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Abstract 52 

Climate Data Records of soil moisture are fundamental for improving our understanding of long-term 53 

dynamics in the coupled water, energy, and carbon cycles over land. To respond to this need, in 2012 54 

the European Space Agency (ESA) released the first multi-decadal, global satellite-observed soil 55 

moisture (SM) dataset as part of its Climate Change Initiative (CCI) program. This product, named ESA 56 

CCI SM, combines various single-sensor active and passive microwave soil moisture products into three 57 

harmonised products: a merged ACTIVE, a merged PASSIVE, and a COMBINED active+passive 58 

microwave product. Compared to the first product release, the latest version of ESA CCI SM includes a 59 

large number of enhancements, incorporates various new satellite sensors, and extends its temporal 60 

coverage to the period 1978-2015. In this study, we first provide a comprehensive overview of the 61 

characteristics, evolution, and performance of the ESA CCI SM products. Based on original research 62 

and a review of existing literature we show that the product quality has steadily increased with each 63 

successive release and that the merged products generally outperform the single-sensor input 64 

products. Although ESA CCI SM generally agrees well with the spatial and temporal patterns estimated 65 

by land surface models and observed in-situ, we identify surface conditions (e.g., dense vegetation, 66 

organic soils) for which it still has large uncertainties. Second, capitalising on the results of more than 67 

100 research studies that made use of the ESA CCI SM data we provide a synopsis of how it has 68 

contributed to improved process understanding in the following Earth system domains: climate 69 

variability and change, land-atmosphere interactions, global biogeochemical cycles and ecology, 70 

hydrological and land surface modelling, drought applications, and meteorology. While in some 71 

disciplines the use of ESA CCI SM is already widespread (e.g. in the evaluation of model soil moisture 72 

states) in others (e.g. in numerical weather prediction or flood forecasting) it is still in its infancy. The 73 

latter is partly related to current shortcomings of the product, e.g., the lack of near-real-time 74 

availability and data gaps in time and space. This study discloses the discrepancies between current 75 

ESA CCI SM product characteristics and the preferred characteristics of long-term satellite soil moisture 76 

products as outlined by the Global Climate Observing System (GCOS), and provides important77 

directions for future ESA CCI SM product improvements to bridge these gaps.  78 
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1 Introduction 79 

1.1 The role of soil moisture in the Earth system 80 

Soil moisture is at the heart of the Earth system. Through its impact on the partitioning of the incoming 81 

water and energy over land, soil moisture affects the variability of the coupled water 82 

(evapotranspiration and runoff) and energy fluxes (latent and sensible heat fluxes)(Seneviratne et al. 83 

2010). As such, a surplus or lack of soil moisture can favour the occurrence of floods (Brocca et al. 84 

2012; Koster et al. 2010) or droughts (Wang et al. 2011), respectively. The feedback of soil moisture 85 

on evapotranspiration is important for temperature variability and the occurrence and persistence of 86 

heatwaves (Fischer et al. 2007; Hirschi et al. 2011; Miralles et al. 2014a; Mueller and Seneviratne 2012), 87 

as well as for the generation and location of precipitation (Findell et al. 2011; Guillod et al. 2015; Taylor 88 

et al. 2012). In addition, regional gradients in soil moisture can induce mesoscale atmospheric 89 

circulation patterns (Taylor et al. 2012). Moreover, the role of soil moisture in driving photosynthesis, 90 

ecosystem dynamics, and soil respiration, and hence the terrestrial carbon balance, is undisputable 91 

(Ciais et al. 2005; van der Molen et al. 2012). However, the impacts of soil moisture on ecosystems 92 

may be indirect and non-linear, e.g. by controlling the likelihood of fires and pest outbreaks (Forkel et 93 

al. 2012; Papagiannopoulou et al. 2016; Reichstein et al. 2013). 94 

1.2 Global monitoring of soil moisture 95 

Tracking soil moisture variability and change over time is fundamental for estimating bounds on water 96 

availability and for quantifying its sensitivity to global warming and human pressures. This requires 97 

high-quality soil moisture datasets that are long enough, contiguous, and consistent in time and space 98 

(Findell et al. 2015; Loew 2013). While detailed soil moisture information is provided by in-situ soil 99 

moisture databases such as the International Soil Moisture Network (ISMN; Dorigo et al. 2011b; Dorigo 100 

et al. 2013; Ochsner et al. 2013), ground-based observations lack sufficient global coverage and 101 

consistency for comprehensive Earth system assessments. Seamless spatial and temporal coverage is 102 

offered by reanalysis land surface model products, which are driven by various types of - mostly 103 

atmospheric – observations (e.g., Balsamo et al. 2015; Reichle et al. 2011; Rodell et al. 2004). Though 104 

seemingly gap free, the skill of reanalysis products during a specific period hinges on the number, 105 

quality, and spatial availability of the forcing datasets used as input during that period, and the model 106 

physics used to infer soil moisture fields from them Microwave remote sensing of soil moisture has 107 

long been recognised as a valuable means to overcome the spatial limitations of in-situ observations 108 

and to provide a global independent reference for land surface model and reanalysis evaluations 109 

(Albergel et al. 2013a; Schmugge 1983; Szczypta et al. 2014). It may help detecting relevant trends 110 

(Dorigo et al. 2012) but it is mainly restricted to the surface soil layer. Although gravity missions such 111 
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as the Gravity Recovery and Climate Experiment (GRACE; Rodell et al. 2009) are sensitive to moisture 112 

in the total soil column (Abelen and Seitz 2013), their use is not straightforward, since besides soil 113 

moisture they are also sensitive to changes in snow, surface water, and groundwater, and require 114 

estimates of atmospheric total column water vapour, while operating at very coarse spatial and 115 

temporal resolutions. Moreover, the limited length of any observational or modelled soil moisture 116 

dataset may hamper the detection of long-term trends, particularly in areas with reduced data quality 117 

or experiencing large inter-annual variability (Findell et al. 2015; Loew 2013; Miralles et al. 2014b). For 118 

the future, model projections suggest that in specific regions soil moisture may decrease, even though 119 

there exists considerable spread in these projections (Greve and Seneviratne 2015). These trends, their 120 

inherent uncertainties and the large amount of human activities connected to soil water highlight the 121 

crucial importance of on-going monitoring of soil moisture at the ground and from space. 122 

1.3 Climate research requirements on satellite soil moisture 123 

Surface soil moisture information has been inferred from a wide range of space-borne instruments 124 

using various retrieval approaches (e.g., De Jeu and Dorigo 2016; Jackson 1993; Kerr et al. 2012; Naeimi 125 

et al. 2009; Njoku et al. 2003; O'Neill et al. 2016; Owe et al. 2008; Wagner et al. 2013b). In 2010, the 126 

Global Climate Observing System (GCOS) panel considered soil moisture remote sensing mature 127 

enough for systematic, global observation of the climate and endorsed it as one of the 50 Essential 128 

Climate Variables (ECVs) supporting the work of the United Nations Framework Convention on Climate 129 

Change (UNFCCC) and the International Panel on Climate Change (IPCC; GCOS-138 2010). Scientific 130 

consensus on the minimum requirements of satellite soil moisture datasets for climate monitoring, so-131 

called Climate Data Records (CDRs), has been outlined in the latest GCOS Implementation Plan (GCOS-132 

200 2016). Within the Climate Change Initiative (CCI) of the European Space Agency (ESA), these 133 

requirements have been further refined, supported in particular by the CCI Climate Modelling User 134 

Group (CMUG), which represents leading climate modelling organisations in Europe. Within the CCI, 135 

these requirements are updated yearly based on continuous feedback from GCOS, CMUG, and the CCI 136 

soil moisture user community at large.137 

Table 1 lists the combined GCOS, CMUG, and wider ESA CCI soil moisture user community’s 138 

requirements on satellite soil moisture. Although surface soil moisture (SSM) is the target variable 139 

specified by GCOS, there is also a large interest in satellite-based root-zone soil moisture (RZSM). The 140 

latter seemingly contradicts the user requirement of model-independency of the satellite products, as 141 

land surface models (LSMs) are typically required to propagate surface soil moisture observations to 142 

the root-zone (Albergel et al. 2012). No agreement exists yet on the soil column that a potential RZSM 143 

product should represent, as the vegetation rooting depth is species-specific. Similarly, neither the 144 

depth of the surface layer is precisely defined, since differences in microwave frequencies and soil 145 
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moisture conditions lead to different soil penetration depths, and thus reflect different depths. The 146 

preferred unit for soil moisture products is m3m-3, although different communities may adopt different 147 

physical units, e.g. kg m-2 or percentage/degree of saturation. However, with appropriate metadata on 148 

soil porosity at the scale of the satellite footprint the observations can be transferred from one physical 149 

unit to the other (Dorigo et al. 2011b). It has been suggested that for some applications, e.g., model 150 

evaluation, soil moisture anomalies may be more useful than absolute values (Nicolai-Shaw et al. 151 

2015). With increasing spatial resolutions of both regional and global climate models the need for 152 

higher resolution observational soil moisture datasets also increases. While the minimum requirement 153 

was previously 50 km, now a spatial resolution ranging between 1 and 25 km is advocated. The 154 

preferred observing cycle is one day, even though a sub-daily temporal resolution is desired for specific 155 

process studies (Guillod et al. 2014). Soil moisture CDRs should be reliable, without jumps or data gaps, 156 

and stable over time. The provision of error information, preferably per pixel and per observation, shall 157 

be an integrated part of any soil moisture CDR. In addition, GCOS advises the concurrent provision of 158 

related variables such as freeze/thaw state, surface inundation, and vegetation optical depth (VOD) to 159 

complement and better characterise the quality of the SSM products. 160 

Data quality requirements depend strongly on the application, in particular with regard to precision 161 

(i.e., the random error) and accuracy (the combined effect of precision and systematic error). This is 162 

reflected by the large spread of accuracy requirements for different applications as reported in the 163 

Observing Systems Capability Analysis and Review Tool (OSCAR; https://www.wmo-sat.info/oscar/) 164 

database, maintained by the World Meteorological Organization (WMO). The current GCOS accuracy 165 

requirement of 0.04 m3m-3 volumetric soil moisture unbiased root-mean-square-error (ubRMSE) is in 166 

line with the accuracy goals set for the exploratory satellite missions Soil Moisture Ocean Salinity 167 

(SMOS; Kerr et al. 2016) and Soil Moisture Active Passive (SMAP; Entekhabi et al. 2010a). The 168 

requirement for the stability was set to 0.01 m3m-3y-1 random year-to-year variability. For both 169 

requirements,  there is no fundamental research supporting these thresholds. The assessment of these 170 

qualities hinges on the availability of stable, long-term reference datasets, something which is 171 

currently still lacking (GCOS-200 2016). In addition, it is important to point out that the process of 172 

comparing satellite-derived products to independent reference data requires standardisation, which 173 

is why GCOS collaborates closely with the Land Product Validation sub-group (LPV) of the Committee 174 

of Earth Observation Satellites (CEOS) to establish good practice validation protocols. For soil moisture 175 

such a protocol does not yet exist. Nonetheless, CEOS LPV judges the maturity of soil moisture 176 

validation activities to be relatively high thanks to the dedicated validation efforts of the SMAP and 177 

SMOS satellite teams (Colliander et al. 2016; Kerr et al. 2016), the availability of a relatively large 178 

number of in-situ soil moisture networks worldwide (Dorigo et al. 2011a), and the recent emergence 179 

https://www.wmo-sat.info/oscar/
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of advanced statistical methods for estimating accuracy metrics in the presence of scaling errors (Chen 180 

et al. 2016a; Gruber et al. 2013; Gruber et al. 2016b). 181 

Table 1 Current specifications for satellite-based soil moisture CDRs, based on requirements of GCOS, CEOS, CMUG, and the 182 
ESA CCI soil moisture user community at large 183 

Variable Surface1 soil moisture content, root-zone soil moisture content

Measuring units m3m-3

Horizontal resolution 25 km, with increasing need to advance towards 1 km

Accuracy 0.04 m3m-3 (unbiased root-mean-square-error)

Stability 0.01 m3m-3y-1 (year-to-year variability of systematic differences)

Observing cycle Daily, growing preference for sub-daily observations

Timeliness 1 month

Record length >30 years

Additional 

requirements 

Products should be satellite only, i.e. no land surface model should be 

involved 

Error estimate should be provided for each observation

Additional information on freeze/thaw status, surface inundation, and 

vegetation optical depth is requested for better quality characterisation 

1There is no common definition of the surface layer but it is generally assumed to range between 0.02-0.05 m (Ulaby et al. 184 

1982).    185 

1.4 ESA CCI Soil Moisture to meet climate observation demands 186 

The ESA CCI Soil Moisture (SM) project (http://www.esa-soilmoisture-cci.org) has been established to 187 

fulfil the soil moisture monitoring needs in support of climate research. Although most of the basic 188 

requirements can potentially be met by a single sensor product (Table 1), individual satellite missions 189 

are clearly too short to provide a CDR of more than 30 years (Dorigo et al. 2010). To bridge this gap, 190 

ESA’s Water Cycle Multi-mission Observation Strategy (WACMOS) project (Su et al. 2010) provided the 191 

financial incentives to develop a long-term soil moisture product from multiple active and passive 192 

microwave sensors. The multi-satellite approach merged various Level 2 (i.e. in swath geometry) 193 

single-sensor soil moisture products into a harmonised record by synergistically combining the 194 

strengths of the individual products (Liu et al. 2012; Liu et al. 2011; Wagner et al. 2012). The success 195 

of this demonstration activity was a critical argument in favour of including soil moisture in ESA’s CCI 196 

program, which supports the development and pre-operational production of ECVs. The first ESA CCI 197 

SM product (v0.1) was publicly released in 2012. Since then, the dataset has been continuously 198 

upgraded by expanding its spatial-temporal coverage, by including new sensors, through algorithmic 199 

http://www.esa-soilmoisture-cci.org/
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updates and sensor inter-calibration efforts, and by improving the assessment and description of 200 

product errors. This is an ongoing effort that will continue into the future. 201 

1.5 Scope and overview of this study 202 

The objective of this paper is to provide the state-of-the-art of the ESA CCI SM products and to review 203 

its impact on various climate-related research sectors. Section 2 provides a detailed overview of the 204 

current specifications of the ESA CCI SM product and the major updates to the retrieval algorithm, first 205 

released in 2012 (Liu et al. 2012; Liu et al. 2011; Wagner et al. 2012). A thorough understanding of the 206 

errors and limitations of ESA CCI SM is crucial for a correct use and interpretation of the data. 207 

Therefore, we dedicate Section 3 to quality characterisation of the products and synthesise the results 208 

of the numerous error assessments that were made in the past. In Section 4, we provide an extensive 209 

overview and synthesis of more than 100 studies that used the ESA CCI SM products to gain improved 210 

insights into Earth system processes. In Section 5, we confront the ESA CCI SM product quality 211 

characteristics identified in this study with the requirements of the climate community to identify 212 

potential deficiencies in the current product and make prioritised recommendations for future 213 

developments.  214 

2 The ESA CCI soil moisture product 215 

2.1 Soil moisture retrievals from microwave remote sensing 216 

The microwave domain is particularly useful for the observation of moisture conditions in the upper 217 

few centimetres of the soil (Ulaby et al. 1982). This capability is the result of the large contrast between 218 

the dielectric properties of dry soil and water, which makes the microwave radiance emitted or 219 

reflected by the surface soil volume almost linearly dependent on the soil-water mixing ratio (Ulaby et 220 

al. 1982). Both active microwave systems (radars, measuring variations in reflected backscatter) and 221 

passive systems (radiometers, measuring natural emissions) can make observations under nearly any 222 

weather conditions, independent of daylight. Satellite microwave observations have footprints with 223 

typical resolutions on the order of 25 × 25 km2 to 50 × 50 km2. The coarse spatial resolution is however 224 

compensated by the global coverage and high revisit times, generally daily or sub-daily, depending on 225 

sensor characteristics such as swath width. Such short revisit times are very valuable since soil moisture 226 

is generally highly variable in time as a function of rainfall, irrigation, and evaporation. 227 

Despite their general usefulness for soil moisture retrievals, microwave observations have several 228 

limitations. Retrievals are impossible under snow and ice or when the soil is frozen (Ulaby et al. 1982), 229 

while complex topography, surface water, and urban structures have an adverse effect on the retrieval 230 

quality (Wagner et al. 1999a). In particular, passive microwave observations can be affected by human-231 
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induced radio frequency interference (RFI), which may obstruct feasible observations over large areas 232 

(Oliva et al. 2012b). However, much progress has been made to mitigate RFI by enforcement of 233 

legislation, by new on-board hardware-driven detection and mitigation capabilities (e.g. for AMSR2 234 

and SMAP), or by filtering or replacing affected observations using alternative microwave frequencies 235 

(Nijs et al. 2015). In addition, vegetation water attenuates the microwave emission and backscatter 236 

from the soil surface and may eventually completely obscure the soil moisture signal above 237 

wavelength-dependent vegetation water content density thresholds (Parinussa et al. 2011). The L-238 

band frequency (1.4 GHz), as used by SMOS and SMAP, has a better capacity to penetrate vegetation 239 

than the higher microwave frequencies of C-band (i.e. AMSR-E, AMSR2, WindSat, ERS, ASCAT) and X-240 

band (i.e. AMSR-E, AMSR2, TMI, Fengyun-3B) (Ulaby et al. 1982). Observations at the lower L-band 241 

microwave frequency (longer wavelength) generally also sense the soil profile to a greater depth than 242 

C- and X-band sensors, typically up to 5 cm depth (Ulaby et al. 1982). At the same time however, it is 243 

more difficult to achieve a suitable spatial resolution with high radiometric accuracy for L-band than 244 

for C- and X-band.  245 

Most soil moisture retrieval algorithms for passive microwave observations (e.g., Jackson 1993; Kerr 246 

et al. 2012; Mladenova et al. 2014; Owe et al. 2008; Wigneron et al. 2007) are based on solving the 247 

radiative transfer model by Mo et al. (1982). The algorithms differ in their treatment of the 248 

observations, e.g. by using different frequencies, polarizations, or multiple overpasses or incidence 249 

angles, and in the parameterisation of the different geophysical variables, e.g., surface roughness, 250 

vegetation impact, and the conversion of the soil dielectric constant to soil moisture. Alternatively, 251 

statistical retrieval approaches train the passive microwave observations towards a reference dataset 252 

through machine learning (e.g., Rodríguez-Fernández et al. 2015) or linear regressions (e.g., Al-Yaari et 253 

al. 2016). In summary, all these differences in microwave frequencies, sensor specifications, and 254 

retrieval algorithms result in soil moisture dataset qualities that vary both in space and time. 255 

Characterizing the accuracy of these various satellite-based soil moisture estimates has been the 256 

subject of numerous studies (e.g. Naeimi et al. 2009; Dorigo et al. 2010; Parinussa et al. 2011; Wanders 257 

et al. 2012).  258 

Table 2 shows an overview of all openly accessible coarse-resolution microwave soil moisture 259 

products. Since none of the single sensor missions complies with the minimum CDR length requirement 260 

of 30 years, a multi-satellite approach is needed to bridge this gap. Retrievals based on synthetic 261 

aperture radars (SARs) yield higher spatial resolutions but at the expense of reduced revisit times and 262 

are therefore currently not considered appropriate for global CDR production.  263 
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Table 2. Available global coarse resolution surface soil moisture products from passive and active satellite microwave 264 
instruments. Products are grouped according to platform sensor in order of platform launch date. 265 

Platform Sensor Frequency used 

for SM retrieval 

(GHz) 

Product name/producer Dataset availability Reference 

Radiometers

Nimbus7 SMMR  6.6 VU University Amsterdam (VUA)/

National Aeronautics and Space 

Administration (NASA) (Land Parameter 

Retrieval Model (LPRM)) 

1978/10 – 1987/08 Owe et al. (2008) 

DMSP SSM/I 19.4 VUA/NASA (LPRM) 1987/06 – Onwards Owe et al. (2008) 

TRMM TMI 10.7 VUA/NASA (LPRM) 1997/11 – 2015/04 Owe et al. (2008) 

Princeton University (LSMEM) 1998/01 – 2004/12 Gao et al. (2006) 

AQUA AMSR-E  6.9, 10.7 VUA/NASA (LPRM) 2002/06 – 2011/10 Owe et al. (2008) 

University of Montana / Numerical 

Terradynamic Simulation Group 

2002/06 – 2011/10 Jones et al. (2010) 

US National Snow and Ice Data Center 

(NSIDC) 

2002/06 – 2011/10 Njoku et al. (2003) 

Japanese Aerospace Exploration Agency 

(JAXA) 

2002/06 – 2011/10 Koike et al. (2004) 

Princeton University (LSMEM) 2002/06 – 2011/09 Pan et al. (2014) 

Coriolis WindSat  6.8, 10.7 VUA/NASA (LPRM) 2003/01 – 2012/08 Parinussa et al. 

(2012) 

U.S. Naval Research Laboratory 2003/01 – Onwards Li et al. (2010) 

SMOS MIRAS 1.4 ESA/ Centre Aval de Traitement des 

Données SMOS (CATDS) 

2009/11 – Onwards Kerr et al. (2010) 

ESA/EUMETCAST (for L2-SM-NRT-NN 

product) 

2009/11 – Onwards Rodríguez-

Fernández et al. 

(2015) 

VUA/VanderSat (LPRM) 2009/11 – Onwards van der Schalie et 

al. (2016) 

Aquarius 1.4 NSIDC 2011/08 – 2015/06  

FengYun-3B 

MWRI 

10.7 VUA/NASA (LPRM) 2011/07 – Onwards Parinussa et al. 

(2014) 

GCOM W1 

AMSR2 

6.9, 7.3, 10.7 VUA/NASA (LPRM) 2012/07 – Onwards Parinussa et al. 

(2015) 

JAXA 2012/07 – Onwards Koike et al. (2004) 

SMAP 1.4 NASA 2015/02 – Onwards O'Neill et al. (2016)

VUA/NASA (LPRM) 2015/02 – Onwards van der Schalie et 

al. (2016)

Scatterometers

ERS-1/2 AMI WS 5.3 Vienna University of Technology (TU 

Wien/WARP), ESA 

1991/08 – 2011/07 Scipal et al. (2002); 

Wagner et al. 

(2007) 

MetOp-A/B 

ASCAT  

5.3 EUMETSAT H-SAF, (TU Wien/WARP) 2007/01 – Onwards Wagner et al. 

(2013b) 

266 

267 



11 

2.2 The ESA CCI SM multi-sensor merging approach 268 

Combining single sensor data into a multi-satellite soil moisture data record can either start from Level 269 

1 data (brightness temperatures for passive microwave sensors, backscatter coefficients for active 270 

microwave sensors) or from Level 2 soil moisture retrievals (Wagner et al. 2012). Starting from Level 1 271 

would allow using the brightness temperature and backscatter measurements complimentarily in the 272 

soil moisture retrieval itself. For example, Kolassa et al. (2016) produced superior soil moisture 273 

products by merging Level 1 products of AMSR-E and ASCAT. However, for ESA CCI SM such an 274 

approach would become very complex and of limited applicability because of the many satellites and 275 

different sensors involved, many of them with no or only limited temporal overlap. Therefore, the ESA 276 

CCI SM approach starts from publicly available Level 2 soil moisture data records, which are merged 277 

based on a thorough understanding of their error characteristics. This approach has the major 278 

advantage that the CDR production system benefits from the efforts by space agencies and other 279 

organisations to establish single-sensor soil moisture data records that are both internally and 280 

externally validated, while being computationally relatively lightweight.  281 

The architecture for the ESA CCI SM Level 2 based merging framework was originally proposed by Liu 282 

et al (2011, 2012) and Wagner et al. (2012) and is – with some modifications – still being used today 283 

(Figure 1). Level 2 soil moisture products, produced outside the processing chain by various data 284 

providers, are used as input to the merging scheme. Currently, only active microwave soil moisture 285 

products generated with the TU Wien method (Naeimi et al. 2009; Wagner et al. 1999b) and passive 286 

microwave products produced with the Land Parameter Retrieval Model (LPRM; Owe et al. 2008) are 287 

being used because of their consistency in methodology across sensors (see Table 2). Level 2 soil 288 

moisture products from all available active and passive sensors are first mapped from their native 289 

observation times to a common daily time step (0:00 UTC ± 12 hours) using a nearest neighbour search 290 

in time. Then, the temporally rebinned Level 2 radiometer products are inter-calibrated using 291 

cumulative distribution function (CDF) matching (Liu et al. 2011) with AMSR-E soil moisture serving as 292 

a scaling reference, and merged into a radiometer-only (PASSIVE) product while taking into account 293 

the relative skill of the input products (Section 2.3). The same is done for the temporally rebinned Level 294 

2 scatterometer products but with ASCAT soil moisture serving as a scaling reference. This results in a 295 

scatterometer-only (ACTIVE) product.      296 

Subsequently, the systematic differences between ACTIVE and PASSIVE are corrected for by matching 297 

for the CDF of each pixel against long-term LSM-based soil moisture, which is currently provided by 298 

GLDAS-Noah v1 (Rodell et al. 2004). The choice of using a modelled soil moisture product and not one 299 

of the microwave-based products as scaling reference has been motivated by the fact that none of the 300 

latter has global coverage and spatially consistent quality (Liu et al. 2012). In the final step, the rescaled 301 
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ACTIVE and rescaled PASSIVE products are merged into the combined active+passive product 302 

(COMBINED), again based on their error characteristics. Given the native spatial resolutions of 25 to 303 

50 km and revisit times of approximately 1 to 2 days of the Level 2 products, it was decided to provide 304 

a daily product with a grid spacing of 0.25°. Note, that the actual data availability of ESA CCI SM varies 305 

in space and time due to the varying spatial and temporal availability of the single-sensor Level 2 input 306 

products (Section 3). The units of measurement of ACTIVE is degree [%] of saturation while PASSIVE 307 

and COMBINED are provided in volumetric units [m3m-3].308 

309 

Figure 1 Schematic overview of ESA CCI SM production system. Modified from Wagner et al. (2012)  310 

2.3 Product evolution and latest developments 311 

The first ESA CCI SM product (v0.1, at that time referred to as ECV SM; Table 3) was released in 2012 312 

and combined four radiometer and two scatterometer products into a single COMBINED dataset 313 

according to the methodology documented in Liu et al. (2012). Since then, the ESA CCI SM product was 314 

updated at regular intervals and complemented with the intermediate ACTIVE and PASSIVE products 315 

(Table 3). One of the major modifications of each subsequent release has been the continuous 316 

extension of ESA CCI SM into the near present, which was mainly facilitated by the introduction of new 317 

satellite sensors, i.e., Coriolis WindSat, GCOM-W1 AMSR2, SMOS MIRAS and MetOp-B ASCAT. 318 

Particularly, the integration of SMOS has been challenging because of its sensor characteristics, which 319 

differ significantly from earlier microwave radiometers. SMOS uses an interferometric radiometer 320 

instead of a scanning radiometer, and measures at a lower frequency (L-band) and over a wide range 321 

of incidence angles. While this offers new opportunities, also several challenges have to be overcome, 322 

especially with regard to the large impact of RFI over much of Eurasia (Oliva et al. 2012a), and the lack 323 

of simultaneous Ka-band observations which are commonly used in LPRM to estimate land surface 324 

temperatures. To overcome the latter, SMOS LPRM adopts an approach similar as for SMOS L3 and 325 
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estimates the effective soil temperature from the skin and deeper soil temperatures provided by the 326 

Integrated Forecast System of the European Centre For Medium Range Weather Forecasts (ECMWF) 327 

(van der Schalie et al. 2016). Using LPRM-based SMOS retrievals instead of the official SMOS Level 3 328 

product leads to a higher consistency with the other passive microwave products used in ESA CCI SM 329 

without significant loss of skill with regard to the latter (van der Schalie et al. in review). Besides, it also 330 

provides a solid base for future integration of SMAP-based LPRM retrievals (van der Schalie et al. 2016). 331 

In addition to the integration of new sensors, updates of Level 1 and Level 2 products that were already 332 

used in earlier ESA CCI SM releases are integrated in new ESA CCI SM releases. Notice, that the datasets 333 

are not updated until the near present to allow for using reprocessed data and making a thorough 334 

error assessment before public release. 335 

Table 3 Specifications of ESA CCI SM public releases 336 

Version number 

V0.1 V02.0 / v02.1* V02.2 V03.2 

Release date June 2012 July 2014 / December 2014 December 2015 February 2017 

Products provided COMBINED ACTIVE, PASSIVE, 
COMBINED 

ACTIVE, PASSIVE, 
COMBINED 

ACTIVE, PASSIVE, 
COMBINED 

Scatterometer 
products included 
(algorithm + 
version) 

ERS-1/2 AMI WS (TU Wien 
WARP 5.0), MetOp-A 
ASCAT (TU Wien/WARP 
5.4) 

ERS-1/2 AMI WS (TU 
Wien/WARP 5.0), MetOp-A 
ASCAT (TU Wien/WARP 5.4) 

ERS-1 AMI WS (TU 
Wien/WARP 5.5), ERS-2 
AMI WS (TU 
Wien/WARP5.4), MetOp-A 
ASCAT (H-SAF H25 / 
WARP5.5) 

ERS-1/2 AMI WS (TU 
Wien/WARP 5.5), ERS-2 
AMI WS (TU 
Wien/WARP5.4), 
MetOp-A+B ASCAT (H-
SAF H109/H110 / WARP 
5.6) 

Radiometer 
products included 
(algorithm + 
version) 

SMMR, SSM/I, TMI, AMSR-
E (all VUA/NASA LPRM v3) 

SMMR, SSM/I, TMI, AMSR-
E, WindSat, AMSR2 (all 
VUA/NASA LPRM v5) 

SMMR, SSM/I, TMI, AMSR-
E, WindSat, AMSR2 (all 
VUA/NASA LPRM v5) 

SMMR, SSM/I, TMI,  
WindSat (all VUA/NASA 
LPRM v5); AMSR-E, 
AMSR2, SMOS (all 
VanderSat LPRM v6) 

Time period 
covered 

1978/11 – 2010/12 1978/11-2013/12 (PASSIVE 
and COMBINED);  
 1991/08-2013/12 (ACTIVE) 

1978/11-2014/12 (PASSIVE 
and COMBINED);  
 1991/08-2014/12 
(ACTIVE) 

1978/11-2015/12 
(PASSIVE and 
COMBINED);  
 1991/08-2015/12 
(ACTIVE) 

Major algorithmic 
improvements 
with respect to 
forerunner 

Original version as 
described in Liu et al. 
(2012). Noise estimates 
based on scaling and 
merging of single sensor 
error propagation 
estimates. 

Data gaps in COMBINED 
(2003/02 – 2006/12) 
resulting from ERS-2 failure 
filled with AMSR-E data; 
improved CDF-scaling, 
spatial resampling of active 
data by Hamming window.  

Improved flagging of 
spuriously low and high 
observations. 

New weighted merging 
scheme for all three 
products based on 
signal-to-noise ratio of 
input datasets; random 
error estimates based 
on SNR 

Ancillary data 
provided 

Random error estimate for 
each observation; Flags for 
spurious observations (e.g. 
snow cover, frozen soil); 
Sensors used per period for 
each pixel 

Random error estimate for 
each observation; Flags for 
spurious observations, day-
/nighttime observation, 
ascending/descending 
mode; microwave 
frequency and sensor used 
for each soil moisture 
retrieval; original 
observation timestamp 

Random error estimate for 
each observation; Flags for 
spurious observations; 
day-/nighttime 
observation; 
ascending/descending 
mode; microwave 
frequency and sensor used 
for each soil moisture 
retrieval; original 
observation timestamp 

Random error estimate 
for each observation; 
Flags for spurious 
observations, day-
/nighttime observation, 
ascending/descending 
mode; microwave 
frequency and sensor 
used for each soil 
moisture retrieval; 
original observation 
timestamp; SNR 
blending weights 

File format NetCDF-3 classic CF1.5 NetCDF-4 classic CF1.5 NetCDF-4 classic CF1.5 NetCDF-4 classic CF1.6 
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* v02.1 incorporated a few minor bug fixes and the product name change from ECV SM to ESA CCI SM. 337 

Even though the core of the ESA CCI SM merging framework has basically remained unchanged since 338 

its first publication, individual components and data output have been continuously upgraded and 339 

expanded. Improvements were commonly triggered by feedback from users and scientific 340 

publications. For example, the inclusion of the intermediate ACTIVE and PASSIVE products in the 341 

product suite followed the wish of users to test alternative approaches for merging active and passive 342 

observations, or to assimilate these products separately into land surface or ecosystem models. The 343 

inclusion of ancillary data such as error estimates and flags for spurious retrievals should above all 344 

prevent from incorrect usage of the data (Wagner et al. 2014), but also allow for a more in-depth 345 

analysis of the dataset and the methods used to produce it, e.g. with regard to the different sensors, 346 

frequencies, satellite overpass times, and observation angles. For example, Dorigo et al. (2015b) 347 

showed that rebinning observations with different observation times to a common daily 00:00 UTC 348 

reference time had a negative impact on the quality of the merged product. Based on this result, it was 349 

decided to include also the original observation timestamp in the products, which also facilitates a 350 

more direct comparison against data with a sub-daily temporal resolution, like ground probe data, and 351 

allows the assimilation of the data in sub-daily model experiments (Miralles et al. 2016). 352 

For the generation of ACTIVE and PASSIVE, the original merging framework (Liu et al. 2012) considered 353 

only the highest quality observations available during a certain period. For the COMBINED product, 354 

the decision on whether to use for a given pixel either ACTIVE, PASSIVE, or an average of both was 355 

based on their relative performance with respect to vegetation optical depth (VOD) obtained from 356 

AMSR-E C-band observations (Liu et al. 2012; Owe et al. 2001). However, in the case of sensor failure 357 

this led to reduced data coverage (Dorigo et al. 2015b). This issue was most dramatically illustrated by 358 

the absence of drought anomalies in the ESA CCI SM v0.1 dataset for the European heatwave of 2003 359 

(Loew et al. 2013; Szczypta et al. 2014), which was caused by the failure of ERS-2, the sensor that was 360 

commonly used in this geographical region during that period. From v02.0 to v02.2 this was resolved 361 

by filling the data gaps caused by ERS failure with AMSR-E data. However, this resulted in a reduced 362 

quality for the gap-filled regions during this period. Moreover, using only the best performing 363 

individual dataset (for ACTIVE and PASSIVE) or dataset category (for COMBINED) is suboptimal from a 364 

merging perspective as it ignores the information contained in the retrievals that are not selected.  365 

These issues motivated the development of a more rigorous blending scheme, which is for the first 366 

time implemented in ESA CCI SM v03.2 (Gruber et al. in review). In this scheme, the blending does not 367 

only consider the highest quality observations available during a certain period but uses a weighted 368 

average of measurements from all sensors that are available at a certain point in time to compute the 369 

merged soil moisture estimate. This results in a merged observation whose random errors are lower 370 
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than those of each individual input dataset. The blending weight attributed to each dataset is defined 371 

as the reciprocal of its random error variance (Yilmaz et al. 2012), estimated separately for each 372 

blending period (see Section 3.1) using triple collocation analysis (Gruber et al. 2016b). The error 373 

variance is expressed as a signal-to-noise ratio (SNR), which relates the estimated error variance to the 374 

signal dynamics at the given location (Gruber et al. 2016b). The weights are obtained separately for 375 

each day from the SNR estimates of all datasets that provide a valid measurement on that day. If one 376 

or more datasets do not provide a valid measurement on a particular day, the decision whether or not 377 

to use the remaining datasets on that day is based on maximum error variance thresholds. This avoids 378 

degrading too severely the overall performance of the blended product by filling data gaps with input 379 

data that have too high random error variances. Note that this new blending scheme based on 380 

weighted averages is used to produce both the ACTIVE, PASSIVE, and COMBINED products. Figure 2 381 

shows the blending weights that were used to produce the COMBINED product of v02.2 (top) and 382 

v03.2 (bottom) for the period when only ASCAT and AMSR2 are used (Section 3.1). The general weight 383 

patterns are in good agreement between the versions, but in v03.2 the areas that categorically exclude 384 

the least performing product are reduced, whilst the weights resolve the abrupt transitions between 385 

the active-only and passive-only regions of v02.2 by introducing a gradual transition. 386 
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387 

Figure 2 Blending weights attributed to ACTIVE and PASSIVE for the production of COMBINED in the period January-December 388 
2014 when only ASCAT and AMSR2 are used for ESA CCI SM v02.2 (top) and ESA CCI SM v03.2 (bottom). 389 

3 ESA CCI SM data characteristics and quality  390 

3.1 Spatial-temporal coverage 391 

Figure 3 shows the input Level 2 sensors that were used to produce the latest ESA CCI SM v03.2 392 

products. Until October 2007, the sensors used for each period are similar to those used to generate 393 

v0.1 (Dorigo et al. 2015b), although all products based on these sensors have undergone algorithmic 394 

and/or calibration updates (Table 3). After this date, v03.2 diverges significantly from the earliest 395 

version: on the one hand, the products have been extended forward in time and now cover five more 396 

years of data (until December 2015). This has been facilitated by the inclusion of additional sensors 397 

like WindSat, SMOS, AMSR2 and MetOp-B ASCAT. On the other hand, advances in the blending 398 

procedure have facilitated the concurrent use of virtually any number of available datasets. This is 399 
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reflected both in the ACTIVE and PASSIVE product, as well as in the COMBINED product, which blends 400 

up to four different Level 2 input products at the same time (Figure 3). Even more datasets may be 401 

simultaneously merged in the future, e.g., with the potential integration of SMAP.  402 

403 

Figure 3 Spatial-temporal coverage of input products used to construct ESA CCI SM v03.2 (a) ACTIVE, (b) PASSIVE, (c) 404 
COMBINED. Blue colours indicate passive, red colours active microwave sensors. Modified from Dorigo et al. (2015b). The 405 
periods of unique sensor combinations are referred to as ‘blending period’. 406 

Combining two or more products increases the likelihood of having at least one observation for a given 407 

day and pixel, hence, reducing the number of data gaps. This is reflected by the average temporal 408 

observation density (Figure 4), which shows remarkable improvements from version to version: while 409 

version v0.1 for the period January 2007 – December 2010 only used MetOp-A ASCAT and AMSR-E 410 

data, v02.2 additionally includes WindSat. In version v03.2 also SMOS is introduced. This is visible e.g. 411 

for the eastern United States or eastern China, where the average observation frequency in this period 412 

has approximately doubled with respect to the first release. 413 
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414 

Figure 4 Fractional coverage of ESA CCI SM v0.1 (top), v02.0-v02.2 (middle), and v03.2 (bottom) for the period January 2007 415 
– December 2010, expressed as the total number of daily observations per time period divided by the number of days 416 
spanning that time period. 417 

For ESA CCI SM COMBINED v03.2 we observe a steady improvement in spatiotemporal coverage over 418 

time, approaching full coverage in more recent years (Figure 5). This directly coincides with the 419 

increasing number of satellites becoming available. Nevertheless, neither the increasing number of 420 

satellites nor the improved blending techniques are able to mitigate data gaps associated with the 421 

physical limitations of microwave observations for soil moisture retrieval (Section 3.2). Consequently, 422 

also in the latest product some areas still experience seasonal (e.g., northern latitudes) or even 423 

continuous (e.g., tropical rain forests) data gaps. In fact, for some northern regions the observation 424 
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frequency has even slightly reduced over time due to improved masking of frozen conditions and snow 425 

(Figure 5). 426 

427 

Figure 5 Fraction of days per month with valid (i.e., unflagged) observations of ESA CCI SM v03.2 COMBINED for each latitude 428 
and time period. 429 

3.2 Data quality indicators 430 

In both the Level 2 input products and the merged ESA CCI SM products, the quality of individual soil 431 

moisture observations is impacted by numerous factors, which can be roughly subdivided into five 432 

categories (Table 4): sensor properties, orbital characteristics, environmental conditions, algorithmic 433 

skill (e.g., methods used to correct for vegetation impacts), and post-processing (e.g., resampling). 434 

While some factors may homogeneously affect the entire globe during the lifetime of a satellite 435 

mission (e.g., observation wavelength) others may be variable through space (e.g., topography), time, 436 

or both (e.g., frozen soil conditions, vegetation cover). Some factors may entirely impede a realistic 437 

retrieval (e.g., snow/ice coverage) while the majority adds some degree of random error and bias to 438 

the obtained estimate, the amount of which depends on the nature, intensity, and subpixel area 439 

affected (e.g., by vegetation, open water).  440 

Since no observation is free of error, the challenge is to mask only those observations that are below 441 

acceptable quality thresholds while providing reliable error estimates for the remainder. The active 442 

and passive microwave Level 2 processors flag for frozen soils, snow and ice cover probability, RFI, and 443 

failing retrieval. These flags are readily propagated into the ESA CCI SM products and complemented 444 

with additional flags and metadata (e.g. for sensor, frequency, ascending/descending mode, dense 445 

vegetation, and original observation timestamp). The Level 2 retrieval algorithms also produce 446 

uncertainty estimates based on the propagation of uncertainties related to instrument and 447 

observation specifications and methodological assumptions (Naeimi et al. 2009; Parinussa et al. 2011). 448 

However, combining and merging these error propagation estimates into ESA CCI SM is not trivial as 449 

they depend both on the retrieval and the error models used, and implicitly assume that the retrieval 450 
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models themselves are free of error (Draper et al. 2013). Therefore, the random error estimates 451 

provided in ESA CCI SM are based on the triple collocation analysis (see Section 3.3 for details). 452 

Table 4 Main sensor, observational, and environmental factors impacting the quality of the ESA CCI SM products.   453 

 Factor Category Affects active 
(A) or passive 
(P) 
observations 

Impact on soil moisture retrieval How it is handled in ESA CCI SM v03.2 + 
potential recommendation for use 

Observation 
frequency / 
wavelength 

Sensor A,P Shorter wavelengths (higher 
frequencies) are more sensitive to 
vegetation, theoretically causing 
higher errors. Different 
wavelengths have different soil 
penetration depths, and thus 
represent different surface soil 
moisture columns.  

Preferential use of longer wavelengths when 
multiple frequencies are available. Indirectly 
accounted for by SNR-based weighting and 
indirectly quantified as part of the random error 
estimate (see below). The frequency and sensor 
that were used in ESA CCI SM are provided as 
ancillary data.  

Instrument 
errors and 
noise 

Sensor A,P Directly impacts the error of the 
single-sensor soil moisture retrieval 

Included in total random error ESA CCI SM 
products assessed by triple collocation (see 
Section 3.3). Soil moisture random error 
provided as separate variable.  

Local 
Incidence 
angle and 
azimuth 

Sensor A Impacts backscatter signal strength 
and hence retrieved value 

Accounted for by incidence angle and azimuthal 
correction in Level 2 retrieval. Remaining 
uncertainty is indirectly quantified as part of 
random error estimate.  

Local 
observation 
time 

Orbital A,P Vegetation water content changes 
during the day (Steele-Dunne et al. 
2012), but this variability is not 
accounted for by the retrieval 
models. Early morning observations 
may be influenced by dew on soil 
and vegetation, thus leading to 
higher observed soil moisture. Solar 
irradiation causes discrepancies 
between canopy and soil 
temperatures which complicate the 
retrieval of soil moisture (Parinussa 
et al. 2016); see also “Land Surface 
Temperature” below Intra-daily 
variations because of convective 
precipitation and successive 
evaporation may be missed. 

Partly addressed by excluding ”day-time” 
radiometer observations. Remaining 
uncertainty is indirectly quantified as part of 
random error estimate. 

Vegetation 
cover 

Environmental A,P Reduces signal strength from soil 
and hence increases uncertainty of 
soil moisture retrieval 

Included in total random error of ESA CCI SM 
products assessed by triple collocation (see 
Section 3.3). Dense vegetation is masked for 
passive Level 2 products according to sensor-
specific VOD thresholds: Soil moisture random 
error is provided as a separate variable.  

Topography    Environmental A,P Impacts backscatter signal strength; 
causes heterogeneous soil moisture 
conditions within the footprint  

Not accounted for. Topography index is 
provided as metadata. A flagging of pixels with 
topography index > 10% is recommended. 

Open water Environmental A,P Impacts backscatter and brightness 
temperature signal strength 

Not accounted for. Open water fraction is 
provided as metadata. A flagging of pixels with 
open water fraction > 10% is recommended 

Urban areas, 
infrastructure 

Environmental A,P Impacts backscatter and brightness 
temperature signal strength 

Not directly accounted for. Uncertainty is 
indirectly quantified as part of random error 
estimate. 

Ice and snow 
coverage 

Environmental A,P Obstructs soil moisture information Masked using radiometer-based land surface 
temperature observations (Holmes et al. 2009) 
and freeze/thaw detection (Naeimi et al. 2012) 
from Level 2 algorithms, and ancillary data from 
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ERA-Interim and GLDAS-Noah in ESA CCI SM 
production. Flag provided as metadata. 

Frozen soil 
water 

Environmental A,P Strongly impacts observed 
backscatter / brightness 
temperatures causing a “false” 
reduction in soil moisture 

Masked using radiometer-based land surface 
temperature observations (Holmes et al. 2009) 
and freeze/thaw detection (Naeimi et al. 2012) 
from Level 2 algorithms, and ancillary data from 
ERA-Interim and GLDAS-Noah in ESA CCI SM 
production. Flag provided as metadata. 

Dry soil 
scattering  

Environmental A Volume scattering causes 
unrealistic rises in retrieved soil 
moisture (Wagner et al. 2013b) 

Not directly accounted for, but indirectly 
accounted for by low weight (related to high 
error) received in SNR-based blending. 

Land surface 
temperature 

Environmental P Errors in land surface temperature 
directly impact the quality of 
surface soil moisture retrievals 

Partly addressed by excluding ”day-time” 
radiometer observations. Remaining 
uncertainty is indirectly quantified as part of 
random error estimate. 

Radio 
frequency 
interference 
(passive only) 

Environmental P Artificially emitted radiance 
increases brightness temperatures 
and, hence, leads to a dry bias in 
retrieved soil moisture.  

In the case of multi-frequency radiometers, a 
higher frequency channel (e.g. X-band) is used if 
RFI is detected. In other cases, the observation 
is masked. 

3.3 Random error characteristics from triple collocation 454 

The random error of an observation is – when expressed as SNR – a direct measure of its sensitivity to 455 

soil moisture changes (Gruber et al. 2016). Moreover, it defines the weight that the observation should 456 

receive when combined with other observations, e.g. through data assimilation (Gruber et al. 2015). 457 

The most common way of characterising random errors of satellite-based soil moisture estimates over 458 

large scales is triple collocation analysis (TCA), which provides estimates for the average error variance 459 

or SNR (e.g., Dorigo et al. 2010; Miralles et al. 2010; Scipal et al. 2008b; Stoffelen 1998). However, since 460 

TCA requires a large number of observations, it only provides a single error estimate for a larger time 461 

period and not for each observation individually (Zwieback et al. 2012). Moreover, TCA requires the 462 

availability of a dataset triplet with independent error structures, which is currently – on a global scale 463 

– only provided by a combination of an active microwave, a passive microwave, and an LSM-based soil 464 

moisture product. In the ESA CCI SM production, TCA is applied to estimate the error variances of the 465 

individual Level 2 input products (see Section 2.3) and - for each blending period separately – the error 466 

variances of ACTIVE and PASSIVE, respectively. Surface soil moisture estimates from the GLDAS-Noah 467 

v1 LSM provide the third dataset. Unfortunately, TCA cannot be used to evaluate the random error 468 

characteristics of COMBINED, since after blending ACTIVE and PASSIVE an additional dataset with 469 

independent error structures would be required to complement the triplet. To address this issue, a 470 

classical error propagation scheme (e.g., Parinussa et al. 2011) is used to propagate the TCA-based 471 

error variance estimates of ACTIVE and PASSIVE through the blending scheme to yield an estimate for 472 

the random error variance of the final COMBINED product (Gruber et al. in prep.): 473 

���(��) = ��
����(��) +��

����(��) (Eq. 1) 474 

where the superscripts denote the COMBINED (�), ACTIVE (�) and PASSIVE (�) datasets, respectively;  475 

���(�) denotes the error variances of the datasets; and � denotes the blending weights. Note, that 476 
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similarly as for TCA, the error propagation notation in Eq. 1 assumes mutually independent error 477 

structures between ACTIVE and PASSIVE. From Eq. 1 it can be seen that the error variance of the 478 

blended product is typically smaller than the error variances of both input products unless they are 479 

very far apart, in which case the blended error variance may become equal to or only negligibly larger 480 

than that of the better input product. 481 

However, the ACTIVE and PASSIVE input datasets of COMBINED are not perfectly collocated in time 482 

since the satellites do not provide measurements every day. Infact, there are days when either only 483 

ACTIVE or only PASSIVE provides a valid soil moisture estimate. As described in Section 2.3, we use 484 

such single-category observations to fill gaps in the blended product, but only if the error variance is 485 

below a certain threshold. Consequently, as inferred from Eq. 1, the random error variance of 486 

COMBINED on days with single-category observations is typically higher than that on days with blended 487 

multi-category observations. This results in an overall average random error variance of COMBINED 488 

that lies somewhere in between the random error variance of the single input datasets and the merged 489 

random error variance of all input products (estimated through error propagation) (Gruber et al. in 490 

review). How close the actual mean random error variance of COMBINED is to these boundaries 491 

depends on the number of days that have been filled with ACTIVE or PASSIVE only. To illustrate this, 492 

Figure 6 shows global maps of the estimated random error variances of ACTIVE, PASSIVE, and 493 

COMBINED in the period where MetOp-A/B ASCAT, AMSR2, and SMOS are jointly available (July 2012-494 

December 2015). The comparison with VOD from AMSR2 C-band observations (Figure 6d) shows that 495 

at the global scale error patterns largely coincide with vegetation density.  496 

497 
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Figure 6 Average error variances of ESA CCI SM for ACTIVE, PASSIVE, and COMBINED estimated through triple collocation and 498 
error propagation for the period July 2012-December 2015. d) Long-term (July 2012-December 2015) VOD climatology from 499 
AMSR2 6.9 GHz observations.  500 

3.4 Agreement with ground data 501 

Traditionally, the skill of satellite-based soil moisture products is assessed by comparing them against 502 

ground-based observations, allwoing for the computation of statistics such as correlation, (unbiased) 503 

Root-Mean-Squared-Difference ((ub)RMSD), and bias. Numerous studies have validated the different 504 

ESA CCI SM product versions against in-situ soil moisture observations from various sites around the 505 

world. The most extensive evaluation of ESA CCI SM v0.1 was undertaken by Dorigo et al. (2015b), who 506 

employed all usable observations from the ISMN (Dorigo et al. 2011b; Dorigo et al. 2013) to assess the 507 

dataset performance for different regions and blending periods. They found that the dataset 508 

performance was slightly better during periods when lower frequency C-band observations are 509 

available. Nevertheless, tracking the temporal evolution of dataset performance based on in-situ 510 

information was severely hampered by the heterogeneity of the observations and a lack of permanent 511 

long-term monitoring sites of homogeneous quality in time (Dorigo et al. 2015b). In their study, Dorigo 512 

et al. (2015b) also confirmed that ESA CCI SM v0.1 had a performance which was similar or slightly 513 

better than the individual Level 2 input products, underlining the benefit of the merging approach. 514 

Albergel et al. (2013b) used several globally available in-situ networks with varying climatic conditions 515 

to put the ESA CCI SM v0.1 performance in relation to the skill of ERA-Interim/Land, a revised version 516 

of the land components of ERA-Interim (Balsamo et al. 2015) and MERRA-Land (Reichle et al. 2011). 517 

Similarly, Fang et al. (2016) performed a large-scale in-situ validation of all three ESA CCI SM v02.2 518 

products and NLDAS2-Noah model simulations. Both studies showed that on average ESA CCI SM 519 

agrees well with in-situ observations but that for several networks the correlations still lack behind 520 

those obtained for the LSM simulations integrating observed precipitation. It has been suggested that, 521 

amongst other factors, this may be due to the discrepancy between the installation depth of the in-522 

situ probes (typically 5 cm) and the typical depth of ~2 cm represented by the C- and X-band satellite 523 

products used until v02.2 (Albergel et al. 2013b; Dorigo et al. 2015b). However, a recent study showed 524 

that even for L-band microwave observations often this discrepancy exists and that the surface layer 525 

represented by the observations is shallower than previously suggested (Shellito et al. 2016). 526 

Several regional and local studies analysed the performance of ESA CCI SM in regions characterised by 527 

different climates, land cover, and soil types. Pratola et al. (2014) obtained high correlations (>0.7) 528 

between ESA CCI SM v0.1 over various Irish grassland sites, characterized by a humid, temperate 529 

climate. Similar correlation values for v0.1 were obtained over grassland sites and agricultural fields in 530 

the United States, France, Spain, China, and Australia (Albergel et al. 2013b; An et al. 2016b). For non-531 

grassland sites in China agreements are generally poorer (An et al. 2016b; Mao et al. 2017; Shen et al. 532 
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2016). The high altitude sites located on the Tibetan Plateau and in South-Western China, and the 533 

Tarim river basin in western China provide an exception. Here, various versions of ESA CCI SM 534 

COMBINED agree well with in-situ soil moisture and generally outperform LSM-based soil moisture 535 

products and other satellite-based SM products including Level 2 input products from ASCAT, AMSR-536 

E/2, and SMOS (Albergel et al. 2013b; Peng et al. 2015; Su et al. 2016a; Zeng et al. 2015). Also for semi-537 

arid areas, e.g. in Spain or Australia, where satellite observations typically show a high SNR (Gruber et 538 

al. 2016b), ESA CCI SM (v0.1) generally agrees well with in-situ observations (Albergel et al. 2013b; 539 

Dorigo et al. 2015b). 540 

For certain regions, land cover types, or surface characteristics ESA CCI SM has reduced skill. 541 

Sathyanadh et al. (2016) found that over India LSM-based soil moisture products, specifically MERRA-542 

Land, show higher correlations with in-situ data than ESA CCI SM v0.1. Moderate performance of ESA 543 

CCI SM v0.1 for this area was also found by Dorigo et al. (2015b). Further, generally poor correlations 544 

against in-situ data are found at high latitudes and in boreal forest environments for various versions 545 

of the COMBINED product (Dorigo et al. 2015b; Ikonen et al. 2016; Pratola et al. 2015). However, 546 

Ikonen et al. (2016) showed that with appropriate approaches to upscale the in-situ data to the satellite 547 

footprint - which take into account local information on soil, land cover, and sensor placement - a much 548 

better agreement between ground observations and ESA CCI SM can be obtained. 549 

Apart from assessing a temporal and spatial agreement, in-situ data have also been used to assess 550 

more intricate properties of ESA CCI SM. Qiu et al. (2016) and Liu et al. (2015) concluded that in China 551 

trends in ESA CCI SM COMBINED (v0.1 and v02.1) generally reflected those observed in in-situ 552 

observations. In addition, Qiu et al. (2016) concluded that it better captures trends than ERA-553 

Interim/Land and attributed this to the absence of irrigation modules in the latter. Su et al. (2016c) 554 

proposed a new methodology based on a large selection of in-situ stations in combination with various 555 

breakpoint detection techniques to identify and correct for inhomogeneities in the mean and variance 556 

in ESA CCI SM v02.2 related to changes in sensor constellations. The methodology works well for these 557 

in-situ stations, but the availability of long-term monitoring stations is too low to apply the method 558 

globally. However, Su et al. (2016c) showed that the method showed similar skill in detecting 559 

inhomogeneities when using a global LSM instead of in-situ data. For each transition between blending 560 

periods the authors observed inhomogeneities associated with sensor changes, although for more 561 

recent periods they are less frequent. Finally, Nicolai-Shaw et al. (2015) used a large number of sites 562 

over the United States to assess the spatial representativeness of ESA CCI SM v0.1. They concluded 563 

that, particularly for the temporal anomalies, ESA CCI SM better matches the spatial 564 

representativeness of in-situ observations than ERA-Interim/Land.  565 
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Based on the studies above, it can be concluded that the ESA CCI SM COMBINED products generally 566 

match relatively well with in-situ observations in temperate climates, over grassland and agricultural 567 

areas, and in semi-arid regions, but have difficulties in reflecting the temporal dynamics in the driest 568 

and wettest areas. This may be both due to a generally lower SNR of the satellite data over such areas 569 

(Gruber et al. 2016b) as well as a reduced skill of certain in-situ probes in extreme conditions (Cosh et 570 

al. 2016; Dorigo et al. 2011b). Most of the reported studies focused on temporal correlation (either 571 

applied to the soil moisture values directly or to its anomalies) as a comparison metric, which is 572 

justifiable, being closely related to metrics such as the (ub)RMSD) (Entekhabi et al. 2010b; Gruber et 573 

al. 2016b). Dorigo et al. (2015b) pointed out that one should not use metrics like bias and RMSD to 574 

assess the skill of the COMBINED product, as the scaling step involved to combine active and passive 575 

observations (See Section 2.2) imposes the dynamic range of the GLDAS-Noah LSM on the ESA CCI SM 576 

COMBINED products. In addition, the gap in spatial representativeness of the in-situ point 577 

measurement and the coarse satellite footprint introduces additional error to the metrics of 578 

agreement, which ideally should be corrected for when using in-situ data for satellite validation 579 

(Gruber et al. 2013). 580 

3.5 Comparison against land surface models and gridded precipitation 581 

Since in-situ soil moisture measurements are limited in space, time, and representativeness (Dorigo et 582 

al. 2015b), complementary evaluations based on the comparison with independent soil moisture 583 

products (e.g. from LSMs, land surface reanalysis) are fundamental for a thorough assessment of the 584 

skill of ESA CCI SM as well as to steer algorithmic improvements (Albergel et al. 2013a). Particularly 585 

land surface reanalysis products, which in regions with high quality forcing data adequately capture 586 

the temporal dynamics of soil moisture (Albergel et al. 2013b), are well suited for this purpose due to 587 

their comparable spatial resolution, uniform configuration over time, and global availability. Also 588 

comparisons against gridded datasets of climate variables with a close physical link to soil moisture, 589 

e.g. precipitation and evaporation, are expected to provide valuable insight into the dataset 590 

performance (e.g., Meng et al. 2017). 591 

Several studies compared intra- and inter-annual soil moisture dynamics of ESA CCI SM with various 592 

land surface reanalysis products, including ERA-Interim (Dee et al. 2011), ERA-Interim/Land, MERRA-593 

Land, and GLDAS-Noah, as well as with long-term satellite precipitation products such as the Global 594 

Precipitation Climatology Project (GPCP; Huffman et al. 2009). In general, good temporal agreement 595 

between LSM soil moisture and various versions of ESA CCI SM COMBINED was found in the (sub-596 

)tropics (with the exception of densely vegetated areas like the Amazon or Congo basins) and in central 597 

Eurasia (Albergel et al. 2013a; Albergel et al. 2013b; Chakravorty et al. 2016; Dorigo et al. 2012; Loew 598 

et al. 2013). ESA CCI SM COMBINED v02.2 showed a skill in capturing wet and dry extreme events over 599 
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Eastern Africa comparable to the Variable Infiltration Capacity model and the Noah LSM forced with 600 

precipitation from CHIRPS and the remaining meteorological input from MERRA (McNally et al., 2016), 601 

while ESA CCI SM COMBINED v02.1 showed a similar soil moisture response to weak monsoon phases 602 

in India and Myanmar as the Climate Forecast System Reanalysis (CFSR) produced by NCEP (Shrivastava 603 

et al. 2016). Better correlations between ESA CCI SM COMBINED and LSMs are usually obtained in the 604 

presence of a significant fraction of bare soil. Also, the latest ESA CCI SM COMBINED v03.2 product 605 

generally shows high positive correlations with ERA-Interim/Land, except for parts of the tundra 606 

regions, where the two products show a strong anticyclical behaviour (Figure 7a). Comparison with 607 

long-term precipitation from GPCP (Figure 7c) shows positive correlations with ESA CCI SM COMBINED 608 

over these areas. This suggests that negative correlations may stem from issues in ERA-Interim/Land 609 

rather than in ESA CCI SM. However, long-term soil moisture anomalies of ESA CCI SM COMBINED 610 

v03.2 and ERA-Interim/Land in the tundra regions mostly do correlate positively (Figure 7b), which may 611 

point to a deficiency of ERA-Interim/Land in representing the seasonal cycle. 612 
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613 

Figure 7 Pearson correlation over the period 1997-2013 of a) ESA CCI SM COMBINED v03.2 and ERA-Interim/Land 0-7 cm soil 614 
moisture, b) long-term anomalies of ESA CCI SM COMBINED v03.2 and ERA-Interim/Land 0-7 cm soil moisture, and c) ESA CCI 615 
SM COMBINED v03.2 soil moisture and GPCP 1DD precipitation. White areas indicate pixels for which correlations are not 616 
significant (p>0.05). 617 

LSM products may be used to assess trend behaviour and dataset stability, even though the forcing 618 

used to generate these products often contains inhomogeneities (Ferguson and Mocko 2017). Dorigo 619 

et al. (2012) assessed trends in the ESA CCI SM v0.1 combined product for the period 1988–2010, and 620 

compared them with trends in soil moisture from LSMs (GLDAS-Noah and ERA-Interim), in satellite-621 

based Normalised Difference Vegetation Index (NDVI) data, and in the GPCP precipitation product. The 622 

broad correspondence in trends between ESA CCI SM and the other products lends confidence in the 623 

dataset's capability of capturing long-term systematic changes. Albergel et al. (2013a) found that the 624 
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observed trends in ESA CCI SM v0.1 were also in line with trends in ERA-Interim/Land but deviated 625 

more strongly from those in MERRA-Land. Su et al. (2016c) used MERRA-Land to identify 626 

discontinuities related to sensor blending periods in ESA CCI SM v02.2 and assessed their potential 627 

impact on trend statistics. Even though inconsistencies were detected, trends between ESA CCI SM 628 

and MERRA-Land largely agreed. Moreover, Albergel et al. (2013a) tested the consistency of the ESA 629 

CCI SM v0.1 over time by correlating it with ERA-Interim/Land surface soil moisture estimates for 630 

different sub-periods of the entire data record. They found a slight increase in correlation over time, 631 

with the exception of the years dominated by retrievals from Ku-band observations of the SSM/I 632 

sensor, which are more sensitive to vegetation. They also highlighted the large effect changes in spatial 633 

data coverage can have on global statistics on temporal stability (Albergel et al. 2013a).  634 

Comparing ESA CCI SM to LSM simulations may help to guide future algorithmic updates. For example, 635 

Szczypta et al. (2014) compared ESA CCI SM v0.1 to surface soil moisture from the CO2-responsive 636 

version of the ISBA Land Surface Model (Gibelin et al. 2006) over 1991-2008. Simulated surface soil 637 

moisture (0-1 cm) generally agreed well with ESA CCI SM and helped to highlight regions where ESA 638 

CCI SM had reduced skill, e.g. over the Turkish Tauros mountain chain. This information was used to 639 

improve the initial blending scheme over vegetated mountain ranges (Section 2.3). Fang et al. (2016) 640 

compared the three products of ESA CCI SM v02.2 against simulated soil moisture from the Noah LSM 641 

(Ek et al. 2003) forced with National Land Data Assimilation System (NLDAS)-2 atmospheric forcing 642 

over the United States for the period 2000-2013. Considering soil moisture anomaly time series, ESA 643 

CCI SM COMBINED v02.2 presented higher correlations with the Noah LSM than ACTIVE or PASSIVE, 644 

which highlights the added value of combining active and passive observations using the ESA CCI SM 645 

blending technique. Chakravorty et al. (2016) found that ESA CCI SM v02.1 ACTIVE and COMBINED 646 

show a similar level of correlation with soil moisture from MERRA-Land. When applying the triple 647 

collocation to the three datasets in order to investigate the spatial distribution of random errors, 648 

ACTIVE on average has lower random errors than PASSIVE and COMBINED, with exception of the arid 649 

desert regions of western India. These results suggest that, at least for this region, the blending of 650 

ACTIVE and PASSIVE into COMBINED based on VOD thresholds in v02.1 did not optimally exploit the 651 

information contained in the input datasets. This observation provided an important motivation for 652 

revising the blending methodology scheme as described in Section 2.3 653 

Another advanced (indirect) validation technique relies on assimilating satellite soil moisture product 654 

into a simple water balance model (Crow 2007) or a more sophisticated LSM (Albergel et al. 2017). The 655 

obtained updated dataset accounts for the synergies of the various upstream products and provides 656 

statistics, which can be used to monitor the quality of the assimilated observations. The French 657 

Meteorological service (CNRM, Météo-France) is in the process of implementing an LDAS at both 658 
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continental and global scale (Albergel et al. 2017; Barbu et al. 2014; Fairbairn et al. 2017). The long-659 

term LDAS statistics can be analysed to detect possible drifts in the quality of the products: innovations 660 

(observations vs. model forecast), residuals (observations vs. analysis) and increments (analysis vs. 661 

model forecast).  662 

Finally, the possibility to use precipitation data for the assessment of the ESA CCI SM products is 663 

currently investigated (Ciabatta et al. 2016). Ciabatta et al. (subm.) used the SM2RAIN algorithm for 664 

estimating precipitation from ESA CCI SM data (see Section 4.4). The estimated precipitation data are 665 

then compared with ground-observed datasets, e.g., GPCC, characterised by a much larger spatial-666 

temporal coverage than in-situ soil moisture observations, to indirectly assess the quality of the ESA 667 

CCI SM products. 668 

3.6 Tracking dataset quality among releases 669 

Evaluating the quality of ESA CCI SM should be continuously repeated once a new dataset version 670 

becomes available to assess the potential impact of improved calibrations and algorithmic changes. In 671 

this section, we present various methods that are being adopted to assess the impact of product 672 

updates. Figure 8 shows the distributions of the correlations between the different ESA CCI SM 673 

COMBINED versions and globally available in-situ soil moisture measurements obtained from the 674 

ISMN, the North American Soil Moisture Database (Quiring et al. 2015), and the Swiss Soil Moisture 675 

Experiment network (Mittelbach and Seneviratne 2012) for the 1991-2010 time period. To comply with 676 

the topsoil moisture represented by ESA CCI SM we considered only in-situ measurements down to a 677 

maximum of 5 cm depth. For those stations that provide at least two years of data, we calculated the 678 

correlation between the daily in-situ measurements and the corresponding grid cell for the longest 679 

available time period, while only time steps were used that provide data for all ESA CCI SM versions. 680 

Correlations between these stations and ERA-Interim/Land layer 1 (0-7 cm) are provided as reference. 681 

Figure 8 shows that on average the data set quality is stable across versions, with a slight tendency 682 

towards improved correlations for more recent releases. This confirms that changes in the 683 

methodology and input data used generally have a positive impact. Note, that these results are based 684 

only on regions where in-situ soil moisture data are available, hence restricting the analysis mainly to 685 

the United States and Europe (Dorigo et al. 2015b). Besides, the inclusion of v0.1 limits the common 686 

analysis period to end in 2010. Figure S1 in the Supplement shows that generally correlations are 687 

higher for more recent periods (2011-2013) in which additional Level 2 input products are integrated 688 

(e.g. SMOS, AMSR2, MetOp-B ASCAT). 689 
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690 

Figure 8 Boxplots (displaying median, inter-quartile range (IQR), upper (lower) quartile plus (minus) 1.5 times the IQR, and 691 

outliers) of the correlations of the publicly released versions of ESA CCI SM COMBINED and ERA-Interim/Land with globally 692 

available in-situ probe observations down to a maximum depth of 5 cm, both for absolute values and long-term soil moisture 693 

anomalies. Only observations within the period 1991-2010 were considered.694 

As an alternative to the in-situ-based skill tracking, which has a strong regional and temporal bias 695 

(Dorigo et al. 2015b), changes between dataset releases can be assessed by comparing them to a fixed 696 

global reference, e.g. provided by an LSM. Figure 9 plots the correlations between two versions of ESA 697 

CCI SM COMBINED (v0.1 and v02.2) and the first layer (0-7 cm) of ERA-Interim/Land. Each triangle 698 

represents the median global correlation over a 3-year sub-period within the period 1979-2010, 699 

similarly as in Albergel et al. (2013a). Only locations that show a significant correlation for each 3-year 700 

sub-period in both versions are considered. For both absolute soil moisture values (left) and anomalies 701 

(right) all symbols fall below the 1:1 line. Since error correlations between any of the ESA CCI SM 702 

datasets and ERA-Interim/Land are expected to be close to zero (Gruber et al. 2016a), all increases in 703 

the correlation can be reliably interpreted as an increase in the SNR for the newer ESA CCI SM product. 704 

Differences between the two versions are smaller in the most recent sub-periods, which may be 705 

related to the fact that algorithmic updates, i.e., a change from LPRM v3 to v5 (see Table 3) and filtering 706 

of spurious observations herein have had a larger impact on the Level 2 radiometer products used 707 

before 2002 (the year in which AMSR-E was introduced) than on the relatively high quality products 708 

used after this date.709 
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710 

Figure 9. Correlations between soil moisture from the first soil layer (0-7 cm) of ERA-Interim/Land and ESA CCI SM 711 

COMBINED v0.1 (y-axis) and v02.2 (x-axis), respectively. The left image shows the results for absolute values, the right image 712 

for anomalies from a 35-day moving window. Each triangle represents the median global correlation over a 3-year period, 713 

similar as in (Albergel et al. 2013a). Only pixels that show significant correlations (p<0.05) for both product versions and for 714 

all periods were used in the computation of the global median values.  715 

Figure 10 shows the differences in correlation between soil moisture from the first soil layer (0-7 cm) 716 

of ERA-Interim/Land and ESA CCI SM COMBINED of v02.1 and v03.2, respectively. Figures S2 and S3 in 717 

the Supplement show the changes in correlation for the intermediate product updates and reveal that 718 

the most prominent changes occur between v02.2 and v03.2, illustrating the impact of the new 719 

merging scheme (Section 2.3). The figures show that most areas and land cover types, particularly 720 

moderately vegetated areas, experienced an overall improvement in correlation, both for absolute 721 

values and anomalies. In contrast, in desert areas correlations are lower for the latest product release, 722 

which is most likely related to the filling of temporal gaps in the passive microwave time series with 723 

lower quality active microwave observations (Dorigo et al. 2010). Thus, in these areas the increase in 724 

fractional coverage observed in Figure 4 goes at the cost of the product accuracy. It should be noted 725 

however that a decrease in correlation with ERA-Interim/Land does not always indicate a reduction in 726 

product skill, as ERA-Interim/Land may not capture all soil moisture variations correctly (e.g. Figure 7). 727 

Hence, assessing changes in product skill over time should entail a combination of methods and 728 

reference datasets.   729 
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730 

Figure 10. Differences in correlation between soil moisture from the first soil layer (0-7 cm) of ERA-Interim/Land and ESA CCI 731 
SM COMBINED v03.2 and v02.1, respectively for a) absolute soil moisture; b) long-term soil moisture anomalies. Blue colours 732 
denote an increase in correlation from v02.1 to v03.2, red colours a decrease, grey colours no change, and white colours 733 
areas where no significant correlations (p<0.05) were observed for one or both product versions. Correlations were 734 
computed for the period 1997-2013.  735 

4 ESA CCI SM in Earth system applications  736 

A wide variety of studies have explored the potential of ESA CCI SM product for improving our 737 

understanding of Earth system processes, in particular with respect to climate variability and change 738 

(Table 5). Even though the application fields are seemingly different, in all of them ESA CCI SM plays a 739 

central role in benchmarking, calibrating, or providing an alternative to the land surface hydrology in 740 

dedicated models. The following sections will provide an extensive synthesis of how ESA CCI SM has 741 

been used in the different application areas, the motivation of each study for using this product in 742 

particular, and the main drawbacks encountered when using the ESA CCI SM data. A synthesis of the 743 

limitations and the unexploited potential of the dataset is given in Section 5. For our assessment, we 744 

reviewed all scientific papers that correctly cite any of the key publications on the dataset (i.e., Dorigo 745 

et al. 2012; Dorigo et al. 2015b; Liu et al. 2012; Liu et al. 2011; Wagner et al. 2012) and were listed 746 

either in Scopus (http://scopus.com/) or Google Scholar (https://scholar.google.com) as of June 22, 747 

2017.748 
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Table 5: Applications where ESA CCI SM has been used to improve our Earth system understanding. Modified from Dorigo and 749 

De Jeu (2016). 750 

Application area Main purpose References Motivation for 
using ESA CCI SM 

Limitations identified 

Climate variability and 
change 

Long-term trends in soil moisture  Albergel et al. (2013b); 
An et al. (2016b); 
Dorigo et al. (2012); 
Feng and Zhang (2015); 
Li et al. (2015); Qiu et 
al. (2016); Rahmani et 
al. (2016); Su et al. 
(2016c); Wang et al. 
(2016); Zheng et al. 
(2016) 

Long-term coverage 
needed for robust 
trend assessment 

No global coverage; 
no representation of 
root-zone; data 
quality changes over 
time 

Assessment of drivers of soil 
moisture trends 

Chen et al. (2017); Feng 
(2016); Liu et al. (2015); 
Meng et al. (2017); 
Zhan et al. (in press) 

Long-term coverage 
for robust driver 
assessment 

Data gaps in time and 
space 

Soil moisture as driver of multi-
annual variability in land 
evaporation 

Miralles et al. (2014b) Independent 
evidence of long-
term trends and 
variability in 
modelled soil 
moisture, 
constraining errors 
in water balance 
model  

Not mentioned 

Impact of ocean atmosphere 
system on soil moisture variability 

Bauer-Marschallinger 
et al. (2013); Miralles et 
al. (2014b); Nicolai-
Shaw et al. (2016) 

Long-term dataset 
required for 
assessing low 
impact of frequency 
climate oscillations 

Data periods with 
reduced spatial 
coverage 

Soil moisture as indicator of global 
climate variability and change 

De Jeu et al. (2011); De 
Jeu et al. (2012); Dorigo 
et al. (2014); Dorigo et 
al. (2015a); Dorigo et 
al. (2016); Dorigo et al. 
(accepted); Parinussa 
et al. (2013) 

Assess actual soil 
moisture condition 
with respect to 
historical context 

Lack of global 
coverage hampers 
assessment of mean 
global and 
hemispherical trends  

Impact of soil moisture on trends in 
aerosols 

Klingmüller et al. 
(2016) 

Long-term coverage 
required for robust 
trend and driver 
assessment 

Not mentioned 

Validation of ESMs and climate 
models (mean fields, spatial 
patterns, temporal variability, 
trends)   

Agrawal and 
Chakraborty (2016); Du 
et al. (2016); Huang et 
al. (2016); Lauer et al. 
(in press); Pieczka et al. 
(2016); Ruosteenoja et 
al. (2017); van den Hurk 
et al. (2016); Yuan and 
Quiring (2017) 

Potential for 
assessing long-term 
climatology, 
variability, and 
trends 

Layer thickness not 
consistent among 
models and satellite 
observations; ESA CCI 
SM uncertainties are 
larger than the RMSE 
of many of the 
models; data gaps 
due to frozen soils, 
snow, and dense 
vegetation. 

Validation and sensitivity analysis of 
regional climate models   

Pieczka et al. (2016); 
Unnikrishnan et al. 
(2017) 

Potential for 
assessing long-term 
climatology, 
variability, and 
trends 

Evaluation of 
absolute values not 
possible; discrepancy 
in layer thickness 
represented. 
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Assimilation in regional climate 
model 

Paxian et al. (2016) Not mentioned Not mentioned 

Variability of precipitation and soil 
moisture during South Asian 
Monsoon 

Shrivastava et al. (2016, 
2017)  

Convergence of 
evidence together 
with reanalysis soil 
moisture and 
precipitation, 
robust assessment 
of inter-annual 
variability 

Temporal data gaps 
during monsoon 
season

Land atmosphere 
interactions 

Improved understanding of soil 
moisture feedbacks on 
precipitation

Guillod et al. (2014); 
Guillod et al. (2015) 
(indirectly, through 
assimilation of ESA CCI 
SM into GLEAM) 

Constraining errors 
in water balance 
model over long 
period 

Not mentioned 

Feedback of antecedent soil 
moisture on Tibetan and Indian 
monsoon intensity 

Zhou et al. (2016);
(KanthaRao and 
Rakesh) 

Long-term dataset 
for robust statistics 

Dataset not suitable 
due to large data gaps 
in winter 

Identifying role of soil moisture on 
temperature variability and 
heatwaves 

Casagrande et al. 
(2015); Hirschi et al. 
(2014); Miralles et al. 
(2014a) 

Constraining errors 
in water balance 
model over long 
period by data 
assimilation; long 
period provides 
robust coupling 
statistics 

No representation of 
root-zone soil 
moisture; lacking 
information about 
exact sampling depth 

Observation-based land-
atmosphere coupling (to evaluate 
coupling of LSM products and 
ensembles) 

Catalano et al. (2016); 
Knist et al. (2017); Li et 
al. (2016); Li et al. 
(2017) 

Independent 
reference for long 
period. 

Spatial data gaps; 
seasonal variation in 
spatial coverage 

Improved modelling of land 
evaporation 

Martens et al. (2017); 
Miralles et al. (2014b); 
Park et al. (2017) 

Constraining errors 
in water balance 
model over long 
period by data 
assimilation 

Negative impact in 
very dry areas and 
areas where quality of 
precipitation is high 

Explaining trends in 
evapotranspiration 

Rigden and Salvucci 
(2017); Zeng et al. 
(2014) 

Long-term 
availability for trend 
assessment 

Not mentioned 

Impact of soil moisture (among 
other drivers) on dust aerosol 
dynamics

Klingmüller et al. 
(2016); Xi and Sokolik 
(2015) 

Long-term coverage 
required for robust 
trend and driver 
assessment 

Not mentioned 

Global biogeochemical 
cycles and ecology

Evaluation of global vegetation 
models 

Sato et al. (2016); 
Szczypta et al. (2014); 
Traore et al. (2014)
Willeit and Ganopolski 
(2016) 

Long-term coverage 
for robust statistics 

Poor performance for 
some mountain 
ranges; No data 
available for densely 
vegetated areas; 
seasonal variation in 
spatial coverage 

Impact of soil moisture dynamics on 
vegetation productivity 

Barichivich et al. 
(2014); Chen et al. 
(2014); Cissé et al. 
(2016); Ghazaryan et al. 
(2016); Liu et al. 
(2017b); McNally et al. 
(2016); Muñoz et al. 
(2014); Nicolai-Shaw et 
al. (in press); 
Papagiannopoulou et 
al. (2016); 
Papagiannopoulou et 
al. (2017); Szczypta et 

Long-term coverage 
for robust 
assessment of 
drivers  

Poor data quality and 
data gaps for densely 
vegetated areas, 
frozen conditions, 
and mountain areas; 
temporal data gaps 
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al. (2014); Wu et al. 
(2016) 

Validation of dry season intensity 
indicator 

Murray-Tortarolo et al. 
(2016) 

Lon-term dataset 
required for robust 
evaluation 

Not mentioned 

Impact of large-scale re-vegetation 
on soil moisture 

Jiao et al. (2016a) Long-term coverage 
allows for trend 
assessment 

Not mentioned  

Connecting trends in soil moisture 
and vegetation productivity  

Dorigo et al. (2012); 
Feng (2016) 

Long-term coverage 
required for trend 
assessment 

Spatial data gaps, ESA 
CCI SM has trend 
removed before 1987 

Assessing ecosystem water use 
efficiency 

He et al. (2017) Long-term data 
availability for 
robust statistics 

Reduced quality over 
densely vegetated 
areas; high 
uncertainty for earlier 
periods 

Improved crop modelling Park et al. (2017); Sakai 
et al. (2016); Wang et 
al. (2016); Wang et al. 
(2017) 

Complementarity of 
active and passive 
microwave soil 
moisture for 
different land cover 
types; assessment 
of long-term links 
between soil 
moisture and 
vegetation 

Poor performance 
along coasts; 
differences in spatial 
scale; 
representativeness 
for fragmented 
landscapes; impact of 
irrigation; 
spatiotemporal data 
gaps  

Assessing drivers of fire activity Forkel et al. (2016); 
Ichoku et al. (2016) 

Long-term 
availability is 
essential for 
assessing dynamics 
and drivers of 
infrequent fire 
activity  

No coverage for 
dense vegetation, 
temporal gaps 

Potential for constraining  
terrestrial carbon cycle simulations 
by data assimilation 

Kaminski et al. (2013); 
Scholze et al. (2017) 

Long-term data 
availability  

Accurate description 
of random error for 
each observation; 
Does not provide 
estimate of root-zone 
soil moisture 

Assessment of satellite-observed 
carbon fluxes 

Detmers et al. (2015) Long-term 
availability 

Not mentioned 

Forcing  for simulating global 
atmospheric CH4 uptake by soils 

Murguia-Flores et al. 
(2017) 

Long-term 
availability 

Data gaps for dense 
vegetation 

Soil moisture as driver of animal 
species migration 

Madani et al. (2016) Long-term dataset 
required for robust 
pattern assessment 

Coarse resolution 

Impact of wind farms on 
environmental conditions for 
vegetation growth 

Tang et al. (2017) Long-term 
availability 

Not mentioned 

Hydrological and land 
surface modelling 

Evaluating model states in 
hydrological models and LSMs 

Du et al. (2016); Fang et 
al. (2016); Lai et al. 
(2016); Lauer et al. (in 
press); Loew et al. 
(2013); Mao et al. 
(2017); Okada et al. 
(2015); Rakovec et al. 
(2015); Schellekens et 
al. (2017); 
Spennemann et al. 
(2015); Szczypta et al. 
(2014) Ghosh et al. 
(2016); Mishra et al. 

Robust statistics 
based on long 
comparison period 

Not suited for 
validating absolute 
values (bias, root-
mean-square-
difference); 
discrepancy between 
model and 
observation layer 
depths; different 
dataset 
characteristics for 
different periods 
(variance, data gaps); 
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(2014); Mueller and 
Zhang (2016); Parr et 
al. (2015) 

spatiotemporal data 
gaps.  

Evaluating model processes in 
hydrological models and LSMs (e.g. 
dry down) 

Chen et al. (2016b) More realistic dry 
down 
characteristics than 
LSM-based soil 
moisture 

None 

Assimilated to constrain coupled 
LSM and hydrological simulations 

Albergel et al. (2017) Long-term 
availability 

No impact on deeper 
soil layers 

Used to estimate the error 
covariance matrix of an ensemble 
of LSM simulations in order to 
optimally merge them. 

Crow et al. (2015) Long data record 
length essential for 
reducing sampling 
errors 

large temporal 
variations in temporal 
frequency, actual 
spatial resolution, and 
accuracy; 
dependency on 
GLDAS-Noah as 
scaling reference; 
differences in vertical 
measurement 
support between 
models and 
observations  

Persistence and prediction of soil 
moisture anomalies in LSMs 

Nicolai-Shaw et al. 
(2016) 

Long-term dataset 
required for robust 
statistics 

Exact vertical 
measurement 
support unknown 

Improving runoff predictions and 
flood (risk) modelling 

Massari et al. (2015); 
Tramblay et al. (2014) 

Not specified Not mentioned 

Calibrating Soil and Water 
Assessment Tool hydrological 
model 

Kundu et al. (in press) Not specified Only few model 
parameters sensitive 
to surface soil 
moisture 

Improved water budget modelling Abera et al. (2016); 
Allam et al. (2016) 

Long-term 
availability for more 
robust statistics 

Vertical 
measurement 
support too shallow 
to provide indication 
of changes in soil and 
ground water storage 

Computing changes in groundwater 
storage 

Asoka et al. (2017) Long-term 
availability for 
trends assessment 

Not mentioned 

Modelling surface water dynamics Heimhuber et al. (2017) Long-term 
availability for more 
robust statistics 

Not mentioned 

Assessing irrigation Kumar et al. (2015); Qiu 
et al. (2016) 

Long-term data 
required for trend-
based method of 
Qiu et al. (2015) 

Coarse spatial 
resolution for 
detecting fine scale 
irrigation 

Assessing the impact of agricultural 
intensification on soil moisture  

Liu et al. (2015) Long-term data 
coverage needed 
for long-term 
impacts 

Spatial gaps 

Trigger of landslides Dahigamuwa et al. 
(2016) 

Long-term 
availability 

Not mentioned 

Improving satellite rainfall 
retrievals 

Bhuiyan et al. (in 
review-a); Bhuiyan et 
al. (in review-b); Kumar 
et al. (2015); Qiu et al. 
(2016) 

Data record spans 
multiple satellite 
precipitation 
missions 

Not mentioned 

Computing cumulative 
precipitation amounts 

Ciabatta et al. (subm.); 
Ciabatta et al. (2016); 
Liu et al. (2015) 

Long data record 
needed for 
generation of long-

Too low signal-to-
noise ratio in some 
areas; spatial and 
temporal data gaps 
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term precipitation 
dataset 

Validating soil moisture products 
derived from precipitation 

Dahigamuwa et al. 
(2016); Das and Maity 
(2015) 

Long-term 
availability for 
robust statistics 

Not mentioned 

Drought applications 

Validation of drought indices van der Schrier et al. 
(2013) Liu et al. (2017a) 

Lon-term dataset 
required for robust 
assessment 

Reduced temporal 
coverage before 1991 

Development of new drought 
monitoring index 

Carrão et al. (2016); 
Enenkel et al. (2016b); 
Rahmani et al. (2016) 

Long-term dataset 
required for robust 
computation of 
normal soil 
moisture 
distributions  

Variable data 
availability in time; 
reduced data quality 
over densely 
vegetated areas; not 
available in near-real-
time 

Improved detection of agricultural 
droughts 

Liu et al. (2015); 
Padhee et al. (2017); 
Yuan et al. (2015a) 

Long-term dataset 
required for robust 
long-term statistics 

Because of temporal 
data gaps extreme 
events may not be 
captured; reduced 
skill of COMBINED 
compared to ACTIVE 
in densely vegetated 
areas 

Probabilistic drought forecasting  Asoka and Mishra 
(2015); Linés et al. 
(2017); Yan et al. (2017) 

Long-term dataset 
required for robust 
computation of 
normal soil 
moisture 
distributions  

Coarse resolution; 
data gaps 

Soil moisture for integrated drought 
monitoring and assessment  

Cammalleri et al. 
(2017); Enenkel et al. 
(2016b); McNally et al. 
(2016); (Nicolai-Shaw 
et al. in press); 
Rahmani et al. (2016) 

Long-term dataset 
required for robust 
long-term statistics 

Poor spatio-temporal 
coverage prior to 
1992; spatial data 
gaps; lack of root-
zone soil moisture 

Evaluation of drought forecasting 
systems  

McNally et al. (2017); 
Shah and Mishra 
(2016); Yuan et al. 
(2015b) 

Long-term 
availability for 
robust evaluation. 
Sensitivity to 
wetlands (which are 
not represented 
LSMs).  

Poor spatio-temporal 
coverage prior to 
1992; differences in 
representative depth 

(Hydro)meteorological 
applications 

NWP model evaluation Arnault et al. (2015) Not mentioned Discrepancy in scale 

Supporting NWP land surface 
scheme improvements 

This study (Section 4.6) Long-term dataset 
required for robust 
evaluation of land 
surface scheme 

Spatial data gaps for 
densely vegetated 
areas 

Assimilation into NWP model Zhan et al. (2016) Reducing 
uncertainties in 
temperature and 
humidity  

Not mentioned 

751 

4.1 Climate variability and change 752 

As soil moisture is an integrative component of the Earth system, any large scale variability or change 753 

in our climate should manifest itself in globally observed soil moisture patterns. In this role, ESA CCI 754 

SM has made a significant contribution to the body of evidence of natural and human-induced climate 755 

variability and change. Indicative for this, is the contribution of ESA CCI SM to the State of the Climate 756 
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Reports that are issued every year by National Oceanic and Atmospheric Administration (e.g., Blunden 757 

and Arndt 2016). Several studies have shown a clear relationship between major oceanic-atmospheric 758 

modes of variability in the climate system, e.g. El Niño Southern Oscillation (ENSO), and variations in 759 

ESA CCI SM (Bauer-Marschallinger et al. 2013; Dorigo et al. 2016; Miralles et al. 2014b); Nicolai-Shaw 760 

et al. (2016). By applying enhanced statistical methods to the multi-decadal ESA CCI SM v0.1 dataset 761 

over Australia, Bauer-Marschallinger et al. (2013) were able to disentangle the portion of soil moisture 762 

variability that is driven by the major climate oscillations affecting this continent, i.e., ENSO, the Indian 763 

Ocean Dipole and the Antarctic Oscillation, from other modes of short-term and long-term variability. 764 

Miralles et al. (2014b) showed that inter-annual soil moisture variability as observed by ESA CCI SM 765 

COMBINED v02.2 largely drives the observed large-scale variability in continental evaporation.   766 

ESA CCI SM has been widely used to assess global trends in soil moisture, mostly in combination with 767 

LSMs. Based on ESA CCI SM v0.1, Dorigo et al. (2012) revealed that for the period 1988–2010 27% of 768 

the area covered by the dataset showed significant trends, of which almost three quarters were drying 769 

trends. A similar conclusion was drawn by Feng and Zhang (2015) based on ESA CCI SM COMBINED 770 

v02.1. The strong tendency towards drying was largely confirmed by trends computed for the same 771 

period from ERA-Interim and GLDAS-Noah (Dorigo et al. 2012), and ERA-Interim/Land and MERRA-772 

Land (Albergel et al. 2013b), although the spatial trend patterns were not everywhere congruent 773 

between datasets. The agreement in trends between a newer version of ESA CCI SM (v02.2) and 774 

MERRA-Land were recently confirmed by Su et al. (2016c). Trend analyses performed on a more 775 

regional scale, but for different time periods (e.g., An et al. 2016b; Li et al. 2015; Rahmani et al. 2016; 776 

Wang et al. 2016; Zheng et al. 2016) generally confirmed the results obtained at the global scale, while 777 

providing a more detailed view on the impact of local land management practices, e.g. irrigation, on 778 

observed trends (Qiu et al. 2016), and the impact of soil moisture trends on regional climate 779 

(Klingmüller et al. 2016). Feng (2016) assessed the drivers of trends in ESA CCI SM COMBINED v02.2 780 

and concluded that at the global scale climate change is by far the most important driver of long-term 781 

changes in soil moisture, although at the regional level land cover and land use change may play a 782 

significant role. Similar conclusions were drawn by regional studies over China (Chen et al. 2017; Liu et 783 

al. 2015; Meng et al. 2017). Other studies analysed the variability and trends in ESA CCI SM in relation 784 

to other atmospheric variables and circulation patterns over Asia (Shrivastava et al. 2016, 2017; Zhan 785 

et al. in press). Nevertheless, given the limited data record length, the impact of low-frequency climate 786 

oscillations on trends should first be carefully addressed before any robust conclusion about the sign 787 

and magnitude of perpetual changes can be drawn (Miralles et al. 2014b). Likewise, the potential 788 

impact of dataset artefacts should be carefully quantified and corrected for (Su et al. 2016c). 789 
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ESA CCI SM has been widely used as a reference for evaluating model states and trends in global and 790 

regional climate simulations. Different versions of ESA CCI SM COMBINED were used to systematically 791 

evaluate soil moisture states, trends, and dynamics of models participating in the latest Coupled Model 792 

Intercomparison Project (CMIP5) (Du et al. 2016; Huang et al. 2016; Lauer et al. in press; Yuan and 793 

Quiring 2017). At the regional scale, various studies used ESA CCI SM COMBINED to assess the 794 

sensitivity to soil moisture of various processes in global and regional climate models (Agrawal and 795 

Chakraborty 2016; Pieczka et al. 2016; Unnikrishnan et al. 2017) or to improve climate simulations by 796 

assimilating ESA CCI SM directly (Paxian et al. 2016). Even though most studies report positive 797 

experiences, the use of ESA CCI SM for climate model evaluations is primarily limited by discrepancies 798 

in surface layer thickness between models and satellite observations, the existence of spatial data 799 

gaps, and the fact that it does not provide an independent reference for evaluating absolute values. 800 

Despite these limitations, ESA CCI SM has been proposed (together with other land-based products) 801 

as an official reference for validating the land surface components of the CMIP6 models (van den Hurk 802 

et al. 2016). 803 

4.2 Land-atmosphere interactions 804 

As soil moisture is essential in partitioning the fluxes of water and energy at the land surface, it can 805 

affect the dynamics of humidity and temperature in the planetary boundary layer. This control of soil 806 

moisture on evapotranspiration is important for the intensity and persistence of heatwaves, as the 807 

depletion of soil moisture and the resulting reduction in evaporative cooling may trigger an amplified 808 

increase in air temperature (Fischer et al. 2007; Hirschi et al. 2011; Miralles et al. 2014a; Seneviratne 809 

et al. 2006b). While many studies on soil moisture–evapotranspiration and soil moisture–temperature 810 

coupling are based on modelling results or use precipitation-based drought indices as a proxy for soil 811 

moisture, ESA CCI SM enables analyses based on long-term observed soil moisture estimates 812 

(Casagrande et al. 2015; Hirschi et al. 2014; Miralles et al. 2014a). Therefore, ESA CCI SM in 813 

combination with other large-scale observations has been widely used to evaluate the coupling 814 

diagnostics found in models (Catalano et al. 2016; Knist et al. 2017; Li et al. 2016; Li et al. 2017; Zhou 815 

et al. 2016). 816 

Limitations with respect to the depth of the soil moisture retrievals (i.e., reporting the content of 817 

moisture in the first few centimetres as opposed to the entire root depth affecting transpiration) have 818 

triggered some debate about the appropriateness of ESA CCI SM to investigate evapotranspiration 819 

dynamics and atmospheric feedbacks (Hirschi et al. 2014). Hirschi et al. (2014) showed that the 820 

strength of the relationship between soil moisture and temperature extremes appears underestimated 821 

with ESA CCI SM compared to estimates based on the Standardized Precipitation Index (SPI; McKee et 822 

al. 1993; Stagge et al. 2015), which seems to be related to an underestimation of the temporal 823 
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dynamics and of large dry/wet anomalies within ESA CCI SM. This effect is enhanced under extreme 824 

dry conditions and may lead to a decoupling of the surface layer from deeper layers and from 825 

atmospheric fluxes (and resulting temperatures). Thus the added value of root-zone soil moisture is 826 

likely more important for applications dealing with extreme conditions, while for mean climatological 827 

applications the information content in the surface layer appears adequate. The assimilation of remote 828 

sensing surface soil moisture into a land surface model (e.g., Albergel et al. 2017; Lannoy and Reichle 829 

2016) provides a possible alternative here. In fact, root zone soil moisture estimates by the satellite-830 

based Global Land Evaporation Amsterdam Model (GLEAM; Miralles et al. 2011) have  been improved 831 

by the assimilation of ESA CCI SM, while the overall quality of evaporation estimates remains similar 832 

after assimilation (Martens et al. 2017). Also, the assimilation of ESA CCI SM COMBINED v02.1 helped 833 

interpreting global land evaporation patterns and multi-annual variability in response to the El Niño 834 

Southern Oscillation (Miralles et al. 2014b). The obvious link between soil moisture and evaporation 835 

has motivated several studies to use ESA CCI SM COMBINED (v0.1 and v02.1) to attribute trends 836 

observed for evaporation (Rigden and Salvucci 2017; Zeng et al. 2014). 837 

Soil moisture also affects precipitation through evapotranspiration. Yet, the effect of soil moisture on 838 

precipitation is much more debated than for air temperature. Studies report both positive or negative 839 

feedbacks, and even no feedback. Using a precursor of ESA CCI SM, Taylor et al. (2012) identified a 840 

spatially negative feedback of soil moisture on convective precipitation regarding the location, i.e., 841 

that afternoon rain is more likely over relatively dry soils due to mesoscale circulation effects. Guillod 842 

et al. (2015) revisited the soil moisture effect on precipitation using GLEAM root-zone soil moisture 843 

with ESA CCI SM COMBINED v02.1 assimilated, and showed that spatial and temporal correlations with 844 

opposite signs may coexist within the same region: precipitation events take place preferentially 845 

during wet periods (moisture recycling), but within the area have a preference to fall over 846 

comparatively drier patches (local, spatially negative feedbacks). 847 

A more indirect but potentially strong soil moisture – atmosphere feedback was found by Klingmüller 848 

et al. (2016), who were able to link an observed positive trend in Aerosol Optical Depth (AOD) in the 849 

Middle East to a negative trend in ESA CCI SM COMBINED v02.1. As lower soil moisture translates into 850 

enhanced dust emissions, their results suggested that increasing temperature and decreasing relative 851 

humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD. 852 

Also Xi and Sokolik (2015) found significant correlations between the variability in AOD and soil 853 

moisture. These changes in atmospheric composition again may have considerable impact on radiative 854 

forcing and precipitation initiation (Ramanathan et al. 2001) and as such impact the energy and water 855 

cycles in the area. 856 
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4.3 Global biogeochemical cycles and ecosystems 857 

Soil moisture is a regulator for various processes in terrestrial ecosystems such as plant phenology, 858 

photosynthesis, biomass allocation, turnover, and mortality, and the accumulation and decomposition 859 

of carbon in soils (Carvalhais et al. 2014; Nemani et al. 2003; Reichstein et al. 2013; Richardson et al. 860 

2013). Low soil moisture during drought reduces photosynthesis, enhances ecosystem disturbances 861 

such as insect infestations or fires, and thus causes plant mortality and accumulation of dead biomass 862 

in litter and soils (Allen et al. 2010; McDowell et al. 2011; Thurner et al. 2016). The release of carbon 863 

from soils to the atmosphere through respiration is also controlled by soil moisture (Reichstein and 864 

Beer, 2008). Consequently, soil moisture is a strong control on variations in the global carbon cycle 865 

(Ahlström et al. 2013; Poulter et al. 2014; van der Molen et al. 2012).  866 

Despite the importance of soil moisture for the global carbon cycle, satellite-derived soil moisture data 867 

are currently under-explored in carbon cycle and ecosystem research. Because long-term soil moisture 868 

observations were lacking until recently, most studies on the effects of soil moisture on vegetation 869 

relied on precipitation estimates (Du et al. 2013; Poulter et al. 2013), indirect drought indices (Hogg et 870 

al. 2013; Ji and Peters 2003), or soil moisture estimates from land surface models (Forkel et al. 2015; 871 

Rahmani et al. 2016). More recently, studies used ESA CCI SM to assess impacts of water availability 872 

and droughts on plant phenology and productivity based on satellite-derived vegetation indices and 873 

variables such as the NDVI or the Leaf Area Index (LAI), or directly of vegetation productivity (Murray-874 

Tortarolo et al. 2016). For example, Szczypta et al. (2014) used ESA CCI SM v0.1, modelled soil moisture, 875 

and LAI over the Euro-Mediterranean zone to evaluate two land surface models and to predict LAI 876 

anomalies over cropland. LAI was predictable from ESA CCI SM in large homogeneous cropland regions, 877 

e.g. in Southern Russia (Szczypta et al. 2014). Strong positive relationships between ESA CCI SM 878 

COMBINED and NDVI and/or LAI were also found for Australia (Chen et al. 2014; v0.1; Liu et al. 2017b; 879 

v02.1), for croplands in North China (Wang et al. 2016; v0.1; Wang et al. 2017; v02.1) and the Ukraine 880 

(Ghazaryan et al. 2016; v02.1), for East Africa (McNally et al. 2016; v02.1; Wu et al. 2016; v02.0), and 881 

Senegal (Cissé et al. 2016; v0.1). Generally, many regions with positive (greening) or negative 882 

(browning) trends in NDVI show also positive and negative trends in ESA CCI SM v0.1, respectively 883 

(Dorigo et al. 2012). This co-occurrence of soil moisture and NDVI trends reflects the strong water 884 

control on vegetation phenology and productivity. Interestingly, soil moisture from ESA CCI SM v0.1 885 

was also correlated with NDVI in some boreal forests, which are primarily temperature-controlled 886 

(Barichivich et al. 2014). In these regions, soil moisture and vegetation productivity were controlled by 887 

variations in the accumulation and thawing of winter snow packs (Barichivich et al. 2014). However, 888 

some water-limited regions showed negative ESA CCI SM v0.1 soil moisture trends with no 889 

corresponding trend in NDVI (Dorigo et al. 2012). In these cases, the positive relation between surface 890 
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soil moisture and vegetation is likely modified by vegetation type and vegetation density (Feng, 2016; 891 

McNally et al., 2016). For example, densely vegetated areas in East Africa show stronger correlations 892 

between ESA CCI SM COMBINED v02.1 soil moisture and NDVI than sparsely vegetated areas (McNally 893 

et al., 2016). Regional differences in the response of ecosystems to soil moisture variability have also 894 

been attributed to differences in water use efficiency (He et al. 2017). Novel data-driven approaches 895 

enable quantification of the share of ESA CCI SM in controlling NDVI variability as opposed to other 896 

water and climate drivers (Papagiannopoulou et al. 2016; Papagiannopoulou et al. 2017). Figure 11 897 

shows the correlation between the latest ESA CCI SM COMBINED (v03.2) product and NDVI GIMMS 3G 898 

(Tucker et al. 2005) with a lag time of soil moisture preceding NDVI of 16 days. In most regions and 899 

especially in water-limited areas such as the Sahel, there is a strong and direct response of NDVI to soil 900 

moisture. On the other hand, correlations are negative in many temperate regions. This is likely 901 

because NDVI is highest in summer months when soil moisture decreases. This demonstrates that 902 

vegetation productivity in temperate regions is primarily temperature-controlled and strongly affected 903 

by human activities through agriculture or forest management (Forkel et al. 2015; Papagiannopoulou 904 

et al. 2017).  905 

Apart from the analysis of relations with vegetation indices, the ESA CCI SM datasets have been used 906 

in other ecosystem studies. For example, Muñoz et al. (2014) investigated tree ring chronologies of 907 

conifers in the Andeans in conjunction with soil moisture variability from ESA CCI SM v0.1. The study 908 

revealed a previously unobserved relation between tree growth and summer soil moisture (Muñoz et 909 

al., 2014). While most studies have looked at the impact of soil moisture on vegetation, only very few 910 

studies have assessed the opposite, i.e. the impact of vegetation on soil moisture. One such example 911 

is the study of Jiao et al. (2016b) who looked at the impact of large-scale reforestation on soil moisture 912 

in China. Indirect links between soil moisture and ecosystem dynamics have been the studies of 913 

Madani et al. (2016), who used ESA CCI SM COMBINED v0.1 as one of the predictors of Emu migrations 914 

in Australia and of Tang et al. (2017) who assessed the impact of wind farms on ESA CCI SM COMBINED 915 

v02.2 and vegetation productivity. 916 

Furthermore, ESA CCI SM v0.1 and vegetation data were used to evaluate ecosystem models (Sato et 917 

al. 2016; Szczypta et al. 2014; Traore et al. 2014; Willeit and Ganopolski 2016). Thereby, the results of 918 

Traore et al. (2014) demonstrate that a model that best performs for soil moisture does not necessarily 919 

best perform for plant productivity. This demonstrates the need to jointly use soil moisture and 920 

vegetation or carbon cycle observations to improve global ecosystem/carbon cycle models (Kaminski 921 

et al. 2013; Scholze et al. 2016). The use of the ESA CCI SM in such an analysis could potentially 922 

constrain model uncertainties regarding the long-term hydrological control on vegetation productivity 923 

and ecosystem respiration (Detmers et al. 2015; Scholze et al. 2017). However, a major source of 924 
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uncertainty about the future terrestrial carbon cycle is related to how global ecosystem models 925 

represent carbon turnover, vegetation dynamics, and disturbances such as fires (Friend et al. 2014). It 926 

was previously shown that variations in satellite-derived soil moisture are related to extreme fire 927 

events in boreal forests (Bartsch et al. 2009; Forkel et al. 2012). Consequently, the ESA CCI SM 928 

COMBINED dataset has been used together with climate, vegetation, and socio-economic data to 929 

assess controls on fire activity globally and to identify appropriate model physics structures for global 930 

fire models (Forkel et al. 2016; Ichoku et al. 2016). Because of the role of soil moisture on microbial 931 

activity, ESA CCI SM v0.1 has been used as one of the forcings to simulate global atmospheric methane 932 

uptake by soils (Murguia-Flores et al. 2017). 933 

934 

Figure 11: Mean Pearson correlation coefficient R between ESA CCI soil moisture v03.2 and GIMMS NDVI3g for the period 935 
1991 to 2013 for a lag time of soil moisture preceding NDVI by 16 days. White areas indicate pixels for which correlations 936 
are not significant (p>0.05). 937 

4.4 Hydrological and land surface modelling 938 

As soil moisture drives processes like runoff, flooding, evaporation, infiltration, and ground water 939 

recharge, it is important that hydrological models accurately map soil moisture states. The potential 940 

of using ESA CCI SM to validate surface soil moisture fields in state-of-the-art LSMs, reanalysis 941 

products, and large-scale hydrological models has been largely recognized (Fang et al. 2016; Ghosh et 942 

al. 2016; Lai et al. 2016; Loew et al. 2013; Mao et al. 2017; Mishra et al. 2014; Mueller and Zhang 2016; 943 

Okada et al. 2015; Parr et al. 2015; Rakovec et al. 2015; Spennemann et al. 2015; Szczypta et al. 2014). 944 

Schellekens et al. (2017) exploited the long-term availability of ESA CCI SM COMBINED v02.2 to validate 945 

according to the standardised International Land Model Benchmarking (ILAMB) protocol the soil 946 

moisture fields of ten global hydrological and land surface models, all forced with the same 947 

meteorological forcing dataset for the period 1979-2012. New insights in the model representation of 948 

hydrological processes like infiltration have been offered by comparing the memory length (Chen et 949 

al. 2016b; Lauer et al. in press) and the frequency domains (Polcher et al. 2016) between LSMs and 950 

remote sensing products, including ESA CCI SM COMBINED v02.3. Crow et al. (2015) utilized ESA CCI 951 
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SM v0.1 to estimate the error covariance matrix for an ensemble of LSM simulations of surface soil 952 

moisture in order to optimally merge them. The authors claim that the long period covered by the ESA 953 

CCI SM product is essential for removing sampling error in these estimates. Similarly as for climate 954 

model evaluations, the use of ESA CCI SM for hydrological model evaluations is hampered by 955 

discrepancies in surface layer thickness between models and satellite observations, the existence of 956 

spatial data gaps, heterogeneity of data properties over time, and the dependency of the absolute 957 

values in an LSM (Table 5). 958 

Satellite soil moisture data can bring important benefits in runoff modelling and forecasting both 959 

through an improved initialisation of rainfall-runoff models and through data assimilation techniques 960 

that allow for updating the soil moisture states. Several studies have shown the positive impact on 961 

flood and runoff prediction through assimilation of single sensor Level 2 products used in ESA CCI SM, 962 

e.g. obtained from ASCAT (Brocca et al. 2010), AMSR-E (Sahoo et al. 2013), and SMOS (Lievens et al. 963 

2015). Wanders et al. (2014) and Alvarez-Garreton et al. (2015) showed the improved skill of runoff 964 

predictions when jointly assimilating multiple soil moisture products (SMOS, ASCAT and AMSR-E), 965 

resulting mainly from improved temporal sampling. Long-term homogeneous soil moisture products 966 

like ESA CCI SM become important in flood modelling studies that require a multi-year period for the 967 

calibration and validation of model parameters. Assimilating the ESA CCI SM COMBINED v02.2 product 968 

over the Upper Niger River basin improved runoff predictions even though the simulation of the 969 

rainfall-runoff model was already good (Massari et al. 2015). Tramblay et al. (2014) used ESA CCI SM 970 

v0.1 to better constrain model parameters, and hence reduce uncertainties, of a parsimonious 971 

hydrological model in the Mono River basin (Africa), with the goal to evaluate the impact of climate 972 

change on extreme events. Further studies are clearly needed to assess the full potential of ESA CCI 973 

SM product for runoff modelling and forecasting. For example, even a simple model based only on 974 

persistence allows for the prediction of soil moisture (Nicolai-Shaw et al. 2016), and exploiting this 975 

characteristic could contibute to improved early warning systems. At the local scale, Dahigamuwa et 976 

al. (2016) used ESA CCI SM v0.1 in combination with vegetation cover to improve the prediction of 977 

landslide ocurrence. 978 

ESA CCI SM products have been used for improving the quantification of the different components of 979 

the hydrological cycle, i.e. evaporation (Allam et al. 2016; Martens et al. 2017; Miralles et al. 2014b), 980 

groundwater storage (Asoka et al. 2017), and rainfall (Bhuiyan et al. in review-a; Bhuiyan et al. in 981 

review-b; Ciabatta et al. 2016). Soil moisture contains information on antecedent precipitation. This 982 

principle is being exploited by the SM2RAIN method (Brocca et al. 2014; Brocca et al. 2013), which uses 983 

an inversion of the soil-water balance equation to obtain a simple analytical relationship for estimating 984 

precipitation accumulations from the knowledge of a soil moisture time-series. The method has been 985 
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tested on a wide range of Level 2 satellite soil moisture products and ESA CCI SM COMBINED v02.2 986 

(Brocca et al. 2014; Ciabatta et al. 2016). SM2RAIN realistically reproduces daily precipitation amounts 987 

when compared to gauge observations and in certain regions may even outperform direct satellite-988 

based estimates of precipitation, even though its performance hinges on the quality of the soil 989 

moisture product used as input (Brocca et al. 2014; Ciabatta et al. 2016). Its application to ESA CCI SM 990 

COMBINED provides an independent global climatology of precipitation from 1979 onwards. Abera et 991 

al. (2016) used the SM2RAIN precipitation product from ESA CCI SM (Ciabatta et al. subm.; Ciabatta et 992 

al. 2016) to quantify the space-time variability of rainfall, evaporation, runoff and water storage for 993 

the Upper Blue Nile river basin in Africa. 994 

Heimhuber et al. (2017) used ESA CCI SM (version unknown) in a statistical framework to predict the 995 

dynamics in surface water in south-eastern Australia.  ESA CCI SM has also been used to map large-996 

scale irrigation, which is largely unquantified on a global scale and, consequently, not included in most 997 

large scale hydrological and/or land surface models (Qiu et al. 2016). By comparing modelled and 998 

satellite soil moisture data, irrigated areas can be detected when satellite data and modelled data (the 999 

latter do not include irrigation) show different temporal dynamics. Kumar et al. (2015) used satellite 1000 

soil moisture observations from ESA CCI SM COMBINED v02.1, ASCAT, AMSR-E, SMOS, and WindSat 1001 

for dtecting irrigation over the United States. Similarly, Qiu et al. (2016) detected irrigated areas in 1002 

China by evaluating the differences in trends between ESA CCI SM COMBINED v02.1 and precipitation. 1003 

Liu et al. (2015) used ESA CCI SM v0.1 to support the attribution of negative trends in soil moisture in 1004 

Northern China to agricultural intensification. 1005 

4.5 Drought applications 1006 

Soil moisture droughts, also referred to as agricultural droughts, may be driven by a lack of 1007 

precipitation and/or increased evapotranspiration (Seneviratne et al. 2012). In addition to natural 1008 

variability, human land modification and water management can contribute to agricultural drought 1009 

(Liu et al. 2015; Van Loon et al. 2016). Prior to the availability of global satellite-based soil moisture 1010 

datasets, precipitation and temperature gridded datasets were favoured for developing drought 1011 

monitoring indices. Well-known examples, although primarily indicative of meteorological drought 1012 

rather than agricultural drought, are the SPI and the Palmer Drought Severity Index (PDSI; Palmer 1013 

1965). ESA CCI SM has been repeatedly used to evaluate the performance of such indices (Liu et al. 1014 

2017a; van der Schrier et al. 2013). 1015 

ESA CCI SM can be used to directly monitor agricultural drought, or help to set up alternative drought 1016 

indicators. For example, Carrão et al. (2016) and Rahmani et al. (2016) used ESA CCI SM COMBINED 1017 

(v02.0 and v02.1, respectively) to develop a drought index comparable to SPI but based on actual soil 1018 

moisture observations instead of precipitation, naming them the Empirical Standardized Soil Moisture 1019 
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Index (ESSMI) and Standardized Soil Moisture Index (SSI), respectively.  Carrão et al. (2016) found high 1020 

correlations between ESSMI and maize, soybean, and wheat crop yields in Latin America and with this 1021 

index could accurately describe the severe and extreme drought intensities in north-eastern Brazil in 1022 

1993, 2012, and 2013. Based on SSI, Rahmani et al. (2016) were able to identify a severe drought event 1023 

that started in December 2012 in the northern part of Iran. The Enhanced Combined Drought Index 1024 

(ECDI) proposed by Enenkel et al. (2016b) combines ESA CCI SM COMBINED v02.2 with satellite-derived 1025 

observations of rainfall, land surface temperature and NDVI for the detection of drought events, and 1026 

has been successfully used to detect large-scale drought events in Ethiopia between the years 1992-1027 

2014.  1028 

McNally et al. (2016) specifically evaluated the use of ESA CCI SM COMBINED v02.2 for agricultural 1029 

drought and food security monitoring in East Africa, and found that ESA CCI SM is a valuable addition 1030 

to a ‘convergence of evidence’ framework for drought monitoring. Like Dorigo et al. (2015b) they 1031 

emphasize that users should be aware of the spatial and temporal differences in data quality caused 1032 

for example by significant data gaps prior to 1992, the lack of overlap between sensors, or difficulties 1033 

with soil moisture retrievals over certain terrains such as heavily vegetated areas. Post 1992, McNally 1034 

et al. (2016) generally found good agreement between ESA CCI SM and other soil moisture products 1035 

as well as with NDVI in East Africa. Yuan et al. (2015a) assessed the skill of ESA CCI SM v02.1 in capturing 1036 

short-term soil moisture droughts over China. They found that the PASSIVE and COMBINED products 1037 

have better drought detection skills over the sparsely vegetated regions in north-western China while 1038 

ACTIVE worked best in the more densely vegetated areas of eastern China. 1039 

At the global scale, Miralles et al. (2014b) identified the effect of El Niño-driven droughts in soil 1040 

moisture, NDVI and evaporation, using GLEAM and ESA CCI SM COMBINED v02.1. This in combination 1041 

with the high persistence of soil moisture (Nicolai-Shaw et al. 2016; Seneviratne et al. 2006a) makes 1042 

the ESA CCI SM dataset valuable for the monitoring and prediction of drought events. Hence, various 1043 

versions of ESA CCI SM COMBINED have been used as a piece of evidence for probabilistic drought 1044 

monitoring and forecasting in India (Asoka and Mishra 2015; Padhee et al. 2017), Spain (Linés et al. 1045 

2017), and the United States (Yan et al. 2017). Recently, ESA CCI SM COMBINED v02.2 was used to 1046 

validate the predictions of process-based drought forecasting models applied in Sub-Saharan Africa 1047 

(McNally et al. 2017) and India (Shah and Mishra 2016).  1048 

4.6 (Hydro)meteorological applications 1049 

Numerical Weather Prediction (NWP) involves the use of computer models of the Earth system to 1050 

simulate how the state of the Earth system is likely to evolve over a period of a few hours up to 1-2 1051 

weeks ahead. It also considers longer timescales (seasonal and climate) through the notion of seamless 1052 

prediction (Palmer et al. 2008). A number of studies provide strong support for the notion that high 1053 
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skill in short- and medium-range forecasts of air temperature and humidity over land requires proper 1054 

initialization of soil moisture (Beljaars et al. 1996; Douville et al. 2000; Drusch and Viterbo 2007; van 1055 

den Hurk et al. 2012). There is evidence also of a similar impact from soil moisture on seasonal 1056 

forecasts (Dirmeyer and Halder 2016; Koster et al. 2011; Koster et al. 2004; Weisheimer et al. 2011). 1057 

Remotely sensed soil moisture datasets like ESA CCI SM can serve NWP by offering a long-term, 1058 

consistent, and independent reference against which NWP output fields can be evaluated. This may 1059 

eventually improve meteorological forecasts through a better representation of the land surface and 1060 

of the fluxes between the land surface and the atmosphere in the NWP (see Section 4.2). For example, 1061 

Arnault et al. (2015) used ESA CCI SM (version unknown) to evaluate soil moisture predicted with a 1062 

Weather Research and Forecast (WRF)-Hydro Coupled Modeling System for West Africa. Recently, 1063 

ECMWF made an offline development in its Land Surface Model HTESSEL (Balsamo et al. 2015; Balsamo 1064 

et al. 2009), making it possible to add extra layers of soil as well as changing their thickness (Mueller 1065 

et al. 2016). An experiment was run which increases the number of soil layers from four to nine and 1066 

reduces the thickness of the upper soil layer from seven (0-7 cm) to one (0-1) centimetre. One of the 1067 

rationales for having this thin topsoil layer is having a surface layer that is closer to the depth sampled 1068 

by existing satellite observations and thus allowing for a better assimilation of these observations. Soil 1069 

moisture from the first layer of two offline experiments, forced by ERA-Interim reanalysis, and 1070 

considering either a 1 cm depth (GE8F) or a 7 cm depth (GA89) layer was compared to the ESA CCI SM 1071 

COMBINED v02.2 over the period 1979-2014. Correlations were computed for absolute soil moisture 1072 

and anomaly time series from a 35-day moving average (Dorigo et al. 2015b). We illustrate differences 1073 

in correlation between the two experiments in Figure 12. The red colours illustrate that in most areas 1074 

using a 1 cm instead of a 7 cm surface layer depth leads to a better match with the ESA CCI SM 1075 

COMBINED dataset. Positive differences frequently reach values higher than 0.2, particularly for 1076 

correlations on anomaly time series, which shows that a thinner model layer better mimics satellite-1077 

observed surface soil moisture variations, as was expected. 1078 

1079 

Figure 12 Differences in correlations of absolute soil moisture values (left) and anomalies (right) differences between ESA CCI 1080 
SM COMBINED v02.2 and soil moisture from the first layer of soil of two offline experiments over 1979-2014. Experiment GE8F 1081 
has a first layer of soil of 1 cm depth (0-1cm), GA89 of 7 cm depth (0-7cm). Differences are only shown for pixels that provide 1082 
significant correlations (p<0.05) for both experiments. Pixels where these conditions are not met have been left blank.1083 
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Few studies have assimilated remotely sensed soil moisture directly into NWPs and climate models to 1084 

update their soil moisture fields. Even though this mostly leads to a significant improvement of the 1085 

model’s soil moisture fields, its impact on the meteorological forecast itself, e.g. on 2 metre air (T2m) 1086 

temperature (Bisselink et al. 2011), screen temperature or relative humidity predictions (de Rosnay et 1087 

al. 2013; Dharssi et al. 2011; Scipal et al. 2008a), is typically limited in areas with dense coverage of the 1088 

ground-based meteorological observing network and difficult to evaluate in poorly observed areas. 1089 

We are only aware of one study that assimilated ESA CCI SM (version unknown) directly into an NWP 1090 

to update its soil moisture field (Zhan et al. 2016). This study showed that assimilating ESA CCI SM into 1091 

the NASA Unified WRF model coupled with NASA Land Information System could decrease the RMSEs 1092 

of near-surface air temperature and humidity for certain forecasts and decrease the biases of NUWRF 1093 

model longer term rainfall forecasts more significantly than those of the shorter term forecasts. 1094 

5 Closing the gap between Earth system research requirements and 1095 

observations 1096 

Our overview of product characteristics in Section 3 shows that the ESA CCI SM products are able to 1097 

overcome several of the drawbacks that single-sensor products have with respect to their applicability 1098 

in a climate context, particularly concerning the dataset length and revisit times. Even though ESA CCI 1099 

SM is approaching the requirements outlined in the 2015 GCOS Status Report our analysis also shows 1100 

that these characteristics vary significantly through space and time. Thus, it is often not meaningful to 1101 

capture certain dataset characteristics in a single statistical number. Besides, the GCOS requirements 1102 

present only a high-level consensus view on what is required to meet the increasing and more varied 1103 

needs for climate data and information (GCOS-200 2016). Therefore, our review of validation and 1104 

application studies is crucial for identifying more specific requirements and the degree to which these 1105 

are currently met by ESA CCI SM. It reveals that not all applications have the same requirements: for 1106 

example, while for flood forecasting a high observation density appears to be of ultimate importance, 1107 

this may be less crucial when studying long-term global trends in mean soil moisture. Based on our 1108 

review we see the following research priorities for improving ESA CCI SM and soil moisture CDRs in 1109 

general.1110 

Higher spatial resolutions1111 

Higher spatial resolutions are required to serve more regional applications, e.g., to map the impact of 1112 

irrigation on local water budgets or to assess the impacts of local soil moisture variability on 1113 

atmospheric instability (Taylor et al. 2013). Higher spatial resolutions of ESA CCI SM can be either 1114 

achieved by including observations with higher native resolution (e.g. SAR, thermal infrared) or by 1115 
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applying appropriate downscaling techniques to the coarse scale observations (An et al. 2016a; Peng 1116 

et al. 2016). 1117 

Filling data gaps and improved temporal sampling1118 

Many users and applications have difficulties in dealing with intermittent data. A way to address this 1119 

would be the creation of gap-filled time series, which would improve the nominal observation density. 1120 

At the same time, increasing the actual (real) observation density prior to 2002 to a daily resolution 1121 

would be required to have a significant impact on data assimilation, e.g. in hydrological models or land 1122 

surface reanalyses (Alvarez-Garreton et al. 2015). This may be partly overcome by improved blending 1123 

approaches, although data density will remain insufficient in the earliest periods due to a lack of 1124 

appropriate satellites. Sub-daily resolutions would be necessary to capture the high-frequency 1125 

components of the soil moisture signal which in the temporal domain are driven mainly by 1126 

precipitation and the diurnal cycle of solar radiation (Dorigo et al. 2013). A denser temporal sampling 1127 

is also crucial to better quantify land-atmosphere interactions, e.g., soil moisture controls on 1128 

convective precipitation (Guillod et al. 2014; Taylor et al. 2012). Fortunately, the current constellation 1129 

of coarse-scale microwave satellites is capable of providing measurements several times per day 1130 

(SMOS and SMAP at around 6:00 am and pm, ASCAT at 9:30 am and pm, and AMSR2 at 1:30 am and 1131 

pm). At the same time, due to physical limitations of microwave remote sensing in providing useful 1132 

information below snow/ice cover, under frozen conditions, or underneath dense vegetation, spatial 1133 

data gaps will remain an issue also in the future.  1134 

Improved product accuracy1135 

Section 3 showed that there is still considerable room for reducing errors. Especially for Level 2 1136 

products from scatterometers a lot could still be gained by an improved modelling of vegetation effects 1137 

and sub-surface scattering effects in dry soils (Liu et al. 2016; Morrison 2013; Wagner et al. 2013a). 1138 

Passive microwave Level 2 products would benefit from an improved modelling of the effect of diurnal 1139 

temperature variations on soil moisture retrievals (Parinussa et al. 2016) and a better quantification 1140 

of the actual soil depths sampled by the different microwave frequencies (Wilheit 1978). Both the 1141 

active and passive Level 2 products would profit from an improved characterization of the sub-daily 1142 

behaviour of soil and canopy moisture and the application of de-noising methods (Su et al. 2015). 1143 

These improved Level 2 products would in turn contribute to reduced errors in the ESA CCI SM 1144 

products. Not only product errors themselves need to be improved, but also their characterisation in 1145 

space and time and their communication to the users. As suggested earlier, providing a single error 1146 

estimate for the entire dataset is impractical and insufficient. Applications based on data assimilation 1147 

only profit maximally if the product errors are accurately and dynamically characterized at the level of 1148 

individual observations (Lahoz and Schneider 2014).  1149 
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Improved blending methods  1150 

Some studies observed a reduced skill of COMBINED with respect to the ACTIVE or PASSIVE products 1151 

(Chakravorty et al. 2016; Szczypta et al. 2014; Yuan et al. 2015a). Even though this issue has been 1152 

largely resolved for the reported study areas in the latest version (Figure 13), there remain some areas 1153 

where the merging of ACTIVE and PASSIVE into COMBINED leads to a reduction of skill. In-depth 1154 

analyses are needed to reveal whether this is related to the scaling of the remote sensing products 1155 

against an LSM-based climatology or to the merging strategy itself. Also, the temporal gap filling of the 1156 

best performing product with lower quality observations has a negative impact on the overall skill of 1157 

COMBINED (Gruber et al. in prep.). Thus, the challenge of the merging procedure is to find an optimum 1158 

trade-off between increased spatial-temporal coverage and maintaining acceptable data quality. A 1159 

potential way to optimise the current merging methodology may be to assess errors and merge 1160 

datasets at different temporal scales (Su et al. 2016b). In addition, it may be worthwhile looking into 1161 

alternative merging approaches, e.g. machine learning approaches (Kolassa et al. 2016; Rodríguez-1162 

Fernández et al. 2015) or data assimilation frameworks (Kolassa et al. 2017). 1163 

1164 

Figure 13 Differences in correlation between ERA-Interim/Land and ESA CCI SM v03.2 COMBINED on the one hand, and 1165 
ERA/Interim-Land and the best performing ESA CCI SM v03.2 product (either COMBINED, ACTIVE, or PASSIVE) on the other. 1166 
Differences close or equal to zero indicate that COMBINED merges the input products without a substantial loss in skill, while 1167 
negative values indicate that either ACTIVE or PASSIVE outperforms COMBINED. 1168 

Improved temporal consistency 1169 

For climate change applications it is of utmost importance that the trend signal contained in the ESA 1170 

CCI SM products have a geophysical meaning and are not introduced, e.g., by changes in sensor 1171 

constellation. Assessing, and possibly correcting for such potential artefacts should therefore receive 1172 

high priority in future product releases (Su et al. 2016c). However, despite the potential detection and 1173 
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correction of more obvious inhomogeneities like changes in the mean or variance, more intricate 1174 

inhomogeneities, e.g. changes in data quality and spatiotemporal coverage, may be easily overlooked. 1175 

Yet, these may have considerable impact on several applications, e.g. the attribution of the frequency 1176 

of extreme events (Loew et al. 2013; Padhee et al. 2017; Yuan et al. 2015a) or the assessment of mean 1177 

global trends (Dorigo et al. 2012). Long-term missions with consistent specifications, e.g., as provided 1178 

by the ERS and MetOp satellites, are crucial for supporting homogenisation and intercalibration efforts.1179 

Shorter latency times between data acquisition and data availability1180 

Short latency times are required for embedding the ESA CCI SM product in operational services. While 1181 

monitoring services, e.g. drought monitors, would already profit from a latency of ten days, operational 1182 

flood forecasting and the initialisation of boundary conditions in NWP models require a near-real-time 1183 

availability of the product. Enenkel et al. (2016a) demonstrated the feasibility of producing an ESA CCI 1184 

SM near-real-time dataset, although they also showed that such a service is constrained by the latency 1185 

and quality of available Level 2 products. Operational production and updating of the dataset with a 1186 

maximum latency of 10 days is foreseen to take place within the Copernicus Climate Change Services 1187 

(C3S; https://climate.copernicus.eu/) from June 2017 onwards. ESA CCI SM v03.2 will form the basis 1188 

for this service. 1189 

Independency of LSMs 1190 

To optimally serve model benchmarking activities, especially regarding the assessment of biases, the 1191 

ESA CCI SM COMBINED product should become entirely independent of any LSM. Even though the 1192 

current scaling against the GLDAS -Noah reference LSM hardly affects trends and temporal dynamics 1193 

in the product, it does make the ESA CCI SM COMBINED dataset impractical for assessing model biases. 1194 

Globally available L-band observations from SMOS and SMAP may be considered as an alternative 1195 

scaling reference in the future.  1196 

Creation of a root-zone soil moisture product 1197 

Root-zone soil moisture is required for a complete assessment of land-atmosphere interactions, for 1198 

better linking soil moisture variability to ecosystem and agricultural drought dynamics, and for 1199 

hydrological modelling. Although this is seemingly unattainable without the intervention of an LSM to 1200 

propagate surface soil moisture observations to the root-zone, simplified approaches such as the Soil 1201 

Water Index method (Albergel et al. 2008; Wagner et al. 1999b) may already be useful (Brocca et al. 1202 

2012). 1203 

One should be aware that user requirements on satellite soil moisture will continue to change, 1204 

reflecting advances in Earth system research and evolving societal needs. As regards climate 1205 

applications, the latest GCOS Implementation Plan (GCOS-200 2016) already addresses a couple of the 1206 

https://climate.copernicus.eu/
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new top-level requirements identified in this study, including improvements in the spatial resolution 1207 

and the need to provide subsidiary variables to better characterize the quality of the surface soil 1208 

moisture data. The required subsidiary variables are the freeze/thaw status, surface inundation, VOD 1209 

and root-zone soil moisture. Freeze/thaw status and surface inundation are needed to flag 1210 

environmental conditions when the retrieval of soil moisture data from microwave measurements is 1211 

not possible due to fundamental physical reasons (Zwieback et al. 2015).  1212 

Even with consolidated user requirements for soil moisture CDRs, the main challenge remains to 1213 

determine to what degree these requirements are actually met by long-term products like ESA CCI SM. 1214 

This requires standardised strategies based on commonly agreed reference datasets, methodologies, 1215 

and metrics. Some examples of potential methods were adopted in this study but these need to be 1216 

further elaborated. Apart from statistical approaches like the triple collocation, all other evaluation 1217 

methods to some degree suffer from a general data sparsity in several regions of the world, e.g. the 1218 

tropical forests or the sub-arctic. In these regions, there is not only a lack of in-situ soil moisture 1219 

stations (Ochsner et al. 2013) but also of meteorological monitoring stations. Thus, also the 1220 

precipitation and LSM products used in various evaluation approaches have larger uncertainties here. 1221 

For example, Albergel et al. (2013a) showed that the trends in two reanalysis datasets widely diverged 1222 

in these areas. Therefore, to date, data-rich areas dominate in the evaluation process. One of the main 1223 

priorities of the international community should therefore be to establish in-situ networks in data-1224 

poor regions and guarantee the continuation of existing long-term monitoring sites to assess stability 1225 

and trends over a wide range of land surface conditions. A good starting point may be offered by the 1226 

globally well-distributed and error-characterised SMAP core validation sites (Colliander et al. 2017).  1227 

6 Conclusion and outlook 1228 

In this study, we provided a comprehensive overview of the specifications of the ESA CCI SM product 1229 

suite and the Earth system applications that have made use of these datasets either to benchmark or 1230 

to improve current process understanding as captured in state-of-the-art models. The strong user 1231 

interest in the soil moisture CDRs is reflected by the wide variety of science communities who have 1232 

exploited the potential of these products. The main motivation for using the ESA CCI SM products over 1233 

existing single-sensor products is its unique long period of coverage, which makes it potentially suitable 1234 

to assessing long-term variability and change, although users should confirm data homogeneity for 1235 

their region of application.  1236 

ESA CCI SM products have already led to numerous publications, which were used in this study to 1237 

review the capabilities and shortcomings of the products for Earth system applications and provide 1238 

valuable information for shaping the priorities of new product releases. Yet, the full potential of ESA 1239 
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CCI SM remains underexploited. This is partly due to the complexity and limitations of the data, e.g., 1240 

the varying dataset quality through space and time, and the occurrence of data gaps, which makes it 1241 

difficult for users to integrate the data in their applications. Such limitations can be partly addressed 1242 

by continuing efforts to improve Level 2 retrievals and merging methodologies, and through the 1243 

introduction of new, high-quality sensors like SMAP in the merged products. However, it will not be 1244 

possible to mitigate all issues related to the creation of an entirely homogeneous dataset from 1978 1245 

onwards. These issues relate to the absence of suitable sensors in the early decades and the physical 1246 

limitations of the microwave signal in general. Thus, to exploit the full potential of the ESA CCI SM 1247 

datasets, future efforts should not only focus on algorithmic improvements but also on clearly 1248 

communicating the dataset characteristics to expert and non-expert users alike. 1249 

Finally, the acceptance of the ESA CI SM products by a broad user community and integration into 1250 

operational applications strongly hinges on its long-term sustainability. For the coming years, it is very 1251 

likely that ESA will continue to support the scientific development of ESA CCI SM. At the same time, 1252 

operational reprocessing, software maintenance, and near-real-time updating of ESA CCI SM v03.2 is 1253 

foreseen to take place within the Copernicus Climate Change Services from June 2017 onwards. 1254 

However, a successful continuation of ESA CCI SM also requires sustenance of the input missions. 1255 

Currently, the risk of failing missions is relatively low: From the active microwave side two almost 1256 

identical MetOp-A and MetOp-B ASCAT scatterometers are currently operated by EUMETSAT, while 1257 

MetOp-C ASCAT will be launched in 2018 to replace MetOp-A (Lin et al. 2016). From that time, MetOp-1258 

A will remain in orbit to serve as backup in case of failure of one of the other MetOp satellites. 1259 

Continuation beyond the current MetOp program will be provided by the approved MetOp Second 1260 

Generation (MetOp-SG) program, which will start in 2021/22 and has the goal to provide continuation 1261 

of C-band scatterometer and other systematic observations for another 21 years, i.e., at least until 1262 

2042. Also for the passive microwave part there is currently a redundancy of suitable missions: AMSR2 1263 

C-band observations, ASMR2, GPM GMI, and Fengyun 1B X-band radiometers, and of course the 1264 

dedicated L-band missions SMOS and SMAP. GPM GMI, Fengyun 1B, and SMAP are currently not 1265 

exploited in ESA CCI SM, so there is even potential to further improve the quality and coverage of the 1266 

merged ESA CCI SM products. In case of failure of one of these missions, there is enough potential 1267 

backup to reduce the impact of satellite failure on the short to mid-term. More worrying is the long-1268 

term continuation of L-band and C-band radiometer missions, since neither SMOS, nor SMAP nor 1269 

AMSR2 has confirmed continuation. Nevertheless, the planned Water Cycle Observation Mission 1270 

(WCOM) of the Chinese Academy of Sciences has the potential to bridge the looming gap in L- and C- 1271 

band observation time series from 2020 onwards (Shi et al. 2016). Yet, a strong commitment of space 1272 

agencies worldwide to provide continuation of single sensor missions and ESA CCI SM is needed to 1273 

bolster the acceptance of satellite-derived soil moisture by a large user community in general. 1274 
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LIST OF FIGURE CAPTIONS 2228 

Figure 1 Schematic overview of ESA CCI SM production system. Modified from Wagner et al. (2012). 2229 

2230 

Figure 2 Blending weights attributed to ACTIVE and PASSIVE for the production of COMBINED in the 2231 

period January-December 2014 when only ASCAT and AMSR2 are used for ESA CCI SM v02.2 (top) and 2232 

ESA CCI SM v03.2 (bottom). 2233 

2234 

Figure 3 Spatial-temporal coverage of input products used to construct ESA CCI SM v03.2 (a) ACTIVE, 2235 

(b) PASSIVE, (c) COMBINED. Blue colours indicate passive, red colours active microwave sensors. 2236 

Modified from Dorigo et al. (2015b). The periods of unique sensor combinations are referred to as 2237 

‘blending period’. 2238 

2239 

Figure 4 Fractional coverage of ESA CCI SM v0.1 (top), v02.0-v02.2 (middle), and v03.2 (bottom) for the 2240 

period January 2007 – December 2010, expressed as the total number of daily observations per time 2241 

period divided by the number of days spanning that time period. 2242 

2243 

Figure 5 Fraction of days per month with valid (i.e., unflagged) observations of ESA CCI SM v03.2 2244 

COMBINED for each latitude and time period. 2245 

2246 

Figure 6 Average error variances of ESA CCI SM for ACTIVE,  PASSIVE, and COMBINED estimated 2247 

through triple collocation and error propagation for the period July 2012-December 2015. d) Long-2248 

term (2012-2015) VOD climatology from AMSR2 6.9 GHz observations. 2249 

2250 

Figure 7 Pearson correlation over the period 1997-2013 of a) ESA CCI SM COMBINED v03.2 and ERA-2251 

Interim/Land 0-7 cm soil moisture, b) long-term anomalies of ESA CCI SM COMBINED v03.2 and ERA-2252 

Interim/Land 0-7 cm soil moisture, and c) ESA CCI SM COMBINED v03.2 soil moisture and GPCP 1DD 2253 

precipitation. White areas indicate pixels for which correlations are not significant (p>0.05). 2254 

2255 
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Figure 8 Boxplots (displaying median, inter-quartile range (IQR), upper (lower) quartile plus (minus) 1.5 2256 

times the IQR, and outliers) of the correlations of the publicly released versions of ESA CCI SM 2257 

COMBINED and ERA-Interim/Land with globally available in-situ probe observations down to a 2258 

maximum depth of 5 cm, both for absolute values and long-term soil moisture anomalies. Only 2259 

observations within the period 1991-2010 were considered. 2260 

2261 

Figure 9 Correlations between soil moisture from the first soil layer (0-7 cm) of ERA-Interim/Land and 2262 

ESA CCI SM COMBINED v0.1 (y-axis) and v02.2 (x-axis), respectively. The left image shows the results 2263 

for absolute values, the right image for anomalies from a 35-day moving window. Each triangle 2264 

represents the median global correlation over a 3-year period, similar as in (Albergel et al. 2013a). Only 2265 

pixels that show significant correlations (p<0.05) for both product versions and for all periods were 2266 

used in the computation of the global median values. 2267 

2268 

Figure 10 Differences in correlation between soil moisture from the first soil layer (0-7 cm) of ERA-2269 

Interim/Land and ESA CCI SM COMBINED v03.2 and v02.1, respectively for a) absolute soil moisture; 2270 

b) long-term soil moisture anomalies. Blue colours denote an increase in correlation from v02.1 to 2271 

v03.2, red colours a decrease, grey colours no change, and white colours areas where no significant 2272 

correlations (p<0.05) were observed for one or both product versions. Correlations were computed 2273 

for the period 1997-2013. 2274 

2275 

Figure 11 Mean Pearson correlation coefficient R between ESA CCI soil moisture v03.2 and GIMMS 2276 

NDVI3g for the period 1991 to 2013 for a lag time of soil moisture preceding NDVI by 16 days. White 2277 

areas indicate pixels for which correlations are not significant (p>0.05). 2278 

2279 

Figure 12 Differences in correlations of absolute soil moisture values (left) and anomalies (right) 2280 

differences between ESA CCI SM COMBINED v02.2 and soil moisture from the first layer of soil of two 2281 

offline experiments over 1979-2014. Experiment GE8F has a first layer of soil of 1 cm depth (0-1cm), 2282 

GA89 of 7 cm depth (0-7cm). Differences are only shown for pixels that provide significant correlations 2283 

(p<0.05) for both experiments. Pixels where these conditions are not met have been left blank. 2284 
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Figure 13 Differences in correlation between ERA-Interim/Land and ESA CCI SM v03.2 COMBINED on 2286 

the one hand, and ERA/Interim-Land and the best performing ESA CCI SM v03.2 product (either 2287 

COMBINED, ACTIVE, or PASSIVE) on the other. Differences close or equal to zero indicate that 2288 

COMBINED merges the input products without a substantial loss in skill, while negative values indicate 2289 

that either ACTIVE or PASSIVE outperforms COMBINED. 2290 
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