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Abstract Previous long-term observations have shown that nanoparticle formation events are common in
the summer-time high Arctic and linked to local photochemical activity. However, current knowledge is
limited with respect to the chemical precursors of resulting nanoparticles and the compounds involved in
their subsequent growth. Here we report case-study measurements during new particle formation (NPF)
events of the particle size distribution (diameter> 7 nm) and for the first time the volatility of monodisperse
particles having diameter ≤40 nm, providing indirect information about their composition. Volatility
measurements provide indirect evidence that a predominant fraction of the 12 nm particle population is
ammoniated sulfates in the summertime high Arctic. Our observations further suggest that the majority of
the sub-40 nm particle population during NPF events does not exist in the form of sulfuric acid but rather as
partly or fully neutralized ammoniated sulfates.

1. Introduction

Quantifying the effect of natural and anthropogenic particles on regional and global climate requires infor-
mation of their size and chemical composition. Although new particle formation (NPF) events have been
observed in many locations around the globe [Kulmala et al., 2004] and are common in the high Arctic during
summer [Leck and Bigg, 2010; Karl et al., 2012; Leaitch et al., 2013; Tunved et al., 2013], the mechanisms leading
to such events are only beginning to be fully understood [Kuang et al., 2010; Karl et al., 2013; Kulmala et al.,
2013]. Sulfuric acid, formed by the oxidation of sulfur dioxide (originating either from anthropogenic emis-
sions or from oxidation of marine dimethyl sulfide [Chang et al., 2011]) in the presence of water vapor, is sug-
gested to be involved in NPF and growth of atmospheric particles [Weber et al., 1996; Sipila et al., 2010].
However, other components such as ammonia [Korhonen et al., 1999], marine iodine compounds [O’Dowd
et al., 2002], amines [Smith et al., 2010; Paasonen et al., 2012], condensable organic constituents [Riipinen
et al., 2012; Ehn et al., 2014], and nanogel fragments (i.e., building blocks of airborne marine gels that form after
evaporation of fog and clouds) [Leck and Bigg, 1999, 2005, 2010; Karl et al., 2013] are also considered to partici-
pate to varying degrees in NPF events and growth.

Earlier studies, based on chemical composition [Heintzenberg and Leck, 1994] and particle size distribution
[Covert and Heintzenberg, 1993; Wiedensohler et al., 1996; Nyeki et al., 2005] measurements, have suggested
that NPF events in the high Arctic are mainly caused by photochemical activity involving the gas-phase for-
mation of sulfuric acid. All chemical composition measurements to date, however, have used filter and
impactor samples collected over hours to days. As a result, their association with nanoparticle formation
and growth events has not been possible. Several microscope studies have also been conducted on particles
in the Arctic. Bigg and Leck [2001] observed that particle growth up to Dp~ 50 nm did not appear to be con-
trolled by sulfuric acid or other DMS oxidation products in the high Arctic. On the other hand, larger particles
were associated with these compounds. Geng et al. [2010] conducted single-particle analysis on atmospheric
particles on Svalbard and observed that sulfates and nitrates were present in the particle phase. However,
these observations are not directly linked to NPF events.
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Measuring the chemical composition of nanoparticles at a high temporal resolution in background/remote
regions is a challenge even for state-of-the-art aerosol mass spectrometers due to their low mass concentra-
tions and small sizes. Alternatively, a way of indirectly probing nanoparticle chemical composition is by
measuring their integral properties such as volatility and/or hygroscopicity [Sakurai et al., 2005; Frey et al.,
2008], both of which offer relatively robust constraints on their composition. Previous volatility studies in
the high Arctic have either concerned the observation of large monodisperse (Dp~ 200 nm) [Covert and
Heintzenberg, 1993] or polydisperse [Eleftheriadis et al., 2004; Nyeki et al., 2005] particles. However, the latter
method cannot be used to indirectly determine their size-resolved composition.

In this study, we characterize atmospheric aerosols observed in the summertime high Arctic using high tem-
poral resolution (15–20min) measurements of (1) the particle size distribution by a Differential Mobility
Particles Sizer (DMPS) and (2) the volatility of monodisperse particles by a Volatility Tandem Differential
Mobility Analyzer (VTDMA) system.

2. Materials and Methods

Measurements took place at the Zeppelin atmospheric research station (78.90°N, 11.88°E; 474m above sea level
(asl)) near Ny-Ålesund, Svalbard, from 15 June to 6 July 2008 (day of year; DOY 167–187). Atmospheric aerosol
particles were sampled through an all-weather roof-top inlet on Zeppelin station. By using a high flow rate of
35 lpm, fromwhich instruments subsampled, losses in themain inlet were minimized. Components of themain
and subsampling tubes were stainless-steel, resulting in a sample temperature of ~21°C (<20% RH) before
reaching the instruments. Considering that all the instruments used the same sampling tubes, all measured par-
ticles would be free of any possible compounds that would volatilize at room temperature.

An ultrafine Condensation Particle Counter (CPC), a DMPS [Keady et al., 1983], and a Volatility Tandem
Differential Mobility Analyzer (VTDMA) were used to measure the total number concentration (N), the num-
ber size distribution, and the volatility of atmospheric particles, respectively. The CPC (TSI Model 3025) had a
theoretical cutoff detection limit at Dp=3 nm [Stolzenburg and McMurry, 1991] and was operated with a
1.5 lpm flow rate. In addition, the sampling time was increased to 3min in order to improve the counting sta-
tistics to within less than 10% [McMurry, 2000]. The DMPS consisted of a medium-sized Hauke-type
Differential Mobility Analyzer (DMA) and another CPC (TSI Model 3760). A neutralizer was used to establish
an equilibrium charge distribution on the particles before entering the DMA where they were classified
according to their electrical mobility. The aerosol and sheath flow rates through the DMA were adjusted to
1.5 and 10 lpm, respectively, during the entire case study. With these settings, the system was capable of
measuring the particle size distribution in the Dp= 10–635 nm range every 20min. Particle number concen-
trations in the Dp= 3–10 nm range (N3–10) were obtained by subtracting DMPS from CPC data.

The VTDMA [Mendes et al., 2016] consisted of a 85Kr aerosol neutralizer, two custom-made DMAs, a temperature-
controlled thermodenuder placed between both DMAs, and a CPC (TSI Model 3025) downstream of the second
DMA. The sampled polydisperse particles were passed through the 85Kr aerosol neutralizer and the first DMA, in
which the applied voltage between both electrodes was adjusted to select monodisperse particles withDp=12,
40, 150, and 200nm. Particles then passed through an improved low-flow thermodenuder [Fierz et al., 2007] and
were exposed to temperatures TD of 30, 120, and 230°C in the heating section (10 cm long), followed by gradual
cooling in the absorption section (20 cm long), before their size distribution from Dp=7 to 280nm was mea-
suredwith the secondDMA and the CPC. The aerosol residence time in the thermodenuder and absorption sec-
tion was 1.0 s. This improved design allowed more flexibility in setting the temperature profile along the
thermodenuder and allowed retention of gas-phase volatile compounds in the absorption section without
re-condensation [Mendes et al., 2016]. Both DMAs employed a closed-loop recirculation system for the sheath
flow, which was adjusted to 5.5 lpm, while the aerosol flow rate was 1.5 lpm through the VTDMA. Each
VTDMA measurement cycle at a specific thermodenuder temperature and monodisperse particle size took
15min in order to ensure adequate counting statistics.

Depending on their composition, monodisperse particles will behave differently in a thermodenuder. For
instance, sulfuric acid particles will evaporate completely at TD ≥ 120°C and ammoniated sulfates at
TD ≥ 230°C [Clarke, 1991]. Refractory particles such as NaCl, black carbon (BC) or marine polymer gels will
not change in size nor will their concentration decrease when exposed to these temperatures. Such behavior
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is in contrast to organic compounds, which typically consist of a complex rather than a simple mixture of
organic compounds [Tunved et al., 2006; Riipinen et al., 2012; Zhang et al., 2012]. As a consequence, organic
particles exhibit a smooth rather than a “stepwise ” temperature dependence in thermodenuders due to their
different volatility characteristics [Hakkinen et al., 2012]. The ability to characterize a mixture of organic com-
pounds in a thermodenuder is thus rather limited. To fully characterize the performance of the VTDMA at dif-
ferent TD, the system was characterized with nonorganic and organic coated laboratory-generated particles
before field deployment [Mendes et al., 2016]. First, particle losses in the VTDMA were determined to be
<15% for Dp= 10 nm, and <5% for Aitken/Accumulation mode particles at all TD, during calibration with
monodisperse NaCl particles. All data were corrected for these losses. Second, the efficiency of the system
to completely evaporate ammonium sulfate particles at TD=230°C (1.5 lpm aerosol flow-rate, 1.0 s residence
time) was confirmed as in other studies [Villani et al., 2007]. Polydisperse ammonium sulfate particles were
generated by atomizing a 1% aqueous solution in an atomizer particle generator (TOPAS Model ATM220),
and dried to <20% RH in a diffusion drier. The behavior of ammonium sulfate particles was then character-
ized in the VTDMA, by conducting a temperature scan up to 250°C at 10°C steps. A reduction in N was not
observed at TD=30 or 120°C. However, N began to reduce at ~200°C and had reduced by 95–98% at 230°C
for particles over the measurable size range down to Dp~18–20nm [Mendes et al., 2016]. These properties of
a thermodenuder offer a relatively robust constraint on the presence of pure sulfuric acid and ammoniated
sulfates in atmospheric particles.

Zeppelin station belongs to the “Co-operative Programme for Monitoring and Evaluation of the Long-range
Transmission of Air Pollutants in Europe” (EMEP). Daily measurements of SO2 and NH3 have been conducted
since 1989 [Aas et al., 2012]. Themajor objective is tomonitor long-term spatial and temporal trends in a network
of about 100 sites across Europe, and the methodology was selected to allow the determination of ambient
levels throughout the network in a cost-efficient and comparable way [Tørseth et al., 2012]. The method
employed is based on sampling with a filter-pack consisting of a first-stage particle filter, followed by a
second-stage potassium hydroxide impregnated filter for SO2 absorption and a third-stage oxalic acid
impregnated filter for NH3 absorption, and off-line determination by ion chromatography. The method and its
uncertainties is described in an EMEP publication [Co-operative Programme for Monitoring and Evaluation of
the Long-range Transmission of Air Pollutants in Europe (EMEP), 2014], and the Norwegian Institute for Air
Research (NILU) has accreditation for the method according to NS-EN ISO/IEC 17025. It should be noted,
however, that while the SO2 detection limit is low (~0.01μgSm�3 = 4 parts per trillion by volume (pptv)), that
for NH3 measurements is higher (~0.05μgNm�3 = 72pptv) due to problems with filter contamination and
the fact that the filter-pack method is biased when it comes to separating gaseous and particulate nitrogen
species. As ambient levels of SO2 and NH3 at Zeppelin during the experiment were very low, and close to the
levels of detection, interpretation of the filter pack results must be treated with care. Although data from 24h
filter-pack sampling present a limitation in comparison with data of better time resolution, it allows a low detec-
tion limit to be attained. Despite these limitations, we have chosen to include the data due to its availability from
the ongoingmonitoring program. Although only daily average concentrations were available fromNILU, they do
at least allow an estimate of H2SO4 concentrations ([H2SO4]) to bemade when the global irradiation and relative
humidity are used as inputs to a model. Values of [H2SO4] may then help to interpret VTDMA results.

BC concentration was measured using an Aethalometer (Magee Scientific Model AE-31) with a 30min
time resolution. UV and global irradiation measurements were conducted with a Total Ultraviolet
Radiometer (Eppley Laboratory, Inc.; λ= 295–385 nm), and a Pyranometer (Kipp and Zonen Model
CMP22; λ = 0.3–2.8 μm), respectively.

Evidence for long-range transport of clean or polluted air masses was obtained from 5day back trajectory
analysis using the NOAA Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model [Draxler
and Hess, 1997; Draxler and Rolph, 2015]. Two and 5 day back-trajectories were investigated for three different
arrival heights (station altitude i.e., 474m, as well as 1000 and 1500m). As the results were similar in all cases,
5 day back-trajectories for Zeppelin station height arriving at 12:00 UTC were considered further. Limitations
in using back-trajectories are discussed elsewhere [Draxler and Hess, 1997; Draxler and Rolph, 2015] but it
should be noted that uncertainties in determining source regions will exist as re-analysis data used by
HYPSLIT is based on a sparse network of meteorological measurements in the Arctic. In addition, the effect
of the boundary layer is not considered in this version of the model.
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3. Results and Discussion

The identification of extended and substantial new particle growth events was based on the criterion
that N3–10>N10–635 (particle diameter range given in subscript) by at least 10% for ~ 6 h. In this man-
ner, five events lasting from ~10 to 13 h were identified and are indicated in Figures 1, and 3 by the
shaded areas. A sixth event was also identified when particle volatility but not size distribution mea-
surements were available. NPF events in Figure 1a are reflected in elevated values of N3–10 and N10–30,
with averages ~600 and 4100 cm�3, respectively, as opposed to ~150 and 1300 cm�3 during all other
periods. It should also be pointed out that the nucleation dynamics can vary between the events,
leading to small lags in the evolution of N3–10 and N10–30 in some cases.

The UV irradiation exhibited a diurnal pattern with maximum values on event days that varied from 18 to
32Wm�2. The ambient temperature varied from �2 to 8°C during the entire case study, and from 0 to 7°C
during NPF events. RH generally varied from 60 to 90% during NPF events except for a brief decrease to
~40% on DOY 180. All events occurred under clear skies or moderate/low (<25%) cloud coverage as
indicated by short-wave downward irradiation (not shown). Despite the continuous daylight during the
case-study, new particles in the range Dp=3–10 nm (Figure 1b) were first observed around midday by our
instruments when UV irradiation exhibited maximum values >25Wm�2 (Figure 1c).

Daily precursor gas measurements of SO2 and NH3 (Figure 1d) gave average concentrations
~0.03 μg Sm�3 (11 pptv) and 0.18 μgNm�3 (257 pptv), which are comparable to long-term averages of
~0.07 μg Sm�3 (26 pptv) [Engvall et al., 2008] and 0.17 μgNm�3 (243 pptv), respectively. To identify
NPF events attributable to local anthropogenic pollution, Figure 1d also shows the aerosol BC concentra-
tion whose average value of ~10 ngm�3 is typical of summer periods (5–15 ngm�3) from long-term
measurements [Eleftheriadis et al., 2009]. Two local ship pollution episodes occurred on DOY 178 and
181, as indicated by the sharp spikes in BC concentration. Interestingly, NPF events were not observed
during these episodes or thereafter, indicating that emitted gases did not directly result in NPF. Air
masses arriving at Zeppelin station during events were found to originate from the high Arctic (latitudes
>70°N, see Figure 2) and had been confined to a layer <1000m asl along their paths. In addition, air
masses had spent >95% time over sea pack-ice or snow/ice-covered land, suggesting that they were
representative of background Arctic conditions (the sea ice concentration corresponded to the average
June 2008 coverage [National Snow & and Ice Data Center (NSIDC), 2014]. However, evidence of a long-
range pollution episode on DOY 173–175 is visible as a weak peak in BC concentration. Five-day back
trajectory analysis indicated an origin over the central Arctic and north of Greenland, which has been
previously identified as a region where NPF events occur [Leaitch et al., 2013]. VTDMA results discussed
further below (Figure 4), however suggest that the NPF event on DOY 173 occurred in an air mass
influenced by long-range transported anthropogenic pollution. Based on these observations, four NPF
events (light shaded periods; Figure 1d) were deemed to have occurred in background Arctic air masses,
while the other two (dark shaded) were deemed to have an anthropogenic influence. The four events
can be described as “regional” where NPF events and growth occur fairly uniformly over several hours
to days throughout the air mass [Kulmala et al., 2004]. It should be noted that the use of back trajectory
analysis is only used here to select NPF events, which are most probably associated with background
Arctic air masses. We are not able to gain any insight into meteorological conditions over the sea
ice interface.

Returning to the NPF events in Figure 1a, it was determined that the average growth rates of recently
nucleated particles were ≤1.0 nmh�1 for the range Dp = 10–20 nm. Similarly, low values for the same
range have been previously observed in sub-Arctic and Antarctic regions [Kulmala et al., 2004; Engvall
et al., 2008; Zhang et al., 2012, and references therein]. Current models [Yli-Juuti et al., 2013] and
observations [Yli-Juuti et al., 2011] suggest that sulfuric acid together with organic compounds
(acids, terpenes, and amines) can contribute to the growth of nanoparticles with Dp = 3–20 nm, which
can yield growth rates of up to 3.0 nmh�1 even in remote environments with low precursor concentrations.
In the absence of organic compounds, however, observed growth rates are limited [Yli-Juuti et al., 2011]
and are comparable to our observations, which indirectly implies that sulfuric acid may be the dominant
precursor for nanoparticle growth in the region. Amines in particular can enhance nucleation rates at
low H2SO4 concentrations by forming stable acid–base pairs [Chen et al., 2012; Almeida et al., 2013;
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Riccobono et al., 2014]. For instance, alkylamines have been found to readily react with sulfuric acid to
give alkylaminium sulfate [Wang et al., 2010]. While amines and NH3 have similar sources over land
(e.g., agricultural activity, biomass burning, soils and vegetation) and ocean (e.g., bacterial decomposition
of organic matter and phytoplankton excretion) regions, concentrations of the former are generally ≲20%
of the latter in low to midlatitude regions [Ge et al., 2010]. Very few measurements have been conducted in
the sub-Arctic let alone the high Arctic. A study in a sub-Arctic boreal forest using a thermal desorption

Figure 1. Evolution of particle size distributions, meteorological parameters, and concentrations of gaseous compoundsmeasured at Ny-Ålesund from 15 June (DOY 167) to
7 July (DOY 189) 2008. (a) Normalized particle number size distributions. (b) Hourly average particle number concentrations for the size ranges: Dp=10–635 nm (black line),
Dp = 10–30 nm (red line), and Dp= 3–10 nm (blue line). (c) Hourly average ambient temperature (blue line), UV irradiation (black line), and relative humidity RH (red line).
(d) Concentrations of BC, SO2, and NH3 (black, red, and blue lines, respectively). NPF events occurring on 20–21, 21, 24, and 30 June (DOY 172–173, 173, 176, and 182)
and 4 July (DOY 186) are indicated by the light shaded (background Arctic air masses) and dark shaded (anthropogenically influenced) periods, which had an average
duration of 13.4 and 10.4 h, respectively. Identification of the event on 28 June (DOY 180) was based on VTDMA results (cf. Figure 4).
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chemical ionization mass spectrometer observed the presence of amine salts and that they were able to
explain 23% of the growth of Dp = 10 nm particles [Smith et al., 2010].

The presence of sulfuric acid was further investigated by analyzing whether its concentration
([H2SO4]) was correlated with the increase in N3–10 during NPF events. Although [H2SO4] was not mea-
sured, a recent empirical proxy model [Mikkonen et al., 2011] was used instead. The model is based on
continental measurements and has not been previously tested for marine and Arctic conditions.
However, as the model uses the SO2 concentration regardless of whether it is derived from DMS or
directly from SO2, it is considered that the model can broadly estimate the H2SO4 concentration in
the summertime Arctic.

The H2SO4 proxy concentration (molecules cm�3) shown in Figure 3 was estimated using the following
equation [Mikkonen et al., 2011]:

Figure 2. Air mass back-trajectories (5 days) arriving at the Zeppelin atmospheric research station (78.90°N, 11.88°E;
474 m asl) near Ny-Ålesund, Svalbard at 12:00 UTC on days when NPF events were observed. The trajectories were
determined by the NOAA HYSPLIT model [Draxler and Rolph, 2015]. The sea ice concentration corresponds to the
average June 2008 coverage [NSIDC, 2014].
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H2SO4½ � ¼ 8:21�10�3 � k � R � SO2½ �0:62 � CS � RHð Þ�0:13 (1)

where R is the global irradiation (Wm�2) and RH is the relative humidity (%). The parameters k
(cm3molecules�1 s�1) and CS (s�1) [e.g., Dal Maso et al., 2002] are a temperature-dependent reaction rate
constant and the condensational sink, respectively, which are given by

k ¼ A � k3
Aþ k3ð Þ exp k5ð1þ log10

A
k3

� �2Þ�1

2
64

3
75 (2)

CS ¼ 2πD∫
∞

0
dβm Dpð ÞN Dpð ÞdDp ¼ 2πD

X
i
Dpi βi Ni (3)

where A ¼ k1 M½ � 300=Tð Þk2 , T(K) is the temperature, [M] = 0.101 × (1.381 × 10� 23 T )� 1 is the air density
(molecules�1 cm�3), k1 = 4 × 10� 31, k2 = 3.3, k3 = 2 × 10� 12, and k5 =� 0.8. The predicted [H2SO4] proxy
values were between ~5.98 × 104 and 3.19 × 106molecules cm�3 during the case study, which are similar
to values measured in the Finnish sub-Arctic [Mikkonen et al., 2011]. The model indicates that [H2SO4] is dri-
ven by the variability in irradiation and relative humidity. In use of the model, we should point out that the
predicted daily average values cannot be considered as absolute but rather as indicative of [H2SO4] due to
limitations of the empirical proxy model.

Regression analysis showed that the highest correlation (R2 ~ 0.7) between the [H2SO4] proxy and N3–10

occurs when a 6 h lag is applied to the calculated proxy (cf. Figure 3). This period can be attributed to the
average time required for fresh clusters to grow above the CPC detection limit (Dp> 3 nm). In summary,
the above aspects imply that sulfuric acid participated in nanoparticle formation and growth, which we
explore further by providing observational evidence from volatility measurements.

Figure 4 illustrates VTDMA measurements of monodisperse particles (Dp = 12, 40, 200 nm) at thermode-
nuder temperatures TD = 30, 120, 230°C. It should be noted that monodisperse particles either retained
their sizes or shrank considerably, below the VTDMA detection limit (i.e., Dp ~ 7 nm), after passing
through the thermodenuder. Particle volatility was therefore determined by comparing their number
concentration before and after heat treatment. Figures 4a–4c show that nonevents were characterized
by low particle number concentrations that consisted mainly of refractory components, in some cases

Figure 3. (a) Evolution of the hourly averaged condensation sink (CS) value. (b) The H2SO4 proxy concentration (black lines)
and N3–10 concentration (red line) in the Dp = 3–10 nm range. Solid and dashed black lines correspond to hourly H2SO4
concentrations when shifted and not shifted by 6 h, respectively. Data for the H2SO4 proxy concentration calculations were
provided by the Alfred Wegener Institute [Maturilli et al., 2012].
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up to 100%. Although the composition of the refractory component using thermodenuder results cannot
be determined here, previous volatility studies suggest that BC [Nyeki et al., 2005] and sea-salt [Clarke
et al., 2006] may be involved but field observations at the sea ice interface [Leck and Persson, 1996;
Karl et al., 2013, and references therein], suggesting that their concentration and size distributions are
unlikely to account for observations in this study. Recent studies [Karl et al., 2013; Leck et al., 2013;
Heintzenberg et al., 2015] point to the participation of nanogels and their building blocks in NPF, which
raises the question as to whether they could also be components of the refractory fraction. This would
have to be determined in a future case study. In contrast to these periods when a large fraction of
the particle number concentration consisted of refractory particles, NPF events exhibited elevated parti-
cle number concentrations, especially for 12-nm particles. When the particles were treated in the ther-
modenuder, N12 decreased by 75—95% (average ~85%) at TD= 230°C but remained unchanged at
120°C. This suggests that the majority of particles are solely composed of ammoniated sulfates with only
a ≲15% number fraction composed of refractory components. Such behavior is in contrast to the obser-
vations during the anthropogenically influenced event on DOY 173 when N12 decreased by <20% at
TD= 230°C. The corresponding refractory number fraction of >80% is consistent with slightly enhanced
BC concentrations during this event. Only one observation of a reduction (~10%) in N12 was made at
TD= 120°C on DOY 172, implying the presence of sulfuric acid particles.

For larger particles (Figures 4b and 4c), we observed that N40 decreased by <50%, N150 by <20% (not shown in
Figure 3) andN200 by<15% at TD=230°C duringNPF events. However, no changes inN40,N150, andN200 occurred
at TD=120°C. This behavior again indicates the presence of ammoniated sulfates, with a clear decreasing trend in
their number fraction as particle size increases. The corresponding increase in the number fraction of refrac-
tory particles with size suggests that the tail-end of the BC, sea salt [Clarke et al., 2006], and/or nanogel
[Leck and Bigg, 2005; Karl et al., 2013] size distributions were being progressively observed. However, the
refractory nature of nanogels remains to be demonstrated in a thermodenuder system.

Figure 4. Monodisperse particle number concentrations measured by the VTDMA after thermodenuder processing. Stacked
bars correspond to 30°C (blue), 120°C (green), and 230°C (orange) thermodenuder temperatures for (a) Dp = 12 nm particles,
(b) 40 nm, and (c) 200 nm. Bar widths represent 6 h average values.
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As mentioned before, an alternative explanation of the particle volatility observations in terms of organic
compounds rather than ammoniated sulfates is also possible. However, the fact that N12 does not
decrease at thermodenuder temperatures up to 120°C, but drops by 75–95% at TD= 230°C. is consistent
with ammoniated sulfate particles. It should be mentioned that an unambiguous interpretation in terms
of ammoniated sulfates cannot be made, as a single organic compound with similar volatility characteristics
may have been present. For instance, Qiu and Zhang [2012] observed that alkylaminium sulfates with
Dp=97nm have similar volatility characteristics to ammonium sulfate. Amine concentrations were not
measured during our case-study, and as other measurements in the high Arctic are lacking, we are currently
unable to assess their relative importance, if any.

Our volatility observations do not exclude the possibility that nanoparticles may have a nonvolatile core
smaller than that measured by the VTDMA. If 12 nm particles were an internal mixture of ammoniated sulfates
and a refractory component for instance, then an estimated shrinkage>80% by volume at TD=230°C would be
required to reveal a nonvolatile core below our VTDMA detection limit at Dp~7nm. Clusters and nanoparticles
that can serve as seeds for growth during NPF events are significantly smaller than this limit, making our
measurements incapable of probing the early stages of NPF. However, a recent study [Karl et al., 2013]
suggested that particles with Dp< 7nm may consist of nanogel material. Simulation with an aerosol dynamics
model revealed that the appearance of nanoparticles could only be explained by the presence of nonvolatile
cores with a mean value of Dp~4.5 nm.

4. Conclusions

In summary, the case-study measurements reported here support the hypothesis that the growth of 12 nm
nanoparticles in the summertime high Arctic is driven by mechanisms involving sulfuric acid and ammonia.
These particles can account for ~85% of the population during NPF events, four of which were studied here in
detail and lasted from 10–13 h each. The remainder is attributed to refractory particles but can account for up
to 100% of the population during nonevent days. Our observations further suggest that the majority of the
sub-40 nm particle population during NPF events does not exist in the form of sulfuric acid but rather as
partly or fully neutralized ammoniated sulfates. Considering the observed spatial and temporal extent of
NPF events in the summertime high Arctic [Kulmala et al., 2004; Karl et al., 2012; Leaitch et al., 2013; Tunved
et al., 2013], our observations on Svalbard suggest that ammoniated sulfate nanoparticles may be more ubi-
quitous in this region than previously thought. However, several important aspects would need to be
addressed in greater detail. One concerns a more detailed understanding of NPF events with respect to both
the pack-ice region, and the impact of local mixing and long-range advection/transport. Another aspect con-
cerns the sources and abundance of precursor gases (e.g., NH3 and amines) in the high Arctic. A more com-
prehensive study with simultaneous measurements over the pack-ice region and on Svalbard in the future
would help to resolve some of these aspects.
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