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Abstract
The Warm Arctic–cold Siberia surface temperature pattern during recent boreal winter is suggested to
be triggered by the ongoing decrease of Arctic autumn sea ice concentration and has been observed
together with an increase in mid-latitude extreme events and a meridionalization of tropospheric
circulation. However, the exact mechanism behind this dipole temperature pattern is still under
debate, since model experiments with reduced sea ice show conflicting results. We use the early
twentieth-century Arctic warming (ETCAW) as a case study to investigate the link between
September sea ice in the Barents–Kara Sea (BKS) and the Siberian temperature evolution. Analyzing a
variety of long-term climate reanalyses, we find that the overall winter temperature and heat flux
trend occurs with the reduction of September BKS sea ice. Tropospheric conditions show a
strengthened atmospheric blocking over the BKS, strengthening the advection of cold air from the
Arctic to central Siberia on its eastern flank, together with a reduction of warm air advection by the
westerlies. This setup is valid for both the ETCAW and the current Arctic warming period.

1. Introduction

Arctic sea ice extent has declined steadily by more
than 10% per decade since the start of the satellite
era (e.g. Stroeve et al 2011). While negative tenden-
cies are observed for all seasons throughout the year,
the most pronounced decline is observed in late sum-
mer and early autumn (Serreze et al 2007). Together
with this sea ice decline, a strong near-surface Arctic
warming has been recorded, especially during boreal
wintertime (Screen and Simmonds 2010), attributed
to the Arctic amplification of anthropogenic global
warming (Serreze and Barry 2011). This amplification
is characterized by Arctic temperature trends which are
approximately twice as strongas thehemispheric trends
(Semenov et al 2010).

This well-documented Arctic warming trend has
been observed in conjunction with a winter cooling
of the mid-latitudes in recent years, being particularly

strong over central Siberia (Cohen et al 2014, Vihma
2014, Shepherd 2016, Overland et al 2016 and refer-
ences therein). Patterns of intensified cold spells and
extreme snowfall events were also documented over
the other Northern Hemisphere mid-latitude regions
(Cohen et al 2007, Ghatak et al 2012, Vihma 2014,
Wegmann et al 2015, Orsolini et al 2016). The Eurasian
variant of this phenomenon has been termed ‘warm
Arctic–cold Siberia,’ or WACS—similar definitions
such as ‘warm Arctic–cold Eurasia’ are essentially
describing the same pattern (Petoukhov et al 2013)—
since the appearance of a cold anomaly over Siberia
was found in conjunction with warming over the
Barents–Kara Sea (BKS) region (Overland et al 2011,
Inoue et al 2012).

Several studies investigated the possible mecha-
nisms behind this counterintuitive process. Honda
et al (2009) first demonstrated that the WACS pattern
can be attributed to sea ice loss over the BKS, which in
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turn triggers increased turbulent heat fluxes from the
ocean to the atmosphere. It was found that an increas-
ing autumn surface heat flux from the open waters
to the cooler atmosphere with anomalous warming
of the lower atmosphere triggers increased baroclinic
wave activity and higher amplitudes of Rossby waves,
which favor the development of blockings and extreme
weather such as cold air outbreaks (Francis et al 2009,
Honda et al 2009, Orsolini et al 2012, Cohen et al
2014, Mori et al 2014, Jaiser et al 2016, Nakamura et al
2016, Luo et al 2016, Sorokina et al 2016). Under-
standing the causes of such extreme events is therefore
of large societal importance (Overland et al 2016,
Francis 2017).

There remains uncertainty about whether the win-
ter WACS pattern is a delayed response to decreased
autumn sea ice (Honda et al 2009, Overland et al 2011,
Wegmann et al 2015, Suo et al 2016, Wu 2017) via a
stratospheric feedback (Jaiser et al 2012, Cohen et al
2014, Garcı́a-Serrano et al 2015, Jaiser et al 2016,
Ruggieri et al 2017, Kretschmer et al 2017) or if
it is an immediate response triggered by winter sea
ice anomalies (Hori et al 2011, Inoue et al 2012,
Sorokina et al 2016, King et al 2016). The physical
feedbacks, as summarized by Cohen et al (2014), are
thought to induceacausal chainprocess,where reduced
autumn sea ice warms the lower troposphere, which
increases geopotential heights, shifts stormtracks and
increases Eurasian snow cover in October and Novem-
ber. This setting favors high Rossby wave numbers,
withvertical propagationofRossbywave energy, result-
ing in a weakening polar vortex and a stratospheric
warming event (Gastineau et al 2017). Subsequently,
tropospheric circulation anomalies appear with a few
weeks’ lag.

Despite the uncertainty of the temporal relation-
ship, the BKS region emerges as the core region for
atmospheric feedbacks triggering the WACS (Inoue et
al 2012, Outten et al 2013, Luo et al 2016, Zhang et al
2016, Screen 2017). Reduction in BKS sea ice can be
causedby severalmechanisms, includingwarmAtlantic
water inflow (Miles et al 2014, Nakanowatari et al 2014,
Årthun et al 2017), atmospheric heat advection (Zhang
and Li 2017) or atmospheric radiation feedbacks
(Park et al 2015).

Recent studies based on sensitivity experiments
withatmospheric global climatemodels (AGCMs)nev-
ertheless question the proposed link between sea ice
reduction and the WACS pattern (Sato et al 2014,
Sun et al 2016, McCusker et al 2016, Boland et al
2017, Collow et al 2016). On the other hand, some
model studies (Honda et al 2009, Nakamura et al 2015,
Kretschmer et al 2017, Pedersen et al 2016, Crasemann
et al 2017, Ruggieri et al 2017) did indeed show realistic
tropospheric sensitivity to sea ice forcing. Cohen et al
2012 as well as Cohen 2016 pointed out that many of
the current generation of AGCMs may lack the abil-
ity to simulate the influence of Arctic amplification
on mid-latitude climate. This raises the question of

whether the WACS pattern can result from the ran-
dom sampling of climate states undergoing chaotic
nonlinear variability, or rather is being controlled by
the proposed causal link to sea ice, but with this phys-
ical mechanism missed in the state-of-the-art AGCMs
(Francis 2017).

Here we utilize long-term reanalyses and
reconstruction datasets to investigate the ‘early
twentieth-century Arctic warming’ (ETCAW) which
reached its peak warming at the beginning of the 1940s
but started around 1910. Compared to the present Arc-
tic warming, the ETCAW was mainly confined to the
European Atlantic sector (Scherhag 1939, Bengtsson
et al 2004, Wood and Overland 2010, Bekryaev et al
2010). In the vertical, recent maximums of temperature
anomalies are mostly found at the surface whereas the
maximum warming of the ETCAW was located in the
mid troposphere (Grant et al 2009, Brönnimann et al
2012). Possible warming mechanisms include warm
air advection by southerly winds (Wood and Over-
land 2010, Wegmann et al 2017) as well as increased
winter sea-surface temperatures (SSTs) (Johannessen
et al 2004, Bengtsson et al 2004, Semenov and Latif
2012). Analyzing 26 simulated Arctic warming events,
Beitsch et al (2014) found a triggering warming ocean
signal that induces atmospheric changes, including
increased stationary eddy heat transport into the Arc-
tic domain. Recently, Tokinaga et al (2017) were able
to reproduce the large-scale ETCAW by introducing
historical SST forcing in an atmosphere–ocean cou-
pled global climate models (AOGCM), underlining
the importance of SSTs in the onset and evolution of
the ETCAW.

Paleoclimatic data suggest that, until the beginning
of the twenty-first century, the ETCAW was unique
in magnitude and rate for at least the last 1500 years
in the Arctic domain (Kaufman et al 2009, Pages
2 K Consortium 2013, Opel et al 2013). Therefore,
the ETCAW offers a unique opportunity to investi-
gate feedbacks of global climate during Arctic warming
periods.

The goal of this study is to demonstrate the consis-
tency between both periods, of the sea ice decline, the
covariability of the sea ice with atmospheric temper-
ature and heat fluxes, and their impact on the Arctic
region. For this purpose, we compare decadal temper-
ature trend patterns among the two warming events
(ETCAW and present) and the dynamical conditions
leading to the associated WACS pattern. We focus on
theborealwinter (DJF) temperaturesand their relation-
ship with September sea ice extent in the BKS region
using regression analysis for quantifying the role of
different mechanisms.

The paper is organized as follows: section 2
describes the data and methods used. In section 3
we introduce the ETCAW and the respective WACS
patterns, whereas section 4 investigates the dynamical
process behind that pattern. These results are discussed
in section 5 and finally summarized in section 6.
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2. Data and methods

2.1. Atmospheric reanalyses
To investigate the dynamical processes behind
the WACS pattern we use a variety of atmo-
spheric reanalysis products. To analyze the current
warming we use ERA-Interim reanalysis (Dee
et al 2011) which was widely used in different appli-
cations including Arctic processes (eg. Lindsay et al
2014, Dufour et al 2016).

To investigate the ETCAW we mainly use the Euro-
pean Centre for Medium-Range Weather Forecasts
(ECMWF) ERA-20C (ERA20C) reanalysis (Poli et al
2016). ERA-20C uses the Integrated Forecast System
(IFS) as a framework to assimilate observations of sur-
face pressure and surface marine winds. It has global
coverage for the period 1900–2010 with a 3 hourly tem-
poral resolution and a horizontal resolution of 1 degree
with 91 vertical levels from the surface up to 1 Pa. Sea
ice cover and SST forcing come from the HadISST.2.1
reconstruction (Titchner and Rayner 2014). Compar-
isons to other long-term reanalyses can be found in the
supplement.

2.2. Reconstruction data
For near-surface air temperature reconstruction we
use the National Aeronautics and Space Admin-
istration (NASA) Goddard Institute for Space
Studies (GISS) Surface Temperature Analysis (GIS-
TEMP) dataset (Hansen et al 2010, https://data.giss.
nasa.gov/GISTEMP/). This dataset offers a homoge-
neous reconstruction of global temperature based on
historical station data back to 1880 with a 2◦ × 2◦ res-
olution. We use both the Land-Ocean Temperature
Index which uses reconstructed SSTs (ERSSTv4) to
fill in data gaps over the oceans (smoothing radius
1200 km) as well as the station-only dataset (smoothing
radius 20 km).

2.3. Global climate model
To assess the relative impact of internal and exter-
nal variability, we compare reanalysis datasets with an
ensemble model experiment. The ECMWF integrated
an ensemble of ten Integrated Forecast System (IFS)
atmospheric simulations for the years 1899–2009 at a
horizontal resolution of 1 degree with 91 vertical lev-
els reaching from the surface up to 1 Pa, known as
the final ERA-20 cm version (ERA20CM). Specified
sea ice concentration as well as sea-surface tempera-
ture boundary conditions come from HadISST.2 (same
as ERA20C) and the radiation scheme follows the
CMIP5 protocol exactly, including aerosols, ozone
and greenhouse gases (Hersbach et al 2015). Both
in the GCM and the reanalyses we use integrated
heat-flux values, which are integrated over all model
levels in the IFS model of the respective ECMWF
dataset.

2.4. Sea ice data
For recent sea ice data we use the ERA-Interim sea ice
concentration (SIC), which is highly correlated to the
NSIDC sea ice data. For instance, Sorokina et al (2016)
reported no differences between these two datasets.

For the ETCAW period we investigate five differ-
ent SIC datasets, namely the three products used in
the long-term reanalyses (see table 1) as well as the
independent sea ice concentration data by Walsh et al
(2017)plus the sea iceoutput fromthecentennial ocean
reanalysis ORA-20C by the ECMWF (De Boisséson
et al 2017). Although there are considerable uncertain-
ties regarding the Arctic sea ice conditions before 1950,
Connolly et al (2017) recently provided a new recon-
struction of historical Arctic sea ice which supported
the melting period between 1910–1940. Moreover,
Alekseev et al (2016) found a substantial decrease of
September Arctic sea ice between 1930–1940 in their
assessment of Arctic sea ice in the 20th century. Thus,
besides the reconstructions used in this study, other
independent datasets suggest a sea ice reduction during
the ETCAW period.

We define the BKS as region bounded by 30–90◦ E,
65–85◦ N and focus on September sea ice. In Septem-
ber, sea ice reaches its annualminimumandopen-water
regionsprovidea strongheat andmoisture release to the
cold Arctic atmosphere (Jaiser et al 2016). We checked
using different autumn months between September
and December and found that regression with Septem-
ber sea ice best represents the DJF temperature trend,
especially so for the ETCAW (see supplementary figure
1 available at stacks.iop.org/ERL/13/025009/mmedia).
However, we did not find a large difference among all
autumn months. All sea ice time series are normal-
ized with respect to their time periods (1987–2016 for
the current warming and 1911–1940 for the ETCAW).
Luo et al (2016) found no notable difference between
using original and de-trended sea ice time series in
their feedback study (which we confirmed in supple-
mentary figure 2), therefore we use original time series
from here on. This highlights the fact that interannual
variability is a key factor for investigating feedbacks
rather than the overall trend. Figure 1 shows the nor-
malized BKS sea ice concentration time series for
all reconstructions, including both warming periods
(for un-normalized BKS sea ice time series see sup-
plementary figure 3). As can be seen, differences in
reconstructions for the ETCAW can reach up to one
standard deviation. However, when taken as average,
the ETCAW BKS sea ice evolution is very similar to the
recent BKS sea ice decrease. Therefore, it seems rea-
sonable to use the ETCAW as an analogue (in terms
of BKS sea ice impacts) to the recent Arctic warming
(RAW) period.

2.5. Regression on SIC
We use the above-mentioned normalized BKS SIC
time series to investigate linear relationships between
atmospheric variables and the sea ice evolution. For
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Figure 1. (Upper) Normalized September SIC averaged over the BKS region (30◦−90◦ E, 65◦−85◦ N) for the last 30 years in ERA-
Interim (red, upper x-axis) and for the ETCAW (lower x-axis) in HadISST2 (orange), COBE-SST2 (light blue), HadISST1 (blue),
the ORA20C dataset (yellow) and the reconstruction of Walsh et al (2017) (green). The black time series represents the average of all
ETCAW sea ice reconstructions. (Lower) Trend maps of sea ice concentrations in different products for the respective 30 year time
periods: (a) ERA-Interim, (b) HadISST2, (c) ORA20C, (d) Walsh et al 2017, (e) COBE-SST2, (f) HadISST1. The area highlighted in
red marks the BKS region used for field averaging.
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Figure 2. Trends [K/decade] of 2 m DJF temperatures (color shading) for the RAW (left column) in (a) ERA-Interim, (b) GISTEMP
and the ETCAW (right column) in (c) ERA20C, (d) GISTEMP, (e) ERA20CM best guess member, (f) ERA20CM ensemble mean.
Shading indicates 90% significance level.

this purpose, we project the respective anomaly fields
onto the SIC time series for the ETCAW period 1911–
1940 and the RAW period 1987–2016. For the main
manuscript it will be the normalized HadISST2 BKS
SIC time series for the ETCAW and the normalized
ERA-Interim BKS SIC time series for the RAW. To
test the regression coefficient against the null hypoth-
esis, we use a two-sided Student’s t-test, which is also
used for inferring the significance of the trends. For
enhanced readability, the regressed fields are multiplied
by −1 to correspond to a signal resulting from reduced
sea ice.

3. Results

3.1. Eurasian temperature patterns during Arctic
warmings
Figure 2 shows that the WACS pattern can be identified
for both warming periods (see supplementary figure 4
for the general Arctic winter temperature evolution).
For the RAW, regions of negative trends are confined
to central Siberia, and significant warming trends are
found over the whole Arctic with the strongest sig-
nals identified over the BKS region. For the ETCAW,
the cooling pattern is more widespread and extends
to most of the European mid-latitudes. The warming
trend over the Arctic is less intense than in the RAW,
but the BKS region appears again as the key region for
temperature increase. Alternatively, this WACS pat-
tern displayed in the trends can be identified as the
second empirical orthogonal function (EOF) pattern
of 2m DJF temperatures over Eurasia (0◦−180◦ E,
40◦−90 ◦N), which exhibits a strong upswing

during the period 1911–1940, which is unique for the
20th century (see supplementary figure 5).

Interestingly, whilst widespread warming is visible
for most of the mid-latitude and Arctic regions, yet the
WACS signal is not visible in the ensemble mean of
ERA20 CM, although the same boundary conditions
were used for the ERA20C product.. As expected for an
ensemble mean, trends are much weaker. We identified
one member of the ensemble as ‘best guess’ (based
on field correlation of the trend fields with regards
to ERA20C), which expresses a somewhat similar NH
temperature pattern but misses the homogeneous mid-
latitude cooling.

The ERA20CM ensemble meandoes not reproduce
the observed temperature pattern, although ERA20CM
is forced by the realistic SIC. Since the cooling is coun-
terintuitive given anthropogenic global warming, local
ordynamicprocessesmust lead to theobservedregional
cooling pattern. Here, we investigate the impact of
tropospheric heat transport associated with sea ice
reduction.

To investigate one possible driver behind these
trends, figure 3 shows the same structure as figure 2,
but instead of trends over time, it shows linear regres-
sion of 2 m DJF temperature [K/std dev] anomalies
projected onto the normalized BKS SIC time series
(ERA-Interim September BKS sea ice 1987–2016 for
the RAW, HadISST2 September BKS sea ice 1911–
1940 for the ETCAW). In this analysis for the RAW
period we used the ERA-Interim sea ice, whereas for
the ETCAW period we used the HadISST2.0 dataset.
Interestingly, spatial patterns in figure 3 look nearly
identical to the trend patterns (figure 2), suggesting
that September BKS SIC is an important driver of the
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Figure 3. Linear regression of 2m DJF temperature [K/std dev] anomalies projected onto BKS SIC for the RAW (left column) in (a)
ERA-Interim, (b) GISTEMP and the ETCAW (right column) in (c) ERA20C, (d) GISTEMP, (e) ERA20CM best guess member, (f)
ERA20CM ensemble mean. Shading indicates 90% significance level.

temperature distribution, showing a clear temperature
decrease between the Eurasian Arctic and the mid-
latitudes. The strongest cold anomalies over Siberia
are located further east in the RAW period compared
to the ETCAW period, when the negative anomalies
reach westwards into Central Europe. ERA20C shows
slightly weaker anomalies than GISTEMP, where the
best guess ensemble member of ERA20CM shows some
resemblance to ERA20C, but the pattern does not hold
statistical significance. The ERA20CM ensemble mean
does not show any resemblance to the GISTEMP field.

3.2. Tropospheric dynamics associated with sea ice
loss
To investigate the tropospheric dynamics associated
with the WACS pattern, figures 5(a)−(d) shows 500
hPa geopotential anomalies regressed onto the same
BKS SIC time series that were used in previous figures.
For the RAW, a strong positive anomaly dominates the
Arctic, extending southward over western Russia and
reaching the Caspian Sea. This high-pressure anomaly
is flanked by two low-pressure systems leading to a
zonal-to-meridional transition of the heat advection.
For the ETCAW in ERA20C, a similar structure can
be observed for Eurasia. Using the Walsh et al (2017)
or ORA20C dataset, this transition becomes even more
apparent (see supplementary figure 6).

The geopotential height patterns shown figures
4(a)−(d) cause anomalous heat advection over the
Eurasian domain. We regressed horizontal heat-flux
anomalies onto the BKS SIC time series to investigate
the response of atmospheric heat transport to the SIC
signals during ETCAW and RAW (figures 4(e)−(p)).

For the RAW, a wave train-like structure in meridional
heat flux (figures 4(i)-(l)) over Europe and Eurasia is
clearly visible as well as the westward heat flux over
northern Europe and Siberia. This means that cold
air is transported southward from the Arctic into large
parts of easternSiberia.Moreover, thewestwardpattern
over the mid-latitudes combined with the strong wavi-
ness reduces heat advectionby westerlies, which usually
advect warm, maritime air masses. For the ETCAW,
ERA20Cshowseastwardheat fluxover largeparts of the
Central Arctic with Atlantic air masses being advected
to Northern Russia. Meridional heat-flux patterns in
ERA20C are homologous to the trend pattern as well,
with southward fluxes from the Arctic towards Central
Siberia. We note, that the wave train-like pattern in
meridional heat flux derived by regressing heat fluxes
onto HadISST2.0 SIC over Eurasia does not hold statis-
tical significance.However, using theWalsh et al (2017)
or the ORA20C sea ice reconstruction together with
ERA20C atmospheric fields, the southward cold-air
transport becomes significant and the transport pattern
largely resembles the RAW pattern (see supplementary
figure 7). As for the RAW, the westward circula-
tion over large parts of the Eurasian mid-latitudes
reduces the advection of maritime air masses, sup-
porting the cooling by the Arctic air masses coming
from the north.

For the ERA20CM selected ‘best guess’ member,
regression patterns are different from the ERA20C. The
regression pattern shows no significant mid-latitude
heat advection reduction but instead widespread
eastward heat-flux increase in response to the SIC evo-
lution, similar to the ERA20CM ensemble mean. This
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Figure 4. Linear regression of geopotential height [m/std dev] DJF anomalies projected onto BKS SIC at 500 hPa in (a) ERA-Interim,
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similarity is even more striking in the case of Arctic to
mid-latitude heat transport, where the wave train-like
structure over Eurasia shows the opposite sign to the
heat transport in ERA20C.

Based on the comparison between the trend and
regression patterns, we find that the overall winter tem-
perature and heat-flux trend is largely congruent to a
reduction of September BKS sea ice. Both eastward
zonal flux and meridional flux culminate in integrated
heat flux convergence (figures 4(m)−(p)), which shows
a clear negative signal over Central Siberia for the
ETCAW, and a little bit further to the east in the case of
the RAW. Since ERA20CM already failed to reproduce
the horizontal heat fluxes, no such areas of negative
heat convergence can be found in the model fields.

In general, the structure of geopotential height
anomalies in ERA20C is visible in neither the
ERA20CM selected best guess member, nor the ensem-
ble mean. Thus, the resulting heat-flux advection in
ERA20CM is unlike what the reanalyses show. More-
over, this indicates that the influence of the sea ice on
the models is not strong enough to reach the mid- and
upper troposphere in the same way as is proposed in
reanalyses.

Differences between reanalyses and the AGCM
become even more striking when looking at the zonal
mean temperature response to BKS SIC evolution
throughout the troposphere over northern Eurasia
(figure 5). Comparing the RAW (figure 5(a)) and
ETCAW (figure 5(b)) temperature distribution reveals
the strong gradient between the Arctic and the mid-
latitude. The Arctic experiences a strong warming deep
into the troposphere whereas south of 60◦N the signal
turns to a cooling that dominates the whole tropo-
sphere for the RAW and up to 300 hPa for the ETCAW.
Note that the surface cooling is not significant for
ERA-Interim, which is probably based on the chosen
domain for the zonal average (10–180◦ E, 30–90◦ N)
since eastern Europe shows a warming response for
the RAW. Again, the mid-latitude cooling response in
ERA20C can be strengthened by using different sea ice
reconstructions. However, the structure of the WACS
stays the same, regardless of the sea ice reconstruc-
tion or the reanalysis at hand (supplementary figure
8). Zonal mean plots of geopotential heights (figures
5(e)−(f)) show nicely the elevated geopotential height
(GPH) values over and the Arctic in periods of Arctic
warming. Differences between the RAW and ETCAW
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appear in the northern most gridboxes, where the
ETCAW shows slightly reduced GPH values in the
lower troposphere. As a consequence of the GPH nega-
tive gradient between the Arctic and the mid-latitudes,
a strongly reduced zonal wind appears throughout
the troposphere in both Arctic warming cases, reach-
ing from roughly 40◦–60◦ N. These reduced zonal
winds are connected to the reduced eastern heat flux
shown in figures 4(e)−(h).

On the other hand, both the ERA20CM best
guess member (figure 4(c)) and the ensemble mean

(figure 4(d)) show no mid-latitude cooling in response
to the BKS SIC. Instead widespread tropospheric
warming can be found in the mid-latitudes. The
ERA20CM best guess member even fails to reproduce
the widespread tropospheric warming response over
the Arctic. Moreover, both ERA20CM analysis fields
show nearly mirrored zonal mean zonal wind fields
(figures 5(k)−(l)) compared to the reanalyses.
Increased zonal wind dominates the mid-latitudes
between 40◦–60◦ N, which is a result of shifted geopo-
tential height locations.
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4. Discussion

We used a variety of gridded atmospheric datasets:
AGCM simulations, reanalyses and reconstructions, to
address some of the open questions regarding the cause
and manifestation of the WACS surface temperature
pattern—one of the most remarkable counterintuitive
features associated with Arctic amplification.

A key question in the ongoing discussion
about the origin of WACS pattern is whether the
observed temperature pattern is caused by a chain
of physical processes (Honda et al 2009, Overland
et al 2011, Cohen et al 2014, Garcı́a-Serrano et al 2015,
Jaiser et al 2016), or if it is part of internal variability
and its occurrence results from the random sampling
as revealed by the model sensitivity studies (Sun et al
2016, McCusker et al 2016, Boland et al 2017, Collow
et al 2016).

We try to address this question by comparing the
two Arctic warming periods (ETCAW and RAW), both
characterized by decreasing BKS SIC using different
reanalyses and comparing them with AGCM simu-
lations. Using a re-analysis (ERA20C) and a model
simulation (ERA20CM) using the same ECMWF
atmosphericmodel allowsus todirectly infer the impact
of assimilated data, since all boundary conditions are
the same for both datasets.

Our results support some of the aforementioned
findings concerning the RAW: Striking similarities
are found between the ETCAW and RAW periods,
namely the manifestation of the WACS pattern and its
dynamical background, the reduced atmospheric heat
transport to central Eurasia. Our study suggests that the
changes in the autumn SIC in the BKS largely explain
the observed temperature trends by modulating the
pressure patterns in the upper troposphere, which con-
sequently impact the heat-flux convergence over the
mid-latitudes (Cohen et al 2014, Francis and Vavrus
2015). In this case, September sea ice concentration
affects the surface turbulent heat fluxes over the BKS in
the following autumn months (supplementary figure
9). Reduction in BKS sea ice can be caused by sev-
eral mechanisms such as a general rise in north Atlantic
SSTs (Miles et al2014, Nakanowatari et al2014, Årthun
et al 2017), atmospheric heat advection (Zhang and Li
2017)or increased longwave radiation (Park et al2015).
Future studies are needed to address the ultimate cause
behind the sea ice decrease in the ETCAW. However,
we found that detrended September BKS SIC explains
the zonal mean trend over Eurasia for the ETCAW bet-
ter than a detrended September or DJF AMO index
(supplemetary figure 10).

The main reason for the reduced heat convergence
seems to be a positive geopotential height anomaly in
the upper troposphere located over the BKS region,
which is in agreement with recent studies concern-
ing the RAW (Honda et al 2009, Petoukhov and
Semenov 2010, Kim et al 2014, Kug et al 2015,

Luo et al 2016). Our results disagree with the find-
ings of Sorokina et al (2016), who found that BKS
sea ice reduction and the following turbulent heat flux
over the ice-free areas is not enough to explain the
WACS pattern. However, we want to underline the
findings of Gastineau et al (2017), stating that the co-
variability of sea ice, Eurasian snow and hemispheric
SSTs is important for the generation of the WACS pat-
tern. Further research is needed to address this coupled
ocean–cryosphere–atmosphere pattern, which is still a
challenge for recent models.

Our findings are qualitatively independent of the
sea ice reconstruction at hand and it is mainly the sig-
nificance of the resulting patterns that is impacted by
the choice of SIC reconstruction. Interestingly, using
the Walsh et al (2017) dataset for the ETCAW period
resulted in the highest confidence for the regression
analysis. Moreover, the respective ETCAW 500 hPa
GPH and heat flux anomalies show a very high similar-
ity with those obtained for the RAW period, although
the sea ice reduction trend between 1911–1940 in the
Walsh et al (2017) dataset is the weakest among the
investigated SIC reconstructions.

Furthermore, our results support recent studies
(Cohen 2016, Francis 2017, Gastineau et al 2017)
which argue that current AGCMs lack the capabil-
ity to properly reproduce climate feedbacks triggered
by the Arctic sea ice decline. Although we found 1
out of 10 ensemble members which reproduced the
WACS pattern relatively well for the analysis of trends,
the regression analysis showed no connection to the
underlying dynamics and disagreed with the findings
from ERA20C. Additionally, the ERA20CM ensemble
mean failed to reproduce the observed temperature
and circulation fields for the ETCAW. Reasons for the
flaws in the AGCM models can be manifold. Fran-
cis (2017) points out that boundary layer processes,
troposphere–stratosphere coupling and high sensitivity
to tropical climate are issues in modelling an appropri-
ate Arctic amplification and sea ice loss response. In
fact, model experiments in Tokinaga et al (2017) show
that the correct WACS temperature pattern response
is found if the model is forced mainly with tropical
SST variability rather than mid-latitude SST variability.
We found similar results for the ERA20CM ensem-
ble (see supplement figure 11), underlining the points
made by Cohen (2016). Smith et al (2017) show that
modeled response to Arctic sea ice loss depends on
the background state of the model and pointed out
differences between AOGCMs and AGCMs response.
They further noted that the response is sensitive to
the detailed properties of planetary wave propaga-
tion into the stratosphere. Moreover, different factors
of natural variability may play a role in the forma-
tion of the WACS pattern, which are not captured
in AGCMs. Further studies are needed to investigate
the disagreement between (some) GCM experiments
and observed responses.
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5. Conclusions

Several simulated and reconstructed gridded datasets
were used to examine the link between September SIC
in the BKS, atmospheric conditions and the WACS
temperature pattern in winter. We found evidence for a
manifestation of this temperature pattern not only dur-
ing the current ongoingArctic warmingperiod (RAW),
but also for the Arctic warming between 1910–1940
(ETCAW). Regression analysis with normalized SIC
from the BKS region indicates that the overall tem-
perature and heat-flux trend is largely congruent to a
reduction of September BKS sea ice.

Upper troposphere conditions point towards a
strengthened atmospheric blocking over the BKS,
implying the advection of cold air from the polar
regions to central Siberiaon its easternflank.Moreover,
this blocking triggers a more meridional circulation,
reducing the strength of the warm air advection
by the westerlies. Comparison of the long-term cli-
mate reanalysis ERA20C with its parent model run
(ERA20CM) forced by the same sea ice and SST bound-
ary conditions suggests that this particular AGCM lacks
the ability to reproduce the atmospheric conditions fol-
lowing low-sea ice years, both at the surface and in the
upper troposphere.

These findings are consistent with several recent
studies and provide the foundation for analyzing the
validity of the recent theories proposing a link between
reduced SIC in the BKS and the WACS. To identify the
specific deficiencies in AGCMs remains an open task.
Moreover, sinceonlyoneAGCMwasused in this study,
a variety of AGCM ensemble runs are needed to clearly
rule out the possibility of the occurrence of WACS
pattern due to random sampling. However, future pro-
jections and impact studies of Arctic warming periods
should take into account a possible deficit in the large-
scale response of sea ice on the mid-latitudes in models.
Upcoming high-resolution reanalyses and reconstruc-
tions will improve the understanding of the WACS
during the early twentieth century and offer further
insights into a possible surface–stratosphere connec-
tion triggered by sea ice reduction, snow-cover changes
and decadal SST changes.
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