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Abstract Uncertainty in the physicochemical and optical properties of volcanic ash particles creates errors
in the detection and modeling of volcanic ash clouds and in quantification of their potential impacts. In this
study, we provide a data set that describes the physicochemical and optical properties of a representative
selection of volcanic ash samples from nine different volcanic eruptions covering a wide range of silica
contents (50–80 wt % SiO2). We measured and calculated parameters describing the physical (size
distribution, complex shape, and dense-rock equivalent mass density), chemical (bulk and surface
composition), and optical (complex refractive index from ultraviolet to near-infrared wavelengths) properties
of the volcanic ash and classified the samples according to their SiO2 and total alkali contents into the
common igneous rock types basalt to rhyolite. We found that the mass density ranges between ρ = 2.49 and
2.98 g/cm3 for rhyolitic to basaltic ash types and that the particle shape varies with changing particle size
(d < 100 μm). The complex refractive indices in the wavelength range between λ = 300 nm and 1500 nm
depend systematically on the composition of the samples. The real part values vary from n = 1.38 to 1.66
depending on ash type and wavelength and the imaginary part values from k = 0.00027 to 0.00268. We place
our results into the context of existing data and thus provide a comprehensive data set that can be used for
future and historic eruptions, when only basic information about the magma type producing the ash
is known.

1. Introduction

During explosive volcanic eruptions, volcanic ash (VA) particles can be released into the atmosphere and
transported hundreds to thousands of kilometers away from the eruptive vent. Depending on the eruption
conditions (e.g., height of release), atmospheric conditions, and microphysical properties of VA, the parti-
cles have atmospheric lifetimes that can span hours (sedimentation velocities of ~1 km/h for coarse ash
particles, d > 63 μm) to days and months (~0.01 km/h for fine ash particles, d < 63 μm) [Bonadonna et al.,
1998; Rose et al., 2001; Durant, 2015]. During their atmospheric long-range transport, VA particles have the
potential to influence the Earth’s radiation balance as they reflect and absorb solar and terrestrial radia-
tion, and therefore, they may impact weather and climate [Robock, 2000; Vernier et al., 2016]. They also
present a major threat for aviation operations as they decrease visibility and cause dangerous airframe
and engine damages [Prata and Tupper, 2009; Guffanti et al., 2010]. Near the Earth surface VA particles
pose hazards to human health [Baxter et al., 2014], affect air quality [Thorsteinsson et al., 2012], infrastruc-
tures such as ground transport and water supplies [Wilson et al., 2012], and to natural environments [Jones
and Gislason, 2008; Durant et al., 2010].

Atmospheric models, such as particle transport and dispersion, radiative transfer, or climate models, and ash
retrieval algorithms rely on accurate and quantitative information about the different properties of VA. These
properties deviate greatly between different volcanic ash types as they depend on individual magma proper-
ties (e.g., composition, rheology, and gas content), the particle formation processes, and the distance from
the eruptive vent (particle size). However, in most cases, models and measurement algorithms use only a sin-
gle set of parameters for all types of eruptions. This oversimplification can introduce large uncertainties in
calculations of the atmospheric dispersion or mass concentration calculations as these properties differ
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substantially from reality [Grainger et al., 2013]. To minimize these uncertainties, there is an urgent need for
more detailed and interrelated characterization of the properties of VA [Rocha-Lima et al., 2014].

Figure 1 shows an overview about the main volcanic ash properties subdivided into chemical (mineralogical
and chemical compositions of particle bulk and surface), physical (particle size, morphology, and mass
density), and optical (complex refractive index) properties of VA. Accurate parameters describing these prop-
erties are needed in atmospheric dispersion and climate models as well as in remote sensing and in situ
detection algorithms to provide reliable output products such as deposition rates, mass concentrations,
and radiative forcing that are vital in the assessment of VA hazards.

1.1. Chemical Properties

The mineralogical and chemical compositions of VA are very complex and consist of glassy juvenile compo-
nents, crystals from multiple mineral phases (quartz, feldspar, micas, pyroxenes, amphiboles, and olivine)
formed in the magma, and lithic fragments of eroded vent and wall rock [White and Houghton, 2006;
Dingwell et al., 2012]. Typical VA composition ranges from basaltic (high in Mg and Fe) to rhyolitic (high in
Si and Al) [Stevenson et al., 2015] and is mostly described on the basis of the composition of the bulk material
[Bayhurst et al., 1994;Weber et al., 2012; Lieke et al., 2013], but can also be classified by the composition of the
particle surface. The particle composition provides important information about the magma mixture and the
erosion of the conduit rock [Heiken, 1972] and has an influence on scavenging processes in clouds and effects
on the natural environment such as ocean and soil fertilization [Duggen et al., 2009; Achterberg et al., 2013].
The composition is also fundamental for deriving other VA properties such as the mass density or the com-
plex refractive index.

The surfaces of the erupted VA particles represent a mixture of preeruptive, syneruptive, and posteruptive
surfaces [Ayris and Delmelle, 2012]. Preeruptive surfaces are those generated at the boundaries between
the silicate melts and the bubbles created during exsolution of magmatic volatiles [Sparks, 1978] and those
generated by a permeable network of fractures [Gonnermann and Manga, 2003]. These surfaces are equili-
brated via processes such as atomic rearrangement or ionic recombination. Syneruptive surfaces originate
from the magma fragmentation in its brittle (solid-like) regime. Crystallization of mineral phases in silicate

Figure 1. Flowchart illustrating how parameters describing the individual volcanic ash properties are needed for transport
and dispersion as well as climate models and for ash measurement techniques. The chemical composition of the samples
determines the mass density and the complex refractive index (RI) but also directly influences the severity of the ash’s
climate hazards, and its hazards for human health, air quality, and natural environment.
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melts introduces bulk material defects along phenocryst boundaries that act as fracture planes during
magma fragmentation. As crystallization may involve diffusion of specific elements from the amorphous
phase to the crystalline phase, fracture at the amorphous phase may generate surfaces depleted in the ele-
ments that were diffused into the crystalline phases. Posteruptive surfaces are generated by collision
between ash particles or between particles and conduit wall rock after magma fragmentation. Ash particle
surfaces are also influenced by high- and low-temperature heterogeneous chemical reactions in the eruption
plume. Further, physical processes (e.g., adsorption and aggregation) and chemical reactions (e.g., leaching)
occur during transport of the ash in the atmosphere. Both the bulk and surface compositions of VA particles
have impacts on cloudmicrophysical processes [Durant et al., 2008; Rolf et al., 2012], radiative forcing [Flanner
et al., 2014], respiratory effects [Horwell and Baxter, 2006], and soil and ocean fertilization effects [Duggen
et al., 2009; Achterberg et al., 2013].

1.2. Physical Properties

Knowledge of the physical properties of VA particles is fundamental to constrain the size and style of volcanic
eruptions [Bonadonna and Houghton, 2005] and to predict atmospheric lifetimes controlled by transport,
deposition, and sedimentation processes [Riley et al., 2003; Durant and Rose, 2009; Mills and Rose, 2010;
Folch, 2012; Bagheri et al., 2013]. Particle size and morphology are controlled by magma fragmentation pro-
cesses [Sparks, 1978], magma ascent rate, and by external factors such as particle collisions or interaction with
water [Rose and Durant, 2009; Dellino et al., 2012]. The deviation from spherical shape decreases atmospheric
sedimentation velocities by up to 50% [Mele et al., 2011; Bagheri and Bonadonna, 2016a], due to the altered
aerodynamic behavior of elongated particles. Thus, nonspherical particles can be transported over longer dis-
tances in the atmosphere than spherical particles [Stevenson et al., 2015; Bagheri and Bonadonna, 2016a].

To date, in measurement algorithms and atmospheric models, VA particles are often assumed to be spherical,
although they are known to be nonspherical due to their formation processes [Wilson and Huang, 1979]. It has
been shown that assuming mass-equivalent spheres instead of accounting for more realistically shaped
porous nonspherical particles may lead to underestimates of the total retrieved mass of an ash cloud by
approximately 30%. The assumption also leads to an overestimation of the ash cloud optical depth in radia-
tive transfer algorithms that are used to interpret satellite measurement data [Wen and Rose, 1994; Krotkov
et al., 1999b; Kylling et al., 2014]. Bagheri and Bonadonna [2016a], however, reported that even the most
commonly used corrections for the estimation of nonspherical drag-coefficients (relevant for calculations
of settling velocities) can introduce large errors (mean error up to 13% to maximum errors up to 80%)
depending on the calculation method.

In another study, Bagheri and Bonadonna [2016a] reviewed commonly used nonspherical drag models for
estimating VA particle drag coefficients and benchmarked them against analytical and experimental results.
They showed that nonspherical drag models are on average associated with errors between 8% and 55%
depending on the particle size (in the particle size of fine ash to lapilli-sized particles). The individual reported
errors are 2–10% for fine ash, 23–55% for coarse ash, and 10–33% for lapilli-sized particles. Interestingly, sphe-
rical models outperformed some nonspherical models in terms of accuracy, which indicates the importance
of proper shape characterizations if one wants to avoid such pitfalls of nonspherical models. They also
showed that by considering simple particle characteristics (i.e., flatness and elongation) it is possible to obtain
relatively accurate estimation of VA drag coefficient (average error of 8%).

Earlier quantitative shape analyses were limited to measurements of only a small number of particles [Heiken,
1972; Bayhurst et al., 1994; Riley et al., 2003;Mills and Rose, 2010], whereas recent instrumental developments
allowed measurements of a high number (100,000 s) of projected and three-dimensional particle shapes
[Durant and Rose, 2009; Bagheri et al., 2015; Leibrandt and Le Pennec, 2015; Liu et al., 2015]. Analyzing a high
number of particle shapes as a function of size is necessary for deriving statistically robust shape parameters
that help minimizing the uncertainties in transport and mass concentration calculations [Bagheri et al., 2015;
Liu et al., 2015]. The higher the number of measured and analyzed particles, the smaller is the uncertainty of
derived relevant shape descriptions such as the particle form or roundness.

Another parameter that controls the atmospheric lifetime and calculations of mass concentrations of VA
particles is the mass density. The mass density is also needed to convert the particle volume to particle mass
both in atmospheric measurements and in models. The mass density depends on the chemical composition
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and on the vesicularity. The vesicularity is defined as the volume percent of internal void space in volcanic ash
particles. Higher vesicularity results in lower densities. Thus, if vesicularity depends on particle size, the par-
ticle density varies with particle size as well. This is of importance for determining the terminal settling velo-
city and deposition patterns of ash particles [Bonadonna and Phillips, 2003; Costa et al., 2006]. Incorrect mass
density assumptions also lead to errors in gravitational settling and dry deposition schemes in atmospheric
models and to an overestimation or underestimation of mass concentration calculations in both model and
measurements products. Typical mass density values are in the range of ρ = 2.35–2.45 g/cm3 for glass shards,
ρ = 2.70–3.30 g/cm3 for crystals, and ρ = 2.60–3.20 g/cm3 for lithic particles [Wilson et al., 2012; Clarisse and
Prata, 2016].

1.3. Optical Properties

The most severe lack of information concerns the optical properties of VA particles. The optical properties are
described by the complex refractive index,

Nλ ¼ nλ þ i kλ; (1)

where nλ is the real part, related to the refraction, and kλ is the imaginary part related to the attenuation of
incident light. The complex refractive index is therefore a quantitative measure of the particles’ refraction
properties, i.e., how they transmit, reflect, and absorb incident light, and is dependent on the chemical com-
position [Ball et al., 2015] of the material and on the particles’ shape and density and hence can vary
significantly.

Reliable information about the complex refractive index is necessary for ash remote sensing retrievals
[Krotkov et al., 1997], optical ash measurement methods [Bukowiecki et al., 2011; Tesche et al., 2012], and also
for quantifying weather and climate impacts of the ash [Timmreck, 2012; Flanner et al., 2014; Vernier et al.,
2016] (see Figure 1). For example, the refractive index is a needed input parameter in radiative transfer mod-
els that are employed to simulate the backscattered top-of-the-atmosphere radiance to derive the aerosol
optical depth and the effective particle radius of an ash cloud for remote sensing retrievals [Krotkov et al.,
1999a; Carn and Krotkov, 2016].

Although the complex refractive index is known to be highly important for the detection and modeling of
volcanic ash clouds, existing studies are limited. Different studies used different particle types such as volca-
nic ash particles, terrestrial rocks, and pure glasses [Pollack et al., 1973; Volz, 1973] to investigate either the
complex refractive index or only the absorption part (kλ) for either single wavelengths [Ball et al., 2015] or
a broad wavelength range. Thereby, these studies used different theoretical and experimental approaches
such as measurements of the diffused reflectance [Patterson, 1981; Patterson et al., 1983; Krotkov et al.,
1999b; Rocha-Lima et al., 2014], direct transmittance [Grainger et al., 2013; Ball et al., 2015], a combination
of both [Pollack et al., 1973], or calculations based on the chemical composition [Kandler et al., 2011]. In fact,
many studies can be traced back to a single source of data [Pollack et al., 1973], which is based on the char-
acterization of terrestrial rocks and glasses.

An overview about all available refractive index values for volcanic ash and glasses found in the literature is
provided in Figure 2. The complex refractive index data are sorted by the igneous rock groups of the samples
that are depending on the silica and total alkali contents ranging from basalt to rhyolite, and the wavelength.
The overview also shows the main measurement systems operating in the relevant wavelength range.

The real part of the complex refractive index can be estimated by using different approaches such as the
Becke line technique, where the particles are immersed in a matrix of resin or liquid with well-characterized
optical properties, through reflectancemeasurements from bulk material or theoretical calculations. The total
reflectance proportion is derived using the reflectance data directly or by using the information about the
chemical composition of the samples. In the ultraviolet (UV) to near-infrared (NIR) wavelength range, typical
values range between nλ = 1.5 and 1.6 for silicate glasses and between nλ = 1.45 and 1.65 for naturally occur-
ring rocks and VA (depending on sample composition and wavelength) [Pollack et al., 1973; Ball et al., 2015].

The imaginary part of the complex refractive index can be retrieved either using both reflectance and trans-
mittance data or based only on transmittance measurements. It can also be estimated from reflectance mea-
surement only using the Kubelka-Munk theory, a phenomenological correlation between the total diffuse
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reflectance of the sample and a concentration of bulk absorbing species using a scaling factor (absorption-
to-scattering ratio of the material) as demonstrated by Patterson [1977, 1981]. This technique requires
information about the size distribution and particle shape and relies on iterative procedures and complex
forward modeling [Nobbs, 1985].

Direct transmittance measurements, however, allow determining the absorption properties of the ash sam-
ples directly, as soon as k is related to the portion of light that is absorbed, described by the Lambert-Beer law
[Zaccanti and Bruscaglioni, 1988]. The samples can be either rock material with varying thicknesses (larger
sample) [Pollack et al., 1973], particle powder embedded in a host matrix, or single particles immersed in
liquid as demonstrated by Ball et al. [2015]. Furthermore, the absorption properties, other than the reflec-
tance properties, can also be derived from satellite data [Ishimoto et al., 2016] directly, but these retrievals
are subject to their own assumptions and limitations.

Earlier studies reported high variations in absorption values in the range of kλ = 0.1 and 0.0001 [Patterson,
1981; Patterson et al., 1983], whereas later studies reported smaller variations with values in the range
between kλ = 0.001 and 0.00001 [Krotkov et al., 1999a; Grainger et al., 2013; Rocha-Lima et al., 2014; Ball et al.,
2015]. Generally, basaltic ash samples with a low silica content (~48 wt % SiO2) show the highest absorption,
while rhyolitic ash samples with a high silica content (>70 wt % SiO2) show the lowest absorption. For a more
general characterization of the scattering and absorption characteristics of volcanic ash, it would be impor-
tant to have an extensive set of measurements of nλ and kλ values for many different ash types as well as over
the a wide wavelength range relevant for atmospheric measurements and modeling.

Figure 2. Overview of available refractive index values in the literature sorted by the main igneous rock types basalt to
rhyolite (depending on silica content) including pumice and wavelength. On the top, we also marked the instruments
operating in the corresponding wavelength ranges. These are optical particle counters (OPCs), light detection and ranging
(lidar) instruments, and satellite retrievals operating in the ultraviolet (UV) and infrared (IR) range. Notice that some studies
measured only the absorption properties, some both scattering (n) and absorption (k) properties, but only for single
wavelengths, while others measured the properties for volcanic ask like material such as terrestrial rocks or glasses. The
differences are indicated at the bottom of the figure.
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1.4. Scope of This Study

To date, few studies exist that present measurements of both the physicochemical and optical properties of
volcanic ash particles, and we are not aware of any other study that has made such measurements in a sys-
tematic way for ash particles originating from a large range of different eruptions from different volcanoes. In
this study, we provide a data set for physical (particle size, morphology, and density), chemical (bulk and sur-
face chemistry as well as glass contents), and optical properties (complex refractive indices in the UV-Vis-NIR
range) of a representative selection of volcanic ash samples from nine different volcanic eruptions covering
the full variability in silica content (50–80 wt % SiO2). A user of our data set, who is interested in another erup-
tion for which the magma type that produced the ash is known, will be able to select the physical and optical
properties of our most representative ash samples and use these values for, e.g., satellite retrievals or model
calculations for the eruption of interest. Our data set may thus serve as a reference for future studies requiring
parameters describing VA properties. We captured the natural variability of ash physicochemical and optical
characteristics through a combination of empirical analytical methods (e.g., image analysis, Archimedean
densitometry, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, light microscopy, and
UV/Vis spectrophotometry) and theoretical calculations. This paper is structured as follows: In section 2 we
introduce the methods we used, in sections 3 and 4 we present the results and discuss their implications
and their context to existing studies, and in section 5 we present conclusions.

2. Methods
2.1. Sample Selection, Origin, and Sampling

For the investigation of the microphysical, chemical, and optical properties, we selected nine VA samples
from different volcanoes and eruptions (Figure 3). The selection of the samples was based on (a) the wide
range of silica contents (from basaltic to rhyolitic ash), (b) their origin from explosive (volcanic explosivity
index ≤5) eruptions with a high content of fine ash particles (particle diameter, d < 63 μm), and (c) the fact
that the selected eruptions had a large impact on the society (impact on infrastructures and aviation).
Furthermore, the samples represent proximal-medial to distal fallout samples as well as one sample from a
pyroclastic density current (PDC). Material from most of the samples was used in various studies before
(see references in Table 1), but no study has made a comprehensive analysis of particle microphysical,
chemical, and optical characteristics for the complete silica content range. Table 1 presents an overview of
the different ash types, their chemical classification, and details about sample location and distance from
the volcano sorted according to geographic location from North America to the western Pacific region.

Figure 3. Geographical locations where volcanic ash samples of this study were collected. All ash samples represent
proximal-medial to distal fallout and originate from volcanoes in North America (Mount Spurr 1992, Redoubt 1989, and
Mount St. Helens 1980), South America (Chaitén 2008), the Caribbean Islands (Soufrière Hills 2010), Iceland (Grímsvötn 2011
and Eyjafjajökull 2010), and from the western Pacific region (Mount Kelud 2014 and Mount Sakurajima 2013).
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The Mount Spurr (SPU) ash sample from the 1992 eruption was collected ~250 km east of the eruption loca-
tion by the United States Geological Survey (USGS) Alaska Volcano Observatory. The eruption plume reached,
at a peak altitude, the stratosphere and traveled eastward with the prevailing winds [Schneider et al., 1995],
where the fine fraction of the deposits was collected under 23 cm of snow on Barry Glacier (23.2 g in
0.0625 m2) shortly after deposition [McGimsey et al., 2001; Rose et al., 2001; Durant and Rose, 2009]. The
Mount Redoubt (RED) ashfall sample from the 15 December 1989 eruption was collected ~265 km NE of
the volcano by the USGS in March 1990. The sample was taken from the lower tephra layer embedded in
a 1.5 to 2 m thick snow cover at Dateli Lake [Bayhurst et al., 1994; Schneider and Rose, 1994]. It is possible that
a commercial aircraft that had a failure on all four engines due to volcanic ash ingestion [Casadevall, 1994]
passed through the same cloud on the date of the Mount Redoubt eruption. The Mount St. Helens (MSH) ash-
fall sample from the 18 May 1980 pyroclastic density current (PDC) was taken from the Pumice Plain ~6 km
north of the 1980 crater. The sample was collected in August 1981 from a cliff exposure where the unit could
be clearly identified. The fine ash fraction in this sample is mostly coignimbrite ash that was elutriated from
the PDC, rose to tropopause heights by convection, and fell out distally [Adams et al., 1996;Munoz et al., 2004].
The Chaitén (CHA) ashfall sample from the May 2008 eruption was collected ~60 km SE from ashfall deposits
with consistent thicknesses [Alfano et al., 2011] in January 2009. The Soufríere Hills volcano (SOU) ashfall sam-
ple from the February 2010 dome collapse pyroclastic density columnwas collected ~5 kmNE of the eruption
by the Montserrat Volcano Observatory. The eruption plume reached altitudes up to 15 km, where an
umbrella cloud was formed and dispersed by SE winds [Cole et al., 2015]. The Eyjafjallajökull (EYJ) ashfall sam-
ple from the 2010 eruption was collected ~35 km SW of the volcano by the Institute for Earth Sciences of the
University of Iceland. The sample was taken after the first phase of the eruption in April 2010 [Gislason et al.,
2011; Gudmundsson et al., 2012]. The Grímsvötn (GRI) sample from the 2011 eruption was taken ~80 km SW of
the volcano (near Skógar) by the Düsseldorf University of Applied Sciences. In this case, the sample was col-
lected on a car surface in an open barn. The Kelud (KEL) sample from the 2014 eruption was sampled at
~215 km distance from the volcano by the Indonesia Centre for Volcanology and Geological Hazard
Mitigation. The eruption plume rose up to the stratosphere and dispersed particles over long distances.
The ashfall sample was collected from the ground in April 2014, approximately 6 weeks after the eruption
in Yogyakarta. Finally, the Mount Sakurajima (SAK) ash sample is associated with a Vulcanian explosive erup-
tion event on 3 August 2013. It was collected at ~10 km distance directly after the eruption event. The ash-
rich eruption plume reached 2.3 km [Bagheri et al., 2016].

2.2. Sample Preparation

For the different analytical approaches in this study, we separated the samples into two different subgroups:
(1) loose powder samples and (2) embedded particles in a host matrix. The sample groups are illustrated in
Figure 4. For simplification, the two subgroups will be mentioned in the text as powder samples and pellet
samples. Powder samples were used for the measurements of particle size and complex morphology (form

Table 1. Overview of Volcanic Ash Samples Included in This Study Including Sample ID, Classification Into the Main Igneous Rock Types, Volcanic Explosively Index
(VEI), and Information About Eruption Date, Sample Location, and Distance From the Volcano

Sample
ID Volcano Eruption Date VEI

Sample Location
Distance from
Volcano [km] ReferencesLat. Lon.

GRI Grimsvötn, Iceland May 2011 4 63.78°N 18.09°W 80 –
KEL Mount Kelud, Indonesia February 2014 4 07.93°S 112.31°E 215 –
EYJ Eyjafjallajökull, Iceland April–June 2010 4 63.63°N 19.62°W 35 Gislason et al. [2011],

Gudmundsson et al. [2012]
SPU Mount Spurr, United States September 1992 4 61.74°N 47.60°W 250 McGimsey et al. [2001], Rose et al.

[2001], Rose and Durant [2009]
SAK Mount Sakurajima, Japan August 2013 – 31.59°N 130.67°E 10 Bagheri et al. [2016]
MSH Mount St. Helens, United States May 1980 5 46.25°N 122.18 6 Adams et al. [1996], Rose and

Durant [2009]
SOU Soufriere Hills, United Kingdom February 2010 – 16.72°N 62.18°W 5 Cole et al. [2015]
RED Mount Redoubt, United States December 1989 3 62.54°N 150.24°W 265 Bayhurst et al. [1994], Schneider

and Rose [1994]
CHA Chaitén, Chile May 2008 4 43.33°S 72.47°W 60 Alfano et al. [2011]
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and shape parameters), mass density, and the chemical composition of the particle surfaces. The particles
were used without any additional treatment apart from a moderate sample drying (at 60°C) prior to each
measurement. Pellet samples were used for the characterization of the bulk chemical composition and for
the measurements of the optical properties. The pellets were prepared by embedding defined volume
fractions (f) of ash particles in a clear polymeric host matrix (Struers Clarofast, hot mounting resin). We
selected a resin that is transparent in the relevant wavelength range (λ = 300–1500 nm) and sufficiently
conductive, stable under an electron beam and suitable for mechanical grinding and polishing. The
mixture composed of ash and resin was subsequently pressed into a pellet using a hot embedding press
(Struers LaboPress-3) under constant pressure (15 kN) and heating conditions (180°C). This approach
ensures a porosity-free and compact embedded material for further analysis. The resulting pellet was then
cut, grinded, and polished in several steps (final step was polishing with 2 μm diamond particle
suspension) to produce a flat sample surface. After this process the samples were cleaned and dried in hot
air. The final thickness t of these samples was t = 2–3 mm with a volume fraction of embedded volcanic
ash particles between f = 0.01 and 0.05. Important to note is that this preparation procedure produced
cross sections of the embedded particles near the pellet surface; therefore, the same samples were used
for measuring both the bulk chemical composition and optical properties discussed in sections 3 and 4.

2.3. Chemical Characterization

The chemical characterization of VA provides key data for most of the measured and derived parameters in
this study. The different ash samples were grouped, following a classification based on the total alkali (Na2O
and K2O) and silica (SiO2) content (so-called TAS classification) [Le Bas and Streckeisen, 1991], into the main
igneous rock types basalt, basaltic-andesite, andesite, dacite, and rhyolite. In addition to the chemical com-
position of the bulk material, we also analyzed the chemical composition of the particle surface.
2.3.1. Bulk Material
For the measurement of the chemical composition of the bulk material, the embedded particles in the pellet
sample were analyzed using field-emission gun scanning electron microscopy (FEG-SEM) with an integrated
energy dispersive spectrometer (EDS). The FEG-SEMmeasurements were performed on a Nova NanoSEM650
microscope and the EDS analysis on an X-Max50 spectrometer. The samples were analyzed in high-vacuum
mode and with a 20 kV accelerating voltage. A backscatter detector was used at a working distance of
8.1 mm. The SEM field of view was set to 300 μm × 300 μm to capture the microstructure and shape of
embedded particles of sizes 1–100 μm. The sample elemental composition was recorded with an EDS
micrometer-sized beam allowing determination of an average composition of the total cross-section area
of the embedded particles. This approach gives representative results of all elements over the entire sample
area and minimize measurement uncertainties. For each volcanic ash sample, the elemental compositions of
several hundreds of particle cross sections (produced by the embedding and polishing process) were mea-
sured and processed. Major elements present in the composition of volcanic ash particles are Si, Al, Fe, Mg,
Ca, Na, K, Ti, Mn, and O in varying concentrations. The elemental data of each component were first converted
into weight percent of the corresponding oxides (oxide wt %) and subsequently averaged using a Gaussian

Figure 4. Overview about the two different sample subgroups. The top and middle rows show the 1 vol % and 5 vol % pel-
let samples, respectively, of the nine ash types.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026328

VOGEL ET AL. VOLCANIC ASH PROPERTIES 9492



filter function (2-sigma ranges). The reported data do not account for the presence of water and are
normalized (processing option: oxygen by stoichiometry).
2.3.2. Particle Surface
X-ray photoelectron spectroscopy (XPS) was used to measure the elemental composition and chemical state
of the particle surfaces down to an average depth of 2–10 nm. The XPS analysis was carried out using a Kratos
Axis UltraDLD spectrometer with a monochromatic Al Kα X-ray source (hv = 1486.7 eV). The spectra were
acquired at a zero angle of emission using the hybrid analyzer mode (i.e., using both the electrostatic and
magnetic lenses) at pass energies of 160 eV and 20 eV for the survey and high-resolution scans, respectively.
The samples were placed in Cu-based stubs, and charge compensation was achieved by using a flood gun
producing coaxial low-energy electrons, which resided on the sample surface providing charge neutraliza-
tion. During the XPS analysis, the vacuum of the standard analysis chamber was set to 8 × 10�10 hPa. The
measured spectra were energy corrected using the C1s peak for adventitious carbon (285 eV). For peak fitting
we used linear and Shirley background types and for the quantification high-resolution peaks and Wagner
sensitivity factors. The area of analysis was 700 μm × 300 μm and included several thousand particles. The
averaged elemental composition were converted, like the EDs data, into weight percent of the corresponding
oxides (oxide wt %).
2.3.3. Glass Contents
The measurements of glass and crystalline component phases within the selected ash samples were per-
formed on a Leica Reichert Polyvar2 optical microscope equipped with light polarization and image capture
software (Leica IM 500). The powder samples were mounted on a microscope glass sample holder using
Crystalbond 509. We employed three modes of operation: (1) transmitted light (TL) bright-field (BF) illumina-
tion, (2) TL cross-polarized (PL) illumination at two different angles at 0° and 45° (two images) using polarized
light, and (3) TL interference contrast (IC) illumination [McCrone et al., 1978].

Figure 5 shows an overview of images of the three modes for the example sample GRI. The TL-IC image
(Figure 15b) was used to determine the total pixel area of the particles, after removing the background by
an image processing procedure, whereas the TL-PL images were used to determine the total pixel area of
component phases within the samples. It was then possible to calculate the total glass (amorphous)

Figure 5. Optical microscope images of ash from the 2011 Grímsvötn eruption (sample GRI). (a) TL-BF: bright-field image,
(b) TL-IC: interference contrast image, (c) TL-PL: cross-polarized image at 0°, and (d) TL-PL: cross-polarized image at 45°.
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fraction by analyzing these two areas. TL-BF images were used to correct for the presence of opaque particles,
where no discrimination between the glass and crystal phases was possible.

2.4. Microphysical Characterization
2.4.1. Image Analysis of Particle Size and Morphology
For the measurement of particle size and morphometric characterization, we used an automated static par-
ticle imaging (ASPI) instrument (Malvern Instrument Morphologi G3). The ASPI is an optical analyzer for the
characterization of the particle morphology on a two-dimensional projection area. A full description of the
instrument and all relevant features can be found in Leibrandt and Le Pennec [2015] and Liu et al. [2015].
The ASPI instrument is a state-of-the-art instrument, which provides reliable and reproducible particle infor-
mation for a statistically significant number of particles with a low relative standard deviation on average
values (<0.2%) [Leibrandt and Le Pennec, 2015]. Therefore, the data acquired with this instrument can be used
for a parameterization of different shape descriptions in particle transport and dispersion as well as climate
models (Figure 1).

For the instrumental setup, we used the standard operation procedure described by Leibrandt and Le Pennec
[2015] for two different microscope objective lenses. A 20Xmagnification objective lens was used for the par-
ticle sizes between 1.8 and 100 μm and a 5X magnification objective lens for the size range of 6.5–420 μm.
The use of the 20X magnification objective was important as the 5X objective has a poorer resolution below
63 μm particles [Leibrandt and Le Pennec, 2015]. The particle sample area was set to 314.16 mm2 for the 20X
objective and 1256.64 mm2 for the 5X objective to capture a high number of particles. The difference
between the two sample areas guaranteed the characterization of a statistically adequate number of the less
abundant larger particles. The total number of individual particles measured for each ash sample was
between 106 and 107 based on an initial sample volume of 7 mm3, providing high statistical significance.
The light source was set to be diascopic, which means that the light shone from below the carrier unit to pro-
duce a sharp contrast between the dark ash particles and the light illuminated background. Due to the very
narrow depth of field of the individual objective lenses, we used a two layer Z-stacking option. Z stacking is a
function that takes several images, each at different heights Z, before these pictures are overlaid to form a
single composite picture. This option ensures accurate focusing and a quasi-three-dimensional representa-
tion of the particle projection area.

The particle area is defined as the sum of individual pixels (ap) (A= ∑ ap) within the borders of the detected
area that is set by the threshold settings of the different objective lenses. The border represents also the par-

ticle perimeter (P) that is calculated using the Cauchy-Crofton equation (P ¼ π
N

∑πaIαdL), from the number of

intercepts (I), formed by a series of parallel lines, with spacing dL, exploring N directions, from α to π.
Within this detected area, the distances (longest, intermediate, and shortest) of each particle axis can be
directly measured. The particle length is defined as the maximum distance between two points on the peri-
meter parallel to the major axis, which is the angle of the major axis from a horizontal line. The particle width
is defined as the maximum distance parallel to the minor axis, which passes through the center of mass at
right angles to the major axis. The intermediate particle length is defined as the maximum distance between
points on the particle axis with 45° inclination to the major axes. Illustrations of the particle area, the different
distances, and the particle perimeter that are essential for further particle size, form and shape descriptions,
are illustrated in Figure 6.

For the description of the particle size, we used the circle equivalent particle diameter (d2-D), also known as
the Heywood diameter, that relates the measured two-dimensional particle area to a particle size by the
assumption that the measured particle has the same two-dimensional projected area as a circle

d2D ¼
ffiffiffiffiffiffiffiffiffiffiffi
4A=π

p
: (2)

To describe particle form and shape, we chose three different nonsphericity parameters: the aspect ratio (AR),
the Cox circularity (ϕ), and theWilson shape parameter (WSP) introduced byWilson and Huang [1979]. The AR
is defined as the ratio between the longest distances of each major axis of the projected particle area

AR ¼ dl axis1

dl axis2
(3)
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and is a classical description of the
particle elongation. The AR, for
example, is employed in radiative
transfer models when nonspheri-
city of the ash particles is consid-
ered [Kylling et al., 2014] or as one
of the shape descriptors for esti-
mating drag coefficients of non-
spherical particles [Bagheri and
Bonadonna, 2016b]. The true
particle sphericity is a three-
dimensional characteristics of par-
ticle shape, which is defined as
the ratio of surface area of a sphere
with the same volume as the parti-
cle to the surface area of the parti-
cle [Wadell, 1932]. For irregular
particles, however, the surface area
is not an absolute value and

depends on the scales at which the measurements are carried out [Bagheri et al., 2015]. Bagheri et al.
[2015] showed that a two-dimensional surrogate for the true sphericity of VA and lapilli-size particles (mea-
sured with resolutions of 1–100 μm) are the circularity measures. Here we measured the Cox circularity (φ)
[Cox, 1927] that is found to have a high correlation with sphericity of VA with vesicular surfaces (opening dia-
meter of the vesicles on the surface is 5–40% of particle diameter, see Bagheri et al. [2015] for more details).
Parameterϕ is defined as the ratio of the circle equivalent particle two-dimensional projected area to the sur-
face area represented by the square of the particle perimeter

ϕ ¼ 4πA
P2

: (4)

The last parameter is the Wilson shape parameter (WSP) [Wilson and Huang, 1979]. The WSP is defined as the
ratio of the sum of the intermediate (dl_axis3) and shortest (dl_axis2) distance to the longest (dl_axis1) axis

WSP ¼ dl axis3 þ dl axis2

2 dl axis1
; (5)

and is often used in radiative transfer models. All described shape parameters are normalized and range from
0 to 1, where 1 corresponds to a perfectly spherical particle. For a validation of the measured size and shape
parameter by the ASPI instrument, we used a second instrument (CamsizerXT). This instrument, a dynamic
image analyzer (DIA), uses the same physical approach, but in a wet dispersion module configuration, where
the particles are suspended in water and circulated through the measurement chamber (two cameras setup)
[Retsch Technology GmbH, 2016]. The use of a second instrument allowed us to identify and eliminate poten-
tial instrumental biases.
2.4.2. Dense-Rock Equivalent Mass Density
We used two different approaches to determine the mass density: (1) direct measurements of the dense-rock
equivalent (DRE) mass density of the particle skeleton using Archimedean densitometry and (2) theoretical
mass density calculations based on mass fractions for the major oxides as obtained from the compositional
analysis and crystalline volume data from Lange and Carmichael [1987]. The mass density measurements
were done using a pycnometer (also called specific gravity bottle), which involved weighing the ash sample
in air (ms) and in another fluid (ml) (here water at constant and known temperature) with a well known den-
sity (ρl). The measured mass density is derived from the following equation

ρm ¼ ms

Vc � ml=ρlð Þ ; (6)

Figure 6. Illustration of the measured size and shape parameters by the ASPI
and the DIA instruments. The dashed lines indicate the main particle axis in
each direction.
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using the mass of the particle sample (ms) and the difference between the total volume of the cylinder (Vc)
and the water volume (Vl= (ml/ρl)). Every ash sample was analyzed several times (including measurements
at different water temperatures) to ensure reproducible and reliable results. This approach is accurate, ela-
borative, and well known for measuring the mass density of solid materials over a large range of particle sizes
(fine ash fraction) [e.g., Pistolesi et al., 2014].

The second method to determine the mass density of the samples is to relate the chemical composition of
the bulk ash material directly to its mass density. This approach allows a consistency check of the measured
mass density values and can be used to calculate the mass density when no densitometry measurements are
possible or only chemical compositional data are available. For the theoretical mass density

ρt ¼
∑ni¼1Mi Xi

∑ni¼1Vi Xi
(7)

we used EDS data and the component specific volume, where the sum of the partial molar mass of each com-
ponent (Mi) and the component mole fractions (Xi) is divided by sum of the partial volume of each oxide com-
ponent (Vi ) and the component mole fractions (n being the total number of major components within the
sample). The partial volumes of each oxide component are based on solid particles and were taken from
Lange and Carmichael [1987].

2.5. Optical Characterization

The complex refractive index (RI) is a complex number and a quantitative measure of the reflectance, trans-
mittance and absorption properties of a substance. Reliable information about the RI is important to relate
optical measurement signals to particle information such as size (effective radius), size distribution, and ulti-
mately the ash mass concentration. It is also needed in radiative transfer models for a quantification of the
impact of volcanic ash on the Earth’s radiative budget. The RI (N) is a function of the light wavelength (λ)
and the chemical composition of the sample (see equation (1)).

The amount of direct and diffused refraction and attenuation of incident light by the different samples was
measured using a commercial double-beam UV/Vis/NIR spectrophotometer (Perkin Elmer Lambda 950)
equipped with a white Ulbricht integrating sphere. The integrating sphere was Spectralon covered to accom-
plish the diffuse signal detection. The instrument was equipped with sample thickness compensating detec-
tor optics and had ameasurement range of λ = 250–2500 nm. The analysis spot on the sample surface was set
to 10 mm × 5 mm, which allowed representative surface integration of the signal. The instrument has two
light sources: a deuterium lamp for the UV range (up to 400 nm) and a tungsten lamp for the rest of the spec-
trum (Vis/NIR). The slit widths were set for 2 nm spectral resolution.

Measurements of light through fine-grained particles embedded in a host material (pellet sample) is a direct
method that enabled us to determine kλ in a wide spectral range. Reliable transmission measurements for our
samples could be made in the wavelength range between λ = 300 and 1500 nm due to presence of specific
absorption bands of the used resin for λ > 1500 nm. The volume averaged imaginary part of the refractive
index (kλ) of the ash samples can be calculated using Beer’s law

I λð Þ ¼ I0 λð Þe�αabs λð Þt t; (8)

where I0(λ), I(λ), αabs(λ), and t are the intensity measured in absence of the sample, the measured intensity of
the sample (ash samples in host material), the volume absorption coefficient, and the sample thickness
respectively. The volume absorption coefficient

a λð Þ ¼
4πkeff λð Þ

λ
; (9)
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is related to λ and the effective extinction coefficient part (keff(λ)) of the complex refractive index. By combin-
ing equations (8) and (9), we can calculate keff(λ) for the pellet sample (ash samples in host material):

keff λð Þ ¼ λ
4πt

� ln
I λð Þ
I0 λð Þ

� �� �
; (10)

As a final step, the material specific extinction coefficient (kash λð Þ) for the pure ash sample can be calculated by

dividing keff(λ) by the volume fraction of the embedded ash in the host material (f = VT/Vash)

kash λð Þ ¼
keff λð Þ
f

: (11)

The transmittance measurements were conducted for two different volume fractions (f = 0.01 and 0.05) to
avoid potential biases due to the particle amount in the pellet sample. The volume fractions were calculated
using the measured mass density values of the samples and the weighed ash particle mass. Results for the
two volume fractions were subsequently averaged and the deviation taken as a measure of the uncertainty
of the imaginary part determination. To remove the host material contribution at specific wavelengths, we
applied a second-order polynomial.

To obtain nλ, we used a model that is a combination of Sellmeier dispersion equations [Weber, 2003] in com-
bination with a theoretical calculation of the refractive index from chemical composition data as described by
Church and Johnson [1980]. This approximate approach has been caused by the fact that the total integrated
reflection values of our samples embedded in the host matrix (pellet samples), also measured by the spectro-
photometer, resulted in much higher reflectance values (30–40%) than conceivable considering the chemical
and morphological nature of the powders. Potential reasons for such high reflectance are not entirely inves-
tigated, but part of ongoing research. Simultaneous elaboration of reflectance and transmittance data will
bring most reliable empirical data on the RI of the ashes.

The model is based on dispersion curves for known chemical compositions and theoretical calculations of
the refractive index. The Sellmeier equation is a semiempirical relationship between refractive index and
wavelength for a transparent to slightly absorbing medium (in condition k ≪ n). The form of the
Sellmeier equation is

n2λ ¼ 1þ ∑
Biλ2

λ2 � Ci

� �
; (12)

where the n is a function of the light wavelength (λ) and two empirically determined Sellmeier coefficients B
and C. These dimensionless coefficients are material specific and represent an absorption of strength Bi at a
wavelength

ffiffiffiffi
Ci

p
. We applied the Sellmeier equation to all oxide components found in the ash particles multi-

plied by the weight fractions (wi) of the major oxides, derived from the EDS bulk-compositional data, to
obtain an averaged dispersion function. This calculation gives the weighted dispersion of the scattering part
as a function of wavelength in the range between 300 and 1500 nm. To derive the material specific nm, the
calculated dispersion curve was fitted using single point values for a defined chemical composition and a sin-
gle wavelength (in the visible range). The single point calculation

nm � 1ð Þ ¼ ∑nmi¼1xiwi (13)

is based on an arc-function, a quantitative relationship between the chemical composition of the sample and
refractive index of individual components, where wi is multiplied by empirically derived refractivity material
specific constants (xi) for major component oxides. The individual constants are obtained by the Becke line
method of pure components and are taken from Church and Johnson [1980].
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3. Results
3.1. Chemical Composition

Table 2 shows the averaged chemical composition in oxide weight percent for all nine volcanic ash samples.
The VA samples show characteristic compositions over a large SiO2 and total alkali (TA) content range (51.7 to
77.1 wt % and 2.67 to 7.31 wt %, respectively). The mafic basaltic (GRI) and the felsic rhyolitic (CHA) ash sam-
ples show only small variations in composition, represented by their standard deviation, both in TA (±0.43%
and ±0.64%) and in SiO2 (±0.73% and ±1.19%) content, whereas the basaltic-andesitic to dacitic (intermedi-
ate volcanic rock range) samples show greater compositional variations and span over more than one rock
type group (Figure 7). However, all samples could be classified into one defined igneous rock group as indi-
cated by the colors in Figure 7. For further analysis (mass density and optical properties), we averaged the
samples SPU, SAK, and EYJ for the andesitic ash type and MSH, SOU, and RED for the dacitic ash type. In none
of the samples we found a size dependent chemical composition variation (largest analyzed particle size was
100 μm), but some individual particles showed very different SiO2 content (<5% of all particles) due to the
glassy phase fraction within the samples.

Figure 8 shows the variation of the different oxides in the bulk composition with varying SiO2 contents. FeO is
decreasing with increasing SiO2 in accordance with the expected variations of Fe contents in the magmas. Fe
contents tend to decrease with increasing SiO2, from 7–8 wt % in basaltic magmas to ~2 wt % in rhyolitic
magmas [Le Maitre, 1976; Rogers and Hawkesworth, 2000]. CaO and MgO follow the same trend as FeO (r2

values between 0.5 and 0.85), which indicates that FeO, CaO, and MgO exist mostly in the silicate phase
where Fe2+, Ca2+, and Mg2+ occupy interstitial sites between the silicate tetrahedral [Mysen and Richet,
2005]. The alkali oxides K2O and Na2O increase with increasing SiO2 indicative of their participation in the
SiO2 glassy phase (Figures 9 and 10). Al2O3 present in alumino-silicates should increase with SiO2 if SiO2

was exclusively associated with alumino-silicates. However, the crystalline SiO2 content also increases with
increasing SiO2 wt % in andesitic, dacitic, and rhyolitic compositions. The presence of Al2O3 in the same
phase with SiO2, but also as an independent phase, may explain why Al2O3 does not show a clear trend (ratios
between 0.24 and 0.31, except for CHA sample due to very high SiO2 content). TiO2 shows the same trend as

Table 2. Normalized Averaged Bulk-Chemical Composition of Ash Samples in wt % Measured by EDS, Including Composed Alkali Oxides and Calculated Ratios
Between Individual Elements and the Predominate SiO2 Content

a

GRI KEL SAK EYJ SPU RED SOU MSH CHA

Major oxides (μ ± σ)
SiO2 51.7 ± 0.7 56.1 ± 7.6 60.0 ± 7.7 61.2 ± 3.8 61.7 ± 3.4 69.4 ± 8.7 68.4 ± 9.3 68.6 ± 7.1 77.1 ± 1.2
Al2O3 13.6 ± 0.6 19.2 ± 12.2 18.3 ± 10.6 14.7 ± 4.0 19.0 ± 4.7 16.9 ± 6.4 15.9 ± 7.4 17.1 ± 4.5 13.1 ± 0.8
FeO 13.3 ± 0.7 4.89 ± 5.5 5.70 ± 7.6 8.25 ± 3.6 4.54 ± 2.5 2.12 ± 3.1 2.83 ± 4.8 2.67 ± 5.6 1.12 ± 0.4
MgO 5.83 ± 0.5 5.33 ± 8.1 4.10 ± 7.4 2.13 ± 2.3 2.04 ± 2.7 1.29 ± 4.8 2.71 ± 6.5 0.82 ± 3.2 0.00 ± 0.0
Cao 9.54 ± 0.4 11.6 ± 6.3 7.41 ± 4.9 4.92 ± 2.4 6.48 ± 2.4 4.08 ± 3.7 4.61 ± 3.2 3.58 ± 2.7 1.27 ± 0.3
Na2O 3.01 ± 0.4 2.26 ± 1.6 3.27 ± 2.0 5.26 ± 2.1 4.45 ± 1.0 4.39 ± 1.2 4.10 ± 1.6 5.30 ± 1.6 4.38 ± 0.5
K2O 0.15 ± 0.3 0.41 ± 0.9 0.76 ± 1.1 1.66 ± 0.9 1.29 ± 1.0 2.11 ± 1.3 1.31 ± 1.2 1.76 ± 1.3 2.94 ± 0.3
TiO2 2.70 ± 0.3 0.18 ± 0.3 0.16 ± 0.5 1.75 ± 2.5 0.42 ± 0.8 0.05 ± 0.2 0.02 ± 0.1 0.17 ± 1.1 0.04 ± 0.3
MnO 0.00 ± 0.0 0.14 ± 0.3 0.07 ± 0.2 0.00 ± 0.0 0.00 ± 0.0 0.04 ± 0.2 0.03 ± 0.2 0.00 ± 0.0 0.00 ± 0.0
Total 99.8 100 99.7 99.8 100 100 99.9 100 100

Alkali (Na2O
+ K2O) 3.16 ± 0.6 2.67 ± 2.2 4.04 ± 2.4 6.92 ± 2.6 5.74 ± 1.3 6.50 ± 1.8 541 ± 2.0 7.06 ± 2.2 7.31 ± 0.6

Ratios
Al2O3/SiO2 0.26 0.34 0.30 0.24 0.31 0.24 0.23 0.25 0.17
FeO/SiO2 0.26 0.09 0.09 0.13 0.07 0.03 0.04 0.04 0.01
MgO/SiO2 0.11 0.10 0.07 0.03 0.03 0.02 0.04 0.01 0.00
Cao/SiO2 0.18 0.21 0.12 0.08 0.10 0.06 0.07 0.05 0.02
Na2O/SiO2 0.06 0.04 0.05 0.09 0.07 0.06 0.06 0.08 0.06
K2O/SiO2 0.00 0.01 0.01 0.03 0.02 0.03 0.02 0.03 0.04
TiO2/SiO2 0.05 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00
MnO/SiO2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Alkali/SiO2 0.06 0.05 0.07 0.11 0.09 0.09 0.08 0.10 0.09

Componentry (% ± σ)
Glass phase 50.9

±1.8
50.7

±3.1
60.6

±2.3
54.2

±8.0
57.6

±6.5
69.5

±7.1
65.3

±2.4
69.5

±3.0
72.0

±1.7
Crystalline phase 49.1 49.3 39.4 45.8 42.4 30.5 34.7 30.5 28.0
Ash type Basalt Basalt-andesite Andesite Trachy-andesite Andesite Dacite Dacite Dacite Rhyolite

aThe samples were ordered according to their SiO2 and total alkali contents into the main igneous rock classes indicated in the table.
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FeO, as TiO2 has a stronger presence in lower silicate magma compositions. The calculated ratios between the
individual components and SiO2 are also summarized in Table 2. The measured chemical compositions of the
ash samples correspond well with values reported in the literature (see references in Table 1).

3.2. Glass Contents

The correlation between the measured SiO2 contents (bulk SiO2 from EDS measurements) and the analyzed
glass contents (analyzed light microscopy images) is shown in Figure 10. The colors represent the igneous
rock types following Figure 6. We found that the mean glass contents of the ash samples ranged between
50% (2-D cross-sectional area analysis) glass content for the basalt/basaltic-andesite samples (GRI and KEL)

Figure 7. Classification of ash samples following their mean total alkali and silica (TAS) contents based on energy dispersive
spectroscopy (EDS) data into themain igneous rock types. The colors in the plot represent themain igneous rock groups for
basaltic (dark blue), basaltic-andesitic (blue), andesitic (green), dacitic (orange), and rhyolitic (red) ash types, that are used
for the presentation of the complex refractive index data in section 3.2.

Figure 8. Correlation of the main chemical components with the silica content for the bulk-composition. These are
(a) Al2O3/SiO2 ratio, (b) FeO/SiO2 ratio, (c) CaO/SiO2 ratio, (d) MgO/SiO2 ratio, (e) Na2O/SiO2 ratio, (f) K2O/SiO2 ratio,
and (f) TiO2/SiO2 ratio. The blue lines indicate the resulting regression functions between each component.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD026328

VOGEL ET AL. VOLCANIC ASH PROPERTIES 9499



and 72% glass content for the rhyolitic sample (CHA). However, the variation within each sample represented
by the error bars indicates that individual particles can have smaller or higher values. Furthermore, we found
that within individual compositional classification types the glass contents can vary up to 20% (Table 1).

3.3. Particle Size Distribution

The box-whisker plots of the particle number distributions of the ash samples are shown in Figure 11. The
mean and median particle sizes, indicated by the red line and diamonds, respectively, vary from sample to
sample (depending on distance between the eruption and sample location, eruption style, and meteorologi-
cal conditions), but all ash samples show a comparable number distribution with a median size between
2.4 μm for GRI and 11 μm for KEL. The minimum detected particle diameter of each sample is 1.5 μm, due
to the lower particle size threshold of the instrumental setting, whereas the maximum particle diameters
are greater than 100 μm. The maximum particle sizes vary between 120 μm for SPU and 280 μm for SAK
but represent less than 1% of the total number distribution indicated by the blue crosses.

Additional sensitivity tests with a 50X
objective lens indicate that the mini-
mum particle size in each sample is
smaller (<1 μm), but the mean and
median size of the particle size distri-
bution changed only marginally. The
majority of all particles (25–75%
range) in each sample range
between 2 μm for GRI and 20 μm
for KEL (indicated by the boxes) and
are therefore within the particle size
range that is most relevant for atmo-
spheric long-range transport.

3.4. Particle Morphology

Particle morphological parameters
within the measured ash samples dis-
played a wide range of variability,
which decreased as particle size
increased (Figure 13, blue markers).

Figure 9. Correlation of the surface-composition (y axis) and the bulk chemical compositions (x axis). The dashed lines indi-
cate the 1:1 line corresponding to an identical composition of the particle bulk and the particle surface. The different panels
show correlations for (a) SiO2, (b) Al2O3, (c) FeO, (d) CaO, (e) MgO, (f) Na2O, (g) K2O, and (f) TiO2.

Figure 10. Comparison of SiO2 contents (wt %) and glass contents (%) for
the nine ash samples. The colors indicate the igneous rock types according
to the classification in Figure 7. SiO2 data are based on bulk composition
measurements (EDS) and the glass content data on light microscope image
analysis.
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Particle morphology was characterized in coarse (d2-D = 63–100 μm) and fine (d2-D < 63 μm) fractions for
each ash sample (Figure 12). For a consistency check, we also evaluated the differences between the
<20 μm size range (very fine ash fraction) and the fraction between 20 and 63 μm. As we found no
significant differences between these two size fractions, we report values only for the fine and coarse
ash fractions.

Figure 12 shows the three shape parameters for all samples separated into the fine and coarse ash fractions
measured by ASPI. One the one hand, the shape parameter mean values are remarkably consistent between
the nine different ash samples, with only 2.35–6.25% variation for the fine fraction and 5.32–13.2% variation
for the coarse ash fraction.

On the other hand, the variability of particle shapes within each ash sample, indicated by the standard devia-
tion, is much higher (up to 20%) as the shapes for individual particles can range from spherical to highly non-
spherical (see blue dots in Figure 13). The aspect ratio and the Wilson shape parameter, which both describe
the particle elongation [Bagheri et al., 2015], indicate very small differences between the fine and the coarse
mode particles, whereas the Cox circularity is larger for smaller particles.

In addition to the comparison of the averaged shape parameters for the coarse and fine fraction of the ash
samples, we also analyzed the shape directly as a function of particle size in the size range <100 μm
(Figure 14). Since there were relatively small differences in the shape parameters between the different
ash samples, we only show the size-dependent shape parameter for all samples together. Therefore, each line

Figure 11. The box-whisker plot of the particle number distribution of each sample measured by ASPI. The red solid line
indicates the particle median diameter, the diamond marker the mean diameter, the boxes the particle fraction within
the 25–75% quartiles of the median, the dashed lines the 5–95% quantiles, and the red crosses the minimum and maxi-
mum detected circle equivalent particle diameters (d2-D).

Figure 12. (a) Aspect ratio, (b) particle Cox circularity, and the (c) Wilson shape parameter measured by ASPI for the nine different ash samples. The black and gray
lines indicate the coarse (d2-D = 63–100 μm) and the fine ash fraction (d2-D < 63 μm) of the samples.
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represents the averaged shape para-
meter, where the error bars indicate
the variability among the samples.
For presenting the data, we formed
size bins with 5 μm intervals indi-
cated by the markers, where the first
marker indicate the 1.5–5 μm bin,
the second marker the range
between 5–10 μm, 10–15 μm, etc.
Although the fine and coarse ash
fractions of the aspect ratio and the
Wilson shape parameter show almost
no difference, different particle size
classes can have different shapes.
The two shape parameters first
decrease with size, before they
increase again at around 10 μm. The
Wilson shape parameter is thereby
less size sensitive than the aspect

ratio and also shows the smallest variability among all samples as indicated by the error bars. The Cox circu-
larity, however, shows a continuous decrease with increasing particle size over the entire size range.

Noticeable is also that the smallest particles (first few μm), for all shape parameters, show higher values (close
to 1) than the rest of the data. To confirm this result and to exclude instrumental artifacts, we additionally ana-
lyzed samples with a 50X magnification objective lens, designed for the size range of 0.5–40 μm, to see if the
particle shape behavior within this size range is the same as obtained with the 20X magnification objective.
We found no difference and observed that the shape trend continued in the <1 μm range (indicated by the
dashed lines in Figure 14).

Figure 13. Correlation between the ASPI and the DIA instruments for the cal-
culated aspect ratio of an sample KEL. The blue dots are the single analyzed
particles measured by the ASPI, and the red line is the corresponding aver-
aged aspect ratio. The yellow line indicates the mean aspect ratio measured
by DIA over the same size range.

Figure 14. Shape parameters plotted as a function of the particle diameter (d2-D) in the size range between 0.5 and
100 μm. Shape parameters are averaged over 5 μm size bins using data from all analyzed particle samples. The variation
of the parameter values is indicated by the standard deviation.
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As a general validation of the measured size and shape parameters obtained by ASPI and to eliminate poten-
tial measurement artifacts, we repeated the analysis with a second instrument (DIA) that measured the same
parameters. Figure 13 shows, as an example, the correlation between the ASPI and the DIA instruments for
the calculated aspect ratio for the sample KEL. The blue dots indicate single analyzed particles measured
by the ASPI. The red line illustrates the corresponding averaged aspect ratios resulting from the average of
the single point measurements. The yellow line indicates the aspect ratio over the same size range measured
by DIA. The correlation of the two data sets shows a good agreement between the two instruments and thus
confirms the measured shape trends by the ASPI. Moreover, the measurements by the DIA also confirm the
increase of the shape parameter in the size range between 0.5 and 5 μm (first marker).

3.5. Mass Density

Figure 15a shows the correlation of the DRE density measured by Archimedean densitometry and the SiO2

content obtained by EDS. We used the SiO2 content, as a predominant and representative component in

Figure 15. (a) Measured mass density versus SiO2 content as a predominant fraction of the overall bulk-chemical composi-
tion measured by EDS and (b) measured mass density versus mass density derived from the measured chemical compo-
sition. The solid lines show the regression functions between the values, whereas the dashed line in (b) represents the 1:1
line. The shaded area in Figure 15a indicates the 1-sigma range of the correlation between the measured mass density and
the SiO2 content.
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each sample with more than 50 wt %, to correlate the measured density with the chemical composition. The
resulting regression function (y = �0.0189 + 3.8988) and the 1-sigma ranges, indicated by the blue line and
the blue shaded area in Figure 15a, respectively, illustrate that the DRE density decreases with increasing SiO2

content (r2 = 0.94). The scatter of the data results from uncertainties of both the measured density, the
vesicularity, and of the measured composition. The resulting measurement uncertainty range is between
10.3 and 19.34% for KEL and RED, respectively.

For a consistency check of the measured mass density data, we also calculated the density based on the
major oxides weight fractions as obtained from the compositional analysis (EDS). The correlation in
Figure 15b shows that both approaches give similar results with values around the 1:1 line and a high corre-
lation coefficient (r2 = 0.93; the black solid line represents the resulting linear regression, y= 1.1903x� 0.4556).
However, all values lie within the uncertainties of the measurements that originate mainly from the small
variability of chemical composition and vesicularity within the ash samples.

According to the igneous rock classification, we calculated average density values based on the regression
function obtained by the correlation of the SiO2 content and the measured mass density. Hence, the density
including their standard deviation (μ ± σ in g/cm3) for basaltic, basaltic-andesitic, andesitic, dacitic, and rhyo-
litic ashes are ρ = 2.98 ± 0.04, 2.87 ± 0.03, 2.77 ± 0.03, 2.65 ± 0.03, and 2.49 ± 0.06 g/cm3, respectively (Table 5).

3.6. Complex Refractive Index

We obtained complex refractive index data in the wavelength range between λ = 300 and 1500 nm. We used
the combination of a theoretical arc function method and Sellmeier dispersion equations to derive the scat-
tering properties in a chemical and theoretical description as shown in Figure 16a. Values for the standard

Figure 16. Overview about (a) the real part, calculatedwith the theoretical arc fusionmethod [Church and Johnson, 1980] in
combination with Sellmeier dispersion formulas for the measured chemical compositions, and (b) the imaginary part based
on direct spectrophotometer measurements of the complex refractive index sorted into the different igneous rock
groups for basaltic (dark blue), basaltic-andesitic (blue), andesitic (green), dacitic (orange), and rhyolitic (red) ash types.
Note that the calculated and measured values are plotted at high spectral resolution, but for a better orientation the
standard deviation of each sample group is plotted only at 100 nm intervals (circles).
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deviation of the data were calculated using the reported uncertainties (±0.007) of the single-point refractive
index calculation. Since these data are based on theoretical calculations, the distribution over the wavelength
range of these data are very similar. However, the data show that the nλ are highest in the UV range and
decrease with wavelength.

For a systematic representation of these data, we used the chemical composition of our samples, obtained by
EDS, to group the nine different samples according to their SiO2 and total alkali contents into the five main
igneous rock groups. The data illustrate the strong dependence of the scattering part on the chemical com-
position of the samples. The lowest scattering values were found for the highest SiO2 content ash type (rhyo-
litic ash) with values between nλ = 1.38 for 1500 nm and nλ = 1.53 for 300 nm wavelengths, whereas the
highest values were found for the lowest SiO2 content (basaltic ash) with values between nλ = 1.50 for
1500 nm and nλ = 1.66 for 300 nm. The other ash types (basaltic-andesitic to dacitic ash) lie between the
basaltic and rhyolitic ash types according to their chemical compositions.

For the determination of kλ, we did not find any systematic differences between the 1 vol % and 5 vol % sam-
ples. Therefore, we first averaged the data from the 1 and 5 vol % pellet samples and, secondly, averaged the
measurement data for samples in each group according to the igneous rock classification. Different to the
trend for nλ, the values for kλ are lower in the UV-range and increase with wavelength due to the presence
of wide absorption bands in the NIR, varying in intensity from different ash types and thus with the
chemical compositions. The lowest absorption values were found for the highest SiO2 ash type (rhyolitic
ash) with values between kλ = 0.00028 for λ = 300 nm to kλ = 0.00054 for λ = 1500 nm wavelengths, whereas
the highest values were found for the lowest SiO2 content (basaltic ash) with values between kλ = 0.00165
for λ = 300 nm to kλ = 0.00268 for 1500 nm wavelengths. Like in the scattering regime, the other ash types
(basaltic-andesitic to dacitic ash) lie between the basaltic and rhyolitic ash types according to their
chemical compositions. The samples with the smallest variation in chemical composition showed also
the smallest variation in absorptivity.

4. Discussion
4.1. Particle Composition

Chemical composition forms the basis of volcanic ash classification [Le Bas and Streckeisen, 1991] and has a
fundamental influence on other parameters such as the mass density or the optical properties. The deviation
in composition in the intermediate range (basaltic-andesitic to dacitic ash) as shown in Figure 7 can be the
result of several processes such as fractional crystallization of a mafic parent magma, partial melting of crustal
material, or magma mixing between felsic rhyolitic and mafic basaltic magmas in a magma reservoir. Our
measured compositions of the individual ash sample are confirmed by earlier studies where the same sam-
ples were already analyzed and their compositions determined [e.g., Bayhurst et al., 1994; Adams et al., 1996;
McGimsey et al., 2001; Alfano et al., 2011; Gislason et al., 2011; Cole et al., 2015].

The ratios between the particle bulk and surface composition (oxides in wt %) are shown in Figure 9. The SiO2

ratios show an overall behavior, where there is a 1:1 surface to volume compositional ratio or a surface enrich-
ment in SiO2. This is reasonable if we consider that most of the bulk composition consists of SiO2 and most of
the fracture and therefore surface formation originates in the amorphous silicate phase. Another feature is
that Ca, Mg, Na, and K ratios follow overall similar trends and are slightly depleted in most ash surfaces as
reported by Delmelle et al. [2007], Ayris and Delmelle [2012], and Barone et al. [2014]. We found also a smaller
Fe concentration in the particle surface than in the particle bulk but less pronounced than shown by Delmelle
et al. [2007]. The depletion of these substances on the particle surface may result from either dissolution of an
external layer by corrosive mixed gaseous/aqueous fluids (with, e.g., H2S, SO2, HCl, HF, HBr, or H2SO4 forming
acidic conditions) or from gaseous fluorine metasomatism at high temperature [Delmelle et al., 2007; Barone
et al., 2014]. Acidic conditions could promote dissolution of the basic FeO, CaO, and MgO oxides and forma-
tion of soluble salts, which can be washed away by water. The Al2O3 ratios show the smallest variation. All
values lie around the 1:1 ratio line. The small deviations may originate from either Al2O3 participating in
the silicate phase or also in other crystalline oxide phases. TiO2 ratios follow the trend of FeO as these two
oxides coexist in the same mineral phases titan magnetite (Fe2TiO4) and ilmenite (FeTiO3) [Ayris and
Delmelle, 2012].
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Our glass content data show a good correlation with available literature on the same volcanic eruptions and
samples (Table 3). The variation between the values result from differences in sample collection (time and
location), applied measurement technique and number of analyzed samples. In the case of our light micro-
scope image analyses, the uncertainties result from manual thresholding (contrast between some particles
and the background was too low), and in some cases crystalline particles were present on top of amorphous
phases and were taken as crystalline phases only. However, the deviation between the literature values and
our values are in the range of 12% and therefore within the error bars of our sample measurements. An com-
prehensive overview of the glass contents of ash from various eruptions is summarized in Cashman and Rust
[2016] (Figure 2 and table in the supporting information).

4.2. Particle Physical Properties

Improved knowledge about the microphysical properties of the fine ash fraction is important to investigate
atmospheric transport and remote sensing measurements of volcanic ash clouds [Riley et al., 2003]. The size
and shape controls particle aerodynamic parameter such as the drag coefficient and the terminal velocity of
the particles, whereas the mass density also influences gravitational settling and is important to calculate ash
mass loadings and mass concentrations from observed particle volume distributions.

The applied 2-D measurement approach is a simplified particle characterization method that provides reli-
able and accurate particle size and shape information [Leibrandt and Le Pennec, 2015; Liu et al., 2015].
Compared to very precise, but costly 3-D measurement methods as described by Bagheri and Bonadonna
[2016a], the 2-D measurements are faster to acquire without losing accuracy when a sufficient number of sin-
gle particles is investigated [Bagheri et al., 2015].

Our particle shape results show that the different shape parameters have a clear dependency on the indivi-
dual particle sizes (Table 4). This size dependency was consistent in all nine ash samples investigated in this
study. The shape parameter show thereby different trends with increasing particle size. Furthermore, findings
by Riley et al. [2003] and Mills and Rose [2010] confirm our results, as they found the same shape trend with
changing particle size, including the increase of shape parameter values for the smallest particle sizes
(<5 μm) as shown in Figure 14 for the their Mount Spurr and Fuego ash samples. The measurement with
an independent instrument (DIA) supports this result.

Particle DREmass density is an important parameter for both the atmospheric transport of VA particles and to
calculate their mass loadings from volumemeasurements. Our investigated values lie all in the reportedmass
density range for glass shards, lithic fragments, and crystalline minerals [Shipley and Sarna-Wojcicki, 1983] and
show that the DRE density can be clearly specified for each of the main igneous rock groups. In many atmo-
spheric related studies, the density is chosen rather arbitrarily due to a lack of reported direct measurements.
For example, during the 2010 Eyjafjallajökull eruption, values between ρ = 2.4 g/cm3 [Gudmundsson et al.,
2012] and ρ = 3.0 g/cm3 [Stohl et al., 2011] were used. Our data show a good agreement with DRE density
values reported by Bonadonna et al. [2011] for trachy-andesitic Eyjafjallajökull ash samples (ρ = 2.74 g/cm3)
and by Eychenne and Le Pennec [2012] for andesitic Tungurahua ash samples (ρ = 2.68 g/cm3). DRE mass den-
sity values reported by Pistolesi et al. [2014] for dacitic-rhyolitic Cordón Caulle ash samples (ρ = 2.69 g/cm3)
are slightly higher, but still within our 1-sigma range. The only reported value in the literature for direct

Table 3. Comparison of Glass Contents Between This Study and Available Literature Values for Volcanic Glasses of the
Same Eruption

This Study Reference

Volcano Eruption Date Glass Content (%) Glass Content (%)

Mount St.Helens 1980 70.0 72.0 Blundy and Cashman [2001]
Redoubt 1989 69.5 69.2 Nye et al. [1994]
Spurr 1992 57.6 64.5a Keith [1995]
Chaiten 2008 72.1 76.1 Castro and Dingwell [2009]
Eyjafjallajökull 2010 54.2 61.8b Sigmarsson et al. [2011]
Grímsvötn 2011 50.9 50.6 Sigmarsson et al. [2013]

aAveraged glass content, range 60–69%.
bAveraged glass content, range 59.5–65.5%.
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DRE density measurements, con-
ducted by Rocha-Lima et al. [2014]
for andesitic Eyjafjallajökull ash
(ρ = 2.16 g/cm3), is the only data
that do not correlate with our find-
ing and other findings by
Bonadonna et al. [2011] for the
same eruption. But they are even
smaller than the density of pure
glass shards (ρ = 2.35–2.45 g/cm3)
[Wilson et al., 2012], which is diffi-
cult to understand.

4.3. Particle Optical Properties

In the literature, only a small num-
ber of studies investigated the
optical properties of volcanic ash
particles and half of the studies
measured the absorption part of
the complex refractive index only
(as illustrated in Figure 2 and refer-
ences therein). To place our results
into the context of existing data
sets, we compared our data with
values from Ball et al. [2015]
(Ba15) for the wavelengths
λ = 450, λ = 546 and λ = 650 nm
and Pollack et al. [1973] (Po73) for
the scattering part (Figure 17),
and with values from Ball et al.

[2015], Pollack et al. [1973], Rocha-Lima et al. [2014] (Ro14), and Patterson et al. [1983] (Pa83) for the absorp-
tion part (Figure 18). For a better comparability of the different data sets, we grouped the literature data also
according to the reported chemical composition, into the igneous rock groups, where the colors in
Figures 17 and 18 correspond to the colors used in the SiO2 and total alkali International Union of
Geological Sciences (IUGS) classification (Figure 7). The dashed line in each plot indicates the 1:1 line.
Note that according to the IUGS classification, the chemical composition of the Po73 “andesite” sample

Table 4. Summary of the Shape Parameter of Analyzed Volcanic
Ash Particlesa

CE Diameter Aspect Ratio Cox Circularity Wilson SP

dCE ¼
ffiffiffiffiffi
4 A
π

q
AR ¼ dl_axis1

dl_axis2
ϕ ¼ 4 π A

P2
WSP ¼ bþcð Þ

2 a

(μm) (μ ± σ) (μ ± σ) (μ ± σ)

5 0.740 ± 0.023 0.859 ± 0.010 0.859 ± 0.010
10 0.680 ± 0.024 0.830 ± 0.011 0.830 ± 0.011
15 0.676 ± 0.020 0.828 ± 0.009 0.828 ± 0.009
20 0.681 ± 0.017 0.829 ± 0.008 0.829 ± 0.008
25 0.686 ± 0.018 0.831 ± 0.008 0.831 ± 0.008
30 0.690 ± 0.015 0.833 ± 0.007 0.833 ± 0.007
35 0.695 ± 0.016 0.835 ± 0.007 0.835 ± 0.007
40 0.701 ± 0.016 0.836 ± 0.007 0.836 ± 0.007
45 0.695 ± 0.023 0.834 ± 0.011 0.834 ± 0.011
50 0.710 ± 0.014 0.842 ± 0.007 0.842 ± 0.007
55 0.711 ± 0.019 0.841 ± 0.009 0.841 ± 0.009
60 0.713 ± 0.028 0.843 ± 0.012 0.843 ± 0.012
65 0.702 ± 0.036 0.838 ± 0.016 0.838 ± 0.016
70 0.725 ± 0.037 0.850 ± 0.021 0.850 ± 0.021
75 0.710 ± 0.039 0.843 ± 0.019 0.843 ± 0.019
80 0.702 ± 0.037 0.837 ± 0.016 0.837 ± 0.016
85 0.712 ± 0.031 0.844 ± 0.016 0.844 ± 0.016
90 0.720 ± 0.061 0.847 ± 0.028 0.847 ± 0.028
95 0.718 ± 0.050 0.846 ± 0.021 0.846 ± 0.021
100 0.751 ± 0.060 0.861 ± 0.030 0.861 ± 0.030
Total 0.706 ± 0.019 0.840 ± 0.009 0.840 ± 0.009
Fine fraction 0.698 ± 0.017 0.884 ± 0.016 0.837 ± 0.008
Coarse fraction 0.720 ± 0.015 0.867 ± 0.007 0.847 ± 0.007

aShown are the mean values of each size class (e.g., 1.5–5, 5.01–10, and
10.1–15 μm) including the standard deviation for the corresponding
classes in the size range between 5 and 100 μm for the shape parameter
aspect ratio, Cox circularity, and Wilson shape parameter.

Figure 17. Correlation of calculated real part data of complex refractive index with data from the literature: (a) Ball et al.
[2015] for the wavelengths 450, 546, and 650 nm and (b) Pollack et al. [1973] for the wavelength range between 300
and 1500 nm.
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corresponds to basalt-andesite and not andesite. Thus, we compared the Po73 “andesite” with our basalt-
andesite values. The calculated values for the scattering part show a good agreement (r2 = 0.97) with the
Ba15 data (for all ash types; Figure 17a), measured with the Becke line method. The scattering data for
the basaltic and the rhyolitic ash types in Po73 (Figure 17b) show a good agreement to our data
(r2 = 0.78 and 0.74, respectively), where both data sets reveal a similar trend with higher values in the UV
range and a decrease with increasing wavelength but with less variations in the Po73 data. However, no cor-
relation was found for the basalt-andesitic ash type. One potential reason for this could be that the Po73
data show no variability over the wavelength range. No other data set in the literature shows a similar trend
with no variation of nλ in the UV/Vis wavelength range.

The comparison of the measured absorption part data is shown in Figure 18, where our data are compared to
other direct transmittance measurements (Figures 18a and 18b) as well as to calculated absorption part data
from optical reflectance measurements (Figures 18c and 18d). Dependent on the techniques used to derive
the absorption properties, the agreement of the data can vary especially in the UV range. The correlation to
the direct transmittance measurements shows a good agreement. For Ba15 the data lie very close to the 1:1
line (r2 = 0.96). The correlation to the Po73 values shows no clear trend with a very low covariation. Our data
are higher for the basaltic sample, lower for the basalt-andesitic ash type, and nearly the same for the rhyolitic
ash type. The absorption part data obtained by the indirect measurement methods (scattering data were
converted to absorption using the Kubelka-Munk theory) show both the same pattern. The values are much
higher (light green dots in Figures 18c and 18d) in the UV range (λ < 500 nm) and show a decrease with
increasing wavelength before they increase again. We find no correlation when we compare our data to
all data points (wavelength range between λ = 300 and λ = 1600 nm) shown in Figures 18c and 18d.
However, if we compare our data with those of Ro14 and Pa84 only in the wavelength range between

Figure 18. Correlation of measured imaginary part data of refractive index with data from the literature. Correlation with
data from (a) Ball et al. [2015] for the wavelengths 450, 546, and 650 nm; (b) Pollack et al. [1973] for the wavelength range
between 300 and 1500 nm; (c) Rocha-Lima et al. [2014] for the wavelength range between 350 and 1500 nm; and (d)
Patterson et al. [1983] for the wavelength range between 300 and 700 nm.
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λ = 500 and λ = 1500 nm, we see a very good correlation with r2 = 0.84 and 0.6, respectively. Independent of
the deployed measurement technique in all studies and given the high variability in the chemical
composition of the individual samples, our results show reassuring conformity to existing literature values
(Figures 17 and 18).

The striking feature in all data sets (our data and available literature values), both for n and k, is the clear rela-
tion between high n and k values for low SiO2 contents and low values for high SiO2 contents (in UV/Vis/NIR
range). We summarized these findings in Figure 19 and in Table 5. The plot shows the real part (Figure 19a)
and the imaginary part (Figure 19b) of the complex RI as a function of both the spectral wavelength and the
SiO2 content (as a representation of the different chemical compositions) of the ash. These plots can be used
to get direct information of the RI for different instruments such as lidars, optical particle counters (OPCs), or
satellite instruments (knowing their specific wavelength for the detection of VA), when only the SiO2 content
of the magma is known.

4.4. Broader Context and Application of Data Set

This study presents for the first time a detailed data set that investigated a wide range of volcanic ash particle
properties for different volcanic ash types combined in one study. We placed our data in the context of exist-
ing data from other studies and combined them in this data set. Improved knowledge of the investigated

Figure 19. Contour plots of (a) the calculated real part and (b) the measured imaginary part of the complex refractive index
as function of the silica content (50–75 wt %) and the spectral wavelength in the range between λ = 300 and λ = 1500 nm.
The contour plots are based on the data shown in Figure 16.
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properties are relevant for the detection and forecasting of volcanic ash clouds as well as the estimation of
their potential impacts on climate, aviation, and human health. Thus, this data set can contribute to
minimize uncertainties in the calculation and detection of ash clouds for future or historic volcanic
eruptions even when only information about the magma composition is available. We make all data used
to generate figures and tables available (see the supporting information), and we hope that our data set
can serve as a reference for future studies requiring information on volcanic ash properties.

5. Conclusions

In this paper, we determined the physical, chemical, and optical properties of a representative selection
of fine ash samples (d < 63 μm) from nine different volcanoes and volcanic eruptions. We used different
measurement techniques (image analysis, Archimedean densitometry, energy dispersive, X-ray photoelec-
tron, and UV/Vis/IR spectroscopies) and theoretical methods to obtain the particle bulk and surface
chemical composition, the particle size and morphology, DRE mass density, and the spectral complex
refractive index.

EDS and XPS measurements showed that the particle bulk and surface have comparable chemical composi-
tions for most of the elements and that all ash samples could be clearly classified into one of the main
igneous rock type groups according to their SiO2 and total alkali contents. Thus, the nine VA samples cover
a wide range of SiO2 contents ranging from basalt (~50 wt % SiO2) to ehyolite (~80 wt % SiO2). The analysis of
the particle cross section returned stable and reproducible data on the chemical composition that plays a key
role in governing the mass density and the complex refractive index. Comparing the bulk composition with
the composition of the particle surface (2 to 10 nm depth), we found—despite the overall similarities—
also notable differences between the surface and bulk chemical composition. The elements Ca, Na, Mg,
and Fe ratios showed slightly higher concentrations in the bulk material compared to the surface, whereas Si
was enriched on the surface due to a potential dissolution of an external layer by corrosive mixed
gaseous/aqueous fluids.

The light microscopy measurement showed that the glass content can vary from the bulk SiO2 content. We
also found that the glass content within each igneous rock groups can vary significantly especially in the
andesite and dacite region.

From the static and dynamic particle imaging measurements, we found that the particle morphology
depends systematically on the particle size (in the size range d2-D < 100 μm), and this finding was consistent
over the entire sample set. The aspect ratio and the Wilson shape parameter, as measures of particle elonga-
tion, showed no significant difference between fine and coarse ashes, whereas the Cox circularity, the mea-
sure of the particle roundness, showed significant differences. The overall shape parameters for the fine ash
fraction are 0.71, 0.84, and 0.85 for the aspect ratio, the Cox circularity, and the Wilson shape parameter,
respectively, and for the coarse ash fraction (d > 63 μm) corresponding values are 0.72, 0.74, and 0.84. This
consistent pattern in the shape parameters can be used to parameterize the particle shape in ash transport
and dispersion, climate, or theoretical terminal velocity calculation models. The DRE mass density, as
obtained from Archimedean densitometry and theoretical calculations, shows a clear dependency on the
individual chemical composition of the samples and decreases with increasing SiO2 content. Thus, the

Table 5. Summary of the Microphysical and Optical Properties of Volcanic Ash Particles Classified Into the Main Igneous
Rock Typesa

Igneous
Rock Types

SiO2
(wt % ± σ)

Total Alkali
(wt % ± σ)

Mass Density
μ ± σ (g/cm3)

Refractive Index Range (λ = 300–1500 nm)

nλ kλ

Basalt 48.5 ± 3.5 2.5 ± 2.5 2.98 ± 0.038 1.50–1.66 0.00165–0.00268
Basalt-andesite 54.5 ± 2.5 2.9 ± 2.9 2.87 ± 0.027 1.46–1.62 0.00113–0.00224
Andesite 60.0 ± 3.0 3.3 ± 3.3 2.77 ± 0.032 1.43–1.58 0.00086–0.00192
Dacite 66.0 ± 3.0 3.7 ± 3.7 2.65 ± 0.032 1.41–1.57 0.00044–0.00079
Rhyolite 75.0 ± 6.0 7.0 ± 7.0 2.49 ± 0.060 1.38–1.53 0.00027–0.00054

aFor each group the averaged SiO2 and total alkali contents, the measured mass densities, and complex refractive
indices for the wavelength range between 300 and 1500 nm are shown.
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DRE mass density was found to be in the range from ρ = 2.49 ± 0.06 g/cm3 for rhyolitic ashes to
ρ = 2.98 ± 0.04 g/cm3 for basaltic ashes.

The complex refractive index over a wide wavelength range (λ = 300 to 1500 nm) was analyzed for the first
time for a wide silica range and for a high number of different ash samples. We found that the RI shows a clear
dependency on the individual chemical composition of the samples, and especially on the SiO2 content,
which could be shown after applying the IUGS chemical classification, both for our data and for data from
the literature. This allowed us to connect the wavelength-dependent RI values directly with the SiO2 contents.
Modeled values for the real part, nλ, obtained by a combination of the arc-function method and the Sellmeier
semiempirical link between refractive index and the chemical composition of the ashes, returned results that
agree well with available literature values. We found a decrease of values with increasing wavelength, where
the ash with the highest SiO2 content had the highest nλ value. For the imaginary part, kλ, obtained by the
spectrophotometer measurements, we found that the values increase with increasing wavelength, where
basaltic, basaltic-andesitic, and andesitic showed stronger dependency on wavelength, due to a higher
potential to absorb light. The dacitic and rhyolitic ash types showed only small absorption properties.

The data set could be further extended by future studies if more data are added to groups with limited sam-
ples (basalt, basaltic-andesite, and rhyolite) or where no samples are available (e.g., trachyte, phonolite, and
foidite). Comparison of our bulk material results with pure glass components of the same ash samples would
be very helpful for a better understanding of the relation between refractive index and composition. Finally,
measurements of the optical properties of VA in the near-infrared to the infrared spectral range (λ = 1.5–
20 μm) would be useful for infrared remote sensing algorithms.
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