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a b s t r a c t

Upwelling events off the Southwest coast of Portugal can trigger phytoplankton blooms that are
important for the fisheries and aquaculture sectors in this region. However, climate change scenarios
forecast fluctuations in the intensity and frequency of upwelling events, thereby potentially impacting
these sectors. Shifts in the phytoplankton community were analysed from the end of 2008 until the
beginning of 2012 by examining the bio-optical properties of the water column, namely the absorption
coefficients for phytoplankton, non-algal particles and coloured dissolved organic matter (CDOM). The
phytoplankton community was assessed by microscopy, with counts from an inverted microscope, and
by chemotaxonomic methodologies, using pigment concentrations determined by High-Performance
Liquid Chromatography (HPLC). Results both from microscopy and from chemotaxonomic methods
showed a shift from diatom dominance related to bloom conditions matching upwelling events, to small
flagellate dominance related to no-bloom conditions matching relaxation of upwelling. During bloom
conditions, light absorption from phytoplankton increased markedly, while non-algal particles and
CDOM absorption remained relatively constant. The dynamics of CDOM in the study area was attributed
to coastal influences rather than from phytoplankton origin. Changes in phytoplankton biomass and
consequent alterations in phytoplankton absorption coefficients were attributed to upwelling regimes in
the area. Bio-optical parameters can contribute to environmental monitoring of coastal and oceanic
waters, which in the case of the European Union, involves the implementation of the Water Framework,
Marine Strategy Framework and Marine Spatial Planning Directives.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Phytoplankton is the basis of most of the marine food web, thus
the knowledge of the dynamics of its communities is crucial for
understanding shifts in the marine ecosystems. Temporary pro-
liferations of phytoplankton, known as “blooms”, are common and
natural in coastal environments [Cullen (2008)] and are often due
to the nutrient enrichment of the system, either by terrestrial
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runoff or by wind induced upwelling events. Indeed, areas where
these events occur recurrently are known to be among the most
productive areas of the world [Smith and Hollibaugh (1993),
Loureiro et al. (2008)], and support economically important in-
dustries for fisheries and offshore aquaculture (e.g). [Kifani et al.
(2008), Rueda-Roa and Muller-Karger (2013)]. However, some
phytoplankton blooms can produce undesirable effects such as
inducing high mortalities in fish and other marine species,
contaminating seafood by algal toxins, and even directly damaging
human health, thereby impacting human activities and welfare in
the surrounding area [Hu et al. (2014)]. These events are referred to
as Harmful Algal Blooms (HABs) and they can be caused either by
an excessive proliferation of a specific phytoplankton species, or by
those species that produce toxins. Thus, the need for an effective
and global monitoring of phytoplankton algal blooms becomes
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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evident for ocean management.
The classical studies and monitoring of phytoplankton blooms

are based on discrete sampling schemes in limited areas, followed
by intensive and laborious laboratory analysis such as identification
and counts of phytoplankton by inverted microscopy. More
recently, instrumental techniques such as High-Performance Liquid
Chromatography (HPLC) and flow cytometry provide useful data to
characterise the phytoplankton community in a more rapid and
automated way, especially when combined with computational
approaches [e.g. CHEMTAX, Mackey et al. (1996)]. The results of
these techniques also allow the assessment of the functional di-
versity of small cell phytoplankton communities (nano- and pico-
plankton), that are normally classified as unidentified flagellates
by the conventional light microscopy technique. This knowledge
becomes more relevant since several climate change scenarios
forecast a shift in domination from diatoms to smaller flagellates
[e.g. Bopp et al. (2005), Leterme et al. (2008)], thereby modifying
ecosystem function [Beaugrand (2005), David et al. (2012)]. This
theme is relevant in the context of the implementation of the Eu-
ropean Union's Water Framework Directive (WFD, [EC (2000)]),
Marine Strategy Framework Directive (MSFD, [EC (2008)]), and the
Marine Spatial Planning Directive (MSPD, [EU (2014)]), particularly,
with regard to the choice of appropriate plankton indicators and
metrics used to define the environmental status of the water
masses. For example, Garmendia et al. (2013) recognize that the
assessment of eutrophication for theWFD is based on only a limited
number of indicators, particularly total chlorophyll a (TChla) con-
centration, for which the data is readily available. However,
Domingues et al. (2008) warn about using only TChla for the
implementation of WFD, especially in areas where nano and
picoplankton are important components of the community. Even
when composition-based indicators are used to evaluate the
ecosystem function [Devlin et al. (2007, 2009)], these only include
diatoms, dinoflagellates, andmicroflagellates (e.g Phaeocystis sp.). It
is notable that the idea of a shift between diatom to flagellate
dominated communities is explicitly considered by the MSFD, i.e.
the relative proportions of diatoms and flagellates should be eval-
uated for Indicator 5.2.4 in Descriptor 5 for Eutrophication [EC
(2008)]. In this context, the use of chemotaxonomic methods in
combinationwith the classical methodswould be useful to evaluate
and characterise Descriptor 5.

Remote sensing of ocean colour is also a powerful tool for
monitoring phytoplankton communities, because of its extensive
spatial and temporal coverage, and is considered as the best option
for observing extensive coastal and oceanic blooms, especially,
when the observations are supplemented by direct sampling
[Johnsen et al. (1997), Tangen (1997), Cullen (2008)]. Remote sen-
sors estimate chlorophyll biomass by using reflectance ratio algo-
rithms, which strongly indicate that chlorophyll biomass is related
to oceanic absorption bio-optical properties [Gordon et al. (1983),
O'Reilly et al. (1998), Lyon et al. (2004)]. These algorithms are
based on the radiative transfer model [Preisendorfer (1971)], which
relates the sea surface reflectance with the absorption and scat-
tering processes in the water column. In addition to the absorption
properties of pure water, the total amount of light absorbed in the
seawater column is affected by the combined contribution of par-
ticulate matter, both from phytoplankton and non-algal suspended
particles, and of coloured dissolved organic matter (CDOM) present
in this medium [Bricaud et al. (1998)]. In order to improve the ac-
curacy of existing algorithms for ocean colour remote sensing, and
for the development of new ones, it is essential to understand the
individual contribution of each of these components in different
productivity scenarios [Ferreira et al. (2009)].

Remote sensing of ocean colour has been a particularly useful
tool to monitor climate change impacts at a global scale [Brewin
et al. (2015)]. Climate change scenarios for the western Iberian
Peninsula coast present contradictory forecasts for climate alter-
ation: some predict an enhancement of upwelling events [Bakun
(1990), Lorenzo et al. (2005), Ramos et al. (2013), Casabella et al.
(2014)], and others predict a decrease in the intensity and the
number of upwelling events [Lemos and Pires (2004), Lemos and
Sans�o (2006), Alvarez et al. (2008), �Alvarez-Salgado et al. (2008),
Alves and Miranda (2012)]. In an area where fisheries, offshore
aquaculture, and marine related tourism are the main economic
activities, it is important to develop the most appropriate tools to
monitor how climatic change could impact the area. In this context,
this study has been conducted to test the overall hypothesis that
the determination of the absorption properties of thewater column
could be used to identify upwelling induced changes in the
phytoplankton community. In order to test this hypothesis, this
article is structured according to the following research questions:

1) Can bio-optical absorption properties be used to monitor
phytoplankton blooms?

2) Are the changes in phytoplankton community and bio-optical
parameters of the water column related to the upwelling re-
gimes in the area?
2. Methods

2.1. Study area

The Sagres area is located at the southwest of the Iberian
Peninsula (Fig. 1). Seasonal upwelling is induced by northerly
winds, mainly occurring from late spring to early autumn [Fiúza
et al. (1982), Sousa and Bricaud (1992), Cravo et al. (2010)]. Small
upwelling events can also be stimulated by local westerly winds
[Relvas and Barton (2002), Loureiro et al. (2008)]. Phytoplankton
blooms, especially diatoms, have been reported as a consequence of
upwelling events in the area [e.g. Goela et al. (2013)], and dino-
flagellate presence has been associated with the relaxation of up-
welling conditions [Loureiro et al. (2008)]. The anthropogenic
pressures in this coastal area are considered to be low, due to
limited agriculture, industry, and population, and no major fresh-
water inputs [Peliz and Fiúza (1999), Edwards et al. (2005)]. Thus,
the contrasting primary productivity scenarios shown in Fig. 1,
where TChla concentration attains 5 mg l�1 for bloom conditions
(Fig. 1a) and lower than 0.5 mg l�1 for no-bloom conditions (Fig. 1b),
can be attributed to differences in upwelling conditions rather than
to anthropogenic pressure [Loureiro et al. (2005), Goela et al.
(2014)]. The main economic activities in the area are related to
the utilisation of coastal resources, dominated by the fisheries in-
dustry, although in recent years offshore bivalve aquaculture has
assumed an increasingly important role [Edwards et al. (2005)].

2.2. Sampling

Three sampling stations were selected at 2, 10 and 18 Km off the
coast of Sagres as validation sites for the MEdium-Resolution Im-
aging Spectrometer (MERIS), the ocean colour sensor onboard of
the ENVISAT European Space Agency (ESA) satellite. A total of 31
sampling campaigns were conducted from autumn 2008 until the
spring of 2012 when ENVISAT terminated its mission. They were
designed tomeet the conditions for MERIS data validation [Doerffer
(2002), Barker (2011)], by selecting sampling dates with relatively
calm sea and clear sky conditions that matched the ENVISAT
overpass (Table 1, Fig. 2).

This paper focuses mainly on the data from the coastal Station A
(at approximately 37º000390 0N and 8º5305800W, see A in Fig.1) as this



Fig. 1. Ocean colour satellite images (from MERIS) of the study area showing the sampling stations, under (a) bloom (b) and no-bloom conditions. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Examples of sampling dates for bloom and no-bloom conditions, with respective TChla concentrations and total cell abundances in Station A (average and standard deviation
from the 3 sampling depths).

Bloom conditions No-bloom conditions

Sampling campaign date [Tchla] (mg l-1) Total abundances (cell ml�1) Sampling campaign date [Tchla] (mg l-1) Total abundances (cell ml�1)

08-11-2008 1.75 ± 0.24 3691 ± 608 17-11-2008 0.67 ± 0.18 970 ± 202
22-04-2009 1.96 ± 0.79 1606 ± 407 14-02-2009 0.45 ± 0.17 529 ± 344
11-07-2009 2.98 ± 0.26 1560 ± 408 21-06-2009 0.54 ± 0.29 1007 ± 345
16-06-2010 2.22 ± 0.40 1630 ± 140 28-05-2010 0.42 ± 0.27 250 ± 105
19-06-2011 2.29 ± 0.32 2254 ± 640 08-07-2010 0.17 ± 0.11 163 ± 124
12-03-2012 6.02 ± 0.30 1960 ± 167 20-05-2011 0.33 ± 0.29 594 ± 53

14-10-2011 0.48 ± 0.04 291 ± 50
11-02-2012 0.59 ± 0.02 276 ± 25

Fig. 2. TChla concentration (mg l�1) and phytoplankton abundances (cell ml�1) represented by dark grey and light grey curves, respectively, for all sampling campaigns at the study
site. The dark and light grey horizontal broken lines represent the third quartile for the respective variables (3QT). Selected samples are represented by green asterisks (*) for
bloom and blue asterisks (*) for no-bloom conditions.
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is the most dynamic site in terms of phytoplankton biomass,
probably due to its proximity to the coastline, where blooms are
more evident and frequent and, thereby, producing a much more
robust dataset for bloom events compared to normal conditions.
The more offshore Stations were also taken into account (see blue
points in Fig. 1) to evaluate the influence of coastal inputs to the
TChla concentration. Sampling at the Stations is Langrangian,
which means that the specific location in terms of latitude and
longitude will vary for each sampling campaign, depending on the
weather and sea conditions (note the slight differences in the Sta-
tion locations between Fig. 1a and b).

Temperature profiles were acquired from a CTD (SBE® 19 plus
SeaCAT). A Niskin bottle was used to collect water samples, which
were then kept protected from light, in 10 l Nalgene® (for phyto-
plankton pigment determination) and 0.5 l glass containers (for
CDOM determination).The sampling period for all three Stations
was within 2e3 h, and all samples were processed within a period
of 3 h after arrival onshore. Although water was collected at 3
different depths (surface, mid-Secchi and Secchi depths), data on
the phytoplankton pigments as well as bio-optical parameters were
averaged for the three depths of the water column, as generally the
water column within the Secchi depth is well mixed [Goela et al.
(2013)].

At the field laboratory, 2e3 l of water were filtered through
Whatman® 47 mm GF/F filters, and preserved in liquid nitrogen for
pigment analysis. For particulate absorption measurements, du-
plicates of 0.5 l were filtered through Whatman® 25 mm GF/F fil-
ters, stored in tissue capsules and also kept in liquid nitrogen.
Regarding the CDOM absorption, 0.2 l of the samples from each
glass bottle was filtered through Whatman® 47 mm polycarbonate
membrane filters; the filtrate was then kept in glass dark bottles
at �4 �C, until further analysis (within 24 h). For phytoplankton
analysis, samples were preserved in Lugol iodine, after being
passed through a 200 mm mesh, to remove the larger organisms.

2.3. Phytoplankton community

The phytoplankton pigments were quantified by HPLC,
following Wright and Jeffrey (1997) methodology. The samples
from 2008 until July 2009 were determined in a Waters® 600E
HPLC system, equipped with Diode Array Detection (DAD), and
using a C18 Thermo® Hypersil-Keystone (ODS-2) column (25 cm of
length, 4 mm of diameter and 5 mm of particle size). All the other
samples were determined with an Agilent® 1200 with DAD
equipment, using a C18 Alltech® Altima column (15 cm of length,
4.6 nm of diameter and 3 mm of particle size). The extraction pro-
cedures included the soaking of the sample filters in acetone during
4 h, followed by sonication (20 s) to improve extraction efficiency.
Each extract was centrifuged and the clear supernatant was injec-
ted into the HPLC-DAD system. The chosen wavelengths of detec-
tion for chlorophylls and carotenoids were 436 nm and 450 nm,
respectively. The phytoplankton community was also observed by
inverted microscopy technique, following the Uterm€ohl (1931)
method modified by Evans (1972) and using a Zeiss Axiovert 15
inverted microscope. For further details on these methodologies
please see Goela et al. (2013).

With the results from the HPLC technique, it was possible to run
the CHEMTAX v. 1.95 software [Mackey et al. (1996)], to obtain the
contributions of each individual phytoplankton class to TChla. The
classes uploaded to the configuration of CHEMTAX were chryso-
phytes, cryptophytes, cyanobacteria, diatoms, dinoflagellates, pra-
sinophytes, and prymnesiophytes. The classes were chosen based
on the pigment markers e peridinin, 19'hexanoyloxifucoxanthin,
fucoxanthin, 19'butanoyloxifucoxanthin, violaxanthin, alloxanthin,
lutein, zeaxanthin, Chlorophyll b and Chlorophyll c3 e found in the
samples, and from the previous literature on the local phyto-
plankton community [Loureiro et al. (2005), Loureiro et al. (2008),
Goela et al. (2013)]. Chlorophytes were excluded from these anal-
ysis as the pigment markers shared with prasinophytes (Chloro-
phyll b, neoxanthin, violaxanthin and b-caroten) are highly
correlated with prasinoxanthin, which is an exclusive pigment
from prasinophytes, as detailed by Mendes et al. (2011) and Goela
et al. (2014) (please see Goela et al. (2014), sections 2.4 and 3.2,
for data on correlations and a more detailed explanation). Initial
pigment to TChla ratios were obtained from the literature [Schlüter
et al. (2000), Gibb et al. (2001)], and are presented in Table 2,
together with the final ratios obtained with CHEMTAX software.

The long-term variability of the TChla concentration was
assessed with the analysis of a time series for MERIS Algal Pigment
Index 1 (API 1, i.e. MERIS ocean colour product, equivalent to TChla
concentration) obtained during the coverage of ENVISAT, between
2002 and 2012. API 1 data was extracted from MERIS Level 2
Reduced Resolution satellite images, with a spatial resolution of
1.2 km � 1.04 km, using Basic ERS & ENVISAT (A) ATSR and MERIS
toolbox (BEAM version 4.9) software. More detailed explanations of
the data extraction procedures are in Cristina et al. (2014, 2015).
2.4. Bio-optical parameters

The coefficients of absorbance for total particulate matter (ap)
were determined with the “Transmittance-Reflectance” technique
[Tassan and Ferrari (1995), (2002)], using a dual-beam spectro-
photometer (GBC CINTRA 40), equippedwith an integrating sphere,
which has the advantage of eliminating errors from backscattering
of light by the particles, which is not possible with the conventional
light-transmission technique [Yentsch (1968)]. With the
Transmittance-Reflectance procedure, the absorption by the par-
ticles due to a normally incident unitary parallel light beam on a
single through-way (as) can be described by equation (1):

as ¼
1� pT þ Rf ðpT � pR

�
1þ Rf pTt

(1)

In this equation, pT and pR are the ratios resultant from the
measurements in the transmission and reflectance modes,
respectively; the filter reflectance, Rf, is obtained from a measure-
ment in the reflection mode; the factor t is determined from
equation (7) in Tassan and Ferrari (1995, 2002) and it accounts for
the diffuse nature of the backscattered radiation. More detailed
information on these ratios and variables may be obtained from the
original papers [Tassan and Ferrari (1995, 2002)]. The optical den-
sity can be determined by equation (2):

As ¼ log
�

1
1� as

�
(2)

and converted into the equivalent optical density of the particle
suspension (correction for path length amplification factor), by the
means of the empirical correlation Asus(l) ¼ 0.423
As(l)þ 0.479 A2(l). Given the ratio between the filter clearance area
and the volume of filtered sample (X), the coefficient of particulate
absorption (ap) can be determined by equation (3):

apðlÞ ¼ 2:3Asus=X (3)

The fraction of light absorbed by the phytoplankton, expressed
through its coefficient, aph, was discriminated from the light
absorbed by non-algal particles, anap, through the bleaching of the
filters with 10% active sodium hypochlorite [Ferrari and Tassan
(1999)]; aph was then determined by subtracting the non-algal



Table 2
Initial and output pigment: Chla matrices applied in CHEMTAX analysis of pigment data.

Class/pigment Per 19'But-fuco Fuco 19'Hex-fuco Viola Allo Lut Zea Chl b Chl c3

Initial
Prasinophytes 0 0 0 0 0.14 0 0.018 0.079 0.68 0
Dinoflagellates 1.06 0 0 0 0 0 0 0 0 0
Cryptophytes 0 0 0 0 0 0.23 0 0 0 0
Cyanobacteria 0 0 0 0 0 0 0 0.59 0 0
Diatoms 0 0 0.76 0 0 0 0 0 0 0
Crysophytes 0 1.56 0.97 0 0 0 0 0 0 0.25
Prymnesiophytes 0 0.020 1.21 1.36 0 0 0 0 0 0.17
Output
Prasinophytes 0 0 0 0 0.14 0 0.019 0.084 0.85 0
Dinoflagellates 1.17 0 0 0 0 0 0 0 0 0
Cryptophytes 0 0 0 0 0 0.11 0 0 0 0
Cyanobacteria 0 0 0 0 0 0 0 0.62 0 0
Diatoms 0 0 2.03 0 0 0 0 0 0 0
Crysophytes 0 1.46 1.07 0 0 0 0 0 0 0.27
Prymnesiophytes 0 0.016 1.02 1.41 0 0 0 0 0 0.20
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absorption spectra (bleached filter) from the total particulate
spectra (before bleaching), ap. To derive the phytoplankton specific
coefficient of absorption (a*ph), each spectrum of aph was normal-
ised by the respective TChla concentration. For further details on
the determination of coefficients of particulate matter please see
Goela et al. (2013), Tassan and Ferrari (1995, 2002).

The standard method for the determination of the coefficient of
absorbance of CDOM, aCDOM, developed for the validation of MERIS
Chlorophyll products in North Sea coastal waters [Tilstone et al.
(2002)], was used in this study. This protocol is based on the ap-
proaches of Mitchell et al. (2000), Mueller and Austin (1995) and
Pegau and Zaneveld (1993). A GBC CINTRA 40 spectrophotometer
was used, with a 10 cm path length glass cylindrical cell. Reference
spectra were obtained with filtered (polycarbonate membrane,
0.2 mm porosity filters) Lichrosolv® water, and recorded immedi-
ately prior to the sample readings.

2.5. Upwelling indices and sea surface temperature data

To study the influence of upwelling on the phytoplankton
community and changes in bio-optical properties, upwelling con-
ditions were quantitatively described based on upwelling indices
derived fromwind stress and sea surface temperature (SST). Ekman
transport was calculated from the wind stress following Bakun
(1973) and Cropper et al. (2014). The latitudinal (Qx) and longitu-
dinal (Qy) components were considered to be the upwelling indices
for the Western (Qx) and Southern (Qy) coasts, given that coastline
directions in the study area can be described as roughly parallel to
the meridian (West coast) and the equator (South coast). Therefore,
negative values of Qx and Qy indicated upwelling conditions along
the Western and Southern coasts in the study area, respectively.
Wind speed and direction data were obtained from the Blended
Daily Averaged 0.25-degree Sea Surface Winds (at 10 m level)
product, provided by the National Oceanic and Atmospheric
Administration (NOAA) and National Climatic Data Center [Zhang
et al. (2006)].

SST data used were extracted from the NOAA Optimum Inter-
polation (OI) daily SST at 0.25-degree resolution model [Reynolds
et al. (2007)] (SSTOI). The SST based upwelling index, UISST, was
calculated as the difference in SST values between sampling Station
A (N 37.0� W8.9�), representing coastal conditions and a location at
1� to the West at the same latitude (N 37.0� W 9.9�), representing
oceanic conditions. Positive values indicated lower SST at the
coastal Station and therefore increase in upwelling intensity. The
daily SST anomaly was calculated as a difference between SST on
each day of the year and the average SST for that day over the
period from 10th July 1987 to 31st December 2013.
All wind and SST data were accessed via the NOAA Environ-

mental Research Division Data Access Program (ERDDAP) at http://
upwell.pfeg.noaa.gov/erddap/index.html (last accessed on 04/09/
2014).

2.6. Bloom versus no-bloom conditions: criteria

The definition of phytoplankton or algal bloom is known to be
relative, often relying on subjective criteria such as growth rate,
biomass, or both [Kutser (2009), Blondeau-Patissier et al. (2014)].
Thus, it is important to define this terminology in the frame of this
study before going any further. The quantitative criteria to select
bloom events are based on discrete samples with both a high TChla
concentration and a high abundance of cells. To define “high”
concentration of these two metrics, the main statistical descriptors
such as the average and third quartile were determined for the two
variables. The bloom condition criteria were defined as follows:
TChla concentration and total abundances exceeding the third
quartile, or where one of these metrics was 25% above the third
quartile, and the other was above the average.

This concept can be better understood by looking at the con-
centrations of TChla and total cell abundances graphs shown in
Fig. 2. Examples of sampling dates considered for both bloom and
no-bloom conditions are shown in Table 1. In order to ensure a
balanced comparison between bloom and no-bloom conditions, a
total of 12 sampling campaigns were chosen from those for each
condition: 6 in bloom and 6 in no-bloom. Whenever possible, each
no-bloom sampling campaign was selected closest to a date for a
bloom sampling campaign, to serve as a reference value before or
after the bloom event. Although some other dates could also be
considered as bloom events during the sampling period, on the
basis of the criteria presented above (e.g. 27th May 2009), these
were not considered due to the lack of a complete bio-optical
dataset.

2.7. Data treatment and statistical analysis

The statistical analysis was performed with the Statistica® 10
(Stat. Soft Inc.) package. Whenever needed, the non-parametric
Spearman correlation analysis was used to evaluate the degree of
correlation between the study variables. Analysis of Variance
(ANOVA), followed by Fisher's Least Significant Difference (LSD)
tests were carried out using “bloom” and “no-bloom” conditions as
the categorical predictors. The level of significance for the statistical
analysis was a ¼ 5%; thus, the result was considered significant

http://upwell.pfeg.noaa.gov/erddap/index.html
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whenever the p-value (p) was <a. The API 1 time series of monthly
mean data was decomposed into seasonal, trend and residuals
components by the classical decomposition method, using R soft-
ware [R Core Team (2015)]. Both additive andmultiplicativemodels
were fitted to the data, and the multiplicative model was chosen on
the basis of a lower root mean square error (RMSE).

3. Results

3.1. Phytoplankton community

During the period of study, significant changes were observed in
the group dominance of phytoplankton community during bloom
events, compared to no-bloom events (Fig. 3). On the basis of the
CHEMTAX results, the diatom contribution to TChla during bloom
conditions is significantly higher (average of 63%) than the joint
contribution of the other classes. From the six sampling campaigns
coinciding with bloom periods, the microscopic identification of
diatoms revealed the presence of Chaetoceros spp. in significant
numbers in all of the samples, but also the presence of Lep-
tocylindrus (22nd April 2009 and 19th June 2011), Pseudo-nitzschia
spp. (11th July 2009) and Guinardia delicatula and G. striata (12th
March 2012) in significant abundance. Potentially harmful species
detected during this study include the toxic dinoflagellates
Dinophysis acuminata, D. ovum, D. caudata, Lingulodinium polye-
drum, Prorocentrum micans, Gymnodinium catenatum and Scrip-
psiella trochoidea. Diatoms of the genus Pseudo-nitzschia were not
identified to species level, but nonetheless belong to a genus that
includes toxic species.

Considering the periods with low phytoplankton abundance
Fig. 3. Phytoplankton community as represented by CHEMTAX (upper panel) and inverted
conditions. Please note that only the relative abundance of coccolitophorids are represente
associatedwith low concentrations of TChla, the joint contributions
of prasinophytes, chryptophytes and prymnesiophytes and some-
times cyanobacteria to TChla made up more than 50% of the TChla
concentration, with an average of 71% (Fig. 3b). The microscope
counts also reflected these results, with an average of 63% of the
phytoplankton cells counted falling into the unidentified small
flagellate group, which is clearly dominant in the majority of the
sampling dates considered to be no-bloom (Fig. 3b, d). In these
periods, the diatoms contribution to TChla was on average 24%.
Dinoflagellates were not a dominant group during either bloom or
in no-bloom conditions and, on the basis of microscope counts,
represented only 3% and 8% of the total community, respectively.

The long-termvariability of the TChla concentration of the study
is shown in Fig. 4a. The API 1 binned per month (Fig. 4b) showed
that the TChla means (10 years of data) were higher in spring and
summer months. In agreement with the study of Cloern and Jassby
(2010), the standard deviation of the standardised components
(Fig. 4 c, d, and e) showed that the residual and seasonal compo-
nents are contributing most to the variability of TChla at Sagres.

The in situ parameters water temperature, together with up-
welling indices, were chosen in this study to evaluate upwelling
events in the area and its relation with the observed bloom con-
ditions. Considering the whole period of study, there were signifi-
cant negative correlations between the main proxy for
phytoplankton biomass, TChla, and the variables temperature (in
situ) and distance from coast (rs ¼ �0.44, p < 0.05, between tem-
perature and TChla and rs ¼ �0.29, p < 0.05 between TChla and
distance from coast). Also, to illustrate oceanographic forcing of the
bloom events, the upwelling indices Qx, Qy, SST0I, SST anomaly, and
UISST were plotted and analysed together (Fig. 5). The annual-scale
microscopy (lower panel) techniques, in bloom (a and c) and in no-bloom (b and d)
d by “prymnesiophytes” (c and d).



Fig. 4. TChla obtained from the MERIS sensor over the operational life of ENVISAT (2002e2012): (a) on a normal time scale; (b) binned per month; (c) standardised decomposed
residual; (d) standardised decomposed trend; and (e) standardised decomposed season. Components for the time series are based on the approach of Cloern and Jassby (2010).
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variation of wind based upwelling index (Fig. 5a) showed that
upwelling in the study area was more active during summer
(MayeSeptember) and connected with Northerly and N-Westerly
winds with shorter upwelling events during the winter season.
From the examination of plots in Fig. 5(beg), it was evident that
sampling dates with bloom conditions were characterised by:

1) Negative SST difference (anomaly) typically in the range of
0.25e1.5� lower than the 26-year average for the corresponding
day of the year;

2) Upwelling favourable values of Ekman transport at Western
and/or Southern coast;

3) Lower SST near the coast compared to oceanic conditions 1� to
the West offshore.

The conditions described in some cases persisted for longer than
3e4weeks (22nd April 2009,16th June 2010 and 19th June 2011), or
occurred 7e10 days before the sample dates. In other cases, the
maximum values had already decreased at the time of sampling
(12th March 2012). Nonetheless, their effects on the phytoplankton
community, productivity and optical properties were still
observable.
3.2. Bio-optical parameters

The particulate absorption coefficients, ap and aph, were
analyzed at 443 and 678 nm, wavelengths that represent the
maxima of absorbance of chlorophyll a. In the blue region of the
spectrum, themean values of ap and aph were significantly higher in
bloom conditions (0.10 ± 0.03 m�1 and 0.09 ± 0.03 m�1, respec-
tively) than in no-bloom conditions (0.045 ± 0.015 m�1 and
0.037 ± 0.012 m�1, respectively) (Wilk's test, F ¼ 6.7, p < 0.05).
Regarding the red part of the spectrum, the same pattern was
observed with mean values of ap and aph being elevated by a factor
between of 2 and 3 between bloom to no-bloom conditions
(ap¼ 0.053 ± 0.017 m�1 and aph ¼ 0.053 ± 0.016 m�1, during bloom
conditions and ap¼ 0.019 ± 0.009m�1 and aph¼ 0.016 ± 0.007m�1,
in no-bloom conditions). Fig. 6 shows the marked difference in the
phytoplankton absorption between the two contrasting produc-
tivity conditions in the study area. Besides the magnitude of the aph
spectra in both maximums of absorbance, the ratio between the
twomaxima of absorbance (blue:red) was also analyzed to evaluate
possible changes in the shape of the spectrum between the two
contrasting conditions. The results showed that during bloom
conditions the blue:red ratio was significantly lower than during
no-bloom conditions (blue:red ¼ 1.83 ± 0.12 for bloom and
blue:red¼ 2.37 ± 0.27 for no-bloom) (Wilk's test, F¼ 19.6, p < 0.05)



Fig. 5. (a) Temporal variability of weekly averaged Ekman transport components along the Western (Qx) and Southern (Qy) coast together with weekly averaged sea surface
temperature (SSTOI) over the duration of the study (Oct 2008eMarch 2012); (beg) wind stress based upwelling indices (Qx and Qy) and SST based upwelling indices (UISST) from a
daily perspective, with time windows over 1e2 months in the vicinity of each bloom event (marked as green lines in each of the figures), together with daily SST temperature
anomalies (SST anomaly). Negative values of Qx and Qy and positive values of UISST indicate conditions favourable for upwelling. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Spectra of phytoplankton coefficient of absorption under a) bloom and b) no-bloom.
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(Fig. 7).
Similarly to what happens with TChla, both aph(443) and

aph(678) presented significant negative correlations with water
temperature (rs ¼ �0.27 and rs ¼ �0.36, p < 0.05 respectively).
Regarding the blue:red ratio, there was a positive correlation with
the same parameter (rs ¼ 0.66, p < 0.05).
Fig. 7. Blue:red ratios of aph in bloom (black crosses with dates on lower xx axis) and
no-bloom (grey diamonds with dates on upper xx axis) conditions.
The specific phytoplankton absorption coefficient (a*ph) pre-
sented statistically lower values during bloom conditions at 443 nm
(0.040 ± 0.018 m2 mg�1) when compared to no-bloom conditions
(0.075 ± 0.018 m2 mg�1) (Wilk's test, F ¼ 11,99, p < 0.05). At
678 nm, a*ph presented a marginally significant difference (p < 0.1)
between bloom and no-bloom conditions: a*ph during bloom state
(mean of 0.022 ± 0.009m2mg�1) had lower values compared to the
no-bloom conditions (mean of 0.032 ± 0.009 m2 mg�1).

The coefficient of absorption by non-algal particles, anap, at
443 nm presented no significant differences between bloom and
no-bloom conditions.

In the dissolved fraction of the absorption spectra, the mean of
aCDOM(443) in bloom conditions was lower (0.050 ± 0.009 m�1)
than in no-bloom conditions (0.068 ± 0.015 m�1) (Fig. 8 a,b),
although the difference is not statistically different. Similarly, no
significant differences were observed in the slopes of the aCDOM
between bloom (�0.010 ± 0.003 m�1) and no-bloom conditions
(�0.011 ± 0.006 m�1).
4. Discussion

The usefulness of the bio-optical data from the water column as
a tool to detect phytoplankton blooms can only be demonstrated if
the inherent optical properties show significant differences be-
tween conditions of high and low phytoplankton biomass. By
grouping the bio-optical data into “bloom” and “no-bloom” con-
ditions, it has been possible to observe differences between these
two conditions.

In the study area, aph changed markedly between the two sit-
uations, increasing by a factor of 2e3 in bloom conditions at both
wavelengths maximums of 443 and 678 nm. Taking into account
that themean concentration in the bloom period is 2.8 mg l�1 and in
the no-bloom is 0.50 mg l�1, these in situ results are in agreement
with the models presented in Goela et al. (2013) for comparing
TChla concentration with aph(443) and aph(678) (see Fig. 6 in Goela
et al., 2013). These models predicted values of 0.089 m�1 and
0.041 m�1 for aph(443) and aph(678), respectively, at a concentra-
tion of 2.8 mg l�1 for TChla, and values of 0.034 m�1 and 0.013 m�1

for the same coefficients, at a concentration of 0.5 mg l�1 for TChla.
These values from the models are similar to the in situ values from



Fig. 8. Spectra for the coefficient of absorbance of CDOM under (a) bloom and (b) no-bloom conditions. (c) Relationship between aCDOM(443) and salinity at Station A.
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this study, with averages of 0.096 m�1 and 0.037 m�1 for aph(443)
and aph(678), respectively, at a concentration of 2.8 mg l�1 con-
centration for TChla, and values of 0.037 m�1 and 0.016 m�1 for the
same coefficients, at a concentration of 0.5 mg l�1 for TChla. Besides
these differences in the values for aph, there are changes in the
shapes of the coefficient spectra, with increasing blue:red ratios in
no-bloom conditions. Higher blue:red ratios have been attributed
to the dominance of a system by phytoplankton populations with
small cell sizes [Mill�an-Nu~nez et al. (2004)].

As might be expected [Bricaud and Stramski (1990)], the mean
values of a*ph(443) decreased markedly between bloom and no-
bloom conditions at Sagres. According to Babin et al. (1993), this
bio-optical parameter could vary up to 4 times in value at this
wavelength as a result of changes in the intracellular pigment
concentration and cell diameter of the phytoplankton community.
Babin et al. (1993) also comment on the influence of cell size on the
“package effect” (decreased efficiency of light absorption due to the
fact that the pigments are packaged within the cell and not in so-
lution). According to these authors, the decrease in the a*ph(443)
values observed in this study (0.075 m2 mg�1 to 0.040 m2 mg�1) is
consistent with a change in the cell size of the phytoplankton
community; this change could comprise an increase from cells of
1 mm (mean cell diameter) and 1e2 kg m�3 of intracellular pigment
concentration to cells of 3e5 mm (mean cell diameter) and
4e8 kg m�3 of intracellular pigment concentration (see Fig. 6 in
Babin et al. (1993)). Other studies have also reported that changes
in phytoplankton size distribution and pigment composition are
the main factors influencing a*ph(443) [Yentsch and Phinney
(1989), Ciotti et al. (1999), Bricaud et al. (1995, 2004)]. At Sagres,
the flattening of a*ph spectrum is considered to be caused primarily
by changes in the size structure of the phytoplankton community,
with a small, but relevant contribution from pigment composition
[Goela et al. (2013)]. Indeed, the major contributors to TChla con-
centrations under bloom conditions are diatoms, whilst under no-
bloom conditions they are small-sized phytoplankton classes
(Fig. 3).

Regarding a*ph(678), there are no major differences between
bloom and no-bloom conditions; this is would be expected because
of the lower impact of the “packaging effect” and the contribution
of accessory pigments in this area of the spectrum [Babin et al.
(1993)]. However, this parameter could decrease slightly in bloom
conditions, taking into account the statistically significant differ-
ences found for a lower level of confidence (10%). This is an
important parameter in radiative transfer models; therefore this
change may be important when considering the development and
adjustments to regional algorithms for remote sensing ocean
colour.
The absorption of light by non algal particles (anap) at the Sagres
site shows no significant differences between bloom and no-bloom
conditions. Indeed, Cristina et al. (2014) also found that this
parameter was constant both over the temporal period of study,
and along the spatial gradient from inshore to offshore. Given that
sediment dynamics near to the coast are generally under human
influence (e.g. presence of dams, irrigation works or dredging), it is
evident that the anthropogenic pressure at Sagres is minimal.

The dissolved fraction of absorbance has also been determined
in this study. Remote sensing of ocean colour relies mostly onwater
leaving reflectance, which is strongly related to the sum of the
phytoplankton absorption (aph) and the CDOM absorption (aCDOM)
[Lyon et al. (2004)]. The aCDOM(443) parameter does not present
significant differences between bloom and no-bloom condition,
and no relationship has been observed between aCDOM(443) and
TChla, which suggests that the origin of the CDOM is not probably
from the phytoplankton-derived components, as is typical for
oceanic environments [Bricaud et al. (2010)]. To evaluate the in-
fluence of the terrestrial inputs on the aCDOM, the aCDOM(443) has
been plotted against salinity (Fig. 8c) in the study area. A significant
inverse relationship is found (rs ¼ �0.58, p < 0.05), meaning that
the CDOM origin is more likely to be from the freshwater inputs
from the coast in Sagres; similar results have been observed in
other coastal areas (e.g. [Vantrepotte et al. (2007)]). Finally, the
absorption of aCDOM relative to the total absorption of aCDOM þ ap,
constitutes 33e60% (bloom and no-bloom, respectively), at
443 nm. Given that no co-variation has been observed with TChla,
this suggest a possible classification for Case 2 type water, as
aCDOM(443) could interfere with the retrieval of TChla by remote
sensing and, for this reason, should not be neglected
[Sathyendranath (2000), Smith et al. (2013)], especially, under
conditions of low productivity. Cristina et al. (2009, 2014, 2015)
demonstrated that, despite the good agreement between MERIS
API 1 and in situ data, this agreement decreases with the proximity
to the coast. Although much of this discrepancy could be attributed
to adjacency effects, the influence of dissolved components of
absorbance could also be causing some degree of bias. The neural
net MERIS API 2 product (equivalent to TChla concentration in Case
2 type waters) has been developed to deal with these interferences
[Doerffer and Schiller (2007)]. However, some studies suggest that
neural network processors perform worse in waters dominated by
CDOM absorption and with low concentrations of pigments
[Doerffer and Schiller (2007), Beltr�an-Abaunza et al. (2014)]; this
can cause an overestimation of pigment concentration at low
values, even when API 2 is used [Beltr�an-Abaunza et al. (2014)].

These differences in absorption between bloom conditions and
no-bloom conditions strongly suggest that bio-optical parameters
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can be used to assess shifts in the phytoplankton community.
Furthermore, it makes sense to explore if this outcome could be
somehow related with upwelling regimes in the area.

As this is a coastal region, it would be expected that anthropo-
genic inputs on the primary productivity would be significant.
However, the results show that the phytoplankton biomass is more
strongly (negatively) correlated with temperature than with the
proximity to the coast. Furthermore, the phytoplankton absorption
properties also present significant relationships with temperature,
both in magnitude of the phytoplankton absorption coefficients at
the blue and red maxima, and with the shape of the phytoplankton
spectra (blue:red ratio). Although in some regions of the globe,
diatoms blooms are stimulated by windier conditions and elevated
concentrations of nutrients occurring during winter runoff
[Margalef (1978)], at Sagres, diatom blooms are mostly associated
with spring and summer [Goela et al., 2014] (Fig. 4a), when up-
welling events are more frequent. Indeed, after the residual
component (Fig. 4c), the seasonal component (Fig. 4e) of the long
API 1 time series explains a significant amount of the variability in
the TChla concentration in the region. According to Cloern and
Jassby (2010), this observation is typical for phytoplankton pat-
terns in coastal regions around the globe. The processes causing
high variability in the residuals component are, for example, the
presence of sampling irregularities (e.g. data gaps, random errors),
or the occurrence of singular events of exceptionally high biomass;
whilst the strong seasonal component is present where the gov-
erning processes are linked to an annual climate cycle, with a good
example provided by the seasonal upwelling regime in Sagres
(Fig. 5a).

In this study, negative temperature anomalies, associated with
favourable wind conditions (upwelling indices), are observed a few
days before the bloom sampling dates. However, these temperature
differences observed with the mean multiannual values (SST
anomaly) could not be attributed solely to seasonality. A compari-
son of SST with an oceanic site away from the coastal influence at
the same latitude identifies the existence of water masses with low
temperatures near coast, which strongly suggests that cold,
nutrient-rich, upwelled water in the area has a greater influence on
the phytoplankton dynamics than the influence from anthropo-
genic activities in the vicinity. These findings corroborate the
findings of Loureiro et al. (2005), who concluded that in the Sagres
area, the physical parameters were the primary factors influencing
the microplankton structure and distribution. Although a more
focused and objective study on the persistence of blooms after
favourable upwelling conditions, including collection of regular
samples for phytoplankton community analysis before and after
the bloom, would be necessary to fully understand the persistence
of blooms after favourable upwelling conditions diminish. Previous
studies in the area have demonstrated that the diatom bloom col-
lapses were not only due to relaxation of upwelling conditions
[Loureiro et al. (2005)], but were also closely connected with sili-
cate limitation [Goela et al. (2014)].

In this context, it might be logical to think that the increase in
the number of upwelling events in the area would also increase the
biomass production, which would benefit the fisheries and aqua-
culture industries. On the other hand, may be the increased
phytoplankton blooms will also potentially lead to the increase of
HAB toxins, which could impact negatively the same industries.
However, several other studies in the Iberian coast report that the
harmful species are most likely to bloom during periods of up-
welling relaxation [Palma et al. (1998), Reguera et al. (2003),
Loureiro et al. (2011)]. Few HABs occur during diatom blooms
linked to upwelling, whereas most harmful species found are di-
noflagellates that are not associated with upwelling but rather
events between upwelling episodes. The enhancement of
upwelling events in the area caused by climatic alterations would
indeed favour the main economic activities in the Sagres region.
But, a more detailed study focused on specific harmful algal species
and the relation with upwelling processes in the area should be
carried out to test this.

5. Conclusions

In response to the research questions in the Introduction, the
bio-optical properties of the water column are useful for moni-
toring phytoplankton blooms along the Southwest Coast of Iberian
Peninsula and, furthermore, changes in the phytoplankton com-
munity and the bio-optical parameters can be related to the up-
welling regime in the area.

Upwelling can be detected not only by lower in situ tempera-
tures collected on the day of sampling and favourable wind stress
and SST based on upwelling indices, but also by higher coefficients
of phytoplankton absorption. Variability in the coloured dissolved
fraction of absorption is mostly attributed to influence from the
coast, rather than with the phytoplankton dynamics. The findings
of this study contribute to a more complete and robust in situ
database to enable the development and improvement of remote
sensing algorithms for primary production.

The contrasting features observed in the Sagres region for
phytoplankton biomass and bio-optical properties, highlight the
exceptional value of this site for the validation of ocean colour
remote sensing data. The historical database and the approach to
data acquisition at Sagres could contribute to the future validation
of ocean colour sensors such as OLCI, that is part of the ESA
Sentinel-3 mission.

It is evident that the use bio-optical parameters for detecting
changes in phytoplankton communities in coastal and oceanic
waters could provide a cost effective contribution towards envi-
ronmental monitoring which, in the case of the EU, is centred on
the implementation of the WFD, MSFD and MSPD.
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