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Abstract: 25 

Background 26 

Longitudinal biomonitoring studies can provide unique information on how human 27 

concentrations change over time, but have so far not been conducted for per- and polyfluoroalkyl 28 

substances (PFASs) in a background exposed population.  29 

Objectives  30 

Determine: i) serum PFAS time trends on an individual level; ii) relative compositions and 31 

correlations between different PFASs; and iii) assess selected PFAS concentrations with respect 32 

to periodic (calendar year), age and birth cohort (APC) effects. 33 

Methods 34 

Serum was sampled from the same 53 men in 1979, 1986, 1994, 2001 and 2007 in Northern 35 

Norway and analysed for 10 PFASs. APC effects were assessed by graphical and mixed effect 36 

analyses. 37 

Results  38 

The median concentrations of PFOS and PFOA increased five-fold from 1979 to 2001 and 39 

decreased by 26% and 23%, respectively, from 2001 to 2007. The concentrations of 40 

perfluorooctanoic acid (PFOA) and perfluorooctane sulphonic acid (PFOS) peaked during 1994-41 

2001 and 2001, respectively, whereas perfluorohexane sulphonic acid (PFHxS) increased to 42 

2001, but did not demonstrate a decrease between 2001 and 2007. Perfluorononanoic acid 43 

(PFNA), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA) displayed 44 

increasing trends throughout the entire study period (1979-2007). Although PFOS comprised 45 

dominating and stable proportions of PFAS burdens during these years, the contributions from 46 

PFOA and PFHxS were considerable. The evaluation of APC effects demonstrated that calendar 47 
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year was the dominating influence on concentrations of PFOA, PFUnDA, and PFOS, although 48 

time-variant and weaker associations with age/birth cohort were indicated. 49 

Conclusions  50 

The concentration changes of 10 PFASs in the repeated measurements from 1979 to 2007 51 

demonstrated divergent time trends between the different PFASs.  The temporal trends of PFASs 52 

in human serum during these 30 years reflect the overall trends in historic production and use, 53 

although global transport mechanisms and bioaccumulation potential of the different PFASs 54 

together with a varying extent of consumer exposure influenced the observed trends. Sampling 55 

year was the strongest descriptor of PFOA, PFUnDA and PFOS concentrations, and the calendar-56 

year trends were apparent for all birth year quartiles. Discrepancies between the trends in this 57 

current longitudinal study and previous cross-sectional studies were observed and presumably 58 

reflect the different study designs and population characteristics. 59 

 60 

 61 
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Abbreviations:  66 

AIC, Akaike`s Information Criterion; APC, Age-period-cohort; FOSA, Perfluorooctane 67 

sulfonamide; FTSA, Fluorotelomer sulphonic acids; LOD, Limit of detection; PFASs, Poly- and 68 

perfluorinated alkyl substances; PFBA, Perfluorobutanoic acid; PFBS, Perfluorobutane sulphonic 69 

acid; PFCAs, Perfluoroalkyl carboxylic acids; PFDA, Perfluorodecanoic acid; PFDcS, 70 

Perfluorodecane sulphonic acid; PFHpA, Perfluoroheptanoic acid; PFHpS, Perfluoroheptane 71 
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sulfonic acid; PFHxA, Perfluorohexanoic acid; PFHxS, Perfluorohexane sulfonic acid; PFPeA, 72 

Perfluoropentanoic acid, PFNA, Perfluorononanoic acid; PFOA, Perfluorooctanoic acid; PFOS, 73 

Perfluorooctane sulfonic acid; PFSAs, Perfluoroalkyl sulphonic acids; PFUnDA, 74 

Perfluoroundecanoic acid; POP, Persistent organic pollutant; SRM, Standard reference material.  75 

 76 

 77 

1. Introduction 78 

Production and use of per- and polyfluoroalkyl substances (PFASs) started in the 1950s and 79 

increased considerably during the 1970s (Paul et al., 2009; Prevedouros et al., 2006). PFASs 80 

continue to be in high demand today due to their widespread use in industrial and consumer 81 

product applications (Buck et al., 2011). Two major PFAS groups are the perfluoroalkyl 82 

carboxylic acids (PFCAs) and the perfluoroalkyl sulphonic acids (PFSAs) (Buck et al., 2011), of 83 

which perfluorooctanoic acid (PFOA) and perfluorooctane sulphonic acid (PFOS) have received 84 

most attention in studies of humans and the environment. Increasing concern for their persistency 85 

and bioaccumulative properties has led to voluntary and regulatory efforts restricting their use, 86 

including: i) phasing out PFOS and related compounds while providing shorter chain PFSAs as 87 

replacements during 2000-2002 by 3M, the major producer (US EPA, 2002); ii) inclusion of 88 

PFOS in the Stockholm Convention in 2009 (Stockholm Convention); and iii), initiation of a 89 

PFOA stewardship program to phase out PFOA and longer chain PFCAs by 2015 (US EPA, 90 

2006). As a consequence of these actions, the global production of PFOS and related chemicals 91 

decreased drastically after the peak between 1990 and 2000 (Paul et al., 2009), although 92 

production of PFOS has continued in China (Zhang et al., 2012) and it is likely that production of 93 

longer chain PFASs continued for some years after 2002 (Armitage et al., 2009). 94 
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Overall, biomonitoring of PFASs in human serum has demonstrated decreasing concentrations of 95 

PFOS and PFOA since the early 2000s, whereas trends for other PFASs have been variable 96 

(Calafat et al., 2007a; Glynn et al., 2012; Harada et al., 2004; Jin et al., 2007; Kannan et al., 2004; 97 

Kato et al., 2011; Olsen et al., 2005; Olsen et al., 2012; Schröter-Kermani et al., 2012; Toms et 98 

al., 2009; Wang et al., 2011; Yeung et al., 2013a, 2013b). A cross-sectional study of pooled sera 99 

from 40-50 year old men in Norway during 1976 to 2007 reported that many PFASs increased 100 

during the study period and that PFOS, PFOA and perfluoroheptane sulphonic acid (PFHpS) 101 

started declining around year 2000 (Haug et al., 2009). The observed time trends of PFOS and 102 

PFOA in human serum, to a large extent, mirror the changes in global production. However, the 103 

reasons for differing time trends for different PFAS homologues and between different studies 104 

are not well understood. Furthermore, the decline in human concentrations of PFOA and PFOS 105 

after the phase-out initiated in year 2000 was observed after a short time lag considering its 106 

relatively long human elimination half-life (Olsen et al., 2007) and the absence of consistent 107 

decreasing trends in wildlife for the same time period (Butt et al., 2010). Time trends in human 108 

biomonitoring primarily reflect a combination of the temporal changes in exposure (intensity, 109 

duration and intake rates), and elimination kinetics (Quinn and Wania, 2012; Ritter et al., 2009). 110 

With respect to exposure pathways, the body burden of PFASs is greatly influenced by dietary 111 

intake, although drinking water, inhalation of indoor air, ingestion of house dust, and direct 112 

contact with consumer/commercial products may also contribute to a varying extent (Egeghy and 113 

Lorber, 2011; Fromme et al., 2009; Haug et al., 2011; Lorber and Egeghy, 2011;Vestergren and 114 

Cousins, 2009). Consequently, temporality in human exposure depends on the response time of 115 

the major source media to changes in PFAS production. Furthermore, exposure to PFASs in 116 

human populations in Arctic regions may have a different response time to changes in production 117 

due to the time-lag of long-range transport of PFASs by air and ocean currents (Butt et al., 2010). 118 



6 
 

Local or regional differences in contamination status together with life style differences and 119 

dietary habits may therefore result in different time trends between studies. 120 

In addition to different population exposures, observed human time trends may also be affected 121 

by the study design and demographic characteristics of the study group. Previous studies on 122 

legacy persistent organic pollutants (POPs) have demonstrated that an improved understanding of 123 

age, period and birth cohort effects is needed to correctly interpret time trends in biomonitoring 124 

studies (Nøst et al., 2013; Quinn and Wania, 2012; Ritter et al., 2009). Generally, no association 125 

(Calafat et al., 2007a, 2007b; Harada et al., 2007; Olsen et al., 2008; Yeung et al., 2006) and 126 

variable associations with age (Haug et al., 2009; Kato et al., 2011) have been reported for 127 

PFASs in cross-sectional studies. In one such study of pooled samples from Norwegian subjects, 128 

both positive and negative associations to age were reported, which varied between sampling 129 

years and the different PFASs (Haug et al., 2009).  130 

The present study describes changes in PFAS concentrations and compositional patterns in 131 

repeated serum samples during 1979-2007 and, to the best of our knowledge, this is the first to 132 

report repeated measurements of a number of PFASs in a non-occupationally exposed population. 133 

The rare longitudinal study design allowed for an assessment of periodic time trends during 134 

nearly 30 years in addition to the age and birth cohort effects (APC effects) in concentrations of 135 

selected PFASs.  136 

 137 

  138 
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2. Subjects and methodology 139 

2.1. Study population and subject selection 140 

Five repeated population surveys called the Tromsø study (summarized by Jacobsen et al., 2012) 141 

took place in the municipality of Tromsø, Northern Norway in 1979, 1986-1987 (hereafter 142 

referred to as 1986), 1994-1995 (1994), 2001 and 2007-2008 (2007). Adult men (n = 60) were 143 

randomly selected from 1438 males who had participated and donated blood in all five surveys of 144 

the Tromsø study. Of these, 53 had sufficient sample volumes in ≥3 sampling years and the 145 

present analyses comprised 254 serum samples (11 samples randomly distributed across sampling 146 

years were missing). Birth year information was extracted from questionnaires, while individual 147 

dietary information was inadequate. The range in birth years was 1925-1950, and the median 148 

ages at the first and last sampling were 43 and 71. Serum samples were stored at -70 °C until 149 

analysis. The study was approved by the Regional Committees for Medical Research Ethics. 150 

Participation was voluntary and participants gave informed consents.  151 

2.2. Analytical methodology 152 

Analyses were performed at the laboratories of NILU-Norwegian Institute for Air Research, 153 

Fram Centre, Tromsø, Norway. All serum samples were quantified for 10 target analytes and a 154 

subset of 43 samples were initially quantified for 21 analytes (see  Supplemental Material, Table 155 

S1). 156 

2.2.1. Extraction and clean up 157 

Serum samples were analysed using the internal-standard method and sonication-facilitated 158 

liquid-liquid extraction in methanol, activated charcoal clean up, and analysed by ultrahigh 159 

pressure liquid chromatography triple-quadrupole mass spectrometry (Thermo Fisher Scientific 160 

Inc, Waltham, MA, USA).  161 
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Extraction was performed as per Hanssen et al. (2013) with the following changes; i) 100 µl 162 

serum was extracted in a 1.5 ml eppendorf tube; ii) the internal standards (see Supplemental 163 

Material, Table S2 for list); iii) the volume methanol (750 µl) added; and iv) amount of branched 164 

perfluorodecanoic acid (br-PFDA) recovery standard (20 µl of 0.102 ng/µl) used.  165 

2.2.2. Instrumental analysis 166 

The analytical specifications are described in Hanssen et al. (2013). The quantification was 167 

conducted with the LC Quan software, version 2.6.0 (Thermo Fisher Scientific Inc, Waltham, 168 

MA, USA). Of the 21 PFASs included in the analyses, 10 were detected in >20% of samples in a 169 

subset of 20 samples and the remaining samples were quantified for these 10 PFASs. The linear 170 

and branched PFOS isomers were chromatographically separated (“branched PFOS” was 171 

identified as one or several peaks eluting earlier than the linear PFOS; see Supplemental Material, 172 

Fig. S1A). The mass-labeled internal standard for linear PFOS was also used for quantification of 173 

the branched isomers. Concentrations of branched PFOS presented were calculated as the mean 174 

concentrations of two transitions in the analysis (m/z 499-80 and 499-99), since response factors 175 

have been reported to differ between transitions of different isomers of PFOS (Berger et al., 176 

2011). Data presented as “PFOS” represent the sum of the linear and the coeluted peaks of 177 

branched isomers. Chromatographically separated branched and linear isomers could also be 178 

observed for perfluorooctane sulfonamide (FOSA) (see Supplemental Material, Fig. S1B); 179 

however, due to high variation (<80%) between isomers in parallel injections in some samples, 180 

the presented concentrations of FOSA represent the sum of isomers. For other PFASs, only the 181 

linear isomer was detected and quantified. 182 

 183 

 184 

 185 
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2.3. Quality assurance and sample integrity  186 

2.3.1. Quality control in PFAS analyses  187 

Blanks (n = 9) and standard reference materials (SRMs) [SRM® 1958 (n = 9) and 1957 (n = 9), 188 

both from the National Institute of Standards and Technology, Gaithersburg, MD, USA] were 189 

processed along with samples. The results for the SRM analyses were within +/-20% of reference 190 

values, except for perfluoroheptanoic acid (PFHpA), PFDA, PFUnDA for which the mean 191 

quantified concentrations were -30, -50 and -60% of reference values, respectively. The 192 

laboratory routinely participates in the Arctic Monitoring and Assessment Programme Ring Test 193 

for Persistent Organic Pollutants in Human Serum, and has performed within +/-20% of assigned 194 

values, which is considered excellent performance. [Ring test results are available from the 195 

Institut national de santé publique du Québec (2013).] 196 

All concentrations presented were within the calibration curve and the linear range of the 197 

instrument. For each compound in the mass spectrometry analyses, a second isotopic mass 198 

transition served to confirm compound specificity. The limits of detections (LODs) were set to 199 

three times the mean concentrations determined in blank samples (Table A.1 in the Appendix). 200 

Mean recoveries (range) of internal standards were 108% (69-145), 101% (67-132), 103% (66-201 

147), 108% (69-159), and 85% (42-142) for the 1979, 1986, 1994, 2001, 2007 samples, 202 

respectively. The recoveries in one sample preparation batch of 2007 samples were low (53% of 203 

2007 samples), although there was no association between recoveries and concentrations (data 204 

not presented). 205 

2.3.2. Estimation of desiccation 206 

To correct for spuriously elevated PFAS concentrations caused by evaporation during long-term 207 

storage, serum sodium (Na+) was measured and used to adjust plasma volumes as described in 208 

Nøst et al. (2013).  209 
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2.4. Data treatment and statistical methods 210 

Statistical analyses were executed using the software R, ver. 3.0.0 , and a statistical significance 211 

threshold of p < 0.05 was used. The statistical analyses included 254 samples (N = 53, 52, 48, 49 212 

and 52 at the five time points). All PFAS concentrations were log-normally distributed (Shapiro-213 

Wilk tests) and therefore loge-transformed in the statistical analyses.  214 

Summary statistics for compounds with detection frequencies >80% were calculated by 215 

conventional methods, whereas those occurring less frequently (20% - 80%) were computed for 216 

each sampling year using the Kaplan-Meier method employing the NADA package for R 217 

according to Helsel (2005). 218 

Spearman`s ρ values were calculated for correlations. Wilcoxon signed rank test was used to 219 

assess differences in PFAS concentrations between different sampling years, and Kruskal-Wallis 220 

rank sum test between birth year quartiles in each sampling year. The non-parametric Friedman`s 221 

test of repeated measurements was employed for differences across all sampling years. 222 

APC effects were assessed with age and birth cohort variables as quartiles. Mixed effect models 223 

(lme4 package for R) that allowed for subject-specific random variation, were used to assess 224 

periodic changes and potential age- and birth cohort-specific effects in concentrations of PFASs. 225 

The analyses were restricted to the fully detected PFOA, PFUnDA and PFOS to obtain the 226 

appropriate APC evaluation and model estimates. All models included a subject-specific random 227 

term and a random slope for sampling year, and the best fitted model was chosen based on 228 

Akaike`s Information Criterion (AIC) values (for details, see Nøst et al., 2013). Furthermore, 229 

selected graphical examinations of APC effects in concentrations of 8 PFASs were carried out.  230 

 231 

 232 
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3. Results 233 

3.1. Changes in PFAS concentrations during 1979-2007 234 

Serum concentrations and detection frequencies of 10 PFASs are presented in Table A.1 of the 235 

Appendix. Concentrations of PFOA, PFNA, PFDA, PFUnDA, PFHxS, PFHpS, PFOS and FOSA 236 

in each sampling year are depicted in Fig. 1, and temporal changes between consecutive sampling 237 

years are presented in Table 1.  238 

 239 

 240 

 241 

Table 1: Change in median concentrations (ng/ml) of the most abundant PFASs analysed in 242 

serum samples of men (N = 53, 52, 48, 49 and 52 in 1979, 1986, 1994, 2001 and 2007, 243 

respectively) in Northern Norway. Significant differences between years are indicated in Fig. 1. 244 

  1979-1986 1986-1994 1994-2001 2001-2007 

Compound Change in ng/ml  % Change in ng/ml  % Change in ng/ml  % Change in ng/ml  % 

PFOA 1.46 170 1.79 72 -0.23 -6 -0.99 -23 

PFNA 0.44 500 0.20 37 0.30 38 0.45 41 

PFDA 0.18 250 0.25 100 0.17 37 0.11 18 

PFUnDA 0.74 850 -0.05 -6 0.26 32 0.09 8 

PFHxS 0.54 260 0.61 85 0.41 27 -0.12 -6 

PFHpS 0.14 62 0.11 23 0.19 32 -0.10 -13 

PFOS 14.70 170 11.34 49 9.17 25 -9.39 -22 

FOSA 0.63 210 -0.05 -6 -0.11 -10 -0.59 -60 

  245 
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Fig. 1: Concentrations (ng/ml wet weight) of the most abundant PFASs analysed in repeated 246 

serum samples of men from Northern Norway (N =53, 52, 48, 49 and 52 in 1979, 1986, 1994, 247 

2001 and 2007, respectively). The asterisks denote significant differences in consecutive 248 

sampling years (p<0.001, Wilcoxon signed rank test). The boxplots for FOSA are censored box 249 

plots with the horizontal line indicating the LOD. One outlier for FOSA (13 ng/ml) in 2001 is not 250 

shown. 251 
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All quantified PFASs except perfluorohexanoic acid (PFHxA) increased from the initial 253 

concentrations in 1979. The median concentrations of PFOA and PFOS increased five-fold from 254 

1979 to 2001 and decreased by 26% and 23%, respectively, from 2001 to 2007. Concentrations 255 

peaked in 1994 for PFHpA; in 1994 and 2001 for PFOA; and in 2001 for PFHxS and PFOS (not 256 

significant for PFHxS). Concentrations of FOSA reached a plateau from 1986 to 2001 and 257 

decreased to 2007. Continuously increasing concentrations across the study period were observed 258 

for PFNA, PFDA, PFUnDA, although not statistically significant between all years; and the rate 259 

of increase varied between the different homologues and years. Individual trend curves are 260 

presented for PFOS and PFOA in Fig. 2 and Supplemental Material, Fig. S2, respectively; they 261 

display generally consistent trends among individuals with the largest concentration ranges in 262 

2001 and 2007.  263 

Perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA) were detected in the 264 

samples, but the quantified concentrations are not presented due to the lack of a confirmatory ion 265 

transition in the instrumental analysis. However, reanalysis of three samples from different years 266 

by Acquity UPLC -MS-MS (ES-, MRM, Waters Tandem Quadrupol Detector) and HR-MS (ES-, 267 

Full Scan, LTQ Orbitrap, Thermo Scientific) qualitatively confirmed their presence.  268 

  269 
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Fig. 2: Individual trend lines for PFOS concentrations in repeated measurements in 1979, 1986, 270 

1994, 2001 and 2007 in serum samples of men from Northern Norway. Trend lines are displayed 271 

according to birth year quartiles.  272 

 273 
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3.2.PFAS correlations between subsequent measurements 275 

Correlations between two subsequent measurements of a PFAS varied during the sample period 276 

(Table 2), and were the strongest between the measurements in 2001 and 2007 for most PFASs. 277 

However, those for PFOS and PFOA were robust (Spearman`s ρ >0.6) between all subsequent 278 

measurements. 279 

 280 

Table 2: Spearman`s ρ for significant correlations (p<0.05) between subsequent measurements.  281 

Compound 1979-1986 1986-1994 1994-2001 2001-2007 

PFHpA 

 

0.35 

 

0.55 

PFOA 0.65 0.66 0.60 0.75 

PFNA 0.44 0.65 0.63 0.60 

PFDA 0.50 0.42 0.59 0.71 

PFUnDA 0.35 0.56 0.61 0.79 

PFHxS 0.59 0.63 0.46 0.81 

PFHpS 0.43 0.48 0.36 0.66 

PFOS 0.84 0.65 0.62 0.81 

FOSA   0.39     

 282 

 283 

 284 

3.3.Compositional patterns and correlations between PFASs 285 

The most abundant PFASs in all years were PFOS (78-82% of summed median PFAS 286 

concentrations) >PFOA (7-9%) >PFHxS (2-5%) >PFUnDA (1-3%); compositional patterns of 287 

PFASs for each sampling year are indicated in Fig. 3. Median PFOS concentrations were 9-10 288 

times higher than those of PFOA in all sampling years. Decreasing ratios across sampling years 289 

were observed for other pairs: 9, 5, 5, 4, 2 for PFOA/PFNA, 12, 10, 9, 7, 4 for PFOA/PFDA and 290 

9, 3, 5, 4, and 3 for PFOA/PFUnDA in 1979, 1986, 1994, 2001 and 2007, respectively.   291 
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Fig. 3: Relative contributions of the different PFASs to their sum (in %) are presented for five 292 

repeated serum measurements in men from Northern Norway (N = 53, 52, 48, 49 and 52 in 1979, 293 

1986, 1994, 2001 and 2007, respectively).  294 

 295 
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However, those between PFHxS and PFOS decreased slightly and the correlation between FOSA 307 

and PFOS increased from 1979 to 1994 and declined thereafter.  308 

 309 

3.4. Age-period-cohort effects in concentrations of PFOA, PFUnDA and PFOS 310 

Estimates from mixed effect models for PFOA, PFUnDA and PFOS are presented in 311 

Supplemental Material, Tables S4-6. The best fitted model for PFOS and PFOA included only 312 

sampling year as a fixed predictor, whereas for PFUnDA it also included birth cohort as a fixed 313 

factor and age as a random term. Selected graphical displays of age-period-cohort effects in Fig. 314 

4 present longitudinal and cross-sectional organizations of PFOA, PFUnDA and PFOS 315 

concentrations (those for PFHpA, PFNA, PFDA and PFHxS are presented in Supplemental 316 

Material, Fig. S4). The change in concentrations of PFOS from 2001 to 2007 was not 317 

significantly different across age quartiles (Kruskal-Wallis rank sum test, p>0.05). 318 

 319 

  320 
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Fig. 4: APC plots: Longitudinal (age and period effects are confounded) and cross-sectional (age 321 

and birth year effects are confounded) organization of PFOS and PFOA concentrations (medians 322 

for each quartile in each sampling year, in ng/ml wet weight). The asterisk indicates significant 323 

birth cohort differences (Kruskal-Wallis rank sum test, p<0.05).  324 

  325 
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4. Discussion 326 

4.1. Time trends in PFAS concentrations   327 

The observed longitudinal trends of PFASs in a population experiencing background exposure 328 

during a thirty year period covering the years of most intense production of PFOS-related 329 

compounds provide new insight. Overall, time trends for PFOA, PFOS and FOSA (Fig. 1) are in 330 

harmony with the global production history of long-chain PFASs (Paul et al., 2009; Prevedouros 331 

et al., 2006). The relatively rapid response in serum concentrations of PFOA and PFOS observed 332 

in this and other studies following reduced production during 2000-2002 is somewhat remarkable 333 

considering their long human half-lives (Olsen et al., 2007) and the absence of concurrent and 334 

distinct decreases in PFOA and PFOS concentrations in wild-life studies (Butt et al., 2010; 335 

Holmström et al., 2010). Although a levelling off or slight decrease in PFOS concentrations was 336 

observed in wild-life in Northern Norway during this period (Ahrens et al., 2011; Verreault et al., 337 

2007), the observed declines in human sera in this study cannot be explained by concurrent 338 

decreases in PFAS exposures through human food-chains. Further, the stable ratio and correlation 339 

between PFOS and PFOA during 1979-2007 suggest that their exposure pathways have changed 340 

little or done so concomitantly during this period. One hypothesis, which has been proposed to 341 

explain the concurrent decrease in serum concentrations of PFOA and PFOS in cross-sectional 342 

studies in other countries, states that consumer products made a significant contribution to the 343 

total exposure (direct or through degradation of precursors) to these compounds prior to year 344 

2000 (D’eon and Mabury, 2011; Jackson and Mabury, 2012; Olsen et al., 2008; Vestergren and 345 

Cousins, 2009). As their production ceased during 2000-2002 human serum concentrations of 346 

PFOA and PFOS might be expected to converge as diet-linked environmental pathways would 347 

become increasingly important in a post ban situation (Vestergren and Cousins, 2009). 348 
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Indications of an earlier peak in PFOA concentrations relative to those of PFOS in some 349 

individuals (Fig. 2 and S2) likely reflect the somewhat longer human elimination half-life of 350 

PFOS compared to PFOA (4.6 and 3.4 years, respectively, estimated median in fluorochemical 351 

production workers by Olsen et al. (2007)). Concentrations of PFHxS did not display a 352 

significant decrease from 2001 to 2007 (Fig. 1) despite that production of this compound was 353 

phased out at the same time as PFOS (Kannan et al., 2004). The diverging time trends of PFHxS 354 

and PFOS could be due to the longer elimination half-life of PFHxS (7.1 years; Olsen et al., 355 

2007) relative to PFOS and a relatively higher exposure of PFHxS through the food-chain 356 

exposure pathway suggested throughout the study period compared to PFOS. Concentrations of 357 

FOSA were quite stable from 1986 to 2001 and decreased to 2007. This compound has been 358 

shown to be a precursor of PFOS (Xu et al., 2004) as well as a metabolite of other precursor 359 

compounds (Benskin et al., 2007). The time trend of FOSA as a precursor compound is as such 360 

interesting, and the decrease from 2001 to 2007 could contribute to the observed decline in PFOS 361 

concentrations. Furthermore, the FOSA decline could also reflect the decline of other precursor 362 

compounds, which is in line with such trends reported for two German cities (Yeung et al., 363 

2013a,b).  364 

PFNA, PFDA and PFUnDA concentrations increased from 1979 to 2007 (not significantly so for 365 

every sampling year) which could be due to their continued production after 2001 (Armitage et 366 

al., 2009) along with longer elimination half-lives and bioaccumulation ability compared to 367 

shorter-chain PFCAs (Conder et al., 2008; Zhang et al., 2013). As opposed to for PFOA and 368 

PFOS, time trends of these compounds in humans are more in accordance with those observed in 369 

wild-life biomonitoring (Ahrens et al., 2011; Butt et al., 2010; Holmström et al., 2010; Verreault 370 

et al., 2007). Inter-correlations between PFNA, PFDA and PFUnDA as well as their strengthened 371 
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correlations to PFOS over the same period suggest a gradual co-exposure through environmental 372 

background concentrations rather than consumer products (Vestergren and Cousins, 2009). 373 

Although human exposure pathways of C>8 PFCAs are not well understood, recent dietary intake 374 

studies (e.g. Vestergren et al., 2013) and biomonitoring studies (e.g. Brantsæter et al., 2013) 375 

demonstrate that human concentrations of these compounds are currently linked to the diet. The 376 

increasing time trends signify the concern towards human body burdens of longer-chain PFCAs. 377 

Cross-sectional time trend studies involve testing different subjects at each sampling point, while 378 

our longitudinal study follow the same aging individuals. Comparing our PFAS time trends to 379 

those in pooled sera from Norwegian men (aged 40-50 at the time of each collection) during 380 

1977-2006 (Haug et al., 2009) revealed interesting similarities and differences. The 381 

concentrations and temporal changes of PFOA observed were comparable between the studies 382 

and demonstrate a uniform exposure to PFOA during these years (Supplemental Material, Fig. 383 

S5). Furthermore, concentrations of PFOS in 1979 were similar to those in Haug et al., but the 384 

subsequent incline to later years was steeper in our study and the decline from 2001 was less 385 

pronounced (-23% during 2001-2007 in this study, and -55% during 2001-2006 in Haug et al. 386 

(2009)). PFNA, PFDA and PFUnDA increased more during the study period in men from 387 

Northern Norway compared to those in Haug et al. (Supplemental Material, Fig. S5). The 388 

observed differences in time trends could partly be explained by the enhanced and prolonged 389 

exposure to these compounds in the Northern Norwegian men, possibly related to their expected 390 

higher fish consumption (Alexander et al., 2006; Johansson and Solvoll, 1999; Nøst et al., 2013). 391 

However, the different study designs and resulting age group differences (intraindividual versus 392 

interindividual age differences in longitudinal and cross-sectional studies, respectively), could 393 

also contribute to the discrepancies. It may also be noted that environmental concentrations of 394 
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PFOS in northern latitudes are expected to respond more slowly to changes in their production 395 

and use due to the slow transport of PFOS with ocean currents (Armitage et al., 2009). 396 

The decline in PFOS from 2001 to 2007 was also less pronounced in the Northern Norwegian 397 

men when compared to cross-sectional studies in Germany and U.S.A. although time trends for 398 

PFOA, PFNA and PFHxS in 2001 and 2007 were comparable (Supplemental Material, Fig. S5) 399 

(Kato et al., 2011; Olsen et al., 2012; Schröter-Kermani et al., 2012). Further, concentrations 400 

were generally higher for PFOS, slightly lower for PFOA, and comparable for PFNA and PFHxS 401 

in the Northern Norwegian men. Again this likely reflects the difference in study designs and 402 

characteristics of the exposure experienced by the different populations. 403 

4.2. Changing correlations between subsequent measurements  404 

Correlations between subsequent measurements varied across the sampling period but became 405 

stronger in 2001-2007 relative to the earlier years. Notably, correlations for PFUnDA became 406 

stronger throughout. The varying correlations could reflect changing intensities and pathways of 407 

human PFAS exposures during 1979-2007. It is likely that in the earliest years, human exposure 408 

pathways were various and intensities increased (Paul et al., 2009; Prevedouros et al., 2006). In 409 

accordance with this, the widest concentration ranges of PFOA and PFOS were observed in the 410 

years of highest concentrations (1994 and 2001; Fig. 2 and S2), and likely reflect large individual 411 

variation in exposures when intensities peaked. After 2001, exposure intensities decreased and 412 

contribution of the human food chain likely increased. Indeed, diet is suspected to be the major 413 

current exposure route of PFASs for humans (Egeghy and Lorber, 2011; Fromme et al., 2009; 414 

Haug et al., 2011; Lorber and Egeghy, 2011; Rylander et al., 2009; Vestergren and Cousins, 415 

2009). 416 
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4.3.Time trends in relative compositions  417 

Relative production and use of the different PFASs, environmental persistence, human half-lives, 418 

precursor chemistry and exposure pathways must all be kept in mind when considering human 419 

compositional PFAS patterns over time. PFOS was most abundant in all years, but PFOA and 420 

PFHxS also contributed substantially to the PFAS burdens. The relative contribution to the sum 421 

of PFASs by PFOA and PFOS were stable during the study (Fig. 3), whereas those for PFNA, 422 

PFDA and PFUnDA increased. Higher bioaccumulation potentials have been proposed for longer 423 

chain PFCAs (Conder et al., 2008), and could explain the prolonged exposure to these 424 

compounds from the environment. The PFOA/PFNA ratio decreased from 1979 to 2007, and the 425 

relative decrease in PFOA could reflect the declining production and use of PFOA and the 426 

increasing influence of food-chain related exposure as PFNA>PFOA in wildlife (Vestergren and 427 

Cousins, 2009; Butt et al., 2010). This is also likely valid for the similar trends in PFOA/PFDA 428 

and PFOA/PFUnDA ratios. The relative concentration of FOSA decreased during the study 429 

period, but the proportions reported are underestimated in this study as 80-90% of FOSA is 430 

associated with the cell fraction discarded from plasma/serum (Kärrman et al., 2006; Hanssen et 431 

al., 2013).  432 

No consistent trend was observed among subjects for the relative percentages of linear and 433 

branched isomers of PFOS over time (Fig. S3). However, it should be noted that there were 434 

individual variations in the percentage of branched PFOS. Enriched profiles of branched PFOS 435 

(>30% branched) has been suggested as a biomarker of exposure to PFOS precursors (Martin et 436 

al., 2010). In line with Martin et al. (2010), the relative constant contribution from branched 437 

PFOS of around 30% indicate direct exposure to PFOS, rather than exposure to PFOS precursors 438 

for the studied population. Differences in the quantification procedure (Berger et al., 2011; 439 
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Riddell et al., 2009) and individual differences in PFOS isomer profiles should therefore be 440 

further investigated to clarify the relative importance of PFOS precursors for human exposure. 441 

Qualitative confirmation of presence of PFBA and PFPeA in three random samples (from 442 

different years) indicates that these compounds should be investigated in future monitoring of 443 

PFASs. Fluorotelomer sulphonic acids (FTSAs; 4:2, 6:2 and 8:2), perfluorobutane sulphonic acid 444 

(PFBS), perfluorodecane sulphonic acid (PFDcS) or C12-14 and C16 PFCAs were not detected 445 

in any sampling year and indicate that the past and recent exposure to these compounds has been 446 

low or their elimination rate high relative to the exposure. 447 

 448 

4.4. Age-period-cohort effects for PFOA, PFUnDA and PFOS 449 

Calendar year of sampling was the strongest predictor of PFAS concentrations and the calendar 450 

year trends reveal that human concentrations reflect overall historic trends in production and use 451 

of PFASs (see Section 4.1). Although time trends differed between PFASs, the influence of 452 

calendar year was evident for most compounds.  453 

Including age or birth cohort predictors in addition to sampling year in mixed models for PFOA 454 

and PFOS did not improve model fits and indicates that these variables were of less importance 455 

compared to sampling year. The persons in the current study were all born before the onset of 456 

large-scale PFAS production and the exposure (duration and intensity) to all persons was 457 

expected to be similar at the times of sampling. Indeed, concentrations were not significantly 458 

different between age/birth cohort quartiles other than for PFOA in 1994, with the youngest 459 

quartiles having the highest concentrations compared to the older quartiles. Furthermore, when 460 

the results were organised cross-sectionally, age-associations were variable between years and 461 

indicate that these associations must be understood in relation to historic production and use (Fig. 462 
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4 and S4). Variable associations of PFASs to age between sampling years were also reported in 463 

the pooled, cross-sectional data from Norway (Haug et al., 2009). Compared to PFOA and PFOS, 464 

the mixed model fit improved for PFUnDA when including birth year quartiles as fixed factors 465 

and age as a random effect. This suggests that experienced exposure or elimination rates could 466 

differ between birth year quartiles.  467 

Associations between POP concentrations and age in a population are not only affected by 468 

historic production and use relative to the sampling time, age structure of the study population, 469 

and compound persistence (Quinn and Wania, 2012; Ritter et al., 2009), but also by exposure 470 

pathways, and age-dependent PFAS intake rates related to e.g. dietary habits (Haug et al., 2010) 471 

relative to elimination rates. In post-ban exposure scenarios, the so-called legacy POPs have often 472 

been reported to increase with age in cross-sectional studies. This association likely reflects birth-473 

cohort differences in duration and intensity of exposure to these compounds (Nøst et al., 2013; 474 

Quinn and Wania, 2012; Ritter et al., 2009). However, reports of correlations of PFASs to age are 475 

not consistent in cross-sectional studies (Calafat et al., 2007a, 2007b; Harada et al., 2007; Haug et 476 

al., 2009; Kato et al., 2011; Olsen et al., 2008; Yeung et al., 2006), and may be due to similar 477 

exposures for all age groups/birth cohorts due to recent or ongoing production and use. Age-478 

differentiated intake rates (e.g. Tittlemier et al., 2007) or toxicokinetic properties could influence 479 

individual trends of PFASs over time, although differences in internal kinetics appear not to be 480 

strong in the general population (Harada et al., 2005). Furthermore, the present results suggest 481 

that the coarse features of temporal trends relate to changes in production and use. It is 482 

anticipated that diet-linked environmental exposures and time passed since peak production will 483 

render associations with age more pronounced in post-ban years due to age-dependent total PFAS 484 

intakes. 485 
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4.5. Study limitations and future perspectives 486 

The longitudinal serum data for PFASs in the present study allowed an improved understanding 487 

for how human concentrations of these compounds have changed in relation to production and 488 

use patterns. Further studies of longitudinal evaluation of additional precursor compounds such as 489 

listed by Martin et al. (2010), Calafat et al. (2007a), and Yeung et al. (2013a,b), and isomer-490 

specific analyses could have offered additional knowledge of the relative importance of PFOS 491 

precursors in PFAS time trends and pathway tracking. However, the analytical methodology 492 

employed in this study did not allow for that.  493 

FOSA concentrations were presented as a sum of isomers due to high analytical variation 494 

between the branched and linear peaks in parallel sample injections. It should be mentioned that 495 

SRM results indicated that concentrations of PFHpA, PFDA and PFUnDA were underestimated 496 

(see Section 2.3.1.). Thus the reported concentrations of these analytes might constitute a low 497 

estimate although the time trends would not be affected by this. The limitations regarding 498 

statistical approaches to assess APC effects in POP concentrations in the current study group are 499 

described in Nøst et al. (2013).   500 
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5. Conclusion 501 

This study describes past and current exposure to PFASs in the same men in a coastal population 502 

experiencing background exposure. The nearly 30-year time trends of PFAS concentrations in the 503 

repeated measurements from men in Northern Norway suggested unique time trends for the 504 

different PFASs quantified. We have demonstrated that human concentrations of PFASs have 505 

followed overall trends in production and use although compound differences in global transport 506 

mechanisms, bioaccumulation potentials and a varying extent of consumer exposures influence 507 

the observed trends. PFOA and PFOS concentrations decreased after 2001, as opposed to the 508 

increasing trends of PFNA, PFDA and PFUnDA throughout the study period.  509 

The assessments of age-period-birth cohort effects demonstrated that calendar time was the 510 

dominating influence on PFAS concentrations, and associations to age/birth cohorts were 511 

variable between sampling years and not significant.  512 

 513 
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APPENDIX  711 

Table A.1: Concentrations (ng/ml) of PFASsa analysed in repeated serum samples from men in Northern Norway. 712 

 
1979 N = 53 1986 N = 52 1994 N = 48 2001 N = 49 2007 N = 52 

LODc 
Compound 

Median 

(Range) 
AM 

% > 

LODb 

Median 

(Range) 
AM 

% > 

LODb 

Median 

(Range) 
AM 

% > 

LODb 

Median 

(Range) 
AM 

% > 

LODb 

Median 

(Range) 
AM 

% > 

LODb 

PFHxA  -   

(<LOD-0.1) 

0.1 32  -   

(<LOD-0.2) 

0.1 42  -   

(<LOD-0.2) 

0.1 27  -  

 (<LOD-0.1) 

0.1 25  -  

 (<LOD-0.2) 

0.1 35 0.05 

PFHpA 0  

(<LOD-0.1) 

0 60 0  

(<LOD-0.1) 

0 75 0.1  

(<LOD-0.7) 

0.1 95 0.1  

(<LOD-0.7) 

0.1 77 0.1  

(<LOD-0.2) 

0.1 87 0.03 

PFOA 0.9  

(0.4-2.5) 

1 100 2.5  

(1.4-4.5) 

2.5 100 3.9  

(2-9.6) 

4.6 100 4.2  

(1.8-9.9) 

4.4 100 3.1  

(1.3-6.8) 

3.2 100 0.13 

PFNA 0.1  

(<LOD-0.2) 

0.1 81 0.5  

(0.2-1.3) 

0.6 100 0.8  

(0.2-1.6) 

0.8 100 1.1  

(0.5-1.9) 

1.2 100 1.5  

(0.7-3.4) 

1.6 100 0.05 

PFDA 0.1  

(<LOD-0.2) 

0.1 91 0.3  

(0.1-0.7) 

0.3 100 0.5  

(0.1-1.1) 

0.5 100 0.7  

(0.2-1.7) 

0.7 100 0.8  

(0.2-1.8) 

0.8 100 0.03 

PFUnDA 0.1  

(<LOD-0.7) 

0.1 87 0.8  

(0.3-3) 

0.9 100 0.8  

(0.1-2.4) 

0.9 100 1.1  

(0.4-4.5) 

1.3 100 1.3  

(0.1-3.9) 

1.4 100 0.04 

PFHxS 0.2  

(0.1-3) 

0.3 100 0.7  

(0.4-5.3) 

1 100 1.5  

(0.3-4.8) 

1.5 100 2  

(0.6-12) 

2.6 100 1.9  

(0.6-12) 

2.3 100 0.03 

PFHpS 0.2 

(<LOD-1.9) 

0.3 92 0.5  

(<LOD-1.9) 

0.5 96 0.6  

(0.2-2) 

0.7 100 0.8  

(<LOD-1.7) 

0.8 98 0.7  

(0.2-1.5) 

0.7 100 0.10 

Branched PFOS 2.7  

(1.1-20) 

3 100 7.2 

(3.2-27) 

7.8 100 11 

(2.8-21) 

11 100 12  

(<LOD-25) 

13 98 8.7  

(3.1-18) 

9.4 100 0.08 

Linear PFOS 5.7  

(2.4-18) 

6.3 100 16  

(7.2-43) 

17 100 25  

(9.2-52) 

25 100 30  

(12-70) 

33 100 23  

(6.5-47) 

24 100 0.07 

PFOS 8.6  

(3.7-38) 

9.3 100 23  

(10-61) 

25 100 37  

(13-73) 

37 100 43 

 (20-90) 

46 100 33  

(11-65) 

33 100 0.15 

FOSA 0.3 

(0-1.1) 

0.4 100 0.9  

(0.3-4.2) 

1.2 100 1  

(0.2-6.8) 

1.2 100 1  

(0.1-13) 

1.4 100 0.2  

(0-1.3) 

0.3 100 0.02 

% linear PFOS 69  

(48-79) 

69  69  

(56-77) 

69  68  

(57-79) 

68  71  

(60-82) 

71  72  

(56-80) 

71  
  

aFor compound abbreviations, see Table S1. Censored summary statistics are presented for compounds with detection frequencies less 713 

than 80%: PFHxA and PFHpA. Results are not presented for compounds detected in <20% of samples in a subset of 20 samples: 714 
PFBA, PFPeA, PFDoDA, PFTrDA, PFTeDA, PFHxDA, PFBS, PFDcS, and FTSAs (4:2, 6:2 and 8:2). 715 
b% > LOD = Percentage of samples in which analyte was detected.  716 
cLOD = Limit of detection (mean concentrations in blanks) in ng/ml.717 
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Table S1: Abbreviations of chemical names for the PFASs analysed  748 

Abbreviation Compound 

4:2 FTSA 4:2 fluorotelomer sulphonic acid 

6:2 FTSA 6:2 fluorotelomer sulphonic acid 

8:2 FTSA 8:2 fluorotelomer sulphonic acid 

PFBA Perfluorobutanoic acid 

PFPeA Perfluoropentanoic acid 

PFHxA Perfluorohexanoic acid 

PFHpA Perfluoroheptanoic acid 

PFOA Perfluorooctanoic acid 

PFNA Perfluorononanoic acid 

PFDA Perfluorodecanoic acid 

PFUnDA Perfluoroundecanoic acid 

PFDoDA Perfluorododecanoic acid 

PFTrDA Perfluorotridecanoic acid 

PFTeDA Perfluorotetradecanoic acid 

PFHxDA Perfluorohexadecanoic acid 

PFBS Perfluorobutane sulphonic acid 

PFHxS Perfluorohexane sulphonic acid 

PFHpS Perfluoroheptane sulphonic acid 

PFOS  Perfluorooctane sulphonic acid 

PFDcS Perfluorodecane sulphonic acid 

FOSA Perfluorooctane sulfonamide 

 749 

 750 

Table S2: Internal standard mixture 751 

Labeled compound Concentration 

13C4 PFBA 0.1 ng/µl 

13C5 PFPeA 0.1 ng/µl 

13C5 PFHxA 0.1 ng/µl 

13C4 PFHpA 0.1 ng/µl 

13C4 PFOA 0.1 ng/µl 

13C5 PFNA 0.1 ng/µl 

13C6 PFDA 0.1 ng/µl 

13C7 PFUnDA 0.1 ng/µl 

13C2 PFDoA 0.1 ng/µl 

13C3 PFHxS 0.0946 ng/µl 

13C4 PFOS 0.0956 ng/µl 

13C8 FOSA 0.1 ng/µl 

 752 
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Fig. S1: Examples of chromatograms displaying branched and linear isomers of PFOS (A) and 753 

FOSA (B) in serum samples. The branched isomers were identified as eluting earlier than the 754 

linear isomers. 755 

A)       B) 756 

 757 

  758 
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Fig. S2: Individual trend lines for PFOA concentrations in repeated measurements in 1979, 1986, 759 

1994, 2001 and 2007 in serum samples of men from Northern Norway. Results are separated into 760 

birth year quartiles. 761 
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Fig. S3: Individual trend lines for percent of the linear PFOS isomer of summed PFOS 764 

concentrations in repeated measurements in 1979, 1986, 1994, 2001 and 2007 in serum samples 765 

of men from Northern Norway. Results are separated into birth year quartiles. 766 
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Table S3: Correlation coefficients (Spearman`s ρ) for associations between PFASs presented 769 

separately for the sampling years. Numbers in bold are significant at the level p<0.05. 770 

     1979 PFHpA PFHxS PFHpS PFOA PFNA PFDA PFUnDA PFOS 
PFHpA 

        PFHxS 0.12 
       PFHpS 0.12 0.23 

      PFOA 0.18 0.29 0.04 
     PFNA 0.12 0.29 -0.11 0.34 

    PFDA 0.15 -0.13 -0.16 -0.17 0.19 
   PFUnDA -0.13 0.06 -0.09 -0.05 0.32 0.38 

  PFOS 0.15 0.73 0.09 0.41 0.61 0.12 0.27 
 FOSA 0.09 0.13 -0.14 0.17 0.3 0.24 0.22 0.3 

              1986 PFHpA PFHxS PFHpS PFOA PFNA PFDA PFUnDA PFOS 
PFHpA 

        PFHxS 0.04 
       PFHpS 0.03 0.3 

      PFOA 0.15 0.31 0.31 
     PFNA -0.15 0.52 0.18 0.18 

    PFDA -0.02 0.31 0.16 -0.03 0.57 
   PFUnDA -0.05 0.31 -0.06 -0.12 0.59 0.62 

  PFOS -0.13 0.72 0.31 0.32 0.7 0.39 0.54 
 FOSA -0.03 0.2 0.16 0.26 0.35 0.12 0.25 0.47 

               1994 PFHpA PFHxS PFHpS PFOA PFNA PFDA PFUnDA PFOS 
PFHpA 

        PFHxS 0.01 
       PFHpS 0.06 0.32 

      PFOA 0.41 0.22 0.24 
     PFNA 0.09 0.65 0.22 0.38 

    PFDA 0.06 0.57 0.09 0.23 0.8 
   PFUnDA -0.08 0.55 0.06 -0.07 0.65 0.74 

  PFOS -0.12 0.68 0.36 0.31 0.63 0.61 0.64 
 FOSA 0.25 0.31 0.25 0.5 0.54 0.48 0.4 0.55 

              2001 PFHpA PFHxS PFHpS PFOA PFNA PFDA PFUnDA PFOS 
PFHpA 

        PFHxS 0.08 
       PFHpS 0.07 0.64 

      PFOA 0.49 0.48 0.47 
     PFNA 0.18 0.55 0.48 0.44 

    PFDA 0.21 0.29 0.25 0.25 0.71 
   PFUnDA 0.12 0.25 0.13 0.03 0.54 0.84 

  PFOS 0.1 0.66 0.62 0.32 0.67 0.62 0.62 
 FOSA 0.24 0.08 -0.04 0.09 0.3 0.26 0.37 0.29 

               2007 PFHpA PFHxS PFHpS PFOA PFNA PFDA PFUnDA PFOS 
PFHpA 

        PFHxS -0.02 
       PFHpS -0.07 0.53 

      PFOA 0.13 0.43 0.55 
     PFNA -0.18 0.41 0.39 0.44 

    PFDA -0.23 0.36 0.28 0.25 0.74 
   PFUnDA -0.22 0.26 0.06 -0.04 0.57 0.89 

  PFOS -0.23 0.61 0.5 0.35 0.68 0.77 0.72 
 FOSA 0.05 0.18 0.21 0.02 0.31 0.12 0.16 0.18 
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Table S4: Mixed effect model estimatesa (coefficients and 95% CI) of PFOA concentrations (ng/ml) in men from Northern Norway 771 

from 1979 to 2007 with age, calendar period and birth cohort as predictors.  772 

Predictors and 

coefficients 

  Model 1: Period 

only (fixed effects) 

Model 2: Period and 

age (fixed effects) 

Model 3: Period and age (fixed 

effects) plus birth cohort 

(random effects)b 

Model 4: Period and 

birth cohort (fixed 

effects) 

Model 5: Period and birth 

cohort (fixed effects) plus age 

(random effect)b 

Periodc 
           

1979 
 

Ref - Ref - Ref - Ref - Ref - 

1986 
 

1.5 (1,2.1) 1.4 (0.9,2.1) 1.7 (1.3,2.3) 1.3 (0.7,2.1) 1.3 (0.8,1.8) 

1994 
 

3.4 (2.4,4.7) 3.2 (2,4.8) 4.5 (3.4,5.9) 3.0 (1.9,4.6) 2.6 (1.7,3.8) 

2001 
 

3.1 (2.1,4.3) 2.9 (1.7,4.7) 4.5 (3.4,5.9) 2.8 (1.7,4.3) 2.6 (1.9,3.6) 

2007 
 

2.1 (1.4,3) 2.0 (1,3.4) 3.3 (2.3,4.7) 1.8 (1.1,3) 1.8 (1.1,2.6) 

Aged 
           

29-47 
 

- 
 

Ref - Ref - - 
 

- 
 

47-57 
 

- 
 

0.0 (-0.2,0.3) -0.1 (-0.2,0) - 
 

- 
 

57-66 
 

- 
 

0.1 (-0.2,0.5) -0.2 (-0.3,-0.2) - 
 

- 
 

66-82 
 

- 
 

0.0 (-0.3,0.5) -0.3 (-0.4,-0.1) - 
 

- 
 

Birth cohorte  
           

1925-1934 
 

- 
 

- 
 

- 
 

Ref - Ref - 

1934-1936 
 

- 
 

- 
 

- 
 

0.2 (-0.2,0.7) 0.2 (-0.1,0.7) 

1936-1941 
 

- 
 

- 
 

- 
 

0.1 (-0.2,0.7) 0.2 (-0.1,0.7) 

1941-1950 
 

- 
 

- 
 

- 
 

0.1 (-0.2,0.7) 0.2 (-0.1,0.6) 

AICf   132   149   152   143   145   
aCoefficients are back-transformed from log-estimates of fixed effect variables. All models included a subject-specific random term 773 
and a random slope for sampling year. Age and birth cohort variables were divided into quartiles.  774 
bVariables were added to models as random terms to allow for random variation in individuals. 775 
cCoefficients express change for PFOA concentrations in ng/ml across sampling years with 1979 as reference. 776 
dCoefficients express change in PFOA concentrations in ng/ml across age quartiles with the youngest (29-47) as reference. 777 
eCoefficients express change in PFOA concentrations in ng/ml across birth cohort quartiles with the oldest (1925-1934) as reference. 778 
fAkaike’s information criterion. Lower numbers indicate better model fit when comparing models. 779 

 780 

  781 
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Table S5: Mixed effect model estimatesa (coefficients and 95% CI) of PFUnDA concentrations (ng/ml) in men from Northern Norway 782 

from 1979 to 2007 with age, calendar period and birth cohort as predictors.  783 

Predictors and 

coefficients 

  Model 1: Period 

only (fixed effects) 

Model 2: Period and 

age (fixed effects) 

Model 3: Period and age 

(fixed effects) plus birth 

cohort (random effects)b 

Model 4: Period and 

birth cohort (fixed 

effects) 

Model 5: Period and birth 

cohort (fixed effects) plus age 

(random effect)b 

Period 
           

1979 
 

Ref - Ref - Ref - Ref - Ref - 

1986 
 

0.74 (0.5,1.2) 0.68 (0.4,1.1) 0.65 (0.4,1) 0.89 (0.5,1.6) 0.94 (0.5,1.7) 

1994 
 

0.73 (0.4,1.2) 0.60 (0.3,1.1) 0.63 (0.4,1.1) 0.88 (0.5,1.6) 0.85 (0.5,1.5) 

2001 
 

1.04 (0.6,1.6) 0.80 (0.4,1.5) 0.82 (0.5,1.4) 1.26 (0.7,2.3) 1.33 (0.7,2.4) 

2007 
 

1.05 (0.6,1.7) 0.78 (0.4,1.6) 0.91 (0.5,1.7) 1.27 (0.6,2.4) 1.31 (0.7,2.4) 

Age 
           

29-47 
 

- 
 

Ref - Ref - - 
 

- 
 

47-57 
 

- 
 

0.01 (0,0.1) 0.00 (0,0) - 
 

- 
 

57-66 
 

- 
 

0.02 (0,0.1) 0.02 (0,0.1) - 
 

- 
 

66-82 
 

- 
 

0.03 (0,0.1) 0.00 (0,0.1) - 
 

- 
 

Birth cohort  
           

1925-1934 
 

- 
 

- 
 

- 
 

Ref - Ref - 

1934-1936 
 

- 
 

- 
 

- 
 

-0.02 (-0.1,0.1) -0.02 (-0.1,0.1) 

1936-1941 
 

- 
 

- 
 

- 
 

-0.02 (-0.1,0.1) -0.01 (-0.1,0.1) 

1941-1950 
 

- 
 

- 
 

- 
 

-0.03 (-0.1,0) -0.04 (-0.1,0) 

AIC   364   375   393   370   352   
aCoefficients are back-transformed from log-estimates of fixed effect variables. All models included a subject-specific random term 784 

and a random slope for sampling year. Age and birth cohort variables were divided into quartiles.  785 
bVariables were added to models as random terms to allow for random variation in individuals. 786 
cCoefficients express change for PFUnDA concentrations in ng/ml across sampling years with 1979 as reference. 787 
dCoefficients express change in PFUnDA concentrations in ng/ml across age quartiles with the youngest (29-47) as reference. 788 
eCoefficients express change in PFUnDA concentrations in ng/ml across birth cohort quartiles with the oldest (1925-1934) as 789 

reference. 790 
fAkaike’s information criterion. Lower numbers indicate better model fit when comparing models.  791 
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Table S6: Mixed effect model estimatesa (coefficients and 95% CI) of PFOS concentrations (ng/ml) in men from Northern Norway 792 

from 1979 to 2007 with age, calendar period and birth cohort as predictors. 793 

Predictors and 

coefficients 

  Model 1: Period only 

(fixed effects) 

Model 2: Period and 

age (fixed effects) 

Model 3: Period and age 

(fixed effects) plus birth 

cohort (random effects)b 

Model 4: Period and 

birth cohort (fixed 

effects) 

Model 5: Period and birth 

cohort (fixed effects) plus age 

(random effect)b 

Period 
           

1979 
 

Ref - Ref - Ref - Ref - Ref - 

1986 
 

14.9 (10.2,20.8) 14.4 (9.3,21.1) 15.4 (10.8,21.1) 14.8 (8.2,24) 15.2 (8.4,24.8) 

1994 
 

25.3 (17.5,35.4) 23.5 (14.7,35.6) 25.1 (16.8,36.2) 25.1 (14.6,40.3) 25.9 (15.6,40.6) 

2001 
 

33.3 (23.7,45.7) 29.9 (18.3,46.4) 32.0 (20.8,47.5) 33.0 (20.1,51.8) 32.8 (20.1,51.1) 

2007 
 

22.2 (14.9,31.8) 18.9 (9.8,32.6) 20.6 (11.4,34) 22.0 (12.3,36.4) 22.1 (12.4,36.4) 

Age 
           

29-47 
 

- 
 

Ref - Ref - - 
 

- 
 

47-57 
 

- 
 

0.2 (-1.8,2.9) 0.1 (-1.7,2.4) - 
 

- 
 

57-66 
 

- 
 

0.7 (-1.9,4.5) 0.5 (-1.9,3.7) - 
 

- 
 

66-82 
 

- 
 

1.2 (-2.1,6) 0.8 (-2.2,5.1) - 
 

- 
 

Birth cohort  
           

1925-1934 
 

- 
 

- 
 

- 
 

Ref - Ref - 

1934-1936 
 

- 
 

- 
 

- 
 

0.4 (-3.5,7.6) 0.1 (-3.8,7.3) 

1936-1941 
 

- 
 

- 
 

- 
 

0.4 (-3.5,7.4) 0.3 (-3.6,7.4) 

1941-1950 
 

- 
 

- 
 

- 
 

-0.6 (-4.2,6) -0.9 (-4.3,5.2) 

AIC   116   133   150   128   154   
aCoefficients are back-transformed from log-estimates of fixed effect variables. All models included a subject-specific random term 794 
and a random slope for sampling year. Age and birth cohort variables were divided into quartiles.  795 
bVariables were added to models as random terms to allow for random variation in individuals. 796 
cCoefficients express change for PFOS concentrations in ng/ml across sampling years with 1979 as reference. 797 
dCoefficients express change in PFOS concentrations in ng/ml across age quartiles with the youngest (29-47) as reference. 798 
eCoefficients express change in PFOS concentrations in ng/ml across birth cohort quartiles with the oldest (1925-1934) as reference. 799 
fAkaike’s information criterion. Lower numbers indicate better model fit when comparing models. 800 
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Fig. S4: APC plots: Longitudinal and cross-sectional organization of concentrations of PFHpA, 802 

PFNA, PFDA and PFHxS (medians for each quartile in each sampling year in ng/ml wet weight). 803 

Further details are provided in the figure legend of Fig. 4 and Section 4.4. of the article. 804 
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Fig. S5: Graphical display of concentrations between 1975 and 2010 from this study ( ) and 806 

other studies: Haug et al., 2007 ( ); Kato et al., 2011 ( ); Olsen et al., 2012 ( ); Schröter-807 

Kermani et al., 2012 ( ). See Section 4.1. of the article for discussion.  808 
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