

Deposition of major inorganic compounds in Norway 2012-2016

Wenche Aas ¹⁾, Anne-Gunn Hjellbrekke ¹⁾, Hilde Fagerli ²⁾, Anna Benedictow ²⁾

NILU – Norwegian Institute for Air Research, Kjeller, Norway
 ²⁾ Meteorological institute, Oslo, Norway

NILU report 41/2017

NILU report 41/2017	ISBN: 978-82-425-2915-2	C	CLASSIFICATION:
	ISSN: 2464-3327	ļ	A – Unclassified (open report)
DATE	SIGNATURE OF RESPONSIBLE	PERSON	NUMBER OF PAGES
12.01.2018	Kari Nygaard, Managing Direc	or (sign.)	35
TITLE		F	PROJECT LEADER
Deposition of major inorganic compounds	in Norway 2012-2016		Wenche Aas
		1	NILU PROJECT NO.
			O-117100
AUTHOR(S) Wenche Aas and Anne-Gunn Hjellbrekke, N	NILU – Norwegian Institute for A	ir	QUALITY CONTROLLER
Research, Kjeller, Norway Hilde Fagerli and Anna Benedictow, Metec	prological Institute, Oslo, Norwa	y	Kjetil Tørseth
REPORT PREPARED FOR		(CONTRACT REF.
Norwegian Environment Agency, Oslo, Nor	rway		Responsible at the Norwegian
and Subcontractor to NIVA – Norwegian In	stitute for Water Research, Osl	o, Norway	Skotte
ABSTRACT			
This report contains estimates of atmosph 2016 using two different methods, one ob- model with observations. Both methods sh in south and south-west. The combined me deposition. For dry deposition, there are q methods. Compared to the previous perior For total nitrogen there are minor changes depositions are 75% and 20% respectively.	eric deposition of major inorgan servational based method while now similar clear spatial gradier ethod has improved the spatial uite large uncertainties in the e d 2007-2011, there is a decreas 5. Compared to the 1978-1982 p	ic compounds i the other comb t in the atmosp information of t stimated dry de e in the total sul eriod, the reduc	in Norway for the period 2012 to bining atmospheric transport heric deposition with highest loads the deposition pattern for wet position velocities in both lfur deposition in Norway of 9%. ctions in sulfur and nitrogen
NORWEGIAN TITLE			
Avsetning av svovel og nitrogenforbindelse	er i Norge, 2012-2016		
KEYWORDS			
Atmosphere and climate	Long-range transport of air	ollutants	Acid rain and eutrophication
ABSTRACT (in Norwegian)			
Avsetning av svovel og nitrogenforbindelse metoder, en observasjonsbasert metode, n Begge metodene viser en tydelig gradient romlig informasjon, spesielt for våtavsetni begge metodene. Sammenlignet med forri For totalt nitrogen er det små endringer. S og nitrogenavsetningen.	er i Norge for perioden 2012 til mens den andre kombinerer atr med høyest avsetning i sør og s ng. For tørravsetning er det gan ge periode 2007-2011 er det er ammenlignet med 1978-1982 e	2016 er beregne nosfærisk transp ørvest. Den kom ske store usikke nedgang i total r det henholdsv	et ved bruk av to forskjellige portmodell med observasjoner. nbinerte metoden har bedre erheter i estimerte verdier for I svovelavsetning i Norge på 9%. is 75% og 20% reduksjon i svovel-
PUBLICATION TYPE: Digital document (pdf) COVER	PICTURE:	Source: NILU

© NILU – Norwegian Institute for Air Research

The publication may be freely cited where the source is acknowledged

NILU's ISO Certifications: NS-EN ISO 9001 and NS-EN ISO 14001. NILU's Accreditation: NS-EN ISO/IEC 17025.

Preface

Within the Convention on Long Range Transboundary Air Pollution (LRTAP), the members have decided that emission reductions should be based on the principle of critical loads. Every five year The Norwegian Institute for Water Research (NIVA) calculate exceedances of critical loads for water and soil in Norway based on atmospheric deposition estimates done by NILU – The Norwegian Institute for Air Research, and for this report also by The Norwegian Meteorological Institute (MET).

This work is done on behalf of the Norwegian Environment Agency. Estimates of critical loads and depositions cover periods from 1978-1982 up to this report which contains atmospheric deposition for 2012-2016. The maps of exceedances of critical loads are reported separately by NIVA.

The work in this report has been led by Wenche Aas at NILU in co-operation with Hilde Fagerli at MET. Anne Hjellbrekke (NILU) has been responsible for implementing the new combined method, and Espen Sollum (NILU) has been responsible for developing the mapping tools. Anna Benedictow (MET) has performed the EMEP/MSC-W model calculations.

NILU and MET have been subcontracted by NIVA, who has been contracted by the Norwegian Environment Agency. Contact persons at NIVA and the Norwegian Environment Agency are Kari Austnes and Gunnar Skotte, respectively.

Kjeller, December 2017

Wenche Aas Senior scientist

Contents

Pre	face	2
Sun	nmary	4
1	Introduction	5
2	Methodology	6
	2.1 Measurement based deposition	6
	2.2.1 Input data	6
	2.2.2 Calculating wet- and dry deposition	7
	2.2.3 Interpolation using the kriging technique	7
	2.2.4 Data analysis	8
	2.2. EMEP/MSC-W model	9
	2.2.1 EMEP/MSC-W model input data	9
	2.2.2 EMEP/MSC-W model output data	10
	2.3 Combined method	10
	2.3.1 Observations used	10
	2.3.2 Combination of observations and model calculations	11
3	Results and discussion, 2012-2016	12
	3.1 Measurement based deposition	12
	3.2 Combined method	19
	3.3 Discussion, comparing the two approaches	21
3	References	24
Арр	pendix A Figures 1.1-1.2 and Table 1.1	27

Summary

This report contains estimates of atmospheric deposition of major inorganic compounds in Norway for the period 2012 to 2016 using two different methods. The deposition of sulfur and nitrogen have been compared with previous periods back to 1978.

The traditional method, based on observations and statistical interpolation, has limitations in especially the spatial representativeness and in the simplification of the dry deposition calculation. Since the spatial resolution of the reported emissions in the EMEP/MSC-W chemical transport model has improved the latter years, it is recognised that these calculations have a potential to fill the gaps in the observational based method, and improve the deposition estimates. Thus, a new method combining model calculations with observations has been developed and applied for the 2012-2016 period.

Comparing the results for the old method with the previous period 2007-2011 estimated using the same approach, there is a decrease in the total sulfur deposition in Norway of 9%. For total nitrogen there are minor changes (1% increase), though oxidized nitrogen has increased by 7% while reduced nitrogen decreased by 5%. There is a significant decreasing trend in the sulfur deposition from the first assessment in 1978-1982 with a 75% reduction. The trend in sulfur deposition is very well correlated with the total emission trends in Europe. For nitrogen, the trend is less clear. The deposition was higher in the beginning of the measurement period and there has been a decrease of 20% since 1980 and 10% since 1990.

There is a very clear spatial gradient in the atmospheric deposition, seen by both methods, with the highest deposition loads in the south and south-west. This is due to the different level of precipitation amount in Norway, which is highest on the west coast, combined with highest contribution of long range transported air pollution from the continent to southern Norway.. The wet deposition is the most important factor for the total deposition of inorganic compounds. In the areas with the highest total deposition, wet deposition contributes with 80-90% depending on compounds and method.

The combined method have improved the spatial information of the deposition pattern and for wet deposition, it probably gives more realistic deposition than the observational based method. For dry deposition, there are quite large uncertainties in the estimated dry deposition velocities in both the methods. Further, there are also quite large uncertainties in the observations as well as the reported emissions of especially NH₃. It is recommended to further explore improvements in the combined method to give more confident in especially the dry deposition processes.

Deposition of major inorganic compounds in Norway 2012-2016

1 Introduction

In order to evaluate the exceedance of critical loads to the ecosystems, quantified atmospheric input to the system is essential. There are three different approaches for calculating the atmospheric deposition: 1) from measurements of air and precipitation chemistry combined with statistical interpolation, 2) from atmospheric chemical dispersion models using emission data, meteorological data and parameters describing transformation and removal processes or 3) combine observations and atmospheric model calculations, often called data assimilation or data-model fusion.

The atmospheric deposition estimates have in Norway historically been done using method 1) and have been reported every five years: 1978-1982 (Hole and Tørseth, 2002), 1983-1987 (Pedersen et al., 1990), 1988-1992 (Tørseth and Pedersen, 1994), 1992-1996 (Tørseth and Semb, 1997), 1997-2001 (Hole and Tørseth, 2002), 2002-2006 (Aas et al., 2006) and 2007-2011 (Aas et al., 2012). This report contains atmospheric deposition for 2012-2016 and these results have been compared to earlier periods for trend assessment.

There are two main limitations with this traditional observational based method. Firstly, at the Norwegian mainland, there are currently only 12 regional sites with precipitation chemistry and 4 with gas and aerosols measurements. Thus, there are large areas of Norway where these sites not necessarily are representative, and the uncertainty in the interpolation between these sites is large. Secondly, the dry deposition is not measured directly and it is necessary to estimate the deposition velocities based on literature values combined with information on climatic conditions and ground cover. These are very crude estimates, both spatially and temporally and do not take into account the interaction between species, i.e. co-deposition.

The atmospheric chemical transport models usually have a much higher spatial and temporal coverage and can potentially fill the gaps and limitations of the observational based method. In this report the dispersion model developed by the Norwegian Meteorological Institute (MET) under the Co-operative programme for monitoring and evaluation of long-range transmissions of air pollutants in Europe (EMEP) (Simpson et al., 2012), has been included. This model has recently been updated to a finer resolution of $0.1^{\circ} \times 0.1^{\circ}$. In 2017, Parties to the CLRTAP Convention (including Norway) reported emissions in $0.1 \times 0.1^{\circ}$ degree for the first time, and these developments give new improved possibilities for calculating high resolution deposition in Norway. These model calculations have been combined with observations to potentially give the best estimates of the atmospheric deposition.

The model-measurement combined method has been implemented for the 2012-2016 and the results are compared with the old method, and the differences are discussed.

2 Methodology

2.1 Measurement based deposition

2.2.1 Input data

NILU started routine sampling of precipitation and air in background areas on a daily basis in 1971, with sites located in the southernmost parts of Norway. In later years the measuring network has expanded to cover all regions in Norway, though the number of sites have varied throughout the decades the national monitoring programme has been in operation. In this investigation we have used 12 Norwegian stations for the period 2012-2016 (Aas et al., 2013-2017). In addition, concentrations in precipitation and air from the Swedish, Danish, Finnish and Russian EMEP stations have been used in the statistical analysis (Hjellbrekke, 2017; data available from http://ebas.nilu.no/). Additional data from the national network in Sweden have also been included (personal com. Håkan Blomgren, IVL, data available from http://www.ivl.se/miljo). The precipitation amount data used for the calculations of the wet deposition is taken from in total 300 automatic meteorological sites for the five-year period 2012-2016 have been used (MET, 2012-2016).

All the sites with atmospheric chemical composition measurements are located in rural areas and are believed to generally give good estimates of long range transported pollutants. In regions with local sources such as emissions from industry, traffic or agriculture, pollutant levels may be significantly higher. In this work no corrections for local sources have been performed. Information about the sites, methodology and the results for the years used in this report have been published annually in reports from the national monitoring program (Aas et al. 2013, 2014, 2015, 2016, 2017). Maps of all the sites used are illustrated in Figure 1.

Figure 1: Overview of the sites used in this study

2.2.2 Calculating wet- and dry deposition

Wet deposition is obtained from measured precipitation amounts and the concentration of chemical species in the precipitation samples. This procedure does not include deposition by fog or dew, since the usual precipitation sampler generally collects no precipitation sample from such events.

For dry deposition, the measured concentrations in ambient air have been combined with seasonal deposition velocities for the different compounds. The various dry deposition processes and deposition are described in the literature (e.g. Fowler et al 2009), and discussion of the deposition velocities chosen for this study is presented in earlier reports (i.e. Aas et al, 2012). An important note is that the same procedure and deposition velocities have been used for all the periods. However, it is recognized that for the latter decades there is a significant change in the atmospheric composition due to the large reductions in sulfur dioxide emissions, causing possible changes in the dry deposition velocities (Fagerli and Aas, 2008; Fowler et al., 2009).

		Land use cl	assification	
Compound	Fore	est	0	ther
	summer	winter	summer	Winter
SO ₂	0.8	0.1	0.4	0.02
SO4 ²⁻ , sum (NH3+NH4 ⁺)	0.4	0.4	0.2	0.1
NO ₂	0.4	0.02	0.2	0.02
Sum (HNO3+NO3 ⁻)	2.0	2.0	1.0	0.25
nss K ⁺	1	1	0.25	0.1
nss Ca ²⁺	2	2	1	0.25
Sea salt ions	2	2	1	0.25

Table 1: Deposition velocities (cm/s) for different inorganic compounds applied to the differentlandscape types and seasons (nss: non sea salt).

2.2.3 Interpolation using the kriging technique

The interpolation of the concentrations in precipitation and air from fixed sites to a regular grid is done by linear "kriging", which is a statistical method that can be used to estimate unknown data from neighbouring measurements. The method was originally developed for geostatistical purposes (Matheron, 1963; Journel and Huijbregts, 1981), but has also been used in connection with environmental studies, e.g. on long range transported air pollutants in Europe (Simpson and Olsen, 1990; Schaug et al., 1993).

All interpolations in this work were performed using ordinary linear kriging, where the expectations of the variable are known. The kriging weights are computed from a variogram, which measures the degree of correlation among sample values in the area as a function of distance and direction of samples. A grid size of 50×50 km² has been applied (the old EMEP grid). The applied grid is shown in Figure 1.1 in Appendix A.

2.2.4 Data analysis

Five year averages of the seasonal mean airborne concentrations during winter (Jan.-Apr., Nov.- Dec.) and summer (May-Oct.) were calculated for SO₂, non-sea-salt (nss) SO₄²⁻, NO₂, sum NO₃⁻+HNO₃, sum NH₄⁺+NH₃, Na⁺, non-sea-salt K⁺ and non-sea-salt Ca²⁺ for the four Norwegian sites combined with the Nordic measurements. These average contractions were interpolated to a 50×50 km² grid using the kriging technique to obtain values for the individual grid cells.

The dry deposition was estimated from the concentration fields and assessed dry deposition velocities for the two seasons, respectively. The dry deposition estimate was given for each meteorological site and for two land type categories; productive forests and other land use (e.g. unproductive land, rocks, agricultural land). When estimating the grid cell average dry deposition was weighted on the distribution of land use types in the individual grid cells. The applied statistics on percentage productive forest in each cell is shown in Figure 1.2 in Appendix A.

The annual averages of non-sea-salt sulphate, nitrate, ammonium, non-sea-salt potassium and non-sea-salt calcium in precipitation have been used to calculate a concentration field for each year using the kriging interpolation.

For the sea-salt derived ions, the number and the location of the sites are not sufficient to generate concentrations fields. However, concentrations may be described as a function of distance from the coast weighted by the wind speed and direction in the prevailing precipitation forming air masses. Based on annual median values of sodium concentration in precipitation at the background sites for the period 2007-2011, a general function was fitted. From this function, concentration values were given to each individual meteorological site as a function of distance from the coast and by climatic regions. Further, concentrations for the other sea-salt derived ions were estimated by their expected ratio to sodium based on the content in sea-water.

To provide annual wet deposition values for each meteorological site, the precipitation amount at the site was multiplied with the interpolated concentration in the respective grid cell. The average wet deposition to each grid cell was estimated as the average deposition to the meteorological sites within the grid cell. For grid cells with no meteorological sites, the value of a representative neighbouring cell was chosen. The average precipitation amounts in the individual grid cells are given in Table 1.1 in Appendix A.

The total deposition of the various inorganic compounds during 2012-2016 was calculated as the sum of the dry and wet deposition both for each meteorological site and for each grid cell. The deposition estimated at each meteorological sites are visualized using standard interpolation routines in Figure 3 and Figure 4, whereas results for individual 50x50 km grid cells are given in Table 1.1 in Appendix A.

This report gives only a summary of the results. Deposition estimates for individual years and components are available upon request.

2.2. EMEP/MSC-W model

The EMEP/MSC-W model is a Eulerian chemical transport model. A thorough description of the model can be found in Simpson et al., 2012 and model updates are described in the EMEP status Report 1 (years 2013-2017). For the model calculations performed for this project, the version described and documented in EMEP Status report 1/2017 has been used (rv4.15). The model resolution is 0.1 degree x 0.1 degree, with 34 vertical layers.

2.2.1 EMEP/MSC-W model input data

The model has been run for 5 years: 2012-2016, with the following input data:

Meteorology: ECMWF meteorology (IFS40r1 for 2014-2016, IFS38r2 for 2012-2013), interpolated to 0.1 degree x 0.1 degree.

Domain: -29.95E-39.95W 34.95S-72.95N

Emissions: For 2015 and 2016 the emissions reported to EMEP for 2015 has been used (2016 is not yet available). Since the emissions reported to EMEP for the years before 2015 are on a coarser resolution (50x50km²), the emissions for countries that contribute substantially to Norwegian depositions for previous years are scaled using country totals, but keeping the spatial resolution. This means that for 2012, 2013 and 2014, the emissions from Norway, Poland, Great Britain, Sweden, Germany, Denmark, France and Russia has been scaled to the total country emissions reported to EMEP for the respective years.

For ship emissions, the FMI AIS data for 2016 has been used as basis. The 2015 ship emissions has been set equal to 2016, whilst the ship emissions for the Baltic Sea and the North Sea for the previous years have been scaled with 0.8 for SO_x (loosely based on the comparison of TNO-MACC-III ship emissions for 2011 and its comparison to FMI AIS data for shipping. This factor can be explained by the stricter SECA regulations implemented from January 2015 for the North Sea and the Baltic Sea. See chapter 10 in EMEP Status Report 1/2017 for further explanation).

Volcanic emissions (mostly SO₂) from the Holuhraun eruption (August 2014 to the end of February 2015) has been implemented in the model runs.. The source has been estimated to be around 12600 kt, more than 3 times the amount of anthropogenic SO₂ emissions for all European Union countries for the year 2014. A detailed EMEP/MSC-W model study of the air pollution effect of the Holuhraun eruption has been published recently (Steensen et al., 2016), and we refer to that paper for further details.

2.2.2 EMEP/MSC-W model output data

The EMEP/MSC-W model has been used to generate the following output:

- Air concentrations of SO₂, NO₂, NH₃, NH₄⁺, HNO₃, fine and coarse NO₃⁻
- Dry deposition velocities of SO₂, NO₂, NH₃, NH₄⁺, HNO₃, fine and coarse NO₃⁻
- Wet deposition of sulfur, reduced nitrogen and oxidized nitrogen
- Dry deposition of sulfur, reduced nitrogen and oxidized nitrogen

In the EMEP/MSC-W model, dry deposition velocities are calculated for 16 land-use categories. The land-use database gives the fractional coverage of different land-cover types within each surface grid cell. This allows sub-grid modelling using a so-called mosaic approach – allowing for example ecosystem specific deposition estimates.

For European scale modelling the land-cover data are derived from the CORINE system and from the Stockholm Environment Institute at York (SEIY) system (<u>www.york.ac.uk/http://www.sei-international.org/landcover</u>). The basic principle used was to apply CORINE data wherever available, thereafter SEIY data. In addition, the more detailed SEIY data (especially on agriculture) was used to guide the split of the broader CORINE categories into the EMEP land-classes needed by the model. The final merge of these data was done at the LRTAP Coordination Centre for Effects (CCE at RIVM, Posch et al. 2005).

Average dry deposition velocities for each grid can be calculated combining the dry deposition velocities for each land-cover class with the fractional land-cover for each grid. It is the average grid dry deposition velocities that have been used in the combined method (section 2.3).

2.3 Combined method

2.3.1 Observations used

Annual total precipitation is retrieved from the seNorge2 archive at met.no, which is a high resolution (1km x 1km) climatological dataset obtained through statistical interpolation of insitu observations from the Norwegian Climatological Database (eklima.no) and European Climate Assessment & Dataset (ecad.eu) (Lussana et al., 2017). The number of stations used for interpolation varies with time, but it is between 500-600 Norwegian stations for total precipitation in the period 1957-2015.

Observations of nitrogen and sulfur components in air and precipitation are taken from the same sites as described in 2.2.1. The precipitation chemistry data are aggregated to annual volume weighted means, while the air and aerosol measurements are aggregated to monthly means. In difference from the observational based method where the sum of nitrate (HNO₃ and NO₃⁻) and sum of ammonium (NH₃+NH₄⁺) are used, in this method we use the observed concentrations of gas and aerosols individually, but being aware of the possible bias in the separation between these two compartments.

2.3.2 Combination of observations and model calculations

The method was developed to be used making combined maps for EMEP (Hjellbrekke and Tarrason, 2001) adjusted for new grid for the EMEP/MSC-W model. For all measurement points, the difference between the measured value at that point and the modelled value in the corresponding grid cell is calculated. This difference is interpolated spatially using radial basis functions, giving a continuous two-dimensional function describing the difference at any point within the modelled grid. The combined maps are derived adjusting the model results with the interpolated differences, giving large weight to the observed values close to stations, and using the modelled values in areas with no observations. The range of influence of the measured values has been set to 500 km for all the species. However, we recognize that since gases deposit more quickly than aerosols they should have had a lower rate of influence (lower radius). But due to the few number of sites a high radius was set to be able to cover the whole country.

The dry deposition rates are taken from the EMEP model using the monthly averages for each species specified for each grid cell. For nitrate, the model use different rates for coarse and fine nitrate, while the observations are in aerosols, the sum of fine and coarse size fractions. To estimate the monthly dry deposition rate the distribution between fine and coarse nitrate in the modelled concentrations are used to weigh the deposition rates. To compare the dry deposition rates with the observational method (Table 1), the monthly deposition rates are averaged to five year seasonal deposition rates and illustrated in Figure 2. These maps show quite big differences between the components, and the deposition velocities range from high for HNO₃, NH₃ and SO₂ to lower for NO₃⁻. NH₄⁺, SO₄²⁻, NO₂ in that order. Most components have a higher deposition rate during summer.

Figure 2: Average seasonal deposition rates (cm/s) for the different compounds used in the combined method.

3 Results and discussion, 2012-2016

3.1 Measurement based deposition

Annual average precipitation amounts measured at the MET sites varied between around 300 to 3700 mm (Table 2), with the highest amount on the west coast and lowest amounts along the Swedish border in northern Norway and in Oppland county, southern Norway (Figure 3).

The total deposition of the non-sea-salt compounds were highest in the south-western part of Norway as a combination of relatively high concentrations and large precipitation amounts, whereas the lowest depositions were observed along the Swedish border from Finnmark in the north down to Oppland in central Norway as well as the mountain area in southern Norway. The highest deposition of non-sea salt sulfur was around 450 mgS/m²y, and around 800 mgN/m²y for both reduced and oxidised nitrogen The total deposition of sulfur and nitrogen interpolated from all sites are shown in Figure 3.

The wet deposition is the most important factor for deposition of inorganic compounds (Figure 4), with 90% contribution to the total deposition for sulfur and reduced nitrogen in the areas with highest deposition loads. For oxidised nitrogen the relative contribution of dry deposition is more important, but wet deposition still contribute with 80% or more in the high deposition areas. In areas with little precipitation the dry deposition is relatively more important, but still most areas are below 30% dry deposition, except for oxidized nitrogen which has more than 40% dry deposition in part of Eastern Norway and Finnmark County.

	Min	Median	Max
Average annual precipitation amount, 2012-2016	276	991	3705
total non-sea salt sulfur dep (mg S/m ² y)	46	167	480
total oxidised nitrogen dep (mg N/m ² y)	45	231	842
total reduced nitrogen dep (mg N/m ² y)	45	264	841

Table 2 <mark>:</mark> Minimum	, median and maximum	deposition for 300 individ	ual sites in the period 2012-201	6
--------------------------------	----------------------	----------------------------	----------------------------------	---

Figure 3: Spatial distribution of the precipitation amount and the total deposition of non-sea salt sulfur and nitrogen the annual average in the period 2012-2016.

Figure 4: Spatial distribution of the wet and dry deposition of non sea salt sulfur, oxidised nitrogen and reduced nitrogen, and the percent dry of total deposition for 2012-2016.

The spatial distribution of deposition of base cations and sea salt are illustrated with calcium, potassium and sodium in Figure 5. For calcium, the main source is assumed to be long-range transport of mineral matter. In addition, there may also be local sources by e.g. agricultural activities, soil dust, pollen and bird droppings. For potassium, domestic wood combustion may be of importance locally during winter. The deposition amounts of sea-salts are dependent on the frequency of westerly winds, and in particular the frequency of winter storms. It is assumed that there are no other significant sources of sodium, magnesium or chloride than from sea-spray. Concentrations of sodium was calculated from a function based on distance from the coast as described in Chapter 2.4.2.

Figure 5: Spatial distribution of the non-sea salt calcium, non-sea salt potassium and sodium oxidised 2012-2016.

The deposition at the 300 individual sites is redistributed into 50x50 km² grids and the average annual deposition in each grid is given in Table 1.1 in Appendix A. Summing up all the grids gives a total annual mean deposition in Norway of approximately 47 000 tonnes sulfur and 142 000 tonnes nitrogen (Figure 6).

Comparing with the previous period 2007-2011, there is a decrease in sulfur deposition of 9%. For total nitrogen there is a minor change (1% increase), though oxidised nitrogen have increased by 7% while reduced nitrogen decreased by 5%. The total depositions for all the five years period are summed up in Table 3.

Period	nss S	N (oxi)	N (red)	tot N	nss K	nss Ca	Na
1978-1982	197 368	83 882	93 342	177 224	27 702	43 061	567 215
1983-1987	171 710	93 456	93 602	187 058			
1988-1992	149 688	82 462	76 782	159 245			
1992-1996	117 289	80 251	71 602	151 852	19 989	33 412	580 811
1997-2001	87 206	73 564	77 572	151 136	23 769	25 890	604 045
2002-2006	73 852	75 612	79 244	154 856	28 092	34 266	470 022
2007-2011	53 724	62 798	77 524	140 321	27 360	32 770	581 889
2012-2016	46 886	68 166	73 494	141 660	28 327	32 630	561 756

Table 3: Total deposition of inorganic compounds in Norway (tonnes/year).

The trends in sulfur deposition from the first assessment in 1978-1982 are shown in Figure 6, and the total deposition to Norway compared to the European sulfur emissions are shown in Figure 7. There is a significant decreasing trend in sulfur deposition since 1980, a decrease of 75% of the total amount deposited in Norway. The trend in sulfur deposition is very well correlated with the total emission trends in Europe, Figure 6, and are in line with observations for the rest of Europe (Tørseth et al., 2012; Colette et al, 2016). For nitrogen the trend is less clear. The deposition was higher in the first two five year periods (Figure 8 and Figure 9), and there has been a decrease of 20% since 1980, and a decrease of 10% since 1990. But for this last five year period the deposition was actually slightly higher than the previous period, which is in contradiction to the general downward trends in especially NOx emissions in Europe (Figure 9).

The EMEP/MSC-W model calculations for oxidized nitrogen deposition in Norway show a downward trend since 2000 (EMEP Data Note 1/2016 for Norway), whilst reduced nitrogen deposition is modelled to be at the same level. The reasons for the apparent contradicting results might be that the reported emissions for Norway are underestimated the later years or that local or nearby influence have increased. In Europe, the average trends in the observations have been a decrease of 20-40% for the different nitrogen compounds from 1990-2012 (Colette et al, 2016).

Total depositions of sea-salt ions, non-sea-salt potassium and non-sea-salt calcium were estimated in five of the previous seven year periods. There are relatively large uncertainties in these estimates due to possible influence of local sources, uncertain deposition velocities and the effect of sea salt correction. There is a reduction of 24% in the calcium deposition since the late seventies, but no major change since the 1992-1996 period, which is in line with

the emission changes of calcium and observed trends in Europe (Hellsten et al., 2007). For potassium there is no trend.

Figure 6: Trend in deposition of non sea salt sulfur in Norway (mgS/m^2y).

Figure 7: Deposition of non-sea salt sulfur in Norway (tonnes/year) compared with total S (GgS/year) emissions in Europe.

Figure 8: Trend in deposition of total nitrogen in Norway (mgS/m^2y).

Figure 9: Deposition of nitrogen in Norway (tonnes/year) compared with nitrogen (GgN/year) emissions in Europe.

3.2 Combined method

The average annual total deposition of sulfur and nitrogen for 2012-2016 using the combined method is illustrated in Figure 10. The total deposition of nitrogen and sulfur show highest deposition in south of Norway which is closest to the main emission sources in Europe. The deposition is also high on the west coast due to high precipitation amount combined with moderate level of air pollution.

Figure 10: Spatial distribution of the total deposition of non-sea salt sulfur, oxidised nitrogen and reduced nitrogen for 2012-2016.

Figure 11: Spatial distribution of the wet and dry deposition of non-sea salt sulfur, oxidised nitrogen and reduced nitrogen compounds for 2012-2016.

The total deposition can be split up into contribution of the different components in gas phase, aerosols and precipitation. The deposition of all the individual components are mapped in Figure 11. There are a few interesting things to note from these maps:

- Wet deposition is the dominant contribution for all species as also seen for the observational method.
- The dry deposition of gases contributes more than the dry deposition of aerosols. This is reflected in the much higher dry deposition velocities of most gases compared to the aerosol components (Figure 2).
- Dry deposition of SO₂ is high along the whole coastal area. The high levels, especially in the north, are influenced by the volcanic emissions from the Holuhraun eruption from August 2014 to the end of February 2015. There are also elevated concentrations along the coast in other periods, indicating influence from ship emissions in addition to long range transport from the continent.
- High NH₃ deposition in the inland of Eastern Norway (Oppland and Hedmark) and at the West coast in Rogaland county. This is due to high reported emissions in these regions.
- High NH₃ deposition at the North-West coast. This is due to combination of relatively high observed NH₃ concentration combined with the high deposition velocity (Figure 2).
- The NO₂ deposition along the west coast and in the Oslo fjord as well as some indication of deposition along the E6 road from Oslo to Trondheim resembling the influence emissions from ships and traffic.

3.3 Discussion, comparing the two approaches

The results from the two methods have been compared and the differences in total deposition amount and the percent differences are illustrated in Figure 12. There is a clear pattern with the highest absolute differences is in the southwest, in Rogaland county while the percent highest differences are in the mountain areas and in North Norway in Finnmark county.

If comparing the total deposition in Norway as calculated for the old method given in Table 3, the new method estimates 4 kilo tonnes more total deposition of sulfur and 2 kilo tonnes more reduced nitrogen, while 12 kilo tonnes less total deposition of oxidised nitrogen deposition. This correspond to a per cent difference of 8%, 4% and -18% respectively.

Differences in total nitrogen deposition

Figure 12: Differences in the total deposition of non-sea salt sulfur, oxidised nitrogen and reduced nitrogen compounds for 2012-2016 compared the old observational based method with the new approach combining observation and model. The difference map is calculated by observational based method - combined method. Thus, negative values (blue) show that the new combined method overestimate the deposition while red indicated an underestimation by the new method (or overestimation by the old method)

The main differences observed and the possible reasons behind these can be summed up in the following points:

- For both nitrogen and sulfur, the deposition is higher in the south-west (Rogaland county) for the observational based method compared to the combined method. This is due to the kriging method, which distributes higher concentrations to the west coast than the EMEP model calculates. The concentrations derived from the kriging in this area are probably positively biased since there are few sites in this region to guide the kriging method. The difference is enhanced by the high precipitation loading.
- Higher deposition along the coast, especially along the south coast, for the combined method compared to observational based method. The kriging method gives lower concentration especially in the southern Norway around the Birkenes area than what is actually the observed concentration at the site. This negative bias is a weakness of the method, which moves the gradient away from the site. The EMEP model tends to

give higher concentrations along the coast since the model assumes wash out of the air pollution faster than the kriging method.

- The depositions are lower in the mountain areas and in the Finnmark county with the combined method. This is because the EMEP model has a higher gradient from the coast to mountains where the pollution is washed out faster than the gradient obtained with the kriging method. In Finnmark there might be emissions in the region i.e. in Russia which is not included in the model.
- The nitrogen depositions in the inland of eastern Norway, in Oppland and Hedmark counties are higher for the combined method. This is mainly due to the high NH₃ emissions reported for this region, which is not found by the observational method.
- Higher dry deposition of NH₃ along the coast in Northern Norway (Nordland county) in the combined method. This is caused by the relatively high NH₃ observed at Tustervatn and Kårvatn combined with a high dry deposition velocity from the model (in the observation based method, dry deposition for NH3+NH4+ was calculated, assuming an average dry deposition velocity for NH3+NH4+. With relatively high NH3 concentrations from observations, the dry deposition of NH3 becomes higher).
- The combined method is giving a generally lower deposition for oxidised nitrogen than the observational method. This can partly be explained by the very different dry deposition rates used for nitrate. In the observational method a Vd of 2.0 cm/s for the sum (HNO₃+NO₃⁻) is used over forest (Table 1), while nitrate in in the combined method is mostly well below 0.5 cm/s (Figure 2). Even though HNO₃ has a much higher deposition velocity in the combined method, the low concentrations of HNO₃ do not compensate to give sufficient total dry deposition of oxidised nitrogen.

To sum up, the methods are comparable and resemble the same general pattern of deposition throughout the country with higher deposition closer to the main emission sources in Europe, but with some regional differences. The combined method has improved the spatial information of the deposition pattern and for wet deposition it probably gives more realistic deposition than the old observation method. For dry deposition there are quite large uncertainties in the estimated dry deposition velocities in both methods. Further, there are also quite large uncertainties in the observations as well as the reported emissions of especially NH₃. The relatively few sites, especially for air components, makes it difficult to estimate the distance of influence of the measurements when adjusting the model results. Considering these uncertainties, there is higher confidence in the deposition estimates of sulfur than nitrogen.

It is recommended to further explore improvement in the combined method to give more confidence in especially the dry deposition processes. Further it is not sure that method used for correcting the EMEP/MSC-W model by using a gradient influence of the observation is the best option. There are other options for data assimilation, i.e. using original higher time resolution and explore different radius of influence for different components. Chemical data assimilation of air concentrations (e.g. 3DVar) are used by the EMEP/MSC-W model in the Copernicus Atmosphere Monitoring Service. At present, it is unclear how such a data

assimilation scheme will impact dry and wet deposition, but this could be explored in the future.

Within the Bedre Byluft project, an EMEP/MSC-W model version with a resolution of 2.5kmx2.5km for Norway is being developed at the moment (based on AROME meteorology). Clearly, such fine resolution calculations may refine the estimates presented here even further, if emissions of a sufficient resolution and quality is available.

3 References

- Aas, W., Hjellbrekke, A.-G., Hole, L.R., Tørseth, K. (2008) Deposition of major inorganic compounds in Norway 2002-2006. Kjeller, Norwegian Institute for Air Research (NILU OR 72/2008).
- Aas, W., Hjellbrekke, A.-G., Hole, L.R., Tørseth, K. (2012) Deposition of major inorganic compounds in Norway 2007-2011. Kjeller, Norwegian Institute for Air Research (NILU OR 41/2012).
- Aas, W., Solberg, S., Manø, S., Yttri, K.E. (2013) Overvåking av langtransportert forurenset luft og nedbør. Atmosfæriske tilførsler 2012. Statlig program for forurensningsovervåking. Rapport 1148/2013. M-3/2013. (NILU OR 14/2013)
- Aas, W., Solberg, S., Yttri, K.E. (2014) Monitoring of long-range transported air pollutants in Norway, annual report 2013. Miljødirektoratet rapport, M-203/2014 (NILU OR 30/2014)
- Aas, W., Platt, S., Solberg, S., Yttri, K.E. (2015) Monitoring of long-range transported air pollutants in Norway, annual report 2014. Miljødirektoratet rapport, M-367/2015 (NILU OR 20/2015)
- Aas, W., Fiebig, M., Platt, S., Solberg, S., Yttri, K.E. (2016) Monitoring of long-range transported air pollutants in Norway, annual report 2015. Miljødirektoratet rapport, M-562/2016 (NILU report 13/2016)
- Aas, W., Fiebig, M., Solberg, S., & Yttri, K. E. (2017) Monitoring of long-range transported air pollutants in Norway, annual Report 2016. Miljødirektoratet rapport, M-780/2017 (NILU report 18/2017)
- Colette, A., Aas, W., Banin, L., Braban, C.F., Ferm, M., González Ortiz, A., Ilyin, I., Mar, K., Pandolfi, M., Putaud, J.-P., Shatalov, V., Solberg, S., Spindler, G., Tarasova, O., Vana, M., Adani, M., Almodovar, P., Berton, E., Bessagnet, B., Bohlin-Nizzetto, P., Boruvkova, J., Breivik, K., Briganti, G., Cappelletti, A., Cuvelier, K., Derwent, R., D'Isidoro, M., Fagerli, H., Funk, C., Garcia Vivanco, M., González Ortiz, A., Haeuber, R., Hueglin, C., Jenkins, S., Kerr, J., de Leeuw, F., Lynch, J., Manders, A., Mircea, M., Pay, M.T., Pritula, D., Putaud, J.-P., Querol, X., Raffort,V., Reiss, I., Roustan, Y., Sauvage, S., Scavo, K., Simpson, D., Smith, R.I., Tang, Y.S., Theobald, M., Tørseth, K., Tsyro, S., van Pul, A., Vidic, S., Wallasch, M., Wind, P. (2016). Air pollution trends in the EMEP region between 1990 and 2012. Joint Report of the EMEP Task Force on Measurements and Modelling (TFMM), Chemical Co-ordinating Centre (CCC), Meteorological Synthesizing Centre-East (MSC-E), Meteorological Synthesizing Centre-East (MSC-E), Meteorological Synthesizing Centre-West (MSC-W) EMEP/CCC-Report 1/2016. URL: https://www.nilu.no/projects/ccc/reports/cccr1-2016.pdf

- Fagerli, H., Aas, W. (2008) Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980–2003. *Environ. Poll.*, *154*, 448–461.
- Fowler, D., Pilegaard, K., Sutton, M.A., Ambus, P., Raivonen, M., Duyzer, J., Simpson, D.,
 Fagerli, H., Fuzzi, S., Schjoerring, J.K., Granier, C., Neftel, A., Isaksen, I.S.A., Laj, P., Maione,
 M., Monks, P.S., Burkhardt, J., Daemmgen, U., Neirynck, J., Personne, E., Wichink-Kruit, R.,
 Butterbach-Bahl, K., Flechard, C., Tuovinen, J.P., Coyle, M., Gerosa, G., Loubet, B., Altimir,
 N., Gruenhage, L., Ammann, C., Cieslik, S., Paoletti, E., Mikkelsen, T.N., Ro-Poulsen, H.,
 Cellier, P., Cape, J.N., Horvath, L., Loreto, F., Niinemets, U., Palmer, P.I., Rinne, J., Misztal,
 P., Nemitz, E., Nilsson, D., Pryor, S., Gallagher, M.W., Vesala, T., Skiba, U., Brueggemann,
 N., Zechmeister-Boltenstern, S., Williams, J., O'Dowd, C., Facchini, M.C., de Leeuw, G.,
 Flossman, A., Chaumerliac, N., Erisman, J.W. (2009) Atmospheric composition change:
 Ecosystems-Atmosphere interactions. *Atmos. Environ.*, *43*, 5193–5267, 2009.
- Hellsten, S., van Loon, M., Tarrasón, L., Vestreng, V., Tørseth, K., Kindbom, K., Aas, W. (2007) Base cations deposition in Europe. Stockholm, Swedish Environmental Research Institute (IVL Report B1722).
- Hjellbrekke, A.-G. and Tarrason, L. (2001). Mapping of concentrations in Europe combining measurements and acid deposition models. *Water, Air, & Soil Pollution* 130: 1529. https://doi.org/10.1023/A:1013906224066
- Hjellbrekke, A.-G. (2017) Data Report 2015. Particulate matter, carbonaceous and inorganic compounds, Kjeller, Norwegian Institute for Air Research, EMEP/CCC-Report 1/2017 URL: https://www.nilu.no/projects/ccc/reports/cccr1-2017.pdf
- Hole, L.R., Tørseth, K. (2002) Deposition of major inorganic compounds in Norway 1978-1982 and 1997-2001: status and trends. Kjeller, Norwegian Institute for Air Research (NILU OR 61/2002).
- Lussana C., Saloranta T., Skaugen T., Magnussson J., Tveito O.E. and Andersen J., Evaluation of seNorge2, a conventional climatological datasets for snow- and hydrological modeling in Norway, ESSD discussion paper (i.e. under review), 2017
- Matheron, G. (1963) Principles of geostatistics. Econ. Geol., 58, 1246-1266.
- MET (2012-2016), Monthly climatological reviews, January 2012 December 2016. Oslo, Meteorologiske institutt (met info 13/2012, 13/2013, 13/2014, 13/2015, 13/2016).
- Pedersen, U., Walker, S.E., Kibsgaard, A. (1990) Deposition mapping of sulphur and nitrogen compounds in Norway. Lillestrøm, Norwegian Institute for Air Research (NILU OR 28/90). In Norwegian.
- Schaug, J., Iversen, T., Pedersen, U. (1993) Comparison of measurements and model results for airborne sulphur and nitrogen compounds with kriging. *Atmos. Environ.*, *6*, 831-844.
- Simpson, D., Benedictow, A., Berge, H., Bergström, R., Emberson, L. D., Fagerli, H., Flechard, C. R., Hayman, G. D., Gauss, M., Jonson, J. E., Jenkin, M. E., Nýıri, A., Richter, C., Semeena, V. S., Tsyro, S., Tuovinen, J.-P., Valdebenito, A., Wind, P. (2012) The EMEP MSC-W chemical transport model technical description. *Atmos. Chem. Phys.*, *12*, 7825–7865, doi:10.5194/acp-12-7825-2012, 2012.
- Steensen, B. M., Schulz, M., Theys, N., Fagerli, H. (2016). A model study of the pollution effects of the first 3 months of the Holuhraun volcanic fissure: Comparison with

observations and air pollution effects. *Atmos. Chem. Phys*, 16, 9745-9760, doi:10.5194/acp-16-9745-2016.

- Tørseth, K., Pedersen, U. (1994) Deposition of sulphur and nitrogen compounds in Norway 1988-1992. Kjeller, Norwegian Institute for Air Research (NILU OR 16/94).
- Tørseth, K., Semb, A. (1997) Deposition of major inorganic compounds in Norway 1992-1996. Kjeller, Norwegian Institute for Air Research (NILU OR 67/97).
- Tørseth, K., Aas, W., Breivik, K., Fjæraa, A.M., Fiebig, M., Hjellbrekke, A.-G., Myhre, C.L., Solberg, S., Yttri, K.E. (2012) Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. *Atmos. Chem. Phys.*, *12*, 5447-5481, doi:10.5194/acp-12-5447-2012.

Appendix A

Figures 1.1-1.2 and Table 1.1

Grid cell numbers

	1			1			T			1		٦
												31
	188	189	1,90	191]							
183	184	185	186	187								
4178	179	180	181	182								30
174175	176	177			-							
3170	171	172	173									1
164 165	166	167	168	169								29
159160	161	162	163									
11541155	156	157	158									
1511152	1′53		1									28
146 147 148	149	150										
142 143 144	145											
1381139140	141		1									27
133134135	136	137										-
129130	131	132										
124 125	126	127	128									26
	121	122	123									
	118	119 119	120	117	1							0.5
		110	110	112	111	1						20
		107	108	100	114							-
		107	100	109	106							2/
		99	100	100	102							24
		00	\$95	196	97	98						1
		D	-90	91	92	93	94	1				23
	ſ	82	83	84	85	86	87	88-	-89			
		73	774	75)	-76-	77	78	79	80	81		1
		634	64	65	66	67	68	69	70	71	72	22
		53	54	55	56	57	58	59	60	61	62	
	4	43	44	45	46	47	48	49	50	51	52	1
	Ī	32	33	34	35	36	37-	38	39	40	-41 42	21
			24	25	26	27	28	29	30	31		
			0	N	18	19	202	21	22	23		
					J.	122	13-	14	15	16		20
					5	565	7	8	9	10		
						1	2~	-32	•4			
												19
14		15			16			17			18]
								•••				

Figure 1.1: The 50x50 km² grid and grid cell numbers (EMEP sub-grid) used for interpolating concentration fields.

% prod. forest

Figure 1.2: Percent productive forest used in estimating dry deposition.

Grid cell no.	Total area (km2)	Average precipitation amount (mm)	Total nss S dep. (mg S/m2 yr)	Total N (oxi) (mg N/m2 yr)	Total N (red) (mg N/m2 yr)	Total N (red+oxi) (mg N/m2 yr)	Total nss K (mg/m2 yr)	Total ss K (mg /m2 yr)	Total nss Ca (mg/m2 yr)	Total ss Ca (mg/m2 yr)	Total Na (mg/m2 yr)	Total Mg (mg/m2 yr)	Total Cl (mg/m2 yr)	Total ss S (mg S/m2 yr)	Total nss S deposition (ton S in grid)	Total N (oxi) deposition (ton N in grid)	Total N (red) deposition (ton N in grid)	Total N deposition (ton N in grid)	Total nss K deposition (ton K in grid)	Total nss Ca deposition (ton Ca in grid)	Number of meteorol. sites in grid
1	100	1478	221	401	429	830	88	176	142	185	4889	589	8730	409	22	40	43	83	9	14	1
2	1270	1549	255	455	487	942	100	149	162	157	4137	498	7387	346	324	578	619	1197	126	206	3
3	1060	1856	336	639	605	1244	123	180	207	189	4990	601	8911	418	356	677	641	1318	131	219	3
4	950	1973	381	724	681	1405	129	166	220	175	4614	556	8239	386	362	688	646	1334	123	209	3
5	430	1262	151	276	335	611	74	123	112	129	3415	411	6098	286	65	119	144	263	32	48	1
6	450	1574	223	417	453	871	91	153	151	161	4246	512	7582	355	100	188	204	392	41	68	4
7	2480	2541	370	624	708	1332	150	220	240	231	6108	736	10906	511	918	1547	1757	3303	373	594	5
8	2500	2162	369	646	663	1310	145	147	238	155	4086	492	7296	342	922	1616	1659	3274	364	596	4
9	2480	1885	374	694	638	1332	128	136	218	143	3788	456	6764	317	928	1721	1583	3303	317	541	2
10	280	1515	344	656	586	1242	103	129	186	136	3600	434	6429	301	96	184	164	348	29	52	1
11	1310	2434	278	501	619	1121	131	274	211	288	7615	917	13598	637	364	657	811	1468	172	276	1
12	2450	2552	309	537	687	1223	137	191	228	201	5302	639	9468	444	756	1315	1682	2997	335	558	4
13	2500	2133	286	497	572	1069	144	136	222	143	3784	456	6757	317	714	1243	1430	2673	359	556	2
14	2450	1594	256	463	451	914	121	82	185	87	2292	276	4093	192	626	1134	1106	2240	297	453	3
15	2500	1698	337	640	547	1186	123	81	208	85	2240	270	4000	188	842	1599	1366	2965	307	521	3
16	750	1341	320	622	507	1129	90	97	170	102	2693	324	4808	225	240	466	381	847	68	127	5
17	1830	2553	230	385	508	892	142	222	204	234	6167	743	11013	516	420	704	929	1633	260	374	3
18	1950	2639	260	432	580	1013	156	175	229	184	4854	585	8669	406	507	843	1132	1975	303	447	4
19	2500	2547	277	467	611	1078	155	161	243	170	4479	540	7999	375	692	1167	1528	2695	387	607	2
20	2500	1/38	210	383	417	800	137	89	197	94	2478	299	4425	207	526	957	1042	1999	342	492	5
21	2500	1126	1/2	345	302	647	102	31	147	33	875	105	1562	/3	429	863	/56	1619	255	368	3
22	2500	1226	230	455	379	834	87	34	137	36	941	113	1680	/9	576	1138	947	2086	217	344	3
23	1350	1310	294	5/3	464	1036	86	58	150	61	1604	193	2863	134	397	//3	626	1399	116	203	1
24	2500	3131	252	415	572	988	169	240	243	259	6843 F120	824	12220	573	289	478	1250	2252	194	279	4
25	2500	2887	237	401	500	901	148	185	216	194	5130	618	9160	429	593	1002	1250	2252	369	541	3
20	2250	1040	184	329	3/0	705	2113	110	104	112	3045	307	5438 2055	255	415	740	840	1121	197	309	5
2/	2250	1040	121	251	236	303	82 80	02 10	114	20	526	200	2022	145	2/3	505	566	1175	212	200	1 c
28	2400	924 897	123	204	230	490	90	19 21	121	20	596	72	1065	44 50	290	762	622	1386	213	200	2
30	2500	990	187	403	317	720	90 85	21	121	20	797	96	1/12/	67	468	1006	792	1799	223	302	5
30	1930	1233	268	527	420	948	62 02	29 58	125	61	1621	195	2895	136	516	1017	811	1829	179	280	5
30 31	2500 1930	990 1233	187 268	403 527	317 420	720 948	85 93	29 58	123 145	30 61	797 1621	96 195	1424 2895	67 136	468 516	1006 1017	793 811	1799 1829	212 179	307 280	

Table 1.1:	Values of e	each 50x50 k	, km² grid cell	, 2012-2015	(see Figure 1.1).

		m2)	ipitation)	ġ	-	-	oxi)									eposition)	deposition)	deposition)	sition)	eposition)	deposition d)	ieteorol.
	Grid cell no.	Total area (kı	Average prec amount (mm	Total nss S de (mg S/m2 yr)	Total N (oxi) (mg N/m2 yr)	Total N (red) (mg N/m2 yr)	Total N (red+ (mg N/m2 yr)	Total nss K (mg/m2 yr)	Total ss K (mg /m2 yr)	Total nss Ca (mg/m2 yr)	Total ss Ca (mg/m2 yr)	Total Na (mg/m2 yr)	Total Mg (mg/m2 yr)	Total Cl (mg/m2 yr)	Total ss S (mg S/m2 yr)	Total nss S de (ton S in grid)	Total N (oxi) ((ton N in grid	Total N (red) (ton N in grid	Total N depo (ton N in grid	Total nss K de (ton K in grid	Total nss Ca c (ton Ca in gri	Number of m sites in grid
Γ	32	940	2824	207	332	461	792	133	245	179	258	6818	821	12176	571	194	312	433	745	125	168	1
	33	2450	2689	207	350	492	842	139	178	197	187	4936	595	8814	413	507	858	1205	2064	340	483	3
	34	2360	1194	102	192	213	405	66	59	91	62	1632	197	2914	137	242	453	502	955	155	216	2
	35	2450	1356	133	231	260	491	86	53	114	56	1467	177	2620	123	325	565	637	1202	212	280	5
	36	2500	813	101	198	198	396	70	14	91	15	384	46	685	32	251	495	495	989	175	227	4
	37	2500	852	124	261	233	494	89	14	114	15	387	47	691	32	309	653	583	1235	222	284	1
	38	2500	793	128	248	222	470	88	13	107	13	354	43	632	30	319	619	556	1175	220	269	1
	39	2500	989	189	390	315	705	104	24	135	25	657	79	1174	55	473	975	787	1762	261	337	5
	40	1730	1161	246	464	387	851	106	43	149	45	1196	144	2135	100	426	802	670	1472	184	257	3
	41	1250	940	237	457	362	819	97	49	126	52	1365	164	2437	114	297	572	452	1024	121	158	4
	42	125	940	260	428	367	795	91	50	113	52	1385	167	2474	116	32	53	46	99	11	14	1
	43	1375	2359	173	273	374	647	132	180	164	189	5002	603	8932	419	238	375	515	890	182	225	3
	44	2500	2307	170	282	409	691	116	130	157	137	3613	435	6451	302	425	706	1022	1728	290	392	7
	45	2500	1811	149	249	330	578	99	74	135	78	2067	249	3692	173	372	622	824	1446	248	337	5
	46	2400	751	80	156	157	313	58	26	71	27	718	87	1282	60	191	373	378	751	138	169	5
	47	2500	868	109	203	200	403	79	12	94	12	323	39	577	27	273	508	500	1008	198	235	1
	48	2500	581	98	236	188	424	69	15	87	15	407	49	728	34	244	589	470	1059	173	218	4
	49	2500	929	161	332	283	615	113	18	138	18	488	59	872	41	403	830	707	1537	284	344	4
	50	2500	916	186	384	314	698	116	23	143	24	635	77	1134	53	465	960	785	1744	289	357	10
	51	2500	934	205	400	329	729	112	31	141	33	860	104	1536	72	511	999	823	1822	281	352	4
	52	1210	923	228	439	356	/95	104	37	134	39	1026	124	1833	86	276	532	431	962	125	162	1
	53	900	1469	11/	200	248	448	88	135	108	143	3765	454	6/23	315	105	180	223	403	79	97	1
	54	2400	1951	148	235	316	551	109	102	133	108	2844	343	5078	238	355	564	758	1321	262	320	3
	55	2400	202	59	120	115	230	41	18	21	19	303	10	907	42	140	289	277	202	174	125	1
	50	2500	880	94	164	1/7	341	69	11	85	12	307	3/	548	26	235	410	442	852	1/4	212	1
	57	2500	684	92	1/9	102	341 400	04 75	10	70	11	282	34 26	503	24	230	448 550	406	1022	100	190	2
	50	2300	009	150	225	251	409	75	14	122	14	200	30	555	25	275	725	404 602	1022	107	222	2
	55	2400	886	192	363	201	661	106	14	125	20	526	40	078	JZ 45	457	907	744	1651	257	234	1
	61	2300	758	105	360	290	644	901	21	135	20	589	71	1051	45	437	887	702	1589	205	296	4
I	62	2-07	755	190	400	205	712	90	21 17	120	22 18	475	57	849	49	421	100	702	178	222	290	э 1
I	63	900	1857	142	210	284	494	111	192	131	202	5344	644	9544	447	127	189	256	445	100	118	1
	64	2100	954	81	138	159	298	61	45	71	47	1250	151	2232	105	170	291	335	625	129	149	2
L																					· · ·	

	ň	(km2)	ecipitation າm)	dep. vr)	ii) yr)	d) yr)	d+oxi) yr)	-	(a (-		-	(r)	deposition id)	ii) deposition rid)	d) deposition rid)	position rid)	deposition id)	a deposition şrid)	' meteorol. I
	Grid cell no	Total area	Average pr amount (m	Total nss S (mg S/m2)	Total N (ox (mg N/m2	Total N (re (mg N/m2	Total N (re (mg N/m2	Total nss K (mg/m2 yr	Total ss K (mg /m2 yı	Total nss C (mg/m2 yr	Total ss Ca (mg/m2 yr	Total Na (mg/m2 yr	Total Mg (mg/m2 yr	Total Cl (mg/m2 yr	Total ss S (mg S/m2)	Total nss S (ton S in gr	Total N (ox (ton N in g	Total N (re (ton N in g	Total N de (ton N in g	Total nss K (ton K in gr	Total nss C (ton Ca in _g	Number of sites in grid
	65	2300	361	42	86	78	164	31	6	37	7	177	21	316	15	96	197	179	377	71	85	1
	66	2500	401	50	101	91	192	36	5	42	6	151	18	270	13	125	253	228	480	89	105	4
	67	2500	640	88	158	150	308	59	8	69	8	213	26	380	18	220	395	374	769	148	172	3
	68	2550	692	109	197	176	373	68	8	80	8	218	26	390	18	277	502	450	952	173	203	4
	69	2500	711	131	250	205	455	72	10	93	11	281	34	502	24	328	625	512	1137	180	233	3
	70	2500	875	185	371	298	669	98	14	130	15	394	47	704	33	462	928	746	1674	246	324	2
	71	2300	811	182	367	290	657	82	13	110	13	354	43	632	30	418	844	668	1512	189	252	1
	72	200	788	195	385	292	678	86	16	110	17	453	55	810	38	39	77	58	136	17	22	1
	73	620	2245	168	232	343	574	141	194	164	205	5401	651	9645	452	104	144	213	356	87	102	1
	74	2300	1606	131	196	244	440	106	87	122	92	2425	292	4330	203	302	451	562	1013	244	281	2
	75	2500	1167	97	148	179	327	81	52	91	54	1432	173	2557	120	242	369	448	817	201	227	2
	76	2500	422	54	94	91	185	35	7	41	7	187	23	335	16	134	236	227	463	88	103	2
	77	2500	607	87	146	135	281	50	5	60	6	145	18	260	12	217	366	337	703	126	150	4
	78	2500	547	88	158	146	303	51	7	59	7	187	23	334	16	221	394	364	758	126	149	1
	79	2500	866	154	265	231	496	83	10	100	11	288	35	514	24	384	662	579	1241	208	250	2
	80	2000	794	155	280	229	509	73	12	94	13	343	41	612	29	310	560	457	1017	145	187	2
	81	200	881	190	344	264	609	80	13	99	14	364	44	650	30	38	69	53	122	16	20	1
	82	770	1272	102	146	199	346	84	120	99	126	3327	401	5941	278	78	113	153	266	65	76	1
	83	1900	1379	133	169	205	373	87	89	107	94	2487	300	4442	208	252	321	389	709	164	203	2
	84	2500	720	74	109	116	225	56	30	64	31	827	100	1477	69	185	272	291	563	140	160	1
	85	2500	537	69	108	105	213	44	13	53	13	349	42	623	29	172	269	262	531	110	132	3
	86	2500	560	81	119	121	240	45	6	54	7	174	21	310	15	203	298	303	601	112	134	4
	87	2450	621	102	158	151	309	53	6	63	7	178	21	318	15	251	388	369	756	131	155	1
	88	1400	883	156	243	225	468	76	10	89	10	277	33	494	23	219	340	316	655	106	125	1
	89	400	882	170	266	231	497	82	9	90	9	248	30	443	21	68	106	92	199	33	36	1
	90	1500	955	92	119	159	278	65	89	83	94	2486	300	4439	208	138	178	239	416	97	124	1
	91	2300	1135	117	146	186	331	80	58	100	61	1604	193	2864	134	270	335	427	762	184	229	2
	92	2500	/09	8/	11/	133	250	51	27	64	28	/40	89	1321	62	217	293	333	626	127	160	1
1	93	2450	652	99	134	146	280	52	12	63	12	327	39	584	27	242	328	357	686	128	154	3
1	94	800	6/3	110	139	148	287	55	5	63	5	130	16	232	11	88	111	118	229	44	50	1
1	95	1400	1647	159	1/5	270	445	104	151	135	158	4184	504	/4/2	350	222	245	378	623	146	189	1
1	96	2100	1052	118	143	185	327	69	58	8/	61	1614	194	2882	135	247	299	388	687	146	183	5
L	97	2230	936	121	130	158	288	55	35	/4	37	9/1	11/	1/34	81	269	289	353	642	123	165	4

Number of meteorol. sites in grid	1	1	2	2	1	1	2	2	1	1	2	1	2	2	1	1	1	2	1	1	3	3	3	1	1	2	1	1	1	1	1	1	
Total nss Ca deposition (ton Ca in grid)	151	43	308	191	53	51	292	222	19	54	372	324	124	144	341	172	6	250	251	55	140	276	101	218	247	20	8	120	127	11	36	50	
Total nss K deposition (ton K in grid)	112	32	246	145	38	43	235	170	13	42	299	249	95	116	256	130	5	201	183	42	116	218	79	193	219	20	20	133	148	14	34	59	
Total N deposition (ton N in grid)	597	180	1043	758	223	170	982	833	78	183	1271	1128	529	537	1102	595	23	935	843	192	499	986	336	700	111	100	32	541	555	48	122	220	-
Total N (red) deposition (ton N in grid)	326	99	661	431	124	109	621	496	45	123	853	735	310	355	737	384	15	610	535	122	330	629	206	489	501	60	19	308	318	29	70	130	
Total N (oxi) deposition (ton N in grid)	272	81	382	328	99	60	360	337	33	60	418	393	218	182	365	210	9	325	308	70	169	356	130	277	331	42	13	233	235	19	52	90	
Total nss S deposition (ton S in grid)	246	77	372	295	104	51	328	315	42	57	394	353	202	157	330	180	9	277	254	63	138	280	106	200	304	40	13	241	257	22	60	109	
Total ss S (mg S/m2 yr)	41	34	386	135	81	410	275	151	69	431	320	157	59	368	310	92	52	274	186	117	341	237	140	328	208	346	372	231	174	146	463	271	-
Total Cl (mg/m2 yr)	884	735	8235	2884	1731	8742	5860	3220	1472	9190	6829	3345	1267	7848	6619	1957	1117	5845	3975	2491	/265	5054	2994	/005	2112	7378	7927	4938	2635	3119	9868	5775	
Total Mg (mg/m2 yr)	60	50	556	195	117	590	395	217	99	620	461	226	86	529	447	132	75	394	268	168	490	341	202	473	299	/98	535	333	178	210	666	390	
Total Na (mg/m2 yr)	495	412	4612	1615	970	4896	3282	1803	824	5146	3824	1873	710	4395	3707	1096	626	3273	2226	1395	4069	2830	1677	3923	1742	1745	4132	2765	1476	1747	5526	3234	
Total ss Ca (mg/m2 yr)	19	16	175	61	37	185	124	68	31	195	145	71	27	166	140	42	24	124	84	53	154	107	64	149	94	157	168	105	56	66	209	122	-
Total nss Ca (mg/m2 yr)	68	71	143	78	66	128	117	89	63	136	149	130	59	131	136	78	61	106	102	79	127	115	84	109	99 70	116	75	52	52	56	90	55	
Total ss K (mg /m2 yr)	18	15	166	58	35	176	118	65	30	185	138	67	26	158	133	39	23	118	80	50	146	102	60	141	69	1/19	160	90	53	63	199	116	
Total nss K (mg/m2 yr)	50	53	114	59	47	106	94	68	45	104	120	99	45	106	103	59	49	85	75	61	106	91	66	97	00 60	94	88	58	62	68	84	66	
Total N (red+oxi) (mg N/m2 yr)	268	301	485	310	279	424	393	333	259	457	508	451	252	489	441	270	235	398	344	274	453	412	280	202	357	333	318	235	233	241	306	245	-
Total N (red) (mg N/m2 yr)	146	165	307	176	155	273	249	198	148	308	341	294	148	323	295	175	146	260	218	174	300	263	1/1	245	171	100	195	134	133	145	176	144	
Total N (oxi) (mg N/m2 yr)	122	136	178	134	124	151	144	135	110	149	167	157	104	166	146	96	89	138	126	100	154	149	109	139	152	105	127	101	99	96	130	100	
Total nss S dep. (mg S/ m2 yr)	110	128	173	120	131	127	131	126	139	142	158	141	96	143	132	82	86	118	104	90	126	117	88	130	122	101	132	105	105	110	150	121	
Average precipitation amount (mm)	843	929	1796	990	954	1569	1415	1092	1046	1650	1724	1236	752	1691	1568	851	785	1452	1239	985	1642	1482	1097	1303	1388	1097	1423	1082	1102	1099	1813	1273	-
Total area (km2)	2230	600	2150	2450	800	400	2500	2500	300	400	2500	2500	2100	1100	2500	2200	100	2350	2450	700	1100	2390	1200	2000	2500	300	100	2300	2300	200	400	900	
Grid cell no.	98	99	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	125	125	125	120	128	129	130	

	Number of meteorol. sites in grid	2	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	3	1	1	1	1	1	1	1	1	1	1	1	1
	Total nss Ca deposition (ton Ca in grid)	141	86	30	41	101	106	8	13	35	126	83	11	54	115	48	3	111	114	58	5	101	101	54	92	69	68	43	11	19	78	77	77	65
	Total nss K deposition (ton K in grid)	169	117	38	52	122	144	13	16	47	181	133	14	74	147	59	3	152	148	67	6	138	134	64	127	85	81	54	15	24	103	99	95	96
upper proper p	Total N deposition (ton N in grid)	627	282	156	202	436	326	25	64	188	291	303	60	132	303	149	14	259	359	286	22	244	302	195	213	226	216	132	32	88	227	217	245	165
reg opponential reg reg <th< th=""><th>Total N (red) deposition (ton N in grid)</th><th>363</th><th>161</th><th>86</th><th>112</th><th>258</th><th>189</th><th>14</th><th>34</th><th>103</th><th>155</th><th>170</th><th>34</th><th>71</th><th>164</th><th>80</th><th>8</th><th>140</th><th>186</th><th>144</th><th>11</th><th>129</th><th>155</th><th>95</th><th>113</th><th>113</th><th>103</th><th>63</th><th>15</th><th>46</th><th>109</th><th>101</th><th>115</th><th>76</th></th<>	Total N (red) deposition (ton N in grid)	363	161	86	112	258	189	14	34	103	155	170	34	71	164	80	8	140	186	144	11	129	155	95	113	113	103	63	15	46	109	101	115	76
ne ne<	Total N (oxi) deposition (ton N in grid)	264	121	71	90	179	137	10	30	85	137	133	27	61	139	69	6	119	173	142	11	115	147	100	100	113	114	69	17	43	118	117	129	89
number number<	Total nss S deposition (ton S in grid)	320	155	110	150	234	192	15	49	136	231	208	41	97	214	110	10	199	243	181	15	189	216	147	176	168	171	110	28	85	225	215	206	150
n n	Total ss S (mg S/m2 yr)	167	112	409	477	325	191	134	292	287	268	161	255	175	184	65	260	206	96	58	53	200	79	49	169	94	44	42	131	174	64	33	33	26
i i	Total Cl (mg/m2 yr)	3566	2394	8725	10180	6944	4065	2850	6236	6116	5712	3445	5443	3725	3927	1377	5546	4386	2048	1232	1129	4263	1676	1052	3608	2010	929	888	2801	3720	1370	703	706	553
nnn <th< th=""><th>Total Mg (mg/m2 yr)</th><th>241</th><th>162</th><th>589</th><th>687</th><th>468</th><th>274</th><th>192</th><th>421</th><th>413</th><th>385</th><th>232</th><th>367</th><th>251</th><th>265</th><th>93</th><th>374</th><th>296</th><th>138</th><th>83</th><th>76</th><th>288</th><th>113</th><th>71</th><th>243</th><th>136</th><th>63</th><th>60</th><th>189</th><th>251</th><th>92</th><th>47</th><th>48</th><th>37</th></th<>	Total Mg (mg/m2 yr)	241	162	589	687	468	274	192	421	413	385	232	367	251	265	93	374	296	138	83	76	288	113	71	243	136	63	60	189	251	92	47	48	37
no 00 100 101no 100 101 101no 100 101 101no 100 101no 100 101no 100 101no 100 101no 101 101no 101 102no 101 102no 101 102no 101 102no 101 102no 101 	Total Na (mg/m2 yr)	1997	1341	4886	5701	3888	2276	1596	3492	3425	3198	1929	3048	2086	2199	771	3106	2456	1147	690	632	2388	938	589	2020	1125	520	497	1568	2083	767	394	395	310
e e 0e o 	Total ss Ca (mg/m2 yr)	76	51	185	216	147	86	60	132	130	121	73	115	79	83	29	118	93	43	26	24	90	36	22	77	43	20	19	59	79	29	15	15	12
interpretation interpretation interpretation interpretation interpretation interpretation interpretation	Total nss Ca (mg/m2 yr)	56	66	43	59	67	76	83	33	35	90	59	28	60	72	43	27	70	47	24	25	72	42	30	60	30	32	33	38	21	31	31	31	43
n n	Total ss K (mg /m2 yr)	72	48	176	205	140	82	57	126	123	115	69	110	75	79	28	112	88	41	25	23	86	34	21	73	40	19	18	56	75	28	14	14	11
initial initial <t< th=""><th>Total nss K (mg/m2 yr)</th><th>68</th><th>90</th><th>55</th><th>75</th><th>81</th><th>103</th><th>127</th><th>41</th><th>47</th><th>129</th><th>95</th><th>35</th><th>82</th><th>92</th><th>54</th><th>34</th><th>95</th><th>61</th><th>27</th><th>30</th><th>99</th><th>56</th><th>36</th><th>82</th><th>37</th><th>38</th><th>41</th><th>49</th><th>26</th><th>41</th><th>40</th><th>38</th><th>64</th></t<>	Total nss K (mg/m2 yr)	68	90	55	75	81	103	127	41	47	129	95	35	82	92	54	34	95	61	27	30	99	56	36	82	37	38	41	49	26	41	40	38	64
rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 0rel 	Total N (red+oxi) (mg N/m2 yr)	251	217	224	289	291	233	245	160	188	208	217	151	146	189	135	144	162	147	117	108	174	126	109	137	98	103	102	107	98	91	87	98	110
iii <th>Total N (red) (mg N/m2 yr)</th> <th>145</th> <th>124</th> <th>123</th> <th>160</th> <th>172</th> <th>135</th> <th>141</th> <th>84</th> <th>103</th> <th>111</th> <th>122</th> <th>84</th> <th>79</th> <th>103</th> <th>72</th> <th>80</th> <th>88</th> <th>76</th> <th>59</th> <th>56</th> <th>92</th> <th>65</th> <th>53</th> <th>73</th> <th>49</th> <th>49</th> <th>48</th> <th>49</th> <th>51</th> <th>43</th> <th>40</th> <th>46</th> <th>51</th>	Total N (red) (mg N/m2 yr)	145	124	123	160	172	135	141	84	103	111	122	84	79	103	72	80	88	76	59	56	92	65	53	73	49	49	48	49	51	43	40	46	51
iii <th>Total N (oxi) (mg N/m2 yr)</th> <th>106</th> <th>93</th> <th>101</th> <th>129</th> <th>119</th> <th>98</th> <th>104</th> <th>76</th> <th>85</th> <th>98</th> <th>95</th> <th>67</th> <th>68</th> <th>87</th> <th>63</th> <th>64</th> <th>74</th> <th>71</th> <th>58</th> <th>53</th> <th>82</th> <th>61</th> <th>56</th> <th>64</th> <th>49</th> <th>54</th> <th>53</th> <th>58</th> <th>48</th> <th>47</th> <th>47</th> <th>52</th> <th>59</th>	Total N (oxi) (mg N/m2 yr)	106	93	101	129	119	98	104	76	85	98	95	67	68	87	63	64	74	71	58	53	82	61	56	64	49	54	53	58	48	47	47	52	59
Image: constraint of the second sec	Total nss S dep. (mg S/m2 yr)	128	120	157	214	156	137	148	123	136	165	149	102	107	134	100	101	125	99	74	75	135	90	82	114	73	82	85	93	94	90	86	82	100
Oui Oui 131 2500 132 1300 133 700 134 700 135 1500 136 1400 137 100 138 400 139 1000 140 1400 141 1400 142 400 143 900 144 1600 145 1100 146 100 147 1600 148 2450 150 200 151 1400 152 2400 153 1800 154 1550 155 2300 156 2100 157 1300 158 300 159 900 160 2500 161 2500 162 2500	Average precipitation amount (mm)	1283	1107	1600	2252	1616	1275	1275	1226	1349	1321	1214	973	816	1047	770	968	964	684	492	492	980	571	531	792	458	509	486	497	787	509	486	463	531
b 1 1 1 1 1 1 1 1	Total area (km2)	2500	1300	700	700	1500	1400	100	400	1000	1400	1400	400	900	1600	1100	100	1600	2450	2450	200	1400	2400	1800	1550	2300	2100	1300	300	900	2500	2500	2500	1500
	Grid cell no.	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163

Number of meteorol. sites in grid	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	2	2	1	1	1	1	1	1	2	1	1	1	1
Total nss Ca deposition (ton Ca in grid)	12	14	63	95	94	12	82	173	92	17	12	79	153	42	32	155	82	50	97	11	119	134	162	129	38	126	65	21
Total nss K deposition (ton K in grid)	26	20	69	163	147	18	162	376	166	28	24	161	384	92	66	384	183	90	186	22	280	299	330	236	89	250	129	31
Total N deposition (ton N in grid)	48	35	180	212	225	30	318	350	204	39	46	303	267	122	124	274	194	132	149	41	192	250	279	179	54	189	96	33
Total N (red) deposition (ton N in grid)	24	18	82	96	98	13	162	167	91	17	23	152	136	56	62	141	96	63	69	21	99	125	143	91	28	98	50	16
Total N (oxi) deposition (ton N in grid)	24	17	97	116	127	17	156	183	114	23	23	150	131	66	61	132	98	69	80	20	93	124	137	89	26	91	46	18
Total nss S deposition (ton S in grid)	43	33	169	221	235	31	296	346	221	43	42	293	292	129	120	291	215	145	169	40	205	276	314	207	59	211	108	48
Total ss S (mg S/m2 yr)	170	139	50	29	17	102	133	75	28	118	165	119	71	41	148	105	46	51	53	157	106	92	71	69	145	151	125	127
Total Cl (mg/m2 yr)	3617	2960	1066	623	358	2180	2841	1590	599	2508	3512	2529	1519	878	3160	2246	972	1093	1136	3353	2260	1969	1516	1470	3098	3224	2673	2719
Total Mg (mg/m2 yr)	244	200	72	42	24	147	192	107	40	169	237	171	102	59	213	152	66	74	77	226	152	133	102	99	209	218	180	183
Total Na (mg/m2 yr)	2025	1658	597	349	201	1221	1591	890	336	1405	1967	1416	850	492	1770	1258	544	612	636	1877	1266	1103	849	823	1735	1806	1497	1522
Total ss Ca (mg/m2 yr)	77	63	23	13	8	46	60	34	13	53	74	54	32	19	67	48	21	23	24	71	48	42	32	31	66	68	57	58
Total nss Ca (mg/m2 yr)	42	47	30	38	39	41	41	72	40	42	39	36	65	32	36	67	41	38	75	36	74	53	70	92	94	90	93	70
Total ss K (mg /m2 yr)	73	60	21	13	7	44	57	32	12	51	71	51	31	18	64	45	20	22	23	68	46	40	31	30	62	65	54	55
Total nss K (mg/m2 yr)	86	66	32	65	61	60	81	157	72	69	80	73	164	71	73	167	92	69	143	73	175	119	143	169	222	179	184	103
Total N (red+oxi) (mg N/m2 yr)	159	118	84	85	94	100	159	146	89	99	152	138	114	94	137	119	97	101	114	138	120	100	121	128	135	135	138	111
Total N (red) (mg N/m2 yr)	80	60	38	39	41	42	81	70	39	42	77	69	58	43	69	61	48	48	53	69	62	50	62	65	71	70	72	53
Total N (oxi) (mg N/m2 yr)	79	58	45	46	53	58	78	76	49	56	75	68	56	51	68	58	49	53	62	68	58	50	59	63	64	65	66	58
Total nss S dep. (mg S/ m2 yr)	144	110	79	88	98	104	148	144	96	106	142	133	125	99	133	127	107	112	130	133	128	110	137	148	147	151	155	159
Average precipitation amount (mm)	796	683	442	430	475	503	761	660	410	442	723	612	469	401	612	491	397	450	480	612	491	402	527	520	551	575	575	495
Total area (km2)	300	300	2150	2500	2400	300	2000	2400	2300	400	300	2200	2340	1300	900	2300	2000	1300	1300	300	1600	2500	2300	1400	400	1400	700	300
Grid cell no.	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191

NILU – Norwegian Institute for Air Research

NILU – Norwegian Institute for Air Research is an independent, nonprofit institution established in 1969. Through its research NILU increases the understanding of climate change, of the composition of the atmosphere, of air quality and of hazardous substances. Based on its research, NILU markets integrated services and products within analyzing, monitoring and consulting. NILU is concerned with increasing public awareness about climate change and environmental pollution.

NILU's values:Integrity - Competence - Benefit to societyNILU's vision:Research for a clean atmosphere

NILU – Norwegian Institute for Air Research P.O. Box 100, NO-2027 KJELLER, Norway

E-mail: <u>nilu@nilu.no</u> http://www.nilu.no

ISBN: 978-82-425-2915-2 ISSN: 2464-3327

