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Abstract. The Dutch–Finnish Ozone Monitoring Instrument

(OMI) on board NASA’s Aura spacecraft provides esti-

mates of erythemal (sunburning) ultraviolet (UV) dose rates

and erythemal daily doses. These data were compared with

ground-based measurements at 13 stations located through-

out the Arctic and Scandinavia from 60 to 83◦ N. The study

corroborates results from earlier work, but is based on a

longer time series (8 versus 2 years) and considers addi-

tional data products, such as the erythemal dose rate at the

time of the satellite overpass. Furthermore, systematic errors

in satellite UV data resulting from inaccuracies in the sur-

face albedo climatology used in the OMI UV algorithm are

systematically assessed. At times when the surface albedo

is correctly known, OMI data typically exceed ground-based

measurements by 0–11 %. When the OMI albedo climatol-

ogy exceeds the actual albedo, OMI data may be biased high

by as much as 55 %. In turn, when the OMI albedo climatol-

ogy is too low, OMI data can be biased low by up to 59 %.

Such large negative biases may occur when reflections from

snow and ice, which increase downwelling UV irradiance,

are misinterpreted as reflections from clouds, which decrease

the UV flux at the surface. Results suggest that a better OMI

albedo climatology would greatly improve the accuracy of

OMI UV data products even if year-to-year differences of

the actual albedo cannot be accounted for. A pathway for im-

proving the OMI albedo climatology is discussed. Results

also demonstrate that ground-based measurements from the

center of Greenland, where high, homogenous surface albedo

is observed year round, are ideally suited to detect systematic

problems or temporal drifts in estimates of surface UV irra-

diance from space.

1 Introduction

The Dutch–Finnish Ozone Monitoring Instrument (OMI) on

board the NASA EOS Aura spacecraft is a nadir viewing

spectrometer that measures solar reflected and backscattered

radiation in a selected range of the ultraviolet and visible

spectrum. The Finnish Meteorological Institute in collabo-

ration with the NASA Goddard Space Flight Center have de-

veloped a surface ultraviolet irradiance algorithm for OMI

that produces noontime surface spectral UV irradiance esti-

mates at four wavelengths, noontime erythemal dose rate or

the UV index (UVI), and the erythemal daily dose. Tanska-

nen et al. (2007) (hereinafter referred to as T07) have com-

pared erythemal daily doses derived from OMI observations

with doses calculated from ground-based measurements of

18 reference instruments ranging in latitude from 72.6◦ N

to 77.8◦ S. The present paper presents a similar comparison
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Figure 1. Locations of instruments operated by Environment

Canada (pink), Biospherical Instruments (blue), the Norwegian Ra-

diation Protection Authority and the Norwegian Institute of Air Re-

search (red), and the Finnish Meteorological Institute (black).

with focus on Arctic locations. Ground stations include 13

instruments located in Alaska, Canada, Greenland, Norway,

Svalbard, and Finland (Fig. 1). These data sets are identical

to those used by Bernhard et al. (2013), hereinafter referred

to as B13.

Surface albedo from snow and ice covering the ground can

enhance the clear-sky UVI by up to 58 % (Fig. 2). The effect

is caused by photons that are reflected upward, and subse-

quently Rayleigh-scattered downward by the overlying at-

mosphere toward the surface (Lenoble, 1998). Fresh snow

can have an albedo as high as 0.98 (Grenfell et al., 1994).

Albedo decreases with snow depth but even a thin layer of

fresh snow has a higher albedo than any other natural sur-

face. According to Feister and Grewe (1995), the albedo of

fresh snow at 310 nm is 0.62 for a snow depth of 2 cm and

0.76 for a depth of 5 cm. Calculations of the UVI from space-

based measurements therefore require accurate knowledge of

the surface albedo. Because OMI cannot distinguish between

snow and clouds, an albedo climatology (Tanskanen, 2004) is

used by the OMI UV algorithm. This climatology has unreal-

istic values at some locations and also does not take changes

in albedo from year to year into account. According to T07,

systematic errors in OMI UV data can be large (up 50 %) for

polar regions because the OMI UV algorithm sometimes uses

unrealistically small surface albedo that leads to misinterpre-

tation of the observed bright scene as clouds. An important

goal of the present paper is to quantify these systematic errors

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Albedo

0

10

20

30

40

50

60

E
nh

an
ce

m
en

t[
%

]

80
70
60

Figure 2. Enhancement of the clear-sky UVI as a function of

albedo. The plot is based on radiative transfer calculations with the

libRadtran model (Mayer and Kylling, 2005) for sea level, a TOC

of 400 DU, and SZAs of 60, 70 and 80◦ as indicated in the legend.

and their causes in greater detail, and to provide recommen-

dations on how these errors could be reduced.

T07 only considered daily erythemal doses. OMI data files

also provide the UVI at the time of the satellite overpass and

at local solar noon, and these data are also evaluated in the

present paper. For estimating the daily dose, the OMI UV al-

gorithm assumes that total ozone column (TOC) and cloud

optical depth (COD) remain constant throughout the day,

which is unrealistic in most cases. It may therefore be ex-

pected that differences between OMI and ground-based mea-

surements assessed for the time of the satellite overpass are

smaller than for the daily dose data set. It is a secondary ob-

jective of the present paper to determine whether this is in-

deed the case.

The study by T07 is based on OMI data of the period

September 2004–March 2006. The present study consid-

ers data measured between September 2004 and Decem-

ber 2012.

2 Data sets

The present paper focuses on the validation of the UVI and

the daily erythemal dose. The UVI is a dimensionless number

and calculated by weighting the spectral UV irradiance from

Sun and sky that is received on a horizontal surface, Eλ(λ),

with the action spectrum for erythema, ser(λ), integrating the

weighted spectrum over the wavelength range 250–400 nm,

and multiplying the result by the constant ker, which is equal

to 40 m2 W−1 (WHO, 2002):

UVI= ker×

400 nm∫
250 nm

Eλ(λ)ser(λ)dλ= ker×Eer,

where Eer is called the “erythemally weighted irradiance”.

Both ground-based and OMI data are based on the action

spectrum for erythema defined by the Commission Interna-

tionale de l’Éclairage (CIE) in 1987 (McKinlay and Dif-
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fey, 1987). The spectrum has been slightly modified in 1998

(CIE, 1998; ISO, 1999). For solar zenith angles (SZAs)

smaller than 60◦, UVI values calculated with the new norm

are approximately 0.5–1.0 % larger than corresponding val-

ues calculated with the original standard (Webb et al., 2011).

Differences for SZAs between 60 and 90◦ are between 1 and

2 %.

2.1 Ground-based data

Ground-based data are identical with those used by B13

and are from thirteen Arctic and Scandinavian locations

(Fig. 1). Sorted by decreasing latitude, the thirteen sites

are Alert, Eureka, Ny-Ålesund, Resolute, Barrow, Summit,

Andøya, Sodankylä, Trondheim, Finse, Jokioinen, Østerås,

and Blindern. Sites that are italicized use multi-channel fil-

ter radiometers, while the other sites use scanning spectro-

radiometers. Essential information such as the sites’ latitude

and longitude is provided in Table 1 of B13. Climatic con-

ditions at the 13 sites are summarized by B13 and discussed

in more detail in Sect. 5.1. Detailed information on instru-

mentation, data processing, and measurement uncertainties

are also provided by B13. For all instruments but those in-

stalled at Sodankylä and Jokioinen, the expanded uncertainty

(coverage factor k = 2) of UVI data ranges between 5.8 and

6.2 %. For the two Brewer spectrophotometers installed at

Sodankylä and Jokioinen, a rigorous uncertainty budget has

not been developed. However, the two instruments have par-

ticipated in several intercomparision campaigns and were

also regularly compared with the QASUME (Quality As-

surance of Spectral UV Measurements in Europe) reference

spectroradiometer (Bais et al., 2003). Measurements were

consistently high by 1–6 % compared to measurements of

the QASUME instrument. Data have not been adjusted to

the irradiance scale of the QASUME instrument because the

difference of 1–6 % is within the uncertainty of UV measure-

ments of the QASUME instrument (Gröbner et al., 2005) and

that from other ground stations.

The erythemal daily dose was calculated by integrating

measurements over 24 h periods centered at local solar noon.

Methods to fill data gaps have been described by B13.

2.2 OMI data

Details of the OMI surface UV algorithm have been dis-

cussed in detail by T07 and references therein. In brief, the

algorithm first estimates the clear-sky surface irradiance us-

ing the OMI-measured total column ozone, climatological

surface albedo (Tanskanen, 2004), elevation, solar zenith an-

gle (SZA), and latitude-dependent climatological ozone and

temperature profiles. Next, the clear-sky irradiance is multi-

plied by a cloud modification factor (CMF) that accounts for

the attenuation of UV radiation (UVR) by clouds and non-

absorbing aerosols. The CMFs are derived from the mea-

sured reflectance at 360 nm, assuming that clouds are non-

absorbing and their optical depth is independent of wave-

length. Estimate of UVR are corrected for the effects of ab-

sorbing aerosols by applying a correction factor Ca as de-

scribed by Arola et al. (2009). Ca typically ranges between

0.96 and 1.00 for the locations considered here.

OMI UV data were downloaded on 18 July 2014 from

http://avdc.gsfc.nasa.gov/index.php?site=595385375&id=

79. According to the files’ header, the data set is referenced

as “EOS Aura OMI OMUVB (Collection 3, PGE v1.3; for

ascending orbit only with SZA< 88)”. These “overpass”

data are provided by NASA’s Aura Validation Data Center

(AVDC) by filtering Level 2 OMUVB data for over 250

ground stations where regular surface UV measurements are

performed. Additional OMI UV products are available from

the website http://omi.fmi.fi/products.html but these were

not used for this study.

The OMI data files provide both Eer (in units of mW m−2)

and the UVI. Because the numerical precision ofEer is larger

than that of the UVI (which is rounded to one decimal place),

we used Eer, and divided the ground-based UVI measure-

ments with ker before comparing with the OMI data sets.

The low precision of the native OMI UVI data is a particu-

lar problem for Arctic locations where the UVI is frequently

smaller than 1.

OMI overpass files contain several UV data products (Ta-

ble 1). Data products (DP) assessed in the present paper in-

clude (1) the “Overpass Erythemal Dose Rate”; the (2) “Ery-

themal Daily Dose Rate”; (3) the “Clear Sky Erythemal

Daily Dose Rate”; (4) the “Erythemal Daily Dose”; and

(5) the “Clear Sky Erythemal Daily Dose”.

DP (1) is the erythemally weighted irradiance at the time

of the satellite overpass. DP (2) is the erythemally weighted

irradiance at local solar noon that is calculated from DP (1)

by taking the difference of the SZA between the time of lo-

cal solar noon and the time of the satellite overpass into ac-

count. The calculations assume that TOC and COD remain

constant between the two times. DP (3) equals DP (2) with-

out the CMF being applied. DP (4) is determined from the

measured TOC and COD at the time of the overpass and the

assumption that TOC and COD remain constant throughout

the day. DP (5) equals DP (4) without the CMF being ap-

plied.

Data files contain additional information on data quality;

SZA; viewing zenith angle (VZA); horizontal distance be-

tween the center of the OMI pixel (defined by the OMI Cross

Track Position or CTP) and the nominal location (Dis); the

value of the OMI surface albedo climatology used in the re-

trieval algorithm (SufAlbedo); Lambertian equivalent reflec-

tivity (LambEquRef); terrain height (TerrHgt); and the COD

estimated by the OMI UV algorithm (CldOpt). Some of these

parameters were used for filtering the data sets when com-

paring with ground-based data. Because of the challenges

to distinguish between high surface albedo and clouds from

space, the method of selecting clear-sky data by filtering for

CldOpt= 0 may not be accurate.
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Table 1. OMI data products assessed in the present paper.

Reference Data product Acronym Unit

DP (1) Overpass Erythemal Dose Rate OPEDRate mW m−2

(Satellite Measured Overpass UV Index) OPUVindex Dimensionless

DP (2) Erythemal Daily Dose Rate EDRate mW m−2

(Local Noon Time UV Index) UVindex Dimensionless

DP (3) Clear Sky Erythemal Daily Dose Rate CSEDRate mW m−2

(Local Noon Time Clear Sky UV Index) CSUVindex Dimensionless

DP (4) Erythemal Daily Dose EDDose J m−2

DP (5) Clear Sky Erythemal Daily Dose CSEDDose J m−2

Data products in parenthesis were not directly assessed in the present paper because of their poor numerical precision

compared to the corresponding erythemally weighted irradiance data sets. Data product names and acronyms are

identical to those used in the OMI data files.

At low latitudes, OMI measurements are nominally made

once a day in the afternoon around 13:45 local solar time.

At high latitudes, there is more than one satellite overpass

per day. In these cases, the daily values of DPs (2)–(5) were

averaged before comparing with ground-based data. When

satellite data were filtered using some of the parameters men-

tioned above the number of data records contributing to the

daily average is reduced to one in most cases.

OMI overpass data files include data for Dis< 180 km. In

particular for stations that are located close to the coast or sit-

uated on a mountain, the actual albedo as well as the albedo

value SufAlbedo used in the OMI surface UV algorithm can

change greatly over this distance. Figure 3 shows SufAlbedo

for all ground stations extracted from the OMI data files. Su-

fAlbedo is plotted for all data (black symbols) and data where

Dis is either smaller than 12 km (blue symbols) or 5 km (red

symbols). As can be seen from Fig. 3, values of SufAlbedo

close to the station can differ substantially (e.g., by up to 0.65

during winter and spring at Finse and Ny-Ålesund) from val-

ues farther away. At Eureka, the albedo away from the station

is biased high compared to values in close proximity. When

the data set is filtered for Dis< 12 km, values of SufAlbedo

for a given day of the year are clustered to within ±0.05 for

all sites but Finse. This site exhibits a bimodal distribution

that even persist when the maximum distance is reduced to

5 km because adjacent pixels of the OMI albedo climatology

have greatly different albedo values. For validating OMI, ide-

ally only data should be used where the center of the OMI

pixel is close to the ground station. However, by choosing a

small value, the number of match-up data points is greatly

reduced and the statistics of the comparison become less cer-

tain. Based on the results shown in Fig. 3, data were filtered

for a maximum distance of 12 km, which we believe to be a

good compromise.

3 Validation method

Ground-based data were linearly interpolated to either the

time of the satellite overpass (DP 1) or local solar noon

(DP 2 and 3). Daily dose data (DP 4 and 5) did not require

interpolation. Data were not used when the time between

ground and satellite data was larger than the “maximum

time” tm. Sites that use multi-filter instruments typically pro-

vide a UVI measurement every minute. The maximum time

difference for these sites is usually 30 s and tm was set to

5 min. Sites equipped with spectroradiometers provide mea-

surements with a frequency ranging from one to four scans

per hour. Typical time differences between ground and satel-

lite data for these sites therefore range between 7.5 (Barrow

and Summit) and 30 min (Sodankylä and Jokioinen). tm was

set to 30 min for Alert, Eureka, Resolute, Barrow, and Sum-

mit, and to 60 min for Sodankylä and Jokioinen.

To allow a comparison of results from this study to those

by T07, similar metrics were used to quantify differences be-

tween the OMI and ground-based data sets. These are

– ρi = Es,i

/
Eg,i : ratio of satellite-derived data Es,i and

ground-based data Eg,i , where the index i indicates the

data product (i = 1,2,3,4,5). Both Es,i and Eg,i indi-

cate “match-up” data for a particular record of the OMI

data file. The quantity ρi defines a distribution, which

in most cases cannot be well represented by a normal

distribution. The statistics defined below were calcu-

lated both from monthly and annual distributions of ρi .

These monthly and annual statistics include all years

when data are available. Potential temporal drifts of the

OMI data set were assessed with data from Summit, the

site with the least cloud influence. A linear regression

fitted to a time series of the ratio of OMI and ground

overpass data (DP 1) revealed a statistically insignifi-

cant drift of 0.07± 0.11 % (±2σ) per year. The absence

of drifts was further confirmed by analyzing monthly

average data.

– Ni : the number of ρi contributing to the statistics of a

given month or the year.

– ρ̄i : the average of ρi .

– ρ̃i : the median of ρi .
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Figure 3. Surface albedo (SufAlbedo) of the OMI albedo climatology for each site, extracted from the OMI data files. Black symbols indicate

all available data. Blue symbols indicate data where the distance (parameter “Dis”) between the location of the stations and the center of the

OMI pixel is smaller than 12 km. For red symbols, Dis is smaller than 5 km.

– Mini and Maxi : the minimum and maximum values of

ρi .

– pf,i : the ratio at the f th-percentile with f = 5, 25,

75, and 95. For example, p25,2 is the ratio at the 25th

percentile of the ρ2 distribution pertaining to DP (2).

The difference between p25,i and p75,i is called the “in-

terquartile range.”

– W10,i,W20,i,W30,i : percentage of satellite-derived data

that agree to within 10, 20, and 30 %, respectively, with

ground-based data.

As an alternative approach to quantifying the difference be-

tween OMI and ground data, we also calculated the monthly

average from both data sets, and ratioed these averages:

Ri(y,m)≡

∑
Es,i(y,m)∑
Eg,i(y,m)

,

where the summations are over all data within a given year y

and month m, provided that both satellite and ground-based

measurements are available. For each month, ratios Ri(y,m)

of all years were averaged and the resulting average is de-

noted R̄i . When at least 5 years of data were available, also

the standard deviation σi was calculated from the 5–9 annual

values, allowing to quantify the variability of Ri(y,m) from

year to year. To avoid artifacts caused by data gaps when cal-

culating monthly averages, only months with at least 20 days

of data were considered. Despite this restriction, there could

still be a bias in the monthly average if periods with missing

days are not equally distributed in every year. For example,

solar radiation tends to increase during months in the spring

because the noontime SZA decreases. If measurements are

missing at the beginning of a month, the monthly average

will be biased high. To correct for this effect, the method de-

veloped by Bernhard (2011) was applied.

4 Results

As part of the analysis, the ratio and difference of OMI and

ground UVI data were plotted for each site as functions of

time, the UVI measured at the ground, and the day of the

www.atmos-chem-phys.net/15/7391/2015/ Atmos. Chem. Phys., 15, 7391–7412, 2015
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year. Furthermore, correlations between OMI and ground-

based data were calculated and frequency distributions of

OMI/ground ratios were plotted for each month. This anal-

ysis was repeated for the five data products discussed in

Sect. 3. The resulting wealth of information exceeds the

space of this paper; however, the resulting plots and statistics

are available as supplements: for each site and data product, a

PDF page in a standardized format is provided. An annotated

example of such a page is provided in Appendix A.

Because the values of ρi are not normal distributed and

change greatly from month to month at some locations,

box-whisker plots were chosen to visualize the results. Fig-

ure 4 shows these plots for DP (4). Data were filtered for

SZA< 84◦ and Dis< 12 km. (The SZA was restricted to

avoid that data affected by instrument noise skew the statis-

tics. For SZA> 84◦, the UVI is typically smaller than 0.2

and systematic errors at this low intensity are of little rele-

vance.) Figure 4 indicates for each site and month the statis-

tics ρ̄4, ρ̃4, p5,4, p25,4, p75,4, and p95,4. Statistics for the

entire year are indicated as the 13th month. Table 2 shows

the comparison in tabular form. Two months were chosen for

each site for this table: a month in spring when the surface

is covered by snow and a month in summer when it is snow

free. These months were selected based on the albedo clima-

tology of Fig. 3. The OMI albedo climatology is invariant

from year to year and therefore does not capture variabil-

ity caused by the timing of snow melt. It can therefore be

expected that ρi shows the highest variability in the “tran-

sition” months when snow melt occurs. On the other hand,

for the “high winter” and “mid-summer” months chosen for

Table 2, a static albedo climatology is conceivably sufficient

for accurate UVI retrievals from space-based observations.

Figure 4 and Table 2 indicate large systematic differences

between OMI and ground data at some sites and for some

months. For example, ρ̃4 is 0.60 between March and May

at Ny-Ålesund, 1.55 in February and March at Trondheim,

and smaller than 0.5 between January and April at Finse.

On the other hand, the agreement between the two data

sets is excellent at Summit and Sondakylä for all months.

Good agreement is also observed during spring at Alert,

Eureka, Resolute, and Barrow, and during summer at Ny-

Ålesund, Finse, Jokioinen and Blindern. In Andøya and

southern Scandinavian sites, the variability of the difference

between OMI and ground daily doses is large as evidenced

by the large interquartile range (e.g., Andøya in summer) and

large whiskers (e.g., Blindern in fall). The possible reasons

for the observed systematic differences and variations be-

tween space- and ground-based observations are discussed

in Sect. 5.

Figure 5 shows box-whisker plots and validation statistics

for overpass erythemal dose rate (DP 1). A table similar to

Table 2 but for DP (1) instead of DP (4) is available in the

Supplement. These data were again filtered for SZA< 84◦

and Dis< 12 km. By comparing Fig. 4 with Fig. 5 it can be

seen that the distributions for DP (1) (as indicated by the in-

terquartile range and the length of the whiskers) are generally

much wider than those for DP (4) discussed earlier.

We will show in the following that the different results for

DP (1) and DP (4) are a consequence of the different sam-

pling and averaging schemes of ground and satellite data.

Ground measurements are a point measurement, whereas

OMI provides the mean surface UV over a large area

(13× 24 km2 (along× across track) in nadir direction and

increasing to 13× 128 km2 at the most outer swath-

angle of 57◦ (http://www.knmi.nl/omi/research/instrument/

characteristics.php)). The variability of the erythemal dose

rate over the area of the OMI pixel is averaged in OMI

data, while ground measurements capture these fluctuations.

Hence, the ratio of OMI/ground is also affected by this vari-

ability, leading to the wide distributions evident in Fig. 5. The

effect is largest at sites with high cloud variability and small-

est at sites or seasons where clouds are either infrequent (e.g.,

Resolute in July) or where the attenuation of UVR by clouds

is reduced by high surface albedo (e.g., Alert in spring, Sum-

mit all year). This reduction is the result of multiple scatter-

ing between the surface and cloud ceiling, which effectively

traps light (e.g., Nichol et al., 2003).

As discussed in Sect. 1, the daily dose of ground measure-

ments is calculated from the individual measurements per-

formed throughout the day, while the OMI UV algorithm as-

sumes that the TOC and COD remain constant. The differ-

ence in sampling will result in variability in the ratio of the

two data sets. The comparison of Fig. 4 with Fig. 5 suggests

that the uncertainty of the OMI-derived erythemal daily dose

introduced by the assumption of constant TOC and COD is

smaller than the uncertainty in the OMI overpass erythemal

dose rate applicable to a specific location that is caused by the

variability of this dose rate over the area of the OMI pixel.

The comparison of OMI and ground overpass erythemal

dose rate data was repeated without filtering these data for

SZA< 84◦ and Dis< 12 km. As expected, distributions cal-

culated without the filter were considerably larger than those

obtained with the filter. These data are part of the Supple-

ment.

Figure 6 is based on DP (4) and compares the average ρ̄4

and median ρ̃4 of the match-up statistics discussed earlier

with the average ratio R̄4 derived from the monthly aver-

age daily doses. The median ρ̃4 agrees well with R̄4 for all

sites and months, suggesting that ρ̃4 is an appropriate statis-

tical quantity to assess systematic biases between OMI and

ground data. The average ρ̄4 is less appropriate for this as-

sessment because it is more affected by the skewness of ρ4

distributions. As explained in Sect. 3, the year-to-year vari-

ability of the OMI/ground ratios is quantified with σ4 and

this standard deviation is indicated by error bars in Fig. 6.

At some sites (e.g., Summit, Sondankylä), the error bars are

smaller than the size of the symbol, highlighting that the bias

between OMI and ground data is nearly constant over time.

At high-Arctic sites, σ4 is typically small in March and April

when the ground is covered by snow in all years. Similarly,
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Figure 4. Ratio of the erythemal daily dose (DP 4) measured by OMI and ground stations for each site. The box-whisker plots indicate for

each month the 5th and 95th percentiles (whisker), the interquartile range (box), median (line), and average (red dot). Statistics based on

annual data are indicated as the 13th month. Match-up data were filtered for SZA< 84◦ and Dis< 12 km.

σ4 is small during summer at Scandinavian sites when the

ground is snow free. As can be expected, σ4 is largest in

the transition months when the surface becomes snow free

(e.g., June at Alert and Barrow, April at Finse) or when snow

starts to accumulate again after the summer (e.g., September

at Alert, October at Barrow).

All results presented above were based on the ratio of OMI

and ground data. For the large SZAs prevailing at high lati-

tudes early in spring or late in fall, even large relative differ-

ences between the two data sets have only a small effect (with

arguably negligible consequences) on absolute UVR levels.

To emphasize this point, Fig. 7 shows box-whisker plots of

the difference of OMI and ground UVI measurements for the

time of the satellite overpass. Statistics (i.e., whiskers, in-

terquartile range, median, and average) were calculated the

same way as for the analysis of ratios shown in Fig. 5. With

few exceptions, the 25th and 75th percentiles of the differ-

ence do not exceed ±1 UVI unit. Exceptions include June at

Resolute (median bias of 1.0 UVI units), and April and May

at Trondheim (bias of 1.2) and Finse (bias of −2.1).

5 Discussion

The effect of unrealistic albedo can either lead to a positive

or negative bias of OMI UV data because the albedo is a

key parameter when calculating the CMF. When the OMI

parameter SufAlbedo exceeds the actual albedo (“Case 1”),

the OMI UV algorithm interprets reflectance from clouds as

reflectance from the surface and sets CldOpt to 0, resulting in

CMF= 1. This has two effects, which both lead to a positive

bias of OMI data. First, a high value of SufAlbedo leads to

a high value of the derived clear-sky irradiance (e.g., Fig. 2).

Second, since CMF= 1, the irradiance returned by the OMI

UV algorithm is not reduced by cloud attenuation, in contrast

to the irradiance seen by the instrument at the surface. High

values of SufAlbedo lead to an inconsistency when there are

no clouds: in this case, the reflectance measured by the satel-

lite is lower than that expected from the high value of Su-

fAlbedo. This inconsistency could be exploited to improve

the OMI albedo climatology. For example, data records with

a large difference between the measured (low) reflectance

and that expected from the high value of SufAlbedo could
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Table 2. Validation statisticsa for daily erythemal dose (DP 4).

Site Month Surfaceb N4 p5,4 p25,4 ρ̃4 ρ̄4 p75,4 p95,4 W10,4 W20,4 W30,4

(%) (%) (%)

Alert (82.50◦ N) April SC 74 0.93 0.98 1.02 1.04 1.11 1.17 73 96 99

July SF 97 0.67 0.95 1.14 1.17 1.34 1.78 31 47 65

Eureka (79.99◦ N) April SC 49 0.99 1.06 1.11 1.12 1.15 1.26 41 92 96

July SF 166 0.87 1.03 1.12 1.11 1.19 1.32 34 73 91

Ny-Ålesund (78.92◦ N) April SC 213 0.26 0.46 0.58 0.56 0.69 0.79 0 2 7

August SF 196 0.71 0.97 1.06 1.07 1.18 1.37 40 66 82

Resolute (74.72◦ N) April SC 72 0.95 1.05 1.09 1.08 1.11 1.22 58 92 99

August SF 96 0.74 1.20 1.24 1.25 1.33 1.63 7 16 63

Summit (72.58◦ N) March PSC 155 0.92 0.96 0.99 0.99 1.02 1.06 98 100 100

July PSC 128 1.06 1.08 1.11 1.11 1.14 1.19 44 96 100

Barrow (71.32◦ N) March SC 100 0.89 0.97 0.99 1.01 1.05 1.16 79 96 98

July SF 180 0.84 0.98 1.10 1.10 1.18 1.37 38 74 88

Andøya (69.28◦ N) March SC 186 0.67 0.87 0.96 0.97 1.03 1.28 48 72 83

August SF 175 0.84 1.07 1.17 1.29 1.41 2.01 26 51 61

Sodankylä (67.37◦ N) March SC 116 0.90 1.06 1.11 1.10 1.15 1.27 41 87 97

August SF 136 0.84 0.98 1.06 1.07 1.14 1.29 53 82 93

Trondheim (63.42◦ N) March SC 166 1.27 1.39 1.56 1.70 1.93 2.51 1 2 10

August SF 182 0.86 1.03 1.13 1.15 1.24 1.51 29 64 82

Finse (60.60◦ N) March SC 104 0.19 0.29 0.47 0.47 0.62 0.82 2 5 11

August SF 152 0.74 0.90 1.01 1.06 1.15 1.58 43 65 79

Jokioinen (60.82◦ N) February SC 125 0.54 0.67 0.79 0.80 0.87 1.24 10 29 50

July SF 164 0.78 0.92 0.99 1.00 1.07 1.22 53 84 93

Østerås (59.95◦ N) February SC 166 0.67 0.80 0.89 0.97 1.08 1.50 23 54 70

July SF 166 0.78 0.99 1.07 1.12 1.20 1.55 46 68 81

Blindern (59.94◦ N) February SC 160 0.72 0.84 0.94 1.06 1.12 1.91 26 57 75

July SF 163 0.82 1.01 1.07 1.10 1.17 1.50 48 72 86

aMatch-up data were filtered for SZA< 84◦ and Dis; 12 km. b SC= snow cover, SF= snow-free, PSC= permanent snow cover.

be selected for each grid point, and the albedo climatology

could be adjusted until the difference disappears.

If SufAlbedo greatly underestimates the actual albedo

(“Case 2”), reflectance from the surface is assumed to be

caused by clouds, and the cloud optical depth is set to a

value larger than 0, resulting in CMF< 1. This has two ef-

fects, which both lead to a negative bias of OMI data. First,

a low value of SufAlbedo leads to a low value of the derived

clear-sky irradiance. Second, since CMF is smaller than 1,

the irradiance returned by the OMI UV algorithm is further

reduced. In contrast to Case 1, no inconsistencies can occur

because high reflectance from snow measured during clear

skies can always (albeit incorrectly) be interpreted as cloud

reflectance.

Examples of Cases 1 and 2 are provided in Sect. 5.1 when

discussing results from the various sites.

During periods of scattered clouds, the UV irradiance at

the surface can exceed the clear-sky irradiance (e.g., Mims

III and Frederick, 1994). Such enhancements occur when the

solar disk is not obstructed, while clouds in the vicinity of the

Sun increase the diffuse component over the value for clear

skies. High surface albedo may increase this effect further

(Bernhard et al., 2010). The OMI UV algorithm does not ac-

count for this effect and this omission may contribute to neg-

ative biases for overpass data (DP 1) when scattered clouds

are present. The magnitude of the effect is modest, however,

because cloud enhancements of the UVI by more than 10 %

are very rare in the Arctic (e.g., Bernhard et al., 2007, 2008),

and also the frequency of enhancements between 0 and 10 %

is typically small (e.g., less than 12 % of all measurements at

Summit (Bernhard et al., 2008) and even less at sites where

overcast skies are the norm, such as Barrow in the fall; Bern-

hard et al., 2007).

It was anticipated that comparisons for overpass data show

the least variability because this data product provides the

best temporal match between satellite- and ground-based ob-

servations. Our results refute this hypothesis. The least vari-

ation was instead observed for the daily erythemal dose. The

reason for this finding is likely due to ergodicity: for space-

based observations, the variation introduced by clouds is spa-

tially averaged over the area of the pixel, while the temporal

integration of ground-based measurements performed over

the course of the day “smoothes” out cloud effects. The ef-

fects of spatial and temporal averaging seem to be similar.
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Figure 5. Same as Fig. 4 but for overpass erythemal dose rate (DP 1).

5.1 Discussion by site

Results from each site are briefly discussed below, with the

exception of Summit, Barrow, and Trondheim, for which

more elaborate analyses are presented. Measurements from

Summit and Barrow are completed with radiative transfer

calculations, which are used for the interpretation of the dif-

ference of ground and satellite data. For Barrow, measure-

ments of surface albedo and COD are also available and

were used for interpretation. For other sites, the actual sur-

face albedo was estimated from snow depth information.

Measurements from Trondheim are used to study the Case 1

mechanism in more detail. If not otherwise noted, systematic

differences or “biases” discussed below refer to ρ̃4 and are

expressed in percent (e.g., ρ̃4 = 1.05 corresponds to a bias of

+5 %).

5.1.1 Alert, Canada

Alert is located close to the northernmost point of Canada.

The bias for April and May (when SufAlbedo is about 0.8;

Fig. 3) is less than 2 %. According to Canadian Climate Nor-

mals (CCN; http://climate.weather.gc.ca/climate_normals/),

the ground at Alert is covered by more than 10 cm of

snow at all days during these months. Results from Barrow

(Sect. 5.1.6), which is an Arctic coastal site like Alert, indi-

cate that an albedo of 0.8 is a reasonable value for these con-

ditions. In June and July, the bias is about 15 %. SufAlbedo

decreases from 0.75 to 0.25 during this period, which is

likely too large considering that less than two days in July

have a snow depth of 2 cm or larger. Variability of ρ4 is

relatively high in the summer and fall when the surface is

snow free. For example, the interquartile range is 0.99–1.05

in May, but 0.95–1.34 in July.

5.1.2 Eureka, Canada

Eureka is about 480 km southwest of Alert. OMI data are bi-

ased high by about 11 % between March and May when Su-

fAlbedo is about 0.75. According to CCN, not all days during

this period have snow cover in excess of 5 cm. The albedo

value used by the OMI UV algorithm is therefore likely too

large, which may explain the positive bias. The ground in

July and August is virtually snow free (suggesting an albedo

of less than 0.05 (Blumthaler and Ambach, 1988)), while Su-

fAlbedo is between 0.1 and 0.2. Figure 2 suggest that up to
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Figure 6. Comparison of ρ̄4 (red lines), ρ̃4 (green lines), and R̄4 (open circles). The error bars indicate ±σ4. Data used for this figure were

not filtered for SZA and Dis because such filtering would have reduced the number of data points of R̄4 substantially. Values of ρ̄4 and ρ̃4

are therefore slightly different from those indicated in Fig. 4.

10 % of the of the bias of 12–19 % observed during these

months could be caused by the relatively large values of Su-

fAlbedo applied during these month.

5.1.3 Ny-Ålesund, Svalbard

Ny-Ålesund is at the western side of the Svalbard

archipelago. Despite its high northern latitude, the climate is

relatively mild because of the influence of the Gulf Stream.

The bias at Ny-Ålesund between March and May is −40 %.

SufAlbedo decreases from 0.35 to 0.20 during this period,

which is likely far too low considering that snow cover at

this time typically exceeds 50 cm. The underestimate is an

example of the Case 2 mechanism discussed above. During

July and August, when SufAlbedo is less than 0.15 and the

ground is snow free, the bias is less than 6 %, confirming that

OMI data are quite accurate when the albedo is accurately

specified.

5.1.4 Resolute, Canada

Resolute is located about 600 km south of Eureka. Complete

years of ground-based measurements at Resolute are only

available in 2007, 2009, 2010, and 2011. Large data gaps at

this site make statistics less robust (e.g., σ4 could not be cal-

culated for this site). In March and April, when SufAlbedo is

0.85 and snow cover exceeds 10 cm during more than 28 days

per month according to CCN, the bias is 9 %, suggesting

that the OMI albedo climatology is appropriate. On the other

hand, there is a large bias of 48 % and large variability in

June, when SufAlbedo drops from 0.85 to 0.5. CCN data in-

dicate that snow disappears in June and the albedo values

used by the OMI UV algorithm are therefore likely too large,

explaining the large positive bias (Case 1).

5.1.5 Summit, Greenland

Summit is located near the top of the Greenland ice cap

and has a very high surface albedo of about 0.97 year round

(Bernhard et al., 2008). Because of this high albedo, the influ-
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Figure 7. Difference of OMI and ground UVI data, calculated from overpass erythemal dose rate data (DP 1). The box-whisker plots indicate

for each month the 5th and 95th percentiles (whisker), the interquartile range (box), median (line), and average (red dot). Statistics based on

annual data are indicated as the 13th month. Match-up data were filtered for SZA< 84◦ and Dis< 12 km.

ence of clouds is limited: the average attenuation of spectral

irradiance at 345 nm is 3.5 % in spring and 5.8 % in summer

(Bernhard et al., 2008). Because of the small cloud effect and

constant albedo, the scatter between OMI and ground obser-

vations is extremely small.

For sites located above 2500 m such as Summit, the OMI

surface UV algorithm does not apply a cloud correction; i.e.,

clear-sky conditions are assumed for these altitudes at all

times. This has to be taken into consideration when compar-

ing OMI and ground data at Summit.

Figure 8a compares the medians ρ̃1, ρ̃2, and ρ̃4 of DP (1),

DP (2), and DP (4), respectively. The median ρ̃1 for DP (1)

(which was already shown in Fig. 5) is relatively constant

and varies between 1.04 (equal to a bias of 4 %) in February

and March and 1.10 (bias of 10 %) in August. The median

ρ̃2 and ρ̃4 for DPs (2) and (4) exhibit increasing tendencies

with ρ̃2 ranging from 0.98 (bias of−2 %) in February to 1.14

(bias of 14 %) in August. The medians ρ̃2 and ρ̃4 are rather

similar, except for February when ρ̃4 is 0.90.

Ground-based measurements at Summit are part of the

Version 2 data set of the NSF UV monitoring network (http:

//uv.biospherical.com/Version2/), referred to as “V2 data set”

in the following. This data set includes clear-sky model data

for every measurement. The availability of these model data

presents the opportunity to better understand the reasons

of the difference between OMI and ground-based measure-

ments shown in Fig. 8a.

Model data were calculated with the radiative trans-

fer model UVSPEC/libRadtran (Mayer and Kylling, 2005).

Model input parameters are described in detail by Bernhard

et al. (2008). In brief, parameters include SZA; the extrater-

restrial spectrum; atmospheric profiles of air density, temper-

ature, ozone, and aerosol extinction; TOC; surface albedo;

atmospheric pressure at station level; aerosol optical depth

(τa); and single scattering albedo for aerosols. The TOC used

for modeling was calculated from measured UV spectra ac-

cording to the method by Bernhard et al. (2003). Surface

albedo was set to 0.97 in accordance with measurements by

Grenfell et al. (1994). The spectral dependence of τa was pa-

rameterized with Ångström’s formula: τa = βλ
−α . Aerosol

optical depth data for Summit are currently not available, and

calculations were performed for stratospheric background

www.atmos-chem-phys.net/15/7391/2015/ Atmos. Chem. Phys., 15, 7391–7412, 2015
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Figure 8. Comparison of OMI and ground data at Summit. Panel

a: median ratios ρ̃1, ρ̃2, and ρ̃4 of DP (1), DP (2), and DP (4), re-

spectively. Panel b: comparison of median ratios ρ̃1 of OMI and

ground overpass measurements (solid symbols) with median ratios

of modeled and measured data (open symbols). Results for data fil-

tered for SZA< 84◦ and Dis; 12 km are indicated in red. Results for

data that were additionally filtered for clear-sky (CS) conditions are

indicated in blue. The two data sets indicated by red solid symbols

in Panels a and b are identical.

aerosol conditions by setting α = 1.0 and β = 0.008. This

translates to τa = 0.027 at 300 nm. Actual values of τa are

likely larger, in particular during spring when Summit may

be affected by Arctic haze (VanCuren et al., 2012). Bernhard

et al. (2008) suggest that aerosols may reduce spectral irra-

diance at 345 nm by about 1–3 % at Summit. Model data are

therefore likely too large by this amount.

Figure 8b compares ρ̃1 (solid red symbols) with the me-

dian calculated from the ratio of the model results and the

ground-based measurements (open red symbols). The two

data sets agree with each other to within ±1.5 % for all

months, but are biased high by 4–10 %. A bias of this magni-

tude is not surprising because neither the OMI UV algorithm

nor the model take cloud attenuation into account. As men-

tioned earlier, clouds attenuate on average by 3.5 % between

01 March and 21 June and by 5.8 % between 22 June and

12 October (Bernhard et al., 2008).

Measurements performed during clear skies are flagged

in the V2 data set. Clear-sky periods are determined based

on temporal variability of measured spectral irradiance at

600 nm as described by Bernhard et al. (2008). Ground-

based, OMI, and model data were filtered for clear-sky pe-

riods, the comparisons between the three data sets were re-

peated, and results are indicated with blue symbols in Fig. 8b.

The median ratio of OMI and ground overpass data (solid

blue symbols in Fig. 8b) and the median ratios between

model and ground data (open blue symbols) agree to within

±3 %, but are both biased high by 2–6 %, depending on

month. If measurements from ground and space as well as the
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Figure 9. Ratio of EDRate /OPEDRate from the OMI data file (red,

left axis) and the hour of the OMI overpass (blue, right axis) derived

from the Summit data set. Data were filtered for VZA< 20◦. The

ticks on the x axis indicate the start of a given month.

model results were without error, the bias would be 0. The

small bias that was actually observed is likely caused by a

combination of several factors. First, attenuation by aerosols

is not considered by either OMI or the model. Adjustment

for this effect would reduce the bias by about 2–3 % in spring

(when Arctic haze is potentially present) and 1 % in fall. Sec-

ond, the OMI albedo climatology for Summit is 0.9 in Febru-

ary and October, and 0.95 at the summer solstice. The albedo

used by the model is 0.97 year round. Model results should

therefore exceed OMI data by about 2 % most of the year.

Third, ground-based data are traceable to the scale of spectral

irradiance established in 1990 by the US National Institute

of Standards and Technology (NIST). The current (and pre-

sumably more accurate) NIST scale of 2000 is about 1.3 %

higher in the UV-B than the 1990 scale (Yoon et al., 2002).

If ground-based measurements were recalibrated to the NIST

2000 scale, the bias would be further reduced by about 1 %.

Forth, the bias is within the expanded uncertainty of 6 % of

the ground-based measurements (Bernhard et al., 2008) and

some discrepancies can therefore be expected.

As noted earlier and illustrated in Fig. 8a, the bias for

the erythemal daily dose rate (DPs 2) and that of the daily

dose (DP 4), increase from about −1 % in March to 14 %

in September. Several hypotheses were investigated and ul-

timately rejected to explain this increase. For example, the

TOC is larger in spring than fall. If the OMI algorithm

used to convert the measurements at the time of the over-

pass to the time of local solar noon does not take the TOC

correctly into account, this could conceivably result in a

bias. When the ratio of EDRate /OPEDRate (see Table 1

for acronyms) was plotted versus TOC, a strong correlation

was indeed observed. However, when data were filtered by

month, the correlation disappeared. For example, the ratio

of EDRate/OPEDRate was similar for spring of 2010, when

TOC was abnormally low, and spring of 2011, when it was

abnormally high (B13). We therefore conclude that TOC can-

not be the cause of the effect. Instead, the correlation with

TOC only exists because TOC is effectively a proxy for time.

Atmos. Chem. Phys., 15, 7391–7412, 2015 www.atmos-chem-phys.net/15/7391/2015/
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EDRate is calculated from OPEDRate by the OMI UV al-

gorithm, taking into account the difference in SZA between

the time of the overpass and the time of solar noon. Figure 9

shows the annual variation of EDRate/OPEDRate for Sum-

mit. (Additional analysis not shown here indicates a similar

annual cycle of EDRate/OPEDRate for all sites.) The ratio

increases with month, similar to ρ̃2 shown in Fig. 8a, but this

change could be appropriate if the viewing geometry of OMI

is different in spring and fall. This is likely not the case, how-

ever. Figure 9 also indicates the time of the satellite overpass,

illustrating that there is no difference between spring and fall.

Additional analyses also indicate that SZAs at the time of

the overpass are not systematically different in spring and

fall, and that the variation in the timing of local solar noon

of about ±15 min over the course of a year is too small to

explain the effect. We conclude that the time-dependent bias

in DP (2) shown in Fig. 8a is caused by a problem in the

conversion from OPEDRate to EDRate applied by the OMI

UV algorithm. Additional analysis suggests that the pattern

is likely due to a systematic error of up to±0.5◦ in the calcu-

lation of the local-noon SZA by the algorithm. For a SZA of

80◦ (local noon SZA on 1 March and 11 October at Summit),

a 0.5◦ error in SZA results in a UVI error of about 8 %.

EDDose is calculated from EDRate by the OMI UV algo-

rithm by applying a SZA-dependent function. The function

was validated by calculating a corresponding ratio from the

ground-based data. The result agreed with the function ap-

plied by OMI to within 2 %, except at SZAs exceeding 75◦.

At these large SZAs, the conversion function also becomes

dependent on TOC, which is not taken into account by the

OMI UV algorithm. This is the reason why ρ̃2 and ρ̃4 show

a relatively large difference of 8 % for February in Fig. 8a,

while the difference is smaller than 2 % for the other months.

5.1.6 Barrow, Alaska

Barrow is close to the northernmost point of Alaska. The

adjacent Chukchi Sea is typically covered by ice between

November and July. Barrow is the only site considered here

where the “effective surface albedo” (denoted aeff) is rou-

tinely derived from ground-based measurements. aeff is de-

fined as the albedo of a uniform Lambertian surface, that,

when used as input into a 1-D model, reproduces the mea-

sured spectrum (Lenoble et al., 2004). aeff for Barrow is part

of the V2 data set and calculated from the spectral effect of

surface albedo on the downwelling irradiance (Bernhard et

al., 2006, 2007). The uncertainty (coverage factor k = 1) is

0.11 for aeff = 0.6, and 0.09 for aeff = 0.85. Figure 10 com-

pares aeff with SufAlbedo. Between March and mid-May,

aeff roughly varies between 0.70 and 1.00, while SufAlbedo

is about 0.8. There is generally little bias between the two

data sets. Snowmelt between mid-May and July leads to a

sharp decrease of aeff. While the general trend corresponds

well to that of SufAlbedo, there is a large variability, with aeff

sometimes being 0.4 smaller or larger than SufAlbedo. Su-

Figure 10. Comparison of effective surface albedo aeff derived from

ground-based measurements (“V2” albedo, green marker) with Su-

fAlbedo (blue marker) of the OMI climatology for Dis< 12 km.

aeff data were measured between 1991 and 2013. aeff data between

September and November are sparse because of few clear-sky days

during this period. The ticks on the x axis indicate the start of a

given month.

fAlbedo starts to increase again at the beginning of Septem-

ber, while aeff does not increase before October. Reliable

snow coverage at Barrow was typically observed only after

mid-October during the last decade (Bernhard, 2011). Su-

fAlbedo in September and October is therefore likely too

large by up to 0.3.

The bias of OMI daily dose data at Barrow is smaller than

9 % between February and April. The low value is consistent

with the good agreement of aeff and SufAlbedo in that pe-

riod. While the bias for June is also small (−2 %), the scat-

ter for this month is large (the interquartile range is 0.84 to

1.10), reflecting the larger inter-annual variability in aeff for

this month (e.g., Fig. 4). The bias for September and Octo-

ber is 38 and 62 %, respectively. This large positive bias can

likely be explained by the Case 1 mechanism and is further

investigated in the following.

Figure 11 compares the ratio EDRate /CSEDRate (which

is equivalent to the CMF) with SufAlbedo and CldOpt for the

year 2007. All data are from the OMI data file. Between mid-

February and the end of April, CldOpt is 0 with few excep-

tions, and the corresponding CMFs are 1, as expected. Be-

tween June and September, CldOpt is frequently larger than

5, resulting in CMFs smaller than 0.7. In October, CldOpt is 0

with few exceptions even though clouds remain frequent dur-

ing this month. The low values of CldOpt are a consequence

of the unrealistically large albedo for this month (Case 1), as

discussed below.

Figure 12 shows statistics of cloud optical depth at Bar-

row from OMI (CldOpt) and ground-based observations. The

box-whisker plot is based on data of all years, filtered for

SZA< 84◦ and Dis< 12 km. Ground-based COD data are

www.atmos-chem-phys.net/15/7391/2015/ Atmos. Chem. Phys., 15, 7391–7412, 2015



7404 G. Bernhard et al.: Comparison of OMI UV observations

J F M A M J J A S O N D
Month

0.0

0.2

0.4

0.6

0.8

1.0

1.2
E

D
R

at
e

/C
S

E
D

R
at

e
or

S
uf

A
lb

ed
o

0

10

20

30

40

C
ld

O
pt

...........................................................................................................................................................................................................................................................................................
.................
......
.............
............
..............
.....

.....................................
.
..............................................

..
.

.

........
.
.....
..
.
.

.

.

.

..

........................
.
.....
.
..

......

..

.

..................
.

............
..
..
..
.......
.
...
.......
.....
.
....
...
......
..

..

.

..

...

..

.

.

.....

....

.....

.

..

...

..

.

.

.

..

...

..

....

...
..
.
.
..
.
.

.

...

.

.

.......
.
.
.
............

.

..

.

....

.

.........................

.....................................
.
.................................................

.

........
.
.....
..
.
.
.
.
.

..

...

.............
.......
.

.

.....

.

..

......

..

.

..

..

...

..........
.
.

......
......
..
..
..

.....
.
.
.
.
.
.
..
.
....
....
.
.
.
.
.
.
...
......

.

.

..

.

..

...

..

.

.

.....

....

.....

...

..

.

..

.

.

.

.....

..

....

..

.

..

.

.

.

.

.

.

.

...

..

...

.

..

.

.

.

.

.......
.....

.

...

....

.

...................
......

. EDRate/
CSEDRate

. CldOpt

. SufAlbedo

Figure 11. Comparison of ratio EDRate /CSEDRate (grey, left

axis), SufAlbedo (blue, left axis) and CldOpt (red, right axis). All

data are from the OMI data file for Barrow and the year 2007. The

ratio EDRate /CSEDRate is equivalent to the cloud modification

factor (CMF) at 360 nm.
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Figure 12. Box-whisker plot of cloud optical depth retrieved from

ground-based measurements (blue, left of month marker) and the

corresponding CldOpt data set from OMI (green, right of month

marker) at Barrow. The averages for both data sets are indicated by

red dots.

from the V2 data set and were derived by comparing mea-

surements of spectral irradiance at 450 nm with clear-sky

model results (Supplement to Bernhard et al., 2004). To a

good approximation (e.g., Fig. 5.16 of Liou, 2002), COD is

independent of wavelength between 450 nm and 360 nm, the

latter being the wavelength used by OMI to retrieve CldOpt.

COD of both data sets is close to 0 for February, March,

and April. There is also very good agreement between the

two data sets for July, when the surface is snow free and Su-

fAlbedo is 0.03. Statistics of COD data from the V2 data

set for August through November are similar. In contrast,

CldOpt is 0 with few exceptions for October and Novem-

ber, confirming that the low CldOpt indicated in Fig. 11 for

the year 2007 is the norm for these months. We conclude that

the high bias of 62 % of OMI EDDose data for October is a

consequence of the high value of the albedo climatology for

this month, which in turn leads to an underestimate of the

COD.

5.1.7 Andøya, Norway

Andøya is located on the Norwegian coast north of the Arc-

tic Circle. The bias in March and April is less than ±6 %;

SufAlbedo is about 0.25. Winters are fairly mild due to the

influence of the Gulf Stream and the relative low value of

SufAlbedo is therefore reasonable. The bias for June through

October is between 15 and 36 %, when SufAlbedo has an ap-

propriate value of about 0.05. The relatively large bias can

therefore not be explained by the OMI albedo climatology.

When data are filtered for CldOpt= 0, the bias is reduced to

6–15 %. Hence, some portion of the bias is due to the cloud

correction.

5.1.8 Sodankylä, Finland

The bias at Sodankylä between February and October ranges

between 5 and 13 % and tends to be larger in winter/spring

than summer. SufAlbedo is 0.5 between February and April,

drops to 0.03 by the beginning of June, and remains be-

low 0.03 for the remainder of the summer. Sodankylä is

surrounded by boreal pine forests and peatlands for which

an albedo of 0.03 in the erythemal band is appropriate

(Blumthaler and Ambach, 1988; Feister and Grewe, 1995).

Between June and August, a bias of 4–9 % is apparent in

DP (1), (2) and (4), both for all data and data filtered for

CldOpt= 0. The bias is therefore systematic and not related

to potential errors in the CMF applied by the OMI UV algo-

rithm. About half of the bias is within the uncertainty of the

ground measurements.

5.1.9 Trondheim, Norway

Trondheim is located close to the coast of central Norway

and has a predominantly hemiboreal oceanic climate. The

bias is between 55 and 69 % between February and April. Su-

fAlbedo for this period is 0.6. The albedo is likely too large

considering that Trondheim is a city of 170 000 people and

located on a fjord, about 50 km inland from the coast of cen-

tral Norway. An albedo of 0.6 enhances the clear-sky surface

UV dose only by 30 % (Fig. 2). A large part of the observed

bias must therefore be caused by the Case 1 mechanism dis-

cussed earlier.

To provide further evidence that the Case 1 mechanism

is indeed responsible for the large bias observed for Trond-

heim, we filtered the ground-based measurements for clear-

sky conditions and re-calculated the bias between OMI over-

pass data (DP 1) and ground-based measurements. The clear-

sky filter exploits the temporal variation in the measurements

and takes advantage of the fact that the multi-channel ra-

diometer used at Trondheim provides a measurement every

minute. Data were considered clear-sky when the following

two conditions were met: (1) The UVI at a given time must

deviate by less than 1 % from measurements performed 1 and

2 min before and after this time. (2) Condition (1) must be
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Figure 13. Ratio of overpass erythemal dose rate (DP 1) measured

by OMI and the radiometer at Trondheim. Box-whiskers represent

the distribution of ratios filtered for clear-sky (blue, left of month

marker) and all-sky (green, right of month marker), and indicate

the 5th and 95th percentile (whisker), the interquartile range (box),

median (line), and average (red dot). Match-up data were filtered

for SZA< 84◦ and Dis< 12 km.

met for consecutive 15 min before and after the time of inter-

est. Periods of constant cloudiness may meet condition (1),

but are removed by condition (2).

The OMI data set does not include overpass data without

the CMF applied. We therefore calculated the CMF from the

EDRate and CSEDRate data products and divided the over-

pass erythemal dose rate (OPEDRate) by the CMF to recon-

struct the clear-sky overpass erythemal dose rate (CSOPE-

DRate).

Figure 13 compares box-whiskers calculated from the ra-

tio of CSOPEDRate and the filtered clear-sky ground data

(blue) with box-whiskers calculated from OPEDRate and

“all-sky” ground data. The bias and variability of the clear-

sky subset are much smaller than the corresponding values

for all-sky data. For clear-sky data, the bias ranges between

16 % in August (when SufAlbedo has an appropriate value

of 0.04) and 44 % in March and April, when SufAlbedo is

0.62. According to Fig. 2, an albedo of 0.62 enhances the

clear-sky UVI by 30 %. This theoretical value is consistent

with the albedo effect derived from the measurements (44–

16 %= 28 %), assuming that the observed summer-time bias

of 16 % – which results from unknown causes – also applies

to winter months. This analysis suggests that the actual UV

albedo at Trondheim during winter is similar to that in sum-

mer, which is not surprising considering the location of the

instrument close to the center of a large city.

During summer months, the biases of the clear- and all-

sky data sets agree to within 5 %, while in March and

April, the all-sky bias exceeds the clear-sky bias by 15

and 28 %, respectively. Furthermore, the distributions of

ρ1 for the all-sky data set are much more skewed to-

wards larger values compared to those of the clear-sky

data set because attenuation by clouds is underestimated

by OMI as a result of the large value of SufAlbedo used

by the OMI UV algorithm. For example, the OMI data

files indicate clear-sky conditions (i.e., CldOpt= 0) in 65 %

of data records for March and April. This percentage is

far too large considering that the median cloud cover for

these months is about 87 % according to weather data from

the Trondheim airport (https://weatherspark.com/averages/

28896/Stj-rdal-Nord-Trondelag-Norway).

This analysis confirms that the Case 1 mechanism that

leads to the overestimate by OMI is indeed composed of two

components, one affecting the computation of clear-sky data

and one influencing the calculation of cloud modification fac-

tors.

5.1.10 Finse, Norway

The instrument at Finse is located on a mountain top, 1210 m

above sea level and about 250 m above the tree line. The site

is typically snow-covered between the months of September

and June/July. Because of this location, surface conditions

within the OMI pixel are generally different from those at

the instrument site, and a large difference between satellite

and ground observations can be expected. This is particular

true for winter months when the immediate vicinity of the

instrument is snow covered while the boreal forests within

the OMI pixels are not. Indeed, the bias for February through

May varies between −45 and −61 %. SufAlbedo has a bi-

modal distribution (either 0.55 or 0.70), which is likely too

low on many occasions. Between July and September, when

the ground is snow free, the bias is less than ±3 %. This bias

is smaller than for the other Norwegian sites. One contribut-

ing factor for this relatively small bias is potentially the prox-

imity of Finse to Hardangerjøkulen, a 78 km2 large glacier

located 5 km north of Finse. Because of the closeness to the

glacier, the actual effective albedo for Finse during August

could be larger than the surface albedo of 0.06 used by OMI,

which would increase the ground measurement relative to the

OMI observation and reduce the bias.

5.1.11 Jokioinen, Finland

Jokioinen is in the southwest of Finland, on the southern

edge of the boreal forest belt, and has a temperate climate.

Snow cover extends from December to March. The bias

is −20 % between January and March, when SufAlbedo is

0.30. The actual albedo measured under overcast skies in

February 2012 was 0.70± 0.08 (±1σ) according to Meinan-

der et al. (2012). The negative bias is therefore likely caused

by the Case 2 mechanism. Between April and November, the

bias ranges between −1 and +6 % when SufAlbedo is 0.02.

Hence, the albedo climatology used by OMI between April

and December is almost ideal for this site and CMFs are cal-

culated correctly.
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Table 3. Comparison of results from the present paper (PP) and

those published by T07.

Site Month Surfacea ρ̃4 Difference

PP T07b (%)

Eureka April SC 1.11 1.18 6

July SF 1.12 1.03 −8

Summit March PSC 0.99 1.06 7

July PSC 1.11 1.06 −5

Barrow March SC 0.99 1.20 21

July SF 1.1 1.18 7

Sodankylä March SC 1.11 1.10 −1

August SF 1.06 1.06 0

Jokioinen February SC 0.79 0.82 4

July SF 0.99 1.11 12

a SC= snow cover, SF = snow-free, PSC = permanent snow cover. b Data are from

Table 2 of T07.

5.1.12 Østerås and Blindern, Norway

Østerås and Blindern are suburbs of Oslo, about 6 km apart.

Biases for both sites agree to within± 2 % for all months ex-

cept February and March when the bias at Østerås is 6 %

smaller than at Blindern. Averaged over the year, the daily

erythemal dose measured by OMI exceeds that measured at

Østerås and Blindern by 7 and 8 %, respectively. SufAlbedo

is about 0.15 between January and March and 0.02 between

June and November, which are appropriate values. The influ-

ence of clouds at both sites is substantial and the observed

biases suggest that the CMFs applied by the OMI UV algo-

rithm are slightly too large.

5.2 Comparison with results by T07

Measurements at several sites discussed above (i.e., Eureka,

Summit, Barrow, Sodankylä, and Jokioinen) have also been

compared with OMI data by T07. Table 3 compares the me-

dians ρ̃4 of these sites with those reported by T07. Results

agree to within± 8 % with two exceptions: Barrow in March

and Jokioinen in July. Differences of a few percent can be ex-

pected considering that the work by T07 is based on measure-

ments performed between September 2004 and March 2006

only, while the present study uses data recorded between

September 2004 and December 2012. In addition, values in

Table 3 from the present study refer to months where the sur-

face conditions are most certain (i.e., either snow covered or

snow free), while the classification of the surface condition

applied by T07 is entirely based on the OMI albedo clima-

tology: when albedo was higher than 0.1, snow cover was

assumed, while the rest of the data were classified as snow

free. As discussed above (and also emphasized by T07), the

true snow conditions may diverge from the OMI albedo cli-

matology. For Barrow, ρ̃4 for March (when snow is present)

is 0.99, while T07 reports a value of 1.20. The difference

may be explained by the fact that the “snow cover” value

by T07 also includes data from May, September and Octo-

ber, months where also the present study indicates large pos-

itive biases. For July at Jokioinen, ρ̃4 is 0.99 according to the

present study; the corresponding value by T07 is 1.11. Su-

fAlbedo for this month is 0.03, which should be an accurate

value, supporting the smaller bias reported here.

5.3 Suitability of measurements at Summit to detect

drifts in satellite UV data

Results presented in Sect. 5.1.5 showed that measurements at

a high elevation site located at the center of a major ice sheet,

such as Summit, are potentially very helpful for satellite val-

idation. Because of the high, homogenous surface albedo at

this site, cloud effects are suppressed, resulting in very small

day-to-day variations when comparing data from space and

the ground. The low variability afforded the detection of sys-

tematic problems in the satellite data set and is also helpful

for detecting potential long-term drifts in satellite UV obser-

vations. Compared to lower-elevation sites, Summit is less

affected by increases in air temperature and their effect on

albedo. For example, He et al. (2013) found that changes in

short-wave surface albedo observed in Greenland between

2000 and 2012 were most pronounced at elevations between

500 and 2500 m, ranging between −0.025 and −0.055 per

decade. In contrast, the decadal change at elevations above

3000 m was only −0.013. Future reductions in albedo due

increased deposition of organic aerosols cannot be excluded,

however. For example, the expected increase in boreal forests

fire activity (Kelly et al., 2013) could have a significant im-

pact on black carbon (BC) deposition. The BC content in

the Summit snowpack is currently very low with the high-

est value given in the literature being 1.5–2 ng g−1 (Hagler et

al., 2007; Doherty et al., 2010). During May and June 2011,

the mean BC content measured over the first 1–3 cm of the

snowpack was 0.3± 0.3 ng g−1 and simulations suggest that

its impact on albedo is negligible (Carmagnola et al., 2013).

By taking into account the relationship between BC and snow

albedo (Hadley and Kirchstetter, 2012), we conclude that

even a 10-fold increase in BC at Summit would not signif-

icantly affect our ability to detect drifts in satellite UV data

using ground-based measurements at this site.

6 Conclusions and outlook

UV data of the OMI instrument aboard NASA’s Aura satel-

lite were compared with measurements at 13 ground stations.

OMI data files include several data products including the

erythemal irradiance at the time of the satellite overpass, the

erythemal irradiance at local solar noon, and the daily erythe-

mal dose. The biases between OMI and ground-based instru-

ments calculated for these data products are generally con-

sistent, with few exceptions. For example at Summit, the bias

between OMI and ground-based data evaluated at the time of
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the satellite overpass is almost constant throughout the year.

In contrast, the biases for noon-time erythemal irradiance and

the daily dose at this site increase from about−1 % in March

to 14 % in November. This annual cycle was attributed to a

problem in the OMI UV algorithm, specifically the calcula-

tion of the local-noon SZA. The problem affects other sites

to a similar degree.

At times when the surface albedo is known and correctly

specified by the OMI albedo climatology, OMI data tend to

exceed ground-based measurements by 0–11 %. Examples

include Alert in April (OMI daily dose is biased high by

2 %), Ny-Ålesund in August (6 % bias), Barrow in July (10 %

bias), and Østerås and Blindern year round (7 % bias). These

positive biases are quantitatively consistent with systematic

differences between OMI and ground-based measurements

that have been observed at unpolluted, snow-free mid- and

low-latitude locations (e.g., Antón et al., 2010; Bais et al.,

2015; Cordero et al., 2014; Buntoung and Webb, 2010; Ma-

teos et al., 2013). Several studies have shown that the bias

in OMI UV data increases with increasing aerosol optical

depth, in particular for absorbing aerosols (Arola et al., 2009;

Cachorro et al., 2010; Ialongo et al., 2008), and can reach

over 40 % in highly polluted areas (Cabrera et al., 2012) and

in regions affected by desert dust intrusions (e.g., Anton et

al., 2012). We did not address the effect of aerosols because

our study focuses on pristine high latitude sites with gener-

ally low aerosol optical depth.

When the OMI albedo climatology exceeds the actual

albedo, OMI data can be biased high by as much as 55 %

(e.g., Trondheim in February and March). The bias is caused

by two effects that go in the same direction: an unrealistically

high value of the OMI albedo climatology leads to a high es-

timate of the clear-sky irradiance and to an underestimate of

attenuation by clouds. In turn, when the OMI albedo clima-

tology is too low, OMI data can be biased low by as much as

59 % (e.g., Ny-Ålesund in March).

Calculated biases are generally consistent with those pub-

lished by T07 for those sites considered both by T07 and the

present study. While relative differences can be large, abso-

lute differences in terms of the UVI remain modest at all sites

(e.g., the median bias is smaller than 2 UVI units at all sites;

Fig. 7) because the large SZAs prevailing at high latitudes

limit the UVI to less than 8 at all sites considered here. The

relatively small UVIs observed in the Arctic and the resulting

modest differences between OMI and ground observations

should not lead to the conclusions that UV radiation and its

accurate measurement are not important. First, the day length

in the Arctic can be as long as 24 h and organisms that cannot

escape the Sun may be exposed to similar daily UV doses

than those living at lower latitudes (Bernhard et al., 2010).

Second, UV reflections from snow-covered surfaces can lead

to considerable UV exposure to a person’s face (Cockell et

al., 2001), the eyes of an animal, and man-made materials

used outdoors (Heikkilä, 2014).

A better albedo climatology could greatly improve the ac-

curacy of OMI UV data products even if year-to-year differ-

ences in albedo are not accounted for. One way of improv-

ing the albedo climatology is to exploit an apparent incon-

sistency in OMI data: when the albedo climatology is too

large, measurement of reflectance from space during clear

skies can be lower than the reflectance that is expected from

the (high) value of the albedo climatology. For locations and

times where such an inconsistency is repeatably observed

year after year, the climatological value could be reduced

until the inconsistency disappears. The alternative is to com-

bine measurements from OMI with data from satellites that

are also sensitive in the IR or microwave region and which

are able to distinguish reflectance from clouds and snow.

Due to rapidly changing albedo conditions, typically tak-

ing place during spring and fall at high latitudes and in moun-

tainous regions, surface UV radiation products will always

suffer from poorly known albedo unless real-time data are

available. Several satellite-based snow products have been

developed recently for various applications. For example,

the recently published global broadband albedo time series

based on 5-day interval AVHRR data (Riihelä et al., 2013)

could potentially improve the OMI albedo climatology. Such

new albedo data sets should be considered when the next re-

processing of OMI surface UV data will take place.

In order to improve the daily surface UV products targeted

for the general public, an alternative solution would be to use

daily snow information. For example, Aqua/MODIS snow

products, which are observed close in time with OMI mea-

surements, could be implemented.

Results presented in this study also showed that measure-

ments at a high elevation site located at the center of a major

ice sheet, such as Summit, are very helpful for satellite val-

idation. Because of the high homogenous surface albedo at

this site, cloud effects are suppressed, resulting in very small

day-to-day variations when comparing data from space and

the ground. Measurements at such a site are therefore ideally

suited to detect systematic problems or drifts over time in the

satellite data set.
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Appendix A: Standardized results plots

For each site and data product, a PDF page in a standard-

ized format is available as supplement to this paper. Fig-

ure A1 provides an annotated example of such a page. The

page consists of five panels, labeled a–f. Panel (a) provides

comparison statistics by months, specifically: Ni , Mini , p5,i ,

p25,i , ρ̃i , ρ̄i , p75,i , p95,i , Maxi , W10,i , W20,i , and W30,i .

Panel (b) shows OMI and ground-based data plotted ver-

sus time. Panel (c) is a scatter plot of OMI versus ground

data. Also indicated in Panel (c) are results of two linear re-

gressions to the data, one with the intercept calculated (red

line) and one with the intercept forced through the origin

(green). Dashed black lines indicate ±20 % deviations from

the ideal 1 : 1 relationship (solid black line). Panel (d) con-

sists of four sub-panels showing the ratio of OMI and ground

data plotted versus time, ground-based measurements, and

day of the year, plus a box-whisker plot of the ratio statistics.

Panel (e) provides similar plots for the difference of OMI and

ground measurements. Panel (f) provides for every month a

histogram of the frequency distribution of the OMI/ground

ratio. Note that the first plot of the sequence is the distri-

bution for the whole year rather than January. The number

of data points (Ni) that were used to calculate the distribu-

tions as well as ρ̃i (green, labeled “Med”) and ρ̄i (red, labeled

“Avg”) are also indicated.

Atmos. Chem. Phys., 15, 7391–7412, 2015 www.atmos-chem-phys.net/15/7391/2015/



G. Bernhard et al.: Comparison of OMI UV observations 7409

Figure A1. Example of a standardized page summarizing the results of the comparison of OMI and ground-based erythemal daily dose data

at Barrow. Additional pages of this type are available as a Supplement. The contents of panels (a)–(f) are explained in the text.
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The Supplement related to this article is available online

at doi:10.5194/acp-15-7391-2015-supplement.
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