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Abstract: Although air pollution is one of the most significant environmental factors posing a threat
to human health worldwide, air quality data are scarce or not easily accessible in most European
countries. The current work aims to develop a centralized air quality data hub that enables citizens to
contribute to air quality monitoring. In this work, data from official air quality monitoring stations are
combined with air pollution estimates from sky-depicting photos and from low-cost sensing devices
that citizens build on their own so that citizens receive improved information about the quality of the
air they breathe. Additionally, a data fusion algorithm merges air quality information from various
sources to provide information in areas where no air quality measurements exist.

Keywords: air quality estimation; air pollution; citizen science; sky images; social media; data fusion

1. Introduction

At present, air pollution is one of the most significant factors posing a threat to health worldwide.
According to the World Health Organization [1], ambient air pollution was responsible for the
premature deaths of 3.7 million people under the age of 60 in 2016. Europe’s most problematic
air pollutant in terms of human health is particulate matter [2].

Particulate matter (PM) can have significant effects on human health including asthma,
lung cancer, and cardiovascular issues. Particulate matter up to 10 micrometers in diameter (PM10) is
able to penetrate the bronchi, while particulate matter with diameter up to 2.5 micrometers (PM2.5)
can penetrate the lungs and enter the circulatory system [3]. The International Agency for Research
on Cancer (IARC) concluded in 2013 that particulate matter is carcinogenic to humans [4]. PM is also
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harmful to the environment, and its effects include increased acidity of lakes and streams, nutrient
balance changes in coastal waters and river basins, reduced levels of nutrients in soil, damage to
forests and crops, reduced diversity in ecosystems, damage to stone and other materials, and reduced
visibility (haze) [2].

Although there is a general consensus that air pollution is affecting human life and well-being
worldwide, there is little awareness of the role that each one of us can play to mitigate this problem.
Awareness primarily requires access to information, which should be widely available and easily
understandable, as required by the Aarhus Convention (which provides for the right of everyone to
receive environmental information that is held by public authorities), and by the Air Quality Directives
(2004/107/EC and 2008/50/EC). However, although such information is available, it is generally not
easily accessible by citizens. Common problems reported are [5]

• inadequate air quality monitoring networks in some areas, consisting of insufficient numbers
and/or inappropriately located, old, and unreliable monitoring stations [5];

• the difficulty for citizens to interpret data published long after breaches of limit values have
occurred in highly technical formats.

Even when people are aware of the issue, they usually do not associate their own individual
behavior with these outcomes. However, the air is a public good [6]. Particularly for air pollution, it
is collective, rather than individual action which is necessary to mitigate the problem, as the air we
breathe is a resource common to everybody.

The hackAIR project (www.hackair.eu) aims to develop an air quality data hub by developing an
open platform that enables communities of citizens to easily set up low-cost air quality monitoring
networks and engage their members in measuring and publishing outdoor air pollution levels.
By combining official data with air quality estimates from sky-depicting images and from sensing
devices that citizens can build on their own, hackAIR provides citizens with improved and easily
accessible information about localized air pollution levels. In order to also provide information in
areas where no air quality monitoring stations exist, a data fusion algorithm for merging air quality
information from various sources has been developed and air-quality-aware personalized services
(e.g., outdoor activity recommendations) are provided to the public.

The general issue of raising awareness of the air pollution problem and its impacts on health has
received considerable attention by several initiatives in the past. The official database of the European
Environment Agency (www.eea.europa.eu/themes/air/air-quality-index/index), Air Pollution in
World (http://aqicn.org/map/world), AirNow (www.airnow.gov) in the US and Canada, and the
London Air Quality Network (www.londonair.org.uk) are some of the existing websites providing
information on air pollution levels. In addition to independent initiatives, several projects funded
by the European Commission, such as ObsAIRve (www.obsairveyourbusiness.eu), CITEAIR (www.
citeair.eu) and PASODOBLE (http://cordis.europa.eu/project/rcn/94372_en.html), have dealt with
the issue of air pollution. The majority of these solutions are available only in regions with existing
monitoring stations because they require official measurements as input. To overcome this issue,
hackAIR acquires air pollution data from various sources and offers tools to citizens to contribute their
own measurements. Thus, it offers much richer information on air pollution levels—whether official
monitoring stations are available or not—accompanied by activity recommendations adjusted to each
user’s personal profile. These recommendations enable citizens to identify areas with better air quality
within the city and safeguard their health.

Citizen observatories for air pollution monitoring with sensors are increasingly viewed as an
essential tool for better observing and understanding our environment [7]. CITI-SENSE (www.citi-
sense.eu) and EveryAware (www.everyaware.eu) are two of the existing EU funded projects aiming to
empower citizens to participate in air pollution monitoring, enhancing their awareness of the problem
and promoting behavioral change. Under the same concept, many commercial solutions have also
been developed. The Envi4All mobile application (http://envi4all.com/) provides real-time and
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forecast air quality data and enables users to report how they perceive the quality of the outdoor air at
that specific moment. PlumeLabs (https://plumelabs.com/) also offers this information and gives
the opportunity to citizens to track and report air pollution data with a PlumeLabs sensor. The Air
Quality Egg (http://airqualityegg.com) promotes the creation of a sensing device that could be used
by hobbyists and can monitor NO2, CO, CO2, SO2, PM2.5, and VOCs in the atmosphere. Several
do-it-yourself initiatives have been also organized as part of recent efforts to democratize air quality
monitoring. Indicatively, step-by-step instructions can be found for a wide variety of projects via
ExploreInstructables.com, SparkFun.com, and PublicLab.org. The main limitation of such approaches
is their failure to attract the interest of a critical mass of users that would provide them with a sufficient
amount of air quality information. In order to overcome this limitation, hackAIR addresses the issue
of data collection by including additional sources of data which do not necessarily require action by
volunteers. These include the estimation of approximate air quality from sky-depicting images from
social media and open data on air quality.

There have been various research efforts aiming at developing alternative, easy-to-produce,
and inexpensive instruments for air pollution monitoring. Such an approach was introduced by
Wang et al. [8] aiming to quantify the loading of black carbon on quartz fiber filters with digital
photographic methods. Field results demonstrated that this approach provides measurements as
precise and accurate as the ones acquired with expensive instruments, while it exhibits short analysis
time and easy operation. Ramanathan et al. [9] introduced a similar approach, integrating an aerosol
filter in a cellphone to collect filter images. The images are analyzed in real time to determine the
current concentrations of black carbon.

From the different components of hackAIR, air pollution estimation from sky-depicting photos
has been scarcely used in commercial offerings. This approach has been explored in previous
research works. For example, Babari et al. [10] developed model-driven approaches to monitor
and estimate atmospheric visibility distance and air pollution levels through the use of ordinary
cameras. Another approach is iSPEX (http://ispex-eu.org/), a low-cost mass-producible optical
add-on for smartphones with a corresponding app, which turns a smartphone camera into a
spectropolarimeter [11]. However, the aforementioned approaches remained in the state of a prototype
and did not achieve commercial realization nor acquisition of a critical mass of data.

2. The hackAIR Methodology

The hackAIR solution has the primary goal of enabling communities of citizens to easily set up
air quality monitoring networks and to engage their members in measuring and publishing outdoor
air pollution levels, leveraging the power of online social networks, mobile and open hardware
technologies, and engagement strategies. hackAIR allows for the collection of data from publicly
available sources (measurements from ground-based stations, open data, and sky-depicting images
uploaded to social media) and contributions from the hackAIR community (sky-depicting photos
taken with the hackAIR app and measurements from low-cost sensing devices). Besides the platform, a
social media monitoring tool has been developed to enable the discovery of social media accounts that
belong to users or organizations interested in air quality issues and thus help with user engagement in
the hackAIR activities.

In the following, we provide an overview of the various methodological elements which, in
combination, represent the hackAIR solution. In summary, hackAIR collects readily available air
quality measurements from the web and publicly available images of the sky from social media and
webcams. For these images, machine learning algorithms automatically detect and extract clear sky
regions that can be used for air quality estimation. Then, an algorithm that estimates the levels of air
pollution based on the color of the extracted sky regions is applied. In parallel, the hackAIR solution
offers guidelines to users on how they can build their own low-cost sensing devices to monitor their
local air pollution and contribute actual measurements. All the above data are combined with official air
pollution measurements from ground-based stations and satellite observations and feed a data fusion
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system which offers estimates of air quality even in areas with no measurements. Finally, based on
each user’s preferences and sensitivities, hackAIR provides recommendations on how they can protect
themselves from air pollution. All these services are offered through an integrated platform available
as a web and mobile application that contributes to the creation of an improved knowledge base for air
quality data in Europe and a change towards more proactive and environmentally friendly behavior.

2.1. Environmental Data Discovery and Indexing

Data discovery and collection in hackAIR focuses on two data types: (a) readily available air
quality measurements and (b) publicly available images of the sky that can be used for image-based
air quality estimation using the techniques described in Sections 2.2 and 2.3. As mentioned above,
with respect to readily available air quality measurements, the collection includes both measurements
from official air quality stations (e.g., established by governmental organizations) and measurements
from low-cost sensor networks. With respect to publicly available images of the sky, two sources are
explored: a) social media images and b) images from public webcams.

The collection of official air quality measurements in hackAIR relies on the OpenAQ (https:
//openaq.org) open data platform. OpenAQ aggregates and shares (via an open Application
Programming Interface (API)) high-quality data about air quality from multiple official sources
around the world (e.g., the European Environmental Agency) including more than 30 countries in
Europe, which is currently the focus of the hackAIR framework. Importantly, the OpenAQ system
checks each data source for updated information every 10 min, which guarantees that the data will be
available from the platform almost immediately after they are published by the original data providers.
In Europe, OpenAQ currently provides PM10 and PM2.5 data from about 1800 and 800 locations,
respectively. The hackAIR data collection framework retrieves up-to-date information from each
location by regularly performing appropriate queries to the Representation State Transfer (REST) API
provided by OpenAQ.

Besides measurements from official air quality stations, the hackAIR solution involves the
collection of measurements from personal low-cost air quality stations established by citizens and
promoted by a number of air quality initiatives, similar to hackAIR. One such initiative is luftdaten.info
which currently comprises more than 4000 sensors in Europe. The sensors of the luftdaten.info network
constitute an ideal data source for hackAIR as they measure both PM10 and PM2.5 concentrations and
their latest data are always available through an open API. The hackAIR data collection framework
uses relevant APIs to retrieve up-to-date information from each sensor on an hourly basis.

As far as the collection of publicly available sky images is concerned, hackAIR explores the
possibility of using publicly shared geotagged images from social media platforms. According to
the KPCB Internet Trends Reports 2016 (www.kpcb.com/blog/2016-internet-trends-report), which
provides an overview of the trends related to image sharing for 2005–2015, the most popular
image sharing platforms are Snapchat, Facebook Messenger, Instagram, WhatsApp, and Facebook.
Unfortunately, all these platforms either do not distribute user-contributed images through a free API,
or pose very strict limitations that prohibit their practical usage. Therefore, hackAIR uses Flickr, the
next most popular image sharing platform that also provides a free open API.

To collect images from Flickr, the hackAIR data collection framework implements a collector
that periodically calls the appropriate Flickr API endpoints to retrieve the URLs, timestamps, and
geolocations of all images captured within the last 24 h in Europe. This leads to the collection of about
5000 geotagged images on a daily basis.

In addition to Flickr images, the hackAIR data collection component incorporates images
from public webcams. Webcams offer the advantage of a continuous image stream from fixed
known locations. To this end, two large webcam repositories are considered—AMOS [12,13] and
webcams.travel [14]. Combined, the two repositories provide access to about 3500 webcams in Europe:
about 2500 come from AMOS and 1000 from webcams.travel (the latter source actually provides
access to a significantly larger number of webcams (>20,000) but limitations of their free API prohibit
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the regular collection of images from more than 1000 webcams per day). In the case of AMOS, a
customized web data extraction framework was developed, while in the case of webcams.travel, data is
retrieved through a client application for the provided API. In both cases, data collection is performed
4 times per day during daytime.

Efficient indexing and storage of the information retrieved from all the previously described
sources relies on a MongoDB instance. This offers efficient mechanisms for handling geographical data
and performing geospatial queries.

2.2. Image Processing for Sky Detection

As soon as the Flickr and webcam images are retrieved, a number of automated image processing
operations are launched in order to (a) determine whether sky is depicted in the image and (b) localize
the clear (of non-sky elements, clouds, or humidity) sky area and compute the color statistics that are
used as input to the air quality estimation method described in Section 2.3.

To automatically detect the presence of sky in an image, we build a visual concept detection model
using Deep Convolutional Neural Networks (DCNNs). In particular, we finetune a state-of-the-art
pretrained DCNN model (Inception-v3 [15]) by replacing the last layer of the network with a new
layer trained on a manually annotated (for the sky concept) set of 2500 Flickr and webcam images.
This model achieves an accuracy of 96.2% when evaluated on an independent test set.

In the next processing step, all images recognized as sky-depicting are further processed in order
to determine the exact location of sky. To this end, two alternative sky localization approaches are
considered: one that applies deep learning for image segmentation and one that is based on simple
image processing heuristics.

The first approach that we apply is the Fully Convolutional Network (FCN) [16]. Building
upon the recent advances in deep and transfer learning, FCN applies fully convolutional finetuning
using whole-image inputs and per-pixel ground truth labels to adapt deep networks pretrained
for image classification to image segmentation tasks. In hackAIR, we use a publicly available FCN
model (https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/siftflow-fcn16s) (FCN-16)
pretrained on the SIFT Flow dataset [17] (which includes annotations for the sky class) that was found
to achieve an average pixel precision of 94.3%.

The second approach for sky localization consists of a set of heuristic rules that aim to identify
pixels that meet certain criteria with respect to their color values and the color values of neighboring
pixels. In rough terms (a more detailed description of this algorithm can be found in [18]), if R, G,
and B denote the Red, Green, and Blue values of each pixel, sky pixels must satisfy the following
three conditions:

R
G
∈ [0.5, 1],

G
B
∈ [0.5, 1], and

B
R

> 1.25

and, moreover, occupy large contiguous areas in the upper part of the image.
To compare the two approaches, we first evaluated their performance on the SUN benchmark

database [19] and found that the FCN approach performs significantly better in recognizing the sky
regions, obtaining a pixel precision of 91.77% versus 82.45% for the heuristic approach. However,
we noticed that the ground truth annotations of the SUN database (as well as those of the SIFT Flow
database on which the FCN model is trained) are noisy, in the sense that the regions annotated as
sky often contain non-sky areas (e.g., clouds, the sun, or small objects). The presence of such areas is
problematic as it may result in noisy pixel color statistics and consequently compromise the validity of
the air quality estimations that rely on these statistics.

Therefore, we conducted an additional evaluation of the two methods, tailored to assessing
their performance on the more specific task of identifying sky regions that are suitable for air quality
estimation (i.e., do not contain non-sky elements). In particular, we performed sky localization
with each approach on 200 randomly selected Flickr and webcam images and manually assessed
through inspection the validity of the sky regions detected by each approach. Note that in this type of

https://github.com/shelhamer/fcn.berkeleyvision.org/tree/master/siftflow-fcn16s
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evaluation, it is expected that both approaches will achieve significantly lower performance scores as
even a small non-sky area within the detected sky region deems the whole region usable. Indeed, we
found that the sky regions extracted by FCN are suitable in only 24.8% of the cases versus 47.9% for
the heuristic approach.

A careful examination of the extracted regions suggests that the heuristic approach owes its
superior performance to the extraction of more fine-grained regions and, therefore, more cases where
the detected region consists only of sky pixels. More importantly, the visual examination also revealed
that the two approaches can work in a complementary way. We found that the FCN approach is better
at avoiding significant errors (e.g., sea or building windows recognized as sky), while the heuristic
approach can successfully filter out small non-sky elements such as small objects and text overlays
that are particularly common in webcam images. Motivated by this complementarity, we tested a
hybrid sky localization approach that first extracts the sky region using the FCN approach and then
refines it by applying the heuristic approach considering only the pixels recognized as sky by the FCN
approach. This hybrid approach manages to extract suitable sky regions in 80.3% of the images and is
the method of choice for the hackAIR solution.

The final processing step consists of computing the mean red-to-green (R/G) and green-to-blue
(G/B) ratios from the parts of the images identified as sky and providing them as input to the air
quality estimation method described in the following section. Since images commonly undergo
various types of transformations by users (e.g., artistic filters, color enhancements) before being
uploaded to social media platforms such as Flickr, we studied how such transformations affect the
results of the image analysis (i.e., the calculated R/G and G/B ratios). To this end, we selected a set
of 87 sky-depicting (untransformed) Flickr images and applied 24 popular image transformations
(resizing, color level effects, artistic filters, etc.) on each image using the image manipulation API
of Cloudinary (http://cloudinary.com). Original images and their transformed versions were then
processed independently for sky detection and localization, and R/G and G/B ratios were extracted
from all images with a usable sky region. By measuring the Pearson correlation between the R/G and
G/B ratios of original and transformed images, we found that both ratios are very robust against most
transformations (Pearson correlation > 0.9 for 18 out of 24 transformations), with only 2 very intense
transformations (brightness increase ≥ 50%, red-rock artistic filter) causing a significant distortion on
the calculated ratios and 2 transformations rendering all images unusable for air quality estimation.
These results (the interested reader is referred to [20] for more details on the experimental setup and the
detailed results of this analysis) suggest that image transformations are expected to have a negligible
impact on image-based air quality estimations and this pertains only to a small fraction of the images
used by the hackAIR framework since webcam images and images captured with the hackAIR app are
typically untransformed.

2.3. Estimation of Air Quality from User-Generated Sky Photos

Atmospheric visibility is a very useful indicator of the so-called aerosol optical depth (AOD:
a measure of the extinction of radiation due to scattering and absorption by aerosols) and,
subsequently, of air pollution resulting from suspended particulates, especially in drier climates [21,22].
Passive remote sensing instruments (e.g., sunphotometers, spectrophotometers) retrieve aerosol optical
properties, such as AOD, by measuring the incident radiation on the ground at specific wavelengths.
To assign the light intensities measured by the instruments to AOD values, a Look-Up Table (LUT)
approach is usually followed. LUTs are produced with the use of a radiative transfer model (RTM).
RTMs allow for the calculation of the intensity of the light transferred in the atmosphere under different
user-specified scenarios. These scenarios may include information about the position of sun relative to
Earth (solar zenith angle) and atmospheric parameters which are related to clouds, aerosols, water
vapor, ozone, surface albedo, etc. This way, one knows what light intensity should be expected under
specific atmospheric conditions. Comparison of the measured spectral light intensities with those from
a LUT allows for retrieval of the AOD.

http://cloudinary.com
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The color (Red–Green–Blue) of the sky is partly determined by atmospheric aerosols (amount
and type). Several scientific efforts around the world to retrieve atmospheric aerosol-related properties
from images taken from digital cameras and paintings [21] have returned promising results so far.
Previous employments of similar methods, i.e., using digital cameras, have shown that the comparison
of AOD derived from sky images with those retrieved with sunphotometers operated side by side
showed differences similar to the nominal error claimed in the AOD sunphotometer networks [23].
A relevant field experiment showed that AOD from sky images is highly correlated with AOD from
sunphotometers, with a correlation coefficient of 0.95 and an average retrieval error of around 7% [24].
Furthermore, sky radiances obtained by digital cameras were compared with CIMEL sunphotometer
radiances, finding mean absolute differences between 2% and 15% except for pixels near the sun and
high scattering angles [25]. The method used in hackAIR is based on the comparison of the R/G and
G/B ratios from images and precalculated LUTs to retrieve AOD [18].

2.4. Design of Guidelines for Low-Cost Air Quality Sensing Devices

In order to increase air pollution awareness and attract open software and hardware communities
to provide added value to the hackAIR project, low-cost sensing devices were developed. The sensing
devices consist of three main elements: a sensor, a processing unit, and a communication module.
Sensors selected for the current project are based on the optical determination of particles by means
of a light scattering method. A typical sensor includes a light source (IR LED or diode laser),
a photo-sensing device (photodiode or phototransistor), and a focusing lens. The particles pass
through the light beam, and scatter and absorb the light. The detected light intensity is directly
correlated with the concentration of particles. Air flow is ensured by forced flow using mini blowers
or heated elements. Two classes of sensors were tested and selected: LED based (Shinyei PPD42NS)
and Laser based (DFRobot SEN0177, Inonafit SDS011, and Plantower PMS5003).

The communication capabilities of the proposed devices dictate the selection of appropriate
processing units that usually fall into two categories: For distributed networking solutions (Ethernet,
WiFi), we adopt the Arduino ecosystem in typical implementations (Arduino UNO with Ethernet
shield or with a dedicated hackAIR WiFi shield, Wemos, and compatible NodeMCU implementations).
For personal networking, we adopt the Bluetooth low-energy (BLE) protocol, which is implemented
by means of Cypress® Progrannable System-on-Chip (PSoc)/Programmed Random occurrence (PRoc)
modules. Arduino and Wemos solutions are designed to be placed in closed cases at predefined places
while their locations are provided during the registration at the hackAIR portal. The PSoC/PRoC
sensing device is designed to be portable and implemented using the BLE protocol in beacon format
packets while additional information like the geolocation and user credentials are attached in the
submitted network packet from the mobile device that is responsible for sending the data over the
internet to the hackAIR portal. The portability of the proposed devices is further extended since the
power supply can be provided by portable power banks.

Recently, temperature and humidity measurement capability was included on the designed
hardware and software. Specifically, DHT11 and DHT22 sensor boards were used in order to
increase the measurement reliability, and software code was added in the provided libraries
accordingly. Detailed hardware descriptions (i.e., schematics and printed circuit boards (PCBs))
of all the above sensors and the corresponding software (open access codes and libraries) are
available on the project’s GitHub site (https://hackair-project.github.io/hackAir-Arduino/general/,
https://github.com/hackair-project/hackAIR-PSoC/wiki).

All designs incorporate power saving algorithms and the sensors are shut down during the time
intervals between measurements in order to reduce power consumption and increase the expected
lifetime of the sensors’ laser system.

Furthermore, an air quality characterization sensor made of Commercial Off-the-Shelf (COTS)
materials based on well-established image processing and computer vision techniques aiming to
provide qualitative PM concentrations was developed. The sensor comprises a test surface where the

https://hackair-project.github.io/hackAir-Arduino/general/
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PMs are collected. For this purpose, a 5 cm square piece of the aluminium side of a Tetra Pak food
packaging carton is used. Along the diagonal axis of the user’s choice, two small dots are made using
a 0.7 mm mechanical pencil, near the center of the test surface.

Subsequently, a thin layer of petroleum jelly is applied in order to trap the PMs. The hackAIR
cardboard sensor is then exposed outdoors for 24 h. Afterwards, the cardboard sensor is retrieved
and a set of five images of the area of interest is captured using a cell phone camera and a macro
lens of at least ×12 magnification. For the characterization of the air quality, the hackAIR cardboard
sensor implements an algorithm that is described in the flowchart depicted in Figure 1. To estimate
the number of blobs which correspond to PM10 or greater air particles trapped on the petroleum jelly
layer of the test surface, well-established image processing and computer vision techniques are run.
Such algorithms involve Otsu’s method for thresholding [26], Contrast Limited Adaptive Histogram
Equalization—CLAHE [27], and Moore’s tracing algorithm for extracting.
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Figure 1. Particulate matter (PM) concentration estimation algorithm flowchart.

2.5. Data Fusion Tools

In order to add value to the hackAIR observations and to provide the platform users with estimates
of the air quality at any given location, even if no measurements were made there, a data fusion system
was developed. This system has the primary objective of interpolating the point-based observations in
space such that air quality estimates are available at any point within the domain. Data fusion is a
subset of data assimilation [28] and when used with observations and a model, it allows for spatially
interpolating point observations in a mathematically objective way while at the same time constraining
the model. Data fusion has been successfully applied in such a fashion for real-time urban-scale air
quality mapping by combining observations from a low-cost sensor network [29] with information
from a high-resolution local-scale dispersion model [30,31]. We use data fusion here primarily with
the goal of spatially interpolating the observations, which are often subject to significant uncertainty,
in a meaningful way. As such, the model is used as auxiliary information to guide the interpolation in
areas where no observations are available.

The input data to the data fusion system are hereby twofold: the observational data is primarily
composed of the measurements made by the participants, e.g., aerosol optical depth estimates from
sky-depicting images and particulate matter observations using optical particle counters mounted in
open platforms. As model information, we use the operationally available data from the Copernicus
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Atmosphere Monitoring System (CAMS). More specifically, we use the daily ensemble forecast of the
CAMS regional modelling system, representing the median of the ensemble of seven participating
models [32].

The data fusion system used here is conceptually similar to the one described in [30] and is
based on geostatistics [33–35]. More specifically, the technique uses universal kriging for interpolating
the observations in space using model information as a spatial proxy to guide the interpolation.
The interpolation is carried out at a country level with a spatial resolution of 5 km by 5 km. Currently,
the focus lies on the two study sites—Germany and Norway—but the method can be readily extended
to larger regions. The resulting fused maps are updated once every hour using observations and
model information averaged over a period which can be adjusted based on the number of available
observations. One of the major advantages of using a geostatistical framework as a data fusion
technique is that the underlying kriging methods by default provide pixel-level uncertainty estimates.
This can be important for propagating sensor-level uncertainties all the way to the end users. Given the
availability of urban-scale modelling output with spatial resolutions of 100 m × 100 m and less, the
methodology can also be applied for street-level maps of air quality [30,31] and experiments along
these lines with the observations collected as part of hackAIR are planned for the second part of
the project.

2.6. Personalized Recommendations Based on Environmental Data

Several initiatives, including projects (PESCaDO (http://pescado-project.upf.edu/) [36]) and
applications (AirForU (http://newsroom.ucla.edu/releases/new-app-lets-you-check-air-quality-as-
easily-as-checking-the-weather), Clean Air Nation (https://play.google.com/store/apps/details?
id=io.gonative.android.robzl&hl=en), Air Visual (https://airvisual.com/app), Breezometer (https:
//breezometer.com), etc.), demonstrate the added value of up-to-date, spatiotemporally defined
air-quality-related information and recommendation provision [37]. However, the above applications
produce recommendations that generally apply to sensitive people, without any specialization to
specific individuals’ needs. Our aim is to implement a user-driven decision support (DS) framework
that takes into account variations in people’s air-quality-related vulnerabilities, as well as the
environmental dynamics and relations, and produces recommendations, either in the form of general
tips on how to reduce their ecological footprint or of personalized advice on how individuals may
respond to existing atmospheric conditions, upon request for decision support.

The preferences that each user reported in the hackAIR system are classified according to age,
cardiovascular or respiratory diseases (e.g., asthma), the performance of outdoor activities that cause
breathing extension (e.g., jogging), and some other states (e.g., pregnancy, working outdoors). For each
of the above user types and air pollution levels, specific messages with fixed content were defined by
the hackAIR environmental experts based on a review of the literature on individuals’ susceptibility.
Therefore, the problem of providing personalized inferences is transformed into a classification task
where different recommendations are given to the users according to a specific set of classes in the
ontology that they belong to.

For the common representation and orchestration of heterogeneous information (environmental-,
health-, user-profile-related data) and their existing relations, as those were defined by environmental
and health experts of the project, we make use of ontologies—the state-of-the-art Semantic Web
technology for structuring and semantically integrating data [38]. Ontologies have been extensively
adopted in separate parts of the decision-making process [39–41], mostly for the formal representation
of the domain of interest. On the contrary, our developed framework demonstrates the extensive use
of ontologies and of relevant reasoning technologies for handling both the static (representation) and
dynamic (realization, inference) processes of a DS system.

More specifically, we implemented a multilayered, ontology-based DS framework that comprises
the following components [42] (Figure 2):

http://pescado-project.upf.edu/
http://newsroom.ucla.edu/releases/new-app-lets-you-check-air-quality-as-easily-as-checking-the-weather
http://newsroom.ucla.edu/releases/new-app-lets-you-check-air-quality-as-easily-as-checking-the-weather
https://play.google.com/store/apps/details?id=io.gonative.android.robzl&hl=en
https://play.google.com/store/apps/details?id=io.gonative.android.robzl&hl=en
https://airvisual.com/app
https://breezometer.com
https://breezometer.com
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• The knowledge base (KB)—A set of interconnected ontologies which define the abstract schema
(TBox layer) and actual assertions (ABox layer). It serves as a formulation and storage module of
involved data, represented by the following main concepts: Person, Health_Sensitivity, Activity,
Location, Environmental_Data, Request, and Recommendation, and their related subclasses
and relationships.

• The recommendation module (rules layer)—a rule-based inference mechanism, implemented
by fully exploiting the SPIN (SPARQL Inferencing Notation) -rules framework [43] (http://
spinrdf.org/). It runs on top of the above ontological definitions, so as to interpret the existing
data, produce new knowledge, and thus infer appropriate recommendations for the users, with
respect to the existing air quality conditions and specific profile characteristics (age, health
status, preferred outdoor activities) which implicitly define the different levels of individuals’
vulnerability under severe atmospheric conditions, according to the project’s experts.
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Representative scenarios defined within the hackAIR project, with the support of the project
partners and environmental experts, are analyzed in depth in project deliverable D4.2 [44]. Here,
for demonstration purposes, we consider the following hackAIR users: (1) a pregnant woman with
respiratory diseases who likes to take long walks; and (2) a 65-year-old person who daily performs
some outdoor work. Both live in an area supported by the hackAIR platform and request personalized
recommendations through the hackAIR app. The KB receives via the implemented web service
each request and stores the involved data (user profile details and fused air quality data) in the
form of triples, conforming to the developed ontology schema. Appropriate ontology rules are
triggered automatically, classifying (i) users in relevant basic or complex user profile classes; e.g.,
User1 as Pregnant_and_SensitiveHealth_Person and Pregnant_and_SportsWalking_Person, and User2 as
Elderly_and_Outdoor Job_Person; and (ii) air quality measurements in relevant Air Quality Index (AQI)
values. The above inferences feed the second level of ontology rules responsible for the proper
matching between user profiles and defined recommendations. Thus, each user receives one or more
recommendations according to his/her classification results and also to existing air quality conditions;
e.g., User1 receives the suggestion: “You should go for a walk in an area with cleaner air.”, while User2
receives: “You should consider with your supervisor (if any) the possibility of changing your working
environment for today” when atmospheric pollution is extremely high.

The proposed ontology-based implementation facilitates the extensibility (enriching the KB with
new concepts, rules, and recommendation messages per case), modularity (customizing existing

http://spinrdf.org/
http://spinrdf.org/
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schema and rules), and adoptability of the system (well-established, formal representation of data,
seamless communication with third-party modules).

2.7. Development of the Integrated HackAIR Platform

The hackAIR platform follows a Service-Oriented Architecture (SOA) for the integration of all
platform components. The principles of service orientation are independent of any vendor, product, or
technology. Services are unassociated, loosely coupled units of functionality that are self-contained and
each service implements at least one action. This makes it possible to reuse the code in different ways
throughout the application by changing only the way an individual service interoperates with other
services that make up the application, versus making code changes to the service itself. Furthermore,
the hackAIR Platform implements a REST Web Services design approach to sustain integration among
subcomponents and other integrations like mobile devices.

The hackAIR platform’s architecture is composed of the following three layers: Data, Business
Logic, and Application. The communication between these layers is bi-directional and always passes
through the business logic layer. The communication between the Application and the business logic
layers is handled through a RESTful API presented in Figure 3, where AQ represents air quality and
COTS the hackAIR Commercial Off-the-Shelf solution.
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Data layer

The data layer includes the data persistence mechanisms that are responsible for storing and
retrieving the data used by the hackAIR platform. It comprises a database for storing the basic hackAIR
data entities and a Knowledge Base for storing semantically enriched information.

Business Logic layer

The business logic layer handles the requests coming from the application layer by applying
the business logic rules and replying securely with proper content to the client applications (web
and mobile applications). In addition to that, it receives measurements taken by the Arduino devices
through the API and routes them to the appropriate module. Finally, the business logic layer
communicates with external components including official websites, social media platforms, and
webcams to retrieve air quality data.
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The business logic layer includes various modules of the hackAIR platform, which all fall under
the following three categories:

• Data ingest (responsible for acquiring data from various sources);
• Data processing (responsible for information transformation, processing, and implementation of

business rules);
• Data access (responsible for communicating with the hackAIR platform’s database systems).

Application layer

The application layer hosts the user’s interaction interface available for access via the web and
mobile and also via a community portal. The applications provided through this layer were developed
using the Angular JS framework, HTML5, and CSS3. The mobile application was built and wrapped
using the Ionic framework in order to provide all features required for the Android and iOS platforms,
offering full end-user access to all hackAIR services. Users not only consume data, but can also
provide data like personal information and air quality estimations (through photos and air quality
measurements coming from hardware devices).

The interface of the platform was designed by User Interface/User Experience (UI/UX) experts
to ensure the best experience of users (Figures 4 and 5).
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2.8. Social Media Monitoring Tools for Relevant User Discovery

Besides the integrated hackAIR platform which implements all the core hackAIR technologies,
a standalone social media monitoring tool has also been developed within hackAIR with the aim of
increasing the outreach and adoption of the platform. This tool aims to support the discovery of social
media accounts that belong to users or organizations that are interested in air quality issues and could
therefore be approached and engaged.

The tool builds upon and extends an open-source software framework (https://github.com/
MKLab-ITI/mmdemo-dockerized) [45] for monitoring, analysis, and search over multiple social
media platforms. The framework offers powerful tools for (a) tracking social media discussions
around keywords and user accounts of interest; (b) obtaining real-time analytics over the tracked
keywords/accounts; (c) identifying new accounts; and (d) analyzing the structure of communities.
Within hackAIR, two important extensions of the framework are implemented to cover the needs of
the project with respect to (a) account discovery and (b) audience analysis.

The first extension is the development of a sophisticated methodology for discovering
hackAIR-relevant accounts on different social media channels. The methodology is based on the
collection of a large initial set of candidate user accounts from different social media platforms, and
then on the application of automatic classifiers to separate between relevant and irrelevant accounts.
The collection of candidate accounts is based on querying the respective platform APIs with a list of
air-quality-related keywords, while additional candidate accounts are discovered with the help of an
iterative exploration process based on Twitter lists and by monitoring air-quality-related streams of
tweets. The classification of accounts into relevant and irrelevant is based on classification models
trained on text features extracted from the accounts’ profile metadata (description) and their posts.

The second extension concerns the development of a solid methodology for analyzing the social
media audience of hackAIR. Moving beyond the existing analytics tools of social media platforms,
this methodology leverages social network analysis methods to create a more structured view of the
hackAIR social media audience. Specifically, the network of hackAIR followers and their followers is
analyzed with the help of a community detection algorithm to extract groups of Twitter accounts that
are more densely connected to each other, and therefore correspond to topically and geographically
focused communities. This result combined with the analysis of network connectivity of Twitter
accounts leads to the discovery of influencers, i.e., accounts that are followed by many other accounts
and that have an important role in their community.

Approaching and engaging with such accounts is expected to contribute significantly in increasing
the outreach and adoption of hackAIR.

3. Conclusions

The project describes an attempt to address the need of communities to engage their members in
outdoor air quality monitoring and tackle the challenge of using citizen science data. The potential of
using user-generated air quality data for enhancing the available datasets and acquiring information in
areas where no official air quality monitoring stations exist is a trend that receives increasing acceptance.

The described work and the various systems that have been developed and tested provide the
basis for a new approach in air quality monitoring and health impact assessment, while at the same
time the developed platform gives a great opportunity for similar approaches to be “applied” on the
same principles and reasoning. The following results show at a glance that air quality can be monitored
and presented with a usable manner with alternative means.

• Low-cost laser sensors are a reliable alternative that can provide the air pollution trends in an
area. Even tests with the Commercial Off-the-Shelf solution show promising findings.

• Sky-depicting images can also successfully represent the current air quality scale.

Different users can depict different pieces of information at no additional effort while groups
of interest can intuitively be motivated to offer their support and time to the development of new

https://github.com/MKLab-ITI/mmdemo-dockerized
https://github.com/MKLab-ITI/mmdemo-dockerized
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sensors, thus increasing their engagement and their overall awareness. Finally, hackAIR paves the way
for stakeholders from different scientific domains and business sectors to work together for better air
quality monitoring.
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