sions during the rush hour periods.

The key assumption in using the Jacobian is that changes

in the emissions can be described (see Rodgers (2000)) ap-

proximately by

F(x)−F(x+ δx)≈Kδx. (17)

This assumption has been validated using finite differencing

(results not shown) to compare to solutions derived from the

right side of Eq. (17).

2.4.3 Emission error characterisation

We calculate various statistics to determine the emission es-

timation performance. First, we determine the a posteriori

emission parameter error covariance, which is defined (see

Rodgers (2000)) by

E
[̃
xx̃T

]
= (S−1

a +KTS−1
n K)−1. (18)

Next, we calculate the emission averaging kernel defined by

A= (S−1
a +KTS−1

n K)−1KTS−1
n K (19)

and the degrees of freedom of signal that is calculated via

d.o.f.= Tr(A), (20)
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Figure 4. These plots show the columns of the Jacobian matrix, K, that correspond to the perturbations of the three observed species in

scenario OCN. Ozone is shown on the left, CO in the middle, and NO2 on the right. This Jacobian is for the xNO = 1.25 emission scenario.

The shaded area represents observations made during the night. NO2 observations made using visible remote-sensing instruments can only

function during the daytime, so there is no need to include a row in the Jacobian corresponding to night-time NO2 observations. The blue, red,

and green solid lines represent qZ(x, t)/∂xNO, qZ(x, t)/∂xCO, and qZ(x, t)/∂xVOC, respectively. The y axes on the left and right represent

the different perturbations to x.

where both of these diagnostics provide information on the

resolution of the emission retrieval, i.e. the ability of the es-

timate to uniquely distinguish between the emissions of in-

dividual species. The notation Tr(A) indicates the trace of a

matrix. While the diagonals of A represent the sensitivity of

x̂i to xi , the d.o.f. represents the number of separate emission

parameters that can be uniquely retrieved.

2.4.4 Ozone prediction error characterisation

Using the a posteriori emission error, we can determine the

a posteriori ozone prediction error during the prediction pe-

riod. In order to do this we need to define a new Jacobian

matrix, K′, that defines the forward photochemical response

during the prediction and monitoring period (day 3) to per-

turbations in the emissions. Thus, K and K′ simply differ

because K describes the model response during the obser-

vation period as opposed to the prediction and monitoring

period. Each element of K′ is ∂qz(x, tj )/∂xi , where j is the

index of time denoting when the model is sampled on the

third day. The a posteriori ozone prediction error covariance

for the third day can be determined by

E
[̃
qq̃T

]
=K′E

[̃
xx̃T

]
K′

T
. (21)

2.5 Summary of experiments

We describe all of the experiments that we perform for the

uncertainty analysis (Sect. 3.1) in Table 6. In each exper-

iment we test a range of different observation characteris-

tics using different parameters. To give an example, for the

CN observing scenario we test the model forecast uncertain-

ties across the nine values of xNO (i.e. 0.5–2.5 with incre-

ments of 0.25) and for eight different levels of observing er-

ror (β = 0.01–5; equivalent to 1, 5, 10, 25, 50, 100, 250, and

500 % relative error). Thus, we perform 72 separate tests for

this experiment and for the OCN and HCN scenarios as well.

However, for the experiment comparing HCN and OCN we

carry out three separate tests where we scale HCHO observa-

tion noise relative to the other species. We test three different

scalings: 50 % lower, the same, and 50 % higher noise.

Section 3.2 is dedicated to sensitivity studies using the full

4D-var data assimilation forecast system. In Sect. 3.2.1 we

demonstrate the ability of the 4D-var data assimilation fore-

cast system to forecast ozone when using the three observa-

tion scenarios CN, OCN, and HCN. For these experiments

we use observations made at 3 h intervals and using β = 0.1.

Next, in Sect. 3.2.2, we define a range of different k(t) sce-

narios in order to probe the emission solution and ozone fore-

cast sensitivity to the assumed diurnal emission variability.

These alternative k(t) scenarios and the standard emission

variability are shown in Fig. 1. In each test we perform the

4D-var data assimilation forecast using the alternative k(t)

scenario while still assuming that the standard emission vari-

ability is representative of the true state. We perform this test

using the OCN scenario, observing at 3 h intervals and with

β = 0.1.

When conducting the VOC emission inversion, we rep-

resent VOC emission uncertainties as ethene emission un-

certainties (rather than a more diverse range of VOCs). In

Sect. 3.2.3 we test that assumption using a sensitivity anal-

ysis by assuming VOC emission errors for ethane instead of

ethene. Again, we perform this test for the OCN scenario,

observing at a 3 h frequency and with β = 0.1.

3 Results

3.1 Uncertainty analyses

3.1.1 Assessing observations of CO, NO2, ozone, and

HCHO and the influence of observation error

Emission error characterisation and ozone

prediction error

In this section we examine the choice of which species to

observe in order to best constrain the emissions and improve

the ozone prediction, and we look at the three scenarios CN,
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Figure 5. Ozone a posteriori prediction errors across the complete range of parameter space for xNO (0.5–2.5) on the x axis and β (0.1–

5) along the y axis with each panel presenting the results from the three observing scenarios CN, OCN and HCN. The coloured contours

represent the a posteriori prediction error in units of ppbv. The green and red colours indicate low and high levels of a posteriori ozone

prediction error, respectively.

Table 6. List and details of all of the experiments carried out as part of the uncertainty analysis. The experiment details include the observed

species, xNO emission factors (see Table 2 for the full list), the observation noise, β, and the observing frequency. The eight different values

of β are 0.01, 0.05 , 0.1, 0.25, 0.5, 1.0, 2.5, and 5.0. These fractional errors are relative to the average species mixing ratios over all of the

photochemical scenarios (see Table 4). The observing noises are identical for each compound within a particular scenario unless otherwise

stated. All of the results from these experiments are described in Sect. 3.1. We also include short notes describing other aspects of the

experiments. The table includes a list of the precise sections where the different experiments are discussed.

Experiment Section Observed xNO Observation Observing Notes

species scenarios noise (β) frequency

CN First and third subsec-

tion of Sect. 3.1.1

CO and NO2 Nine xNO

scenarios

(0.5–2.5)

Eight β values

(0.01–5.0)

3 h

OCN First and third subsec-

tion of Sect. 3.1.1

Ozone, CO and

NO2

Nine xNO

scenarios

(0.5–2.5)

Eight β values

(0.01–5.0)

3 h

HCN First and third subsec-

tion of Sect. 3.1.1

HCHO, CO and

NO2

Nine xNO

scenarios

(0.5–2.5)

Eight β values

(0.01–5.0)

3 h

HOCN First subsection of

Sect. 3.1.1

HCHO, ozone,

CO and NO2

Nine xNO

scenarios

(0.5–2.5)

Eight β values

(0.01–5.0)

3 h Results not shown in any figure

Comparison between

HCN and OCN

(EHCN–EOCN)

Second subsection of

Sect. 3.1.1

HCHO, ozone,

CO and NO2

Nine xNO

scenarios

(0.5–2.5)

Eight β values

(0.01–5.0)

3 h Three different scenarios tested

each using different HCHO ob-

servation noise

Observing frequency

experiment

Sect. 3.1.2 Ozone, CO and

NO2

Nine xNO

scenarios

(0.5–2.5)

β = 0.25 Six frequencies tested: 1, 3,

6, 12, 18, and 24 h

Observing time

experiment

Sect. 3.1.2 Ozone, CO and

NO2

Nine xNO

scenarios

(0.5–2.5)

β = 0.25 3 h 16 different scenarios tested;

observations are removed at

different times in each case

OCN, and HCN in order to do this. Table 6 describes the

parameter space we sample in each of these scenarios and it

describes other important aspects of the forecast system set-

up, i.e. the values of xNO and β and the pseudo-observation

observing frequency.

These results include the a posteriori ozone prediction er-

ror (calculated by Eq. 21) and the a posteriori emission pa-

rameter error (calculated by Eq. 18). We limit our analysis

of the observed species to ozone, CO, NO2, and HCHO be-

cause these gases are monitored by both ground stations and

satellites.

Figure 5 presents the a posteriori ozone prediction errors

across the complete range of parameter space and, in each

panel, the results from the three observing scenarios. All of

the scenarios exhibit similar general behaviour in the de-

rived a posteriori ozone prediction errors: a first maximum

in ozone prediction uncertainty in the NOx-limited scenarios

(xNO = 0.5–0.75), with a consistent minimum in ozone pre-

diction error in the transition region that is both NOx and

VOC limited (xNO = 1.0–1.75) and a second larger maxi-

mum in ozone prediction uncertainty in the VOC-limited

regime (xNO = 2–2.5). Scenario CN (observing only CO and

NO2) yields the highest a posteriori ozone prediction uncer-

tainties of the three scenarios across the range of NO emis-

sion scenarios. The inclusion of ozone and HCHO observa-

tions in the OCN and HCN scenarios, respectively, reduces

the a posteriori ozone prediction uncertainties compared to

those from the CN scenario. Scenarios OCN and HCN both
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Figure 6. xVOC a posteriori errors across the complete range of parameter space for xNO (0.5–2.5) on the x axis and β (0.1–5) along the

y axis with each panel presenting the results from the three observing scenarios A–C. The coloured contours represent the a posteriori error.

To allow comparison of the error in xVOC to the true state, we note that the true state is defined as xVOC = 6.5. The light blue and green

colours indicate low and high a posteriori error on xVOC, respectively.

show significant improvement in the VOC-limited emission

scenarios (xNO = 2.0–2.5), with each outperforming the CN

scenario by up to 2.4 ppbv. Scenarios OCN and HCN di-

verge from one another when xNO = 2.0, which represents

the lowest xNO factor that is still VOC limited. In this case,

scenario OCN outperforms scenario HCN by up to 1.4 ppbv.

Under NOx-limited conditions (xNO = 0.5–1.0), the OCN

scenario a posteriori ozone prediction errors show a strong

improvement relative to the CN scenario (2.6 ppbv) and a

slightly more modest improvement relative to the HCN sce-

nario (1.9 ppbv).

We will now focus on explaining these differences in the a

posteriori ozone prediction error highlighted above. To gain

further insight into this behaviour, Figs. 6 and 7 show the a

posteriori error for xNO and xVOC. Note that the a posteriori

error for xCO (not shown) is invariant with respect to the pho-

tochemical regime and is therefore unable to explain any of

the observed variability in ozone prediction error over vary-

ing xNO.

Figure 6 shows that scenario HCN is able to reduce xVOC

a posteriori errors over the largest range of NO emission sce-

narios, followed by scenario OCN and scenario CN. This re-

duction in VOC emission uncertainty in scenario HCN ex-

plains why this scenario shows reduced a posteriori ozone

prediction error (by up to 2.4 ppbv) compared to the CN sce-

nario under VOC-limited conditions. Despite HCHO obser-

vations overall providing a better constraint on VOC emis-

sion uncertainties under all conditions, this improved con-

straint only leads to lower a posteriori ozone prediction er-

ror compared to the OCN scenario in the transition region

regimes (xNO = 1.0–1.75) (see Fig. 8, central plot) and un-

der the most VOC-limited conditions (xNO> 2.0). The ex-

ception to this behaviour occurs at xNO = 2.0; despite the

HCN scenario showing lower xVOC a posteriori errors com-

pared to the OCN scenario, the HCN scenario shows higher

a posteriori ozone prediction error. This occurs because the a

posteriori ozone prediction error is also sensitive to the a pos-

teriori NO emission uncertainties under VOC-limited condi-

tions, and ozone is better than HCHO at constraining the NO

emission uncertainties.

Figure 7 illustrates that the OCN scenario exhibits the

smallest a posteriori NO emission parameter errors compared

to any of the other observing scenarios. This is particularly

pronounced under VOC-limited and NOx-limited conditions.

Therefore, ozone is better able to constrain NO emission un-

certainties as compared with HCHO under all photochemical

conditions, which is because ozone is always more sensitive

to changes in NO emissions than HCHO. Note, in the case

of VOC-limited conditions, ozone is anticorrelated with NO

emissions. As a direct result of this, the OCN scenario ozone

a posteriori prediction errors are 2.5 and 1.9 ppbv lower than

the CN and HCN scenarios, respectively, while under NOx-

limited conditions. Under VOC-limited conditions, the OCN

scenario shows a posteriori ozone prediction errors that are

2.4 ppbv lower than for the CN scenario. The improved esti-

mation of the NO emissions in the OCN scenario compared

to the HCN scenario only leads to reduced a posteriori ozone

prediction errors (by 1.4 ppbv) for the xNO = 2.0 emission

case (see Fig. 8). This one exception is because VOC emis-

sion errors dominate the ozone prediction uncertainty for the

other VOC-limited cases.

We now briefly explore the benefits of combining all four

of the observed species (CO,NO2, ozone, and HCHO) to

make the HOCN scenario. This scenario can improve ozone

prediction errors by up to 2.9 and 3.1 ppbv under NOx and

VOC-limited conditions, respectively, compared to the CN

scenario. Combining ozone and HCHO observations slightly

improves ozone prediction errors by up to 0.3 and 0.8 ppbv

under NOx and VOC-limited conditions, respectively, com-

pared to the OCN scenario. The differences between the

ozone and HCHO combined scenario and the OCN scenario

under VOC-limited conditions further highlight the potential

for HCHO observations to improve ozone prediction errors

under the most VOC-limited conditions.

Until now, we have not directly discussed the impact of

CO observations or of the resolution of CO emission uncer-

tainties within the assimilation framework. We do not show

a figure here, but a posteriori CO emission uncertainties are

almost invariant with respect to photochemical regime and to

the observing scenario (CN, OCN, or HCN). However, the a
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Figure 7. xNO a posteriori errors across the complete range of parameter space for xNO (0.5–2.5) on the x axis and β (0.1–5) along the

y axis with each panel presenting the results from the three observing scenarios CN, OCN and HCN. The coloured contours represent the a

posteriori error. To allow comparison of the error in xNO to the true state, we note that the true state is defined as the x axis value. The light

blue and green colours indicate low and high a posteriori error on xNO, respectively.

Figure 8. The difference between the scenario HCN and OCN a posteriori ozone prediction error for a range of assumed HCHO observing

error scenarios. In all of the previous analyses and results, β has been identical for all observed species, but in this sensitivity analysis we

scale β for HCHO independently from the other observed species. From left to right HCHO observing errors are assumed to be 50, 100, and

150 % of the observing error for the other species. Thus, the right-hand panel indicates a scenario with HCHO observations of poorer quality

compared to the other species and represents the difference in ozone prediction error between the right and middle panels of Fig. 5; the left

panel indicates a rather optimistic case with assumed HCHO observation errors less than the other observed species errors. The dark red and

dark blue contour colours indicate the negative and positive differences between the scenario HCN and OCN a posteriori ozone prediction

error, respectively.

posteriori CO emission uncertainties increase from 1× 10−5

to 0.1 as the observing noise increases from β = 0.01 to

β = 1.0, respectively. According to the sensitivity of ozone

to xCO in the Jacobian K′, these relatively low levels of

CO emission uncertainty would only lead to perturbations

in ozone of 0.5 ppbv at most. For the case with the high-

est amount of noise, β = 5.0, the a posteriori CO emission

uncertainty reaches 1.1. Again, using K′, we can estimate

that this larger level of CO emission uncertainty could lead

to about a 5 ppbv perturbation in ozone. Therefore, only the

β = 5.0 noise scenario leads to large enough a posteriori CO

emission uncertainties that can have a significant effect on a

posteriori ozone prediction errors.

Sensitivity test for degraded HCHO observations

The standard HCN scenario described above assumes that the

relative observing errors for HCHO are the same as for the

other gases. However, within the context of satellite obser-

vations, the quality of HCHO observations are likely to be

degraded relative to ozone, for instance. This is likely due to

the relative magnitude of the absorption cross-sections and

interferences from other absorbing gases. We therefore per-

form a sensitivity test whereby we apply an upward scaling

factor to the β of HCHO to increase it by 50 % relative to the

other observed gases in the standard HCN scenario (see the

experiment “comparison between HCN and OCN” in Table 6

for further details). Figure 8 shows that scenario HCN only

has lower a posteriori ozone prediction uncertainties over the

full range of NO emission scenarios under the optimistic sce-

nario of lower HCHO observation uncertainties (β of HCHO

is set to be 50 % lower than that of ozone) and that in the

other scenarios, which we assume would be closer to reality,

scenario HCN only outperforms scenario OCN in the transi-

tion region and for the most VOC-sensitive regimes. Under

the assumptions of lower ozone observing uncertainty, OCN

out performs scenario HCN in the NOx- and VOC-limited

regimes by up to 1.9 ppbv.
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Figure 9. The diagonal of the emission averaging kernel for xNO in the lower row and xVOC in the upper row. Each column represents

a different observing scenario (CN, OCN, and HCN). The x axis denotes the varying value of xNO and the y axis shows β (0.1–5). The

contours represent the varying magnitude of the diagonal of the averaging kernel matrix from 0 to 1. The purple and light blue contour

colours indicate high and low values of the diagonal of the averaging kernel matrix, respectively.

Averaging kernel and degrees of freedom of signal

Following from Sect. “Emission error characterisation and

ozone prediction error”, we now characterise the emission

estimate using the emission averaging kernel and degrees of

freedom of signal diagnostics. The emission averaging kernel

(Eq. 19) represents the sensitivity of the retrieved emission

parameters along the diagonal, i.e. for a particular species, i,

to changes in the real emission parameter for species, i. This

analysis is carried out for the CN, OCN, and HCN scenarios

(refer to Table 6 for details). Figure 9 shows the respective di-

agonals of the emission averaging kernel (for xVOC and xNO)

varying in a manner consistent with the a posteriori param-

eter errors as shown in Figs. 6 and 7. A comparison of the

lower panels indicates that the NO emission parameter esti-

mate using the OCN observing scenario is more sensitive to

the true state of the NO emission parameter under both NOx-

limited and VOC-limited conditions than any of the other ob-

serving scenarios. The top panels show that the VOC param-

eter estimate shows the highest sensitivity to the true state of

the VOC emission parameter using the HCN observing sce-

nario.

Consistent with the averaging kernel, the emission inver-

sion degrees of freedom of signal (see Eq. 20, results not

shown) indicates that the HCN scenario is better able to

retrieve and resolve the three separate emission parameters

compared to the OCN scenario. This is because HCHO pro-

vides a better constraint on VOC emissions over a wider

range of xNO and β. However, ozone in general constrains

ozone precursor emissions across a wider variety of emission

parameters, specifically for xNO, which allows ozone obser-

vations to yield better a posteriori ozone prediction errors.

The OCN scenario shows a decrease in the degrees of the

freedom of signal under NOx-limited conditions due to the

lack of sensitivity of the retrieval to the VOC emission pa-

rameter when using these observations.

3.1.2 Observing time and observing frequency

We now examine the sensitivity of the ozone prediction error

to the removal of observations at different times during the

day. (Refer to the observing time experiment in Table 6 for

details.) Since the first observations are made at 00:00 LT,

this means that, in practice, we run our tests by removing

observations at 00:00, 03:00, 06:00 (all local time) and so on

until each observation within the entire observing window

(the first 2 days of simulation) has been tested.

Figure 10 shows that a posteriori ozone prediction er-

rors are most sensitive to the removal of observations dur-

ing the day particularly during the high-emission periods in

the morning and afternoon rush hours and particularly so

during the period of elevated ozone in the afternoon. The

timing and magnitude of the sensitivity and its peak to ob-

servation removal varies according to the nine NO emis-

sion scenarios as well. In the more NOx-limited scenarios,

xNO = 0.5–1.0, the sensitivity to observation removal is dis-

tributed relatively evenly over the entire day. In the VOC-

limited regimes, xNO = 1.75–2.5, the sensitivity to observa-

tion removal is more tightly distributed within the afternoon

period and peaks between 15:00 and 18:00 LT even show-

ing a broad maximum out to 20:00 LT under the most VOC-

limited conditions. The temporal variability in the maximum

sensitivity to observation removal with changing photochem-

ical regime is due to the timing of afternoon peak ozone

concentrations. This is because across all of the photochem-

ical regimes maxima in ozone sensitivity to perturbations in
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Figure 10. The absolute increase in a posteriori ozone prediction

error between scenario OCN with β = 0.25 and the same scenario

with observations removed form specific times over the course of

two days (perturbed case), e.g. 15:00 LT on the second day indi-

cates that no observations were included in the analytical model

calculation of a posteriori ozone prediction error for the perturbed

case from 15:00 LT on the second day. The green and black colours

indicate low and high values, respectively.

emissions coincide with the daytime peak ozone concentra-

tion (see Fig. 4). Observations made during these key periods

are therefore better able to constrain the emissions uncertain-

ties. Ozone concentrations peak later in the afternoon under

more VOC-limited conditions compared to the NOx-limited

conditions, thus explaining some of the variability in maxi-

mum sensitivity to observation removal with changing pho-

tochemical regimes.

Next, we address how observing frequency will affect the

ozone prediction error. We run a series of sensitivity tests

using a variety of observing frequencies ranging from once

a day to once every hour. Table 6 provides a complete de-

scription of the observing frequency experiment. We carry

out these tests across the full range of NO emission sce-

narios (xNO = 0.5–2.5 with increments of 0.25) and with

β = 0.25. Figure 11 shows how a posteriori ozone prediction

errors vary with changing observing frequency. Increasing

observing frequency causes the largest decreases in a poste-

riori ozone prediction uncertainty in the VOC-limited regime

and to a lesser extent in the NOx-limited regime due to the

sensitivity of ozone prediction error to unresolved emission

parameter errors in those regimes.

3.2 Supporting sensitivity analyses

3.2.1 4D-variational data assimilation

We now demonstrate the performance of the 4D-variational

data assimilation. Our 4D-var framework solves the non-

linear estimation problem in that it optimises the ozone pre-

cursor emissions and then estimates a posteriori ozone mix-

ing ratios (the forecast). We run the system across the full

range of photochemical conditions (xNO = 0.5–2.5) and for

the CN, OCN and HCN scenarios whilst assuming low levels

of observational error (β = 0.1) represented in the observa-

tion error covariance matrix.

The results shown in Table 7 indicate that scenarios OCN

and HCN yield acceptable prediction error under these ide-

alised conditions (β = 0.1) within this prototype framework

for all photochemical conditions. The more limited success

of scenario CN (observations of CO and NO2) is due to the

lower sensitivity of CO and NO2 observations to the emis-

sions of VOCs across all NOx emission scenarios and due

to the low sensitivity of CO observations to the emissions

of NO. The magnitude of the adjoint sensitivities guides the

L-BFGS algorithm (Zhu et al., 1997) to the global mini-

mum. In cases where the adjoint sensitivities are low, e.g.

in VOC-limited conditions using the CN scenario, the opti-

misation routine may only be able to find a non-global min-

imum, which leads to larger a posteriori emission factor er-

rors, x̂− xt .

Table 7 indicates that there is variability in a posteriori

peak ozone prediction error over changing photochemical

regime and xNO for each observing scenario CN, OCN, and

HCN. This variability with xNO is due in part to the vari-

ations in modelled ozone sensitivity to the different ozone

precursor emission parameters, ∂qO3
(x, t)/∂xi , and the a

posteriori emission parameter errors (i.e. x̂− xt). Generally,

the large sensitivity of predicted ozone to the emissions of

ozone precursors, ∂qO3
(x, t)/∂xi , combined with unresolved

ozone precursor emission parameter errors can lead to larger

a posteriori peak ozone prediction errors. For instance, in the

NOx-limited regimes (xNO = 0.5–1.0) large residual error in

the element of x̂ corresponding to NO emissions would lead

to large a posteriori ozone errors.

One example of this phenomenon occurs in the case of

photochemically VOC-limited scenarios (i.e. xNO = 1.75–

2.5). Table 8 shows the variability in a posteriori VOC emis-

sion errors with xNO and observing scenario. For observing

scenario CN there is a large unresolved error in xVOC (Ta-

ble 8) as in this case the size of the adjoint sensitivities is

insufficient to guide the L-BFGS algorithm to the global min-

imum, and the solutions represent local minima. This leads

to a larger a posteriori ozone prediction error as compared to

scenarios OCN and HCN (see Table 7), which are better able

to resolve errors in VOC emissions.

There are also examples where ozone precursor emissions

are poorly resolved, but this has only minimal impact on the

ozone prediction error, D. This occurs for the OCN scenario

when xNO ranges from 1.25 to 1.5. For these cases the unre-

solved error in xVOC is larger than for many other situations.

Again, this occurs because the L-BFGS algorithm is only

able to find a local minimum. However, in these instances,

the relatively low sensitivity of ozone to xVOC means that the

resulting ozone prediction errors are relatively low as well.

Thus, there is a rather complex set of factors interacting

to cause these resulting a posteriori prediction errors, and the

analysis of the results is limited to identifying relationships

between the observing scenario, the photochemical regime,

the adjoint sensitivities and the resulting ozone a posteriori

prediction error. This demonstrates the utility of the analyti-
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Table 7. Initial peak ozone predictions, true-state peak ozone, initial guess ozone prediction error, and prediction error across the full range

of xNO (xNO is in terms of unitless emission scaling factor) and the three observing scenarios CN, OCN and HCN. The ozone values and

absolute differences in ozone mixing ratio are listed for 15:00 LT during the final day of the prediction model. D represents the a posteriori

prediction model error and G represents the a priori and initial guess prediction error (see Fig. 3 for more details).

xNO Scenario qO3
(xa, t

µ) (ppbv) qO3
(xt, tµ) (ppbv) G D (ppbv) D (ppbv) D (ppbv)

(ppbv) scenario CN scenario OCN scenario HCN

0.5 72.7 79.3 −6.6 −6.3 −0.4 −1.0

0.75 81.3 89.7 −8.4 −8.3 −0.5 −0.7

1.0 85.2 96.3 −11.1 −4.5 −0.6 −0.5

1.25 85.5 100.3 −15.1 −3.3 −0.6 −0.3

1.5 79.7 101.5 −21.8 −4.2 −0.5 −0.1

1.75 66.1 98.7 −32.6 2.2 0.3 0.2

2.0 52.8 89.0 −36.2 1.9 0.3 0.2

2.25 43.6 73.0 −29.4 1.4 0.3 0.2

2.5 37.1 58.8 −21.7 1.0 0.3 0.2

Table 8. The a posteriori xVOC error resulting from the 4D-

variational data assimilation. The table shows the variability in the

a posteriori VOC emission error (in terms of unitless emission scal-

ing factor) both with observing scenario and NO emission factor.

Errors are represented as absolute errors of xVOC.

x̂VOC–xVOC

xNO Scenario CN Scenario OCN Scenario HCN

0.5 −6.4 0.40 8.5× 10−2

0.75 9.1 0.33 5.0× 10−2

1.0 −2.7 −0.01 3.3× 10−2

1.25 −1.6 9.87 −2.6× 10−2

1.5 −1.7 2.71 −3.6× 10−2

1.75 0.77 0.21 2.4× 10−2

2.0 0.54 0.20 3.3× 10−2

2.25 0.40 0.18 4.5× 10−2

2.5 0.35 0.18 4.8× 10−2

cal model in allowing a far more in-depth analysis. Overall,

the 4D-variational data assimilation framework seems capa-

ble of resolving emission uncertainties and in turn reducing

ozone prediction error. This successful demonstration of the

framework is a necessary but not sufficient condition for sys-

tems based upon more complex photochemical models to

have ozone predictive skill.

3.2.2 Examining day-to-day variability and probing

emission solution sensitivity to diurnal emission

variability

We investigate the sensitivity of the forward photochemical

model ozone mixing ratios, obtained via the 4D-var ozone

prediction and the 4D-var emissions estimate, to a range

of assumed emission diurnal profiles. We use the follow-

ing profiles selected arbitrarily to test the model sensitivity:

constant, sine wave, square wave, and offsets of the exist-

Figure 11. The a posteriori ozone prediction error for a variety

of observation frequency scenarios ranging from an observing fre-

quency of 1 h to once per day. These were calculated for scenario

OCN with β = 0.25. The green and red colours indicate low and

high levels of a posteriori ozone prediction error, respectively.

ing profile by 1 and 2 h shifts both forward and backward

in time (see Fig. 1). These alternative emission profiles are

taken to represent the new true state, xt , (using xNO = 0.75)

and are used to generate the pseudo-observations (using

β = 0.1). We then attempt the assimilation using the pseudo-

observations generated from the alternative emission scenar-

ios whilst assuming that the emissions temporal variability is

the standard variability. The alternate emission profiles test

the robustness of the 4D-variational data assimilation method

to diurnal uncertainty in the emissions.

Table 9 indicates that the forward model shows peak ozone

mixing ratios diverging from the base case run (standard

assumed emission variability with xNO = 0.75) by up to

10.6 ppbv and that the forward-model ozone mixing ratios

are sensitive to the assumption of the diurnal emission vari-

ability. In addition, Table 9 shows that the 4D-variational

data assimilation is able to achieve a posteriori peak ozone

prediction errors of up to 2.4 ppbv relative to the true state,

as defined by the perturbed scenario, despite using the un-

perturbed diurnal emission scenario as its emission variabil-
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Table 9. Results from a study exploring the sensitivity of the 4D-variational data assimilation forecast of peak ozone to varying assumptions

regarding, k(t), the diurnal variability in ozone precursor emissions. Note that in each scenario the cumulative daily emission burden remains

constant for each scenario and thus each scenario has identical E(t). The overbar indicates that this represents the mean value. The table

shows (in ppbv) the modelled ozone for each alternative k(t) scenario, the differences in true-state peak ozone between these alternative

k(t) scenarios and the standard k(t) scenario, and the absolute errors of the a posteriori ozone predictions of these alternative k(t) scenarios

relative to both the standard and alternative k(t) scenario true states. All of the ozone mixing ratios are listed for 15:00 LT during the final

day of the prediction and monitoring period.

Assumed k(t) Alternative Alternative emission Alternative ozone Alternative

scenario emission scenario true state prediction ozone prediction

scenario – standard emission – standard true – alternative

(ppbv) scenario true state (ppbv) true state (ppbv)

state (ppbv)

Constant 92.5 2.8 4.0 0.7

Sine wave 97.6 7.9 8.8 0.5

Saw-tooth 100.3 10.6 9.7 −1.4

Offset −1 93.8 4.2 4.7 0.1

Offset −2 98.9 9.0 9.2 −0.2

Offset +1 86.2 −3.5 −4.9 −1.4

Offset +2 83.5 −6.2 −8.6 −2.4

ity. Although we only show the differences in the maxi-

mum ozone mixing ratios, this behaviour is reproduced in the

ozone mixing ratios at other times during the sunlit day. This

further confirms our general findings from these tests. De-

spite the relative success of the a posteriori peak ozone pre-

diction (only a maximum ozone prediction error of 2.4 ppbv)

under these more challenging conditions, the assimilation

performs poorly in terms of the a posteriori emission factor

error. Errors range up to 0.46 (18–92 %), 0.17 (17 %), and

7.0 (108 %) for xNO, xCO, and xVOC (relative to true scaling

factors of 0.5–5.0, 1.0, and 6.5, respectively), and thus emis-

sion inversion success is strongly affected by errors in the

assumed diurnal variability in ozone precursor emissions. In

summary, we demonstrate forward-model ozone sensitivity

to perturbations in the diurnal variability in ozone precursor

emissions, relative insensitivity of the 4D-variational data as-

similation a posteriori prediction error to mismatches in the

assumed versus observed diurnal variability in ozone pre-

cursor emissions, and sensitivity of the emissions inversion

success to mismatches in the assumed versus true emissions

variability.

3.2.3 Emission inversion and ozone predictive skill

sensitivity to VOC species selection

We conducted a sensitivity test whereby we represent VOC

emission uncertainties with uncertainties in the emission of

ethane, which is a less reactive VOC compared to ethene.

We found that the VOC emission inversion is severely de-

graded by building the Jacobian by perturbing xethane as op-

posed to xethene across the three scenarios. The a posteriori

xVOC parameter error relaxes to our chosen a priori of 1.5

to within one significant figure for most of the scenarios ex-

plored. However, this does not affect ozone prediction error

since the degraded VOC emission uncertainty is mitigated

by the lower reactivity of ethane compared to ethene. As a

result, the sensitivity of ozone to that uncertainty is therefore

lower.

4 Discussion and conclusions

We addressed a set of key questions to determine how char-

acteristics of observations of ozone and its precursors affect

one’s ability to constrain ozone precursor emissions and con-

sequently to predict ozone when using an idealised prognos-

tic air quality model coupled to a data assimilation frame-

work. These questions consisted of which species to observe,

how well to observe them, how often to make observations,

when to make them during the diurnal cycle, and how long to

observe before making a prediction. Further to this, we were

interested in how the answers to these questions changed ac-

cording to varying photochemical regimes (from NOx- to

VOC-limited conditions for ozone formation). These ques-

tions are relevant to determining, in a very coarse way, how

the various observing platforms (e.g. LEO and GEO satel-

lites) and ground monitoring networks are able to support air

quality research and forecasting.

We used a framework consisting of a photochemical box

model using idealised meteorology, its adjoint, and a 4D-

variational data assimilation system set-up to constrain ozone

precursor emission uncertainties (NOx , CO, and VOCs). The

photochemical box model used idealised meteorology that

represented stagnant summer weather conditions. Using lin-

ear analysis to assess the framework’s prediction uncertain-

ties, we carried out a series of sensitivity analyses to test the

performance of the forecasting framework under a range of

different observing scenarios. This consisted of using vari-
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ous sets of pseudo-observations. We examined the effect of

changing which four species were observed (CO, NO2 and

HCHO, CO, and NO2), of varying the observation noise, of

changing the observing frequency, and of changing the time

during the day when observations are made.

We were able to demonstrate that the 4D-var framework

was able to constrain ozone precursor emissions and conse-

quently that it was able to reduce ozone prediction uncertain-

ties and provide an adequate ozone forecast under the ide-

alised conditions that we used. This therefore demonstrated

our framework’s relevance to future air quality forecasting

systems that might utilise state of the art assimilation and ob-

servations made using either the ground station network or

from orbiting satellites. Clearly, more difficulties and chal-

lenges remain before such a framework can be used in a real-

world setting, such as how to incorporate averaging kernels

of satellite retrievals into the assimilation system or account-

ing for representativity errors. Also, using the linear analysis

to estimate the prediction uncertainties, we were able to de-

rive a series of general conclusions that are discussed below.

4.1 The effect of changing the observed species

Our results show that the variability in ozone prediction er-

ror with both photochemical regime and observing species

scenario (CN, OCN and HCN) is complex and no single ob-

served species is ideal for all photochemical conditions.

Under NOx-limited conditions ozone prediction error is

strongly controlled by the a posteriori NO emission errors,

and therefore observations of NO2 and ozone would be

highly advantageous. Ozone provides a particularly good

constraint upon NO emissions under very NOx-limited and

VOC-limited conditions. The value of NO2 observations in

constraining NO emissions improves as the NOx lifetime

increases under the somewhat less NOx-limited conditions

(xNO = 1.0–1.25). Much of the troposphere is in fact highly

NOx-limited outside of the most polluted areas (Duncan

et al., 2010).

Under VOC-limited conditions ozone prediction error is

sensitive to both a posteriori xNO (due to the anticorrelation

of ozone to NOx) and xVOC errors, and thus observations of

ozone, HCHO and NO2 allow significant improvements in

ozone prediction error. Assimilating ozone, therefore, allows

constraints to be placed upon VOC and NO emission uncer-

tainties. HCHO provides an excellent constraint upon reac-

tive VOC emissions, which due to their reactivity are more

relevant to air quality compared to less reactive VOCs. NO2

provides an excellent constraint upon NO emissions under

VOC-limited conditions; more than under NOx-limited con-

ditions due to the longer NOx lifetime. Despite the fact that

large geographical portions of the US are NOx-limited, a

disproportionately large percentage of the population lives

within or is exposed to ozone arising from VOC-limited con-

ditions due to the significant extent of urbanisation within

the US. Large urbanised areas of the south-west of the US

that lack significant native vegetative biomass typically have

a larger VOC-limited regime that extends over the urban as

well as suburban areas. In contrast, US cities in the east are

located in regions with often dense vegetative biomass, e.g.

Atlanta, and thus the VOC-limited region is far more geo-

graphically limited to the urban centre itself. Therefore, im-

proving ozone predictive skill within VOC-limited condi-

tions will not yield forecasting improvements over a wide

geographical area but will yield improvements within certain

regions with large populations.

Our findings with respect to the utility of NO2 and HCHO

observations for constraining NOx and VOC emissions, re-

spectively, and in turn for improving ozone estimation are

broadly consistent with the findings of Zhang et al. (2008),

who used satellite observations of NO2 and HCHO in con-

junction with 4D-variational data assimilation to solve for

NO2 and HCHO emissions and to improve the model’s ozone

estimation. One should note, however, that our work goes

further by demonstrating how the efficacy of NO2 and HCHO

observations varies according to photochemical regime. Sim-

ilar to Elbern et al. (2000, 2007), we demonstrate the use of

ozone in this regard. Our work offers an extension to Elbern

et al. (2000, 2007) by considering the photochemical regime

and by considering other observations simultaneously.

Note that the statements above regarding the need to

constrain NO and VOC emissions under NOx- and VOC-

limited conditions, respectively, are consistent with expec-

tations since ozone is more sensitive to both sets of emission

uncertainties under the respective conditions. Further, the use

of ozone to constrain either NOx or VOC emissions in ei-

ther of the respective photochemical regimes is fully con-

sistent with existing theory relating to ozone control strate-

gies (Sillman, 1993) and our understanding of factors con-

trolling ozone on regional and continental scales (Jacob et al.,

1993). This was one motivation for us to explore this prob-

lem.

There is one further advantage to observations of ozone

and HCHO made under VOC-limited conditions. Often,

plumes of NOx-polluted and VOC-limited air can be ex-

ported from regions that are VOC limited into areas that are

NOx limited, and this can lead to significant temporal vari-

ability in the photochemical regime in the regions surround-

ing an urban centre. Therefore, observations of HCHO and

ozone in addition to NO2 observations could help to under-

stand such events and in turn reduce ozone prediction errors.

We have indirectly performed a sensitivity test to see if

CO observations affect ozone a posteriori prediction errors.

We can address their potential impact within the OCN sce-

nario by examining the Jacobian matrix (see Fig. 4). This

shows that ozone is relatively insensitive to perturbations in

CO emissions and, therefore, also to a posteriori CO emis-

sion uncertainties. In fact, it appears that only the β = 5.0

noise scenario has sufficiently large a posteriori CO emission

error to cause significant a posteriori ozone prediction error

(about 5 ppbv). The Jacobian predicts perturbations in CO as-
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sociated with such emission error to be over 700 ppbv. Such

large changes in CO mixing ratios can occur in reality in ur-

ban areas from the influence of wildfires. For instance, CO

mixing ratios were as high as 10 ppmv during the summer of

2010 as a direct result of the rare and extreme fire events oc-

curring in Russia that summer (Krol et al., 2013; Konovalov

et al., 2011). Episodic perturbations of only ∼ 700 ppbv are

therefore more likely to result from the more frequent and

less severe wildfire events that occur within Europe on an

annual basis.

4.2 Observation error

We now make some broad conclusions regarding the obser-

vation uncertainties. Both the OCN and standard HCN sce-

narios achieve a posteriori ozone prediction errors of 2.4–6.1

and 1.9–6.3 ppbv, respectively, when absolute errors equiv-

alent to 33 % of the average over polluted regions were

used. Even though the OCN and HCN scenarios compared

favourably to one another in terms of their a posteriori ozone

prediction errors, when we considered more realistic obser-

vational noise on the HCHO observations, the performance

of the HCN scenario was degraded to 2.2–6.9 ppbv (33 %

noise level). In comparison, for the same noise level, the CN

scenario achieved ozone prediction errors of 2.5–8.4 ppbv.

Only when the noise level was reduced to 25 % were the

OCN and HCN scenarios able to achieve ozone prediction

errors of 5 ppbv or less. At 10 % noise, ozone prediction er-

rors of less than 2.5 ppbv were consistently attained for both

OCN and HCN. This strongly points towards there being a

good payoff in forecast accuracy with reducing observation

error. Further work in a 3-D framework would be required in

order to determine how these ozone forecast errors translate

into the context of real air quality forecasting. For instance, it

might be possible to calculate the probability of detection or

false-alarm rate statistics in a similar way to the work carried

out by Hache et al. (2014).

Connecting this to real instrument profiles and real obser-

vations, and how these might perform in a real assimilation

system, is beyond the scope of this study. The furthest we can

take this point is to note that the resulting prediction uncer-

tainties for a particular observation noise scenario are opti-

mistic and represent the lowest error that could be expected.

This is because of reduced complexity in our model’s repre-

sentation of its spatial domain and its meteorology and be-

cause of the way we represented the errors in our observa-

tions, which in reality would be more complex.

4.3 Temporal considerations

Concerning the temporal sampling of observations, there is

a strong sensitivity of ozone prediction error to observation

removal in the daytime, particularly in the afternoon, and

therefore observations made during the day present greater

returns in terms of improved forecasting ability. The NOx-

limited regimes favour observations made throughout the

day with increased observing density close to 15:00 LT The

VOC-limited regimes favour a greater concentration of ob-

servations within the afternoon even up to 18:00 LT in the

most VOC-limited cases. These differing results for the two

different photochemical regimes are consistent with exist-

ing knowledge about photochemistry and NOx lifetime. The

main underlying factors controlling this are the changing

time at which ozone peaks and the time of day that emissions

occur that contribute to that peak. Under VOC-limited con-

ditions ozone peaks later in the day due to the reduced ozone

lifetime and the slower recovery of HOx radicals (suppressed

by NOx) that occurs after the night-time period. The NOx-

limited scenarios also show a smaller peak in the morning.

This smaller peak is present due to the observations of ozone

and NO2 during the morning rush hour that better allow NOx
emissions to be constrained. The presence of the smaller peak

also indicates that peak afternoon ozone concentrations are

sensitive to the morning rush hour emissions of NOx ; this is

possible due to the longer ozone lifetime present under NOx-

limited conditions.

We demonstrate that the ozone prediction error is sensi-

tive to the frequency of observation. We show that ozone

prediction errors vary between negligible values and up to

12.5 ppbv as the observing frequency varies between once

per hour to once per day, respectively. The ozone prediction

error is maximised within either the NOx-limited or VOC-

limited regimes. We find very similar levels of ozone predic-

tion error for the scenarios that observe once every hour and

every 3 h (1.8–3.2 ppbv compared to 2.2–4.8 ppbv, respec-

tively), and we also find that ozone prediction errors greater

than 5 ppbv only emerge for observing scenarios using a fre-

quency of 6 h or more. The fact that our forecasting system

performs best using observations made at a frequency of 3 h

or less highlights the temporal sampling advantage posed by

the ground observation network relative to observing systems

with lower observing frequency, i.e. a satellite in LEO con-

figuration.

It is likely that there is an effect on ozone prediction er-

ror due to the interaction between observing frequency and

observing time. Figure 10 implies that observing scenarios

measuring at the same frequency could yield different pre-

diction errors due to when they actually sampled during the

diurnal cycle. However, in each test we made at a particular

observing frequency, the observations were made at a fixed

specific set of times, and so our work does not address this

issue. We do think that this is relevant to evaluating different

types of observing scenario, and we would therefore like to

explore this problem in a future paper.

4.4 Implications for emission inversion

Aside from the relevance of these results to air quality fore-

casting and research in general, we believe these results

are also relevant for emission and flux estimation via in-
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version methodologies. Our prototype framework is very

similar to other work using 4D-variational data assimilation

methodologies (Elbern et al., 2000, 2007; Henze et al., 2009;

Stavrakou et al., 2009; Kopacz et al., 2010) and chemistry

transport models that have focused on emission inversion.

Much of the emission inversion performance shown in this

study is driven by the photochemistry, and it is reasonable to

suppose that some of our results are relevant to future work

conducted using 4D-variational data assimilation in emission

inversion studies. Note too that Kalman filter methods can

also be used in this application and we should expect that the

performance of this method will be similarly affected by pho-

tochemistry. From this premise, we recommend that emis-

sion inversion studies for NOx utilise both observations of

NO2 and ozone since ozone observations add information to

the xNO estimation under both strongly positively and neg-

atively NOx-limited conditions and NO2 observations con-

strain emission parameter uncertainties the most under the

more VOC-limited conditions. Thus, these two observations

are complementary to each other. Likewise, for emission in-

versions of VOCs, we recommend observations of HCHO

and ozone since HCHO observations can constrain VOC

emission uncertainties under a wide variety of photochem-

ical conditions and ozone can constrain VOC emission un-

certainties under VOC-limited conditions.

Previous studies have shown that NO2 (Konovalov et al.,

2006; Zhang et al., 2008; Müller and Stavrakou, 2005) and

HCHO (Stavrakou et al., 2009; Millet et al., 2006, 2008;

Palmer et al., 2003, 2006; Zhang et al., 2008) observations

can constrain NOx and VOC emissions, respectively. Al-

though one could have inferred that combining ozone ob-

servations with either NO2 or HCHO observations would be

beneficial, we have shown that it could be highly advanta-

geous, which is consistent with Miyazaki et al. (2012).

It should be noted that the conclusions regarding VOC

emission inversion are sensitive to our choice of represent-

ing VOC emission uncertainties with ethene. The success of

the VOC emission inversion is significantly limited by solv-

ing for ethane instead of ethene emission uncertainties. This

is due to the lack of impact on secondary chemical species

such as HCHO. This is one reason why previous emission

inversion modelling studies have focused on constraining re-

active VOCs like isoprene (Millet et al., 2006, 2008; Palmer

et al., 2003, 2006).

Concerning CO, all of the observing scenarios (CN, OCN,

and HCN) performed equally well at constraining CO emis-

sion uncertainties since all these scenarios included observa-

tions of CO. The Jacobian for CO with respect to CO emis-

sion perturbations shown in Fig. 4 clearly shows a strong

sensitivity of CO to changes in its own emissions. On the

other hand, Fig. 4 shows much lower sensitivity of CO to the

emissions of NO or VOCs. These results are fully consistent

with expectations due to the relatively low reactivity of CO

and its potential to produce ozone on short timescales and of

the lack of a strong chemical connection between NOx levels

and resulting CO concentrations. In the latter case, there is a

link due to the way that NOx can perturb OH, but due to the

relative unreactivity of CO this leads to only weak sensitivity

in the Jacobian. Consistent with this, there have already been

several studies that use observations of CO to constrain CO

emissions (Müller and Stavrakou, 2005; Kopacz et al., 2010;

Arellano et al., 2006).

In the supporting sensitivity analysis probing emission so-

lution sensitivity to diurnal emission variability we demon-

strate that emission inversions are potentially highly sensi-

tive to the assumed variability in the emissions and that even

perfect observations would lead to such errors. In our system

such emission inversion errors would be hard to characterise

in the absence of any information regarding the true state of

the emissions variability. We recommend that such uncertain-

ties should be considered and characterised in emissions in-

version studies. Currently diurnal emission variabilities are

determined in the process of building bottom-up emission

inventories. Although our prototype assimilation system can

only currently solve for time-independent scaling factors, it

could be modified to solve for time-dependent scaling fac-

tors and the diurnal emissions variability. Future assimilation

forecasting systems should also possess this ability to solve

for time-dependent emission scaling factors. Observations

that adequately capture the diurnal variability in pollutants

will be essential to making this leap from time-independent

solutions to time-dependent solutions.

4.5 Implications for GEO and LEO satellites

In the previous sections we have motivated the potential

utility of surface or boundary layer ozone, CO, NO2, and

HCHO observations either in the context of improving ozone

forecasting or for emission inversions. Ground station net-

works that implicitly sample boundary layer air are already

in place across the American and European continents. How-

ever, only one of the current generation of LEO satellite in-

struments (MOPITT) possesses a reliable means of attain-

ing unique instrument sensitivity to the boundary layer for

these gases (Worden et al., 2013). If full advantage is to be

taken of future GEO stationary satellite instruments’ (GEO-

CAPE/TEMPO, GEMS, and Sentinel-4) simultaneous poten-

tial for excellent coverage and temporal sampling, with the

aim of fully contributing to state of the art ozone air quality

forecasting, then attaining sensitivity to the boundary layer is

essential and should be a high-priority aim.

The heightened importance of observations made during

the morning and mid- to late afternoon raises the question

of whether making more targeted observations, for instance

during the morning and evening rush hours, would be able to

support ozone forecasting even further. There are various ob-

serving systems that would be able to provide this capability,

such as several combined LEO missions or ground stations

or a GEO mission with increased temporal sampling capa-

bility during those periods. Investigating these questions in
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the future would be of interest to us and the broader scien-

tific community.

Our forecasting system is better able to improve the ozone

prediction using observations made during the day as op-

posed to the night. In the context of satellites, and remem-

bering that our idealised case ignores the effects of transport,

this indicates that instruments capable of observing during

the night, such as those observing in the TIR, do not offer a

significant advantage over instruments restricted to making

measurements during the daytime. Of course, if the effects

of transported pollution were to be considered, such as the

night-time mixing of ozone between the boundary layer and

free troposphere, then making observations during the night

could offer additional utility by improving the estimated con-

tribution to the pollution made by this process. For instance,

this could provide advance warning of the trajectory of a pol-

lution plume. Therefore, a limitation of this work is that we

are not able to explore such effects using a model with only

idealised meteorology.

Our forecasting system (and the emission inversion) per-

forms best using observations made at a frequency of 3 h or

less. This highlights the temporal sampling advantage posed

by satellites in a GEO configuration as opposed to those in

LEO. Currently, the proposed observing frequencies for the

future GEO missions (Lahoz et al., 2012) and the current

ground monitoring network are at least 1 h. LEO satellites, on

the other hand, cannot attain high-frequency sampling with-

out a large number of satellites being employed (Lahoz et al.,

2012). In isolation, a single LEO satellite with a sampling

frequency of between 1 and 16 days is perhaps inadequate

for the purpose of constraining precursor emissions on the

regional scale or for supporting air quality forecasting. An-

other consideration is that observing frequencies of 3 h or

more might not be adequate for studying the diurnal cycle

of pollutants and for forecasting systems that use 3D-var, for

instance, to update ozone concentrations. Note that the na-

ture of our framework for performing these tests (i.e. a box

model using only idealised meteorology) places limitations

on our conclusions such that the performance of the higher-

frequency observing scenarios (3 h or less) may be too opti-

mistic. Thus, observing at 3 h may be insufficient to constrain

ozone precursor emissions.
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