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Abstract  22 
Nitrous oxide (N2O) is the third most important long-lived greenhouse gas and an important 23 
stratospheric ozone depleting substance. Agricultural practices and the use of N-fertilizers 24 
have greatly enhanced emissions of N2O. Here we present estimates of N2O emissions 25 
determined from three global atmospheric inversion frameworks during 1998-2016. We find 26 
that globally N2O emissions increased substantially from 2009 and at a faster rate than 27 
estimated by the Intergovernmental Panel on Climate Change (IPCC) emission factor (EF) 28 
approach. The regions of East Asia and South America made the largest contributions to the 29 
global increase. From the inversion-based emissions, we estimate a global EF of 2.3 ± 0.6%, 30 
which is significantly larger than the IPCC Tier-1 default for combined direct and indirect 31 
emissions of 1.375%. The larger EF and accelerating emission increase found from the 32 
inversions suggest that N2O emission may have a non-linear response at global and regional 33 
scales with high levels of N-input. 34 
Main text  35 
Atmospheric N2O has risen steadily since the mid-20th century1,2, from approximately 290 36 
ppb in 1940 to 330 ppb in 20173,4 - a trend strongly linked to increased reactive nitrogen (Nr) 37 
in the environment5,6. Nr creation has increased enormously since the mid-20th century 38 
largely owing to the Haber-Bosch process (used primarily to produce N-fertilizer), to the 39 
cultivation of N-fixing crops, and to the combustion of fossil and bio-fuels7. Although 40 
increased Nr availability has enabled large increases in food production, it is also associated 41 
with a number of environmental problems. Among these is the rise in N2O emissions: Nr is 42 
the substrate of the microbial processes of nitrification and denitrification, both of which 43 
produce N2O as a by-product8.  44 
N2O emissions increased from 10-12 TgN y-1 prior to the industrial era5,9 to an average of 45 
~17 TgN/y in the last decade. Agriculture is responsible for the majority of this change, with 46 
emissions increasing from 0.3-1.0 TgN y-1 in 1850 to 3.9-5.3 TgN y-1 in 20105,9,10. To meet 47 
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ambitious climate targets, non-CO2 greenhouse gas emissions will also require reductions11. 48 
For N2O, this means reducing agricultural emissions while meeting the growing demand for 49 
food and other agricultural products. This will require changes in human diet and agricultural 50 
practices, and ultimately, improved nitrogen use efficiency (NUE), that is, increasing Nr in 51 
harvest relative to N-input12,13.  52 
N-input, in particular N-fertilizer use, is one of the best single predictors of N2O emissions 53 
from agriculture with an estimated emission factor (EF) of ~1% based on emissions measured 54 
from soils14. Emission inventories, used for example in reporting under the United 55 
Framework Convention on Climate Change (UNFCCC), are based predominantly on the EF 56 
approach. For direct emissions from agricultural land, the default (Tier-1) value used in 57 
reporting to the UNFCCC is 1% with an uncertainty range from 0.3% to 3% owing to the 58 
variability with agricultural practices, soil properties, and meteorological conditions14. 59 
Similarly, EFs are used to estimate indirect N2O emissions from ecosystems downstream and 60 
downwind of agricultural land, which receive Nr via run-off and atmospheric deposition, 61 
amounting to an additional but even more uncertain EF of ~0.375% (Ref 12).  62 
Estimates of the global mean EF have also been made by relating observed changes in 63 
atmospheric N2O to N-input, the so-called top-down approach, which includes emissions 64 
from agricultural land as well as downstream and downwind ecosystems. Top-down EF 65 
estimates vary from ~2 to 5% and strongly depend on the explanatory variable used, 66 
specifically whether it includes only newly fixed Nr or all Nr sources5,15,16. While modelled 67 
N2O emissions differ depending on the explanatory variable, all EF approaches assume a 68 
linear response of N2O to N-input. Conversely, evidence from field experiments suggests the 69 
emission response is often nonlinear where N-input is high17-22. However, whether this non-70 
linear response is relevant at large scales and globally is unknown. 71 
N2O emissions can be estimated regionally independently of EFs using the atmospheric 72 
inversion approach, which utilizes spatiotemporal variations in atmospheric N2O23-25. Here, 73 
we use a global network of N2O observations to estimate N2O emissions and their trends 74 
during 1998-2016. These are estimated using three independent inversion frameworks and 75 
transport models (see Supplementary Tables 1&2), providing estimates representing the 76 
systematic uncertainty from errors in modelled transport and stratospheric N2O loss (see 77 
Methods). Using updated datasets of N-input for the whole agricultural system (i.e. including 78 
crops and grasslands) and of N-surplus for cropping systems (i.e. the difference between N-79 
input and Nr removed through harvest), we determine the inversion-based emissions 80 
response to these two explanatory variables and examine the linear assumption. 81 
Emission trends and relation to N-input 82 
From three inversions, we estimate a global mean emission of 17.0 (16.6-17.4) TgN y-1 for 83 
1998 to 2016, with 11.3 (10.2-13.2) TgN y-1 from land and 5.7 (3.4-7.2) TgN y-1 from ocean 84 
(values in parentheses give the range over three inversions, Supplementary Table 3). The 85 
global emissions presented here are consistent with other top-down estimates ranging 86 
between 15.7 and 18.3 TgN y-1 for the year 20005,9,23-25. Similarly, our land emissions 87 
estimate is within the range of other top-down estimates of 11.0 to 12.6 TgN y-1, also for the 88 
year 20009,23-25, and the recent estimate from the Nitrogen Model Inter-comparison Project 89 
(NMIP)10 of 10.0 ± 2.0 TgN y-1.  90 
Top-down methods, including atmospheric inversions, estimate the source as the sum of the 91 
observed change in atmospheric N2O abundance and the amount lost in the stratosphere. As 92 
the stratospheric loss is not constrained directly by observations this term has considerable 93 
uncertainty, which is propagated into the source estimate. We calculate that stratospheric loss 94 
contributes 1.1 TgN y-1 to the discrepancy in the source estimate based on the range of 95 
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modelled atmospheric lifetimes, 118 to 129 years, and a median abundance of 1522 TgN 96 
(Supplementary Table 3) (comparable to previous findings26). The discrepancy, however, is 97 
larger than the range in source estimates, indicating compensating effects in the inversions. 98 
From 2000 the atmospheric growth rate increased steadily from a mean of 0.68 ppb y-1 for 99 
2000-2005 to 0.98 ppb y-1 for 2010-2015, with significant bi- to tri-annual periodicity (Figure 100 
1). Before 2000, calibration accuracy and measurement precision were poorer, hence the 101 
growth rate for 1998 to 2000 is more uncertain. Our discussion, therefore, focuses on trends 102 
from 2000 onwards. Previous studies found a correlation between inter-annual variability in 103 
the growth rate and El Niño-Southern Oscillation (ENSO) and attributed it to changes in soil 104 
and ocean emissions27,28. El Niño is associated with lower growth rates, likely owing to 105 
reduced rainfall in tropical and subtropical regions29 and suppressed upwelling in the eastern 106 
tropical Pacific30. One study also hypothesized an influence from stratosphere to troposphere 107 
transport on inter-annual variability31. The increasing trend, however, is likely due to 108 
increasing emissions; based on the inversions, emissions increased from 16.3 (15.5-17.1) 109 
TgN y-1 for 2000-2005 to 17.9 (17.3-18.5) TgN y-1 for 2010-2015. This increase is 110 
significantly larger than prior estimates, which showed an increase of 0.5 (0.4-0.6) TgN y-1. 111 
A change of this magnitude cannot be explained by any known mechanism through the sink, 112 
as it would require an increase in atmospheric lifetime of ~20 years, and such a change is 113 
unrealistic over this time scale. The atmospheric models used here show no trend in lifetime 114 
for this period. The growth in emissions is 90% due to emissions over land (Figure 2) 115 
including the land-ocean aquatic continuum and inland water bodies (the spatial resolution 116 
of the inversions does not allow these components to be resolved separately). 117 
An increase in emissions is consistent with global trends in total N-input and crop N-surplus, 118 
which grew by 59 and 18 TgN, respectively, during 2000-2013 (the last year for which data 119 
are available) (Figure 3). We include synthetic fertilizer applied to crop and grasslands and 120 
total animal excretion, biologically fixed nitrogen in crops and grassland, and NOx 121 
deposition from non-agricultural sources (Methods). A similar trend in N-input and N-122 
surplus is seen for China, with increases of 15 and 8 TgN, respectively, as well as for South 123 
Asia (i.e., India, Nepal, Bangladesh and Pakistan) and to a lesser extent Brazil. We limit our 124 
focus to the global scale and the five countries/regions in Figure 2 because the inversions in 125 
other regions are not well constrained due to sparse observations and thus rely on the prior 126 
estimates. 127 
The regional trends in N-input and N-surplus are consistent with the N2O emissions derived 128 
from the inversions. Emissions were found to increase in China by 0.40 (0.34-0.47) TgN y-1 129 
between 2000-2005 and 2010-2015 - significantly larger than prior estimates of 0.23 (0.18-130 
0.32) TgN y-1. Although there is an offset between INV1/INV2 and INV3 for Global land 131 
and China, the trends are very similar. The offset is largely due to residual dependence of the 132 
posterior on the prior estimates: INV3 used a larger land (and lower ocean) prior compared 133 
to INV1/INV2. The uncertainty in all regions was reduced by the inversions (Supplementary 134 
Figure 5). The change in South Asia was significantly smaller than in China, 0.14 (0.11-0.16) 135 
TgN y-1 but larger than prior estimates of 0.03-0.05 TgN y-1. In USA and Europe, emissions 136 
were fairly stable over the past nearly two decades. In Brazil, there was an increase between 137 
the two periods of 0.26 (0.23-0.29) TgN y-1, but it was small compared to year-to-year 138 
emissions variability of 0.22 TgN y-1. The five regions of focus account for ~50% of the 139 
global increase between the two time periods, while Africa accounts for ~20%, Central and 140 
South America (excluding Brazil) account for ~10%, Southeast Asia and Oceania account 141 
for 8%, and 10% was due to changes in ocean emissions (Supplementary Figure 6).  142 

 143 
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Estimation of emission factors 144 
Using the inversion emission trends and N-input data, we estimated EFs globally and 145 
regionally. To calculate EFs, we subtracted estimates of non-soil emissions (i.e., from 146 
industry, energy and waste sectors from EDGAR-v4.3.2 (Supplementary Figure 7) and 147 
biomass burning from GFED-v4.1s) from the total emissions to give the contribution from 148 
soil, which we assume is proportional to N-input. Second, we subtracted the mean of the soil 149 
emissions from each inversion over 1998-2016 to remove any offset between inversions. 150 
Figure 4 shows scatter plots of N2O emission anomalies from all inversions versus N-input. 151 
The linear regression coefficients provide an estimate of the EF for additional emissions 152 
resulting from additional N availability. The EFs were statistically significant (P < 0.05) 153 
globally, for China, Brazil and South Asia, but not for USA and Europe where changes in N-154 
input and N2O emission were small compared to scatter in the data (Supplementary Table 4). 155 
The emissions are generally higher than proportionate (and more scattered) at the upper range 156 
of N-input globally and for China and Brazil, but using non-linear regressions led to only 157 
marginal improvements with no difference between quadratic versus exponential functions. 158 
Regressions were also calculated relative to N-surplus but no improvement in the correlation 159 
or reduction in the residual standard error was found (Supplementary Table 5 and Figure 8). 160 
Globally, we find an EF of 2.3 ± 0.6% for the change in total soil N2O emission relative to 161 
the change in total N-input, including N-fertilizer, manure, biological nitrogen fixation 162 
(BNF), and NOx deposition from non-agricultural sources (Figure 5). Our N-input differs 163 
slightly from the IPCC 2006 reporting guidelines, which includes (in addition to synthetic 164 
fertilizer and manure) Nr from crop residues and mineralization of soil organic matter where 165 
soil Nr stocks are changing due to land use or management14. On the other hand, our N-input 166 
includes total livestock excretion and not only that applied as manure as in the IPCC 2006 167 
method. While the IPCC 2006 method does not directly include BNF, it assumes that Nr from 168 
BNF is relevant for N2O production when left on fields in crop residue. We do not have 169 
estimates of Nr from mineralization of soil organic matter from land use or management, but 170 
this term is likely small compared to other N-inputs. Furthermore, our EF estimates assume 171 
that trends in natural emissions of N2O are negligible over the study period. Since changes 172 
in N2O emissions due to anthropogenic N-input to natural ecosystems is counted as an 173 
anthropogenic emission, changes in natural N2O emissions are primarily related to climatic 174 
changes. Natural emissions changed by an estimated 0.7 ± 0.5 TgN y-1 since the pre-industrial 175 
era and, therefore, likely have negligible impact on our EFs for 2000-201310. 176 
The IPCC (Tier-1) method gives one EF for direct and another for indirect emissions, 177 
whereas we calculate the total EF relative to N-input. To compare the two methods, we 178 
estimate the IPCC total EF by adding the equations for direct and indirect emissions (using 179 
default parameters) and dividing by total N-input, giving an EF of 1.375% (see Methods). 180 
Our global mean EF is higher than the IPCC value but is sensitive to positive emission 181 
anomalies in 2010 and 2013 (Figure 2); excluding these values gives an EF that is not 182 
statistically different from the IPCC value. A longer time series of inversion-based emissions 183 
would help in determining the EF more accurately. However, our estimate of 2.3% agrees 184 
well with that of a previous top-down study5, which found an EF of ~2.5% (Figure 5). Ref 5 185 
estimated separate EFs for manure and N-fertilizer, of 2% and 2.5%, respectively, and found 186 
this gave a better fit to top-down estimated N2O emissions throughout the 20th century 187 
compared to one EF for total N-input. This was because in the first half of the 20th century 188 
Nr in manure was not only derived from contemporaneous N-fixation but was also mined 189 
from agricultural soils. Over the past two decades, N-mining from soils occurred only in a 190 
few countries, and manure Nr is predominantly derived from fertilizer Nr used to grow crops 191 
for livestock feed. Consistent with this, we find for the last nearly two decades that the fit to 192 
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N2O emissions did not improve if N-fertilizer and manure were considered separately as 193 
explanatory variables. A higher EF than the IPCC default, is also plausible considering the 194 
evidence of a non-linear response of N2O emission to high levels of N-input10,17-22, which is 195 
discussed below. 196 
For China, we find an EF of 2.1 ± 0.4%, which is insensitive to emission anomalies. A high 197 
EF for China is credible given the high rates of fertilizer application, low crop NUE (defined 198 
as the output/input ratio for cropping systems, Supplementary Figure 9), and possibility of a 199 
non-linear response of N2O emission10,17-22,32,33. However, our EF for China is associated 200 
with systematic uncertainty owing to uncertain trends in non-soil emissions, in particular 201 
from industry, which differ substantially between inventories. If the non-soil emission trend 202 
is underestimated the EF would be overestimated and vice-versa. For example, using the 203 
GAINS inventory estimate for non-soil emissions (instead of EDGAR-v4.32), the EF for 204 
China would be only 1.4 ± 0.4% and not distinguishable from the IPCC default. The most 205 
important difference between EDGAR and GAINS is the change in emissions from adipic 206 
acid production - in EDGAR these are reduced by ~90% between 2005 and 2010 whereas in 207 
GAINS they increase by a factor of ~2 (Supplementary Figure 7). The discrepancy arises 208 
from assumptions made about adipic acid plants that became operational after 2005, 209 
specifically their contribution to total adipic acid production and what emission abatement 210 
technologies they use34,35. If the GAINS emissions were correct then the increase in 211 
emissions from adipic acid production would account for nearly 20% of the total increase in 212 
China’s emissions since 2005. Trend differences between EDGAR and GAINS have 213 
negligible impact on the global EF calculation and for other regions in our study.  214 
For Brazil, we calculate an EF of 2.6 ± 0.7%. This value is sensitive to emission anomalies, 215 
specifically in 2010 and 2013 (as for the global EF). Removing these anomalies reduces the 216 
EF to 2.1 ± 0.7%. Our high EF for Brazil is puzzling due to the relatively high NUE, ~50%, 217 
a low portion of synthetic fertilizer in the total N-input, and predominantly low EF values 218 
measured at the plot scale (median 0.38%, range 0.13 to 5.14% in cropland)36. Several 219 
explanations are possible, including insufficient field sampling of soil EFs among the rapidly 220 
changing agricultural management systems37, declining NUE in expanding cereal 221 
production38, underestimated BNF in pastures and sugar cane production39, effects of ENSO 222 
on emissions from Amazon forest soils or from fire40, varying deforestation trends, as well 223 
as growth and intensification of cropland and livestock management41,42.  224 
For South Asia, we find an EF of 0.8 ± 0.4%, which was insensitive to emission anomalies 225 
and is lower than the IPCC default. Although South Asia has a low NUE, it uses a smaller 226 
portion of synthetic fertilizer in total N-input than China, and has lower intensity of synthetic 227 
fertilizer application over crop area, 96 kgN ha-1 compared to 281 kgN ha-1 in China for the 228 
mean over 2000-2013. 229 

Evaluation of the emission factor approach 230 
Globally, the inversion-based soil N2O emissions grew at a faster rate than predicted with the 231 
IPCC Tier-1 EF from 2009 (Figure 6). The increase in emissions from 2000-2005 to 2010-232 
2013, of 1.55 (1.44-1.71) TgN y-1, is also more than double that predicted by the IPCC EF, 233 
of 0.59 TgN y-1. Using the EF calculated here (2.3%) tended to overestimate the response 234 
between 2005-2009 and underestimate it after 2009, when the N-surplus was particularly 235 
high. Although a non-linear (quadratic or exponential) function did not markedly improve 236 
the residual standard error in the regressions of N2O emission versus N-input (owing to large 237 
scatter in the data), there are reasons to think the response may be non-linear, as suggested 238 
from field-based studies17-22. Mechanisms proposed for a non-linear response with large N-239 
surplus include: 1) more available Nr substrate for nitrification and denitrification43, 2) high 240 
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soil concentrations of NO3− associated with a higher N2O to N2 ratio from denitrification44, 241 
3) Nr availability to microorganisms exceeding carbon availability leading to higher rates of 242 
N2O emission45, and 4) Nr stimulating microbial mobilization of N bound in soil organic 243 
matter46. We compared the inversion-based soil emissions with the non-linear models in Refs 244 
17 and 18 (Supplementary Figure 10) and found that both give slightly higher estimates after 245 
2009 compared to the IPCC EF, but still underestimate the emissions.  246 
In China, emissions similarly increased at a faster rate than estimated by the IPCC EF after 247 
2009. Although the agreement is better in the scenario where the industrial emissions 248 
followed the trend in GAINS, if N-input remained at the same high level after 2013, then the 249 
IPCC Tier-1 EF would considerably underestimate the emissions also in this scenario from 250 
2013. For Brazil, the IPCC EF again underestimates the growth in emissions after 2009, but 251 
for South Asia, it reproduces the trend seen in the inversion-based estimates. 252 
USA and Europe differ from the other regions in that they have stable and decreasing N-253 
input, respectively. In USA, the nearly flat inversion-based emissions are consistent with EF 254 
estimates. The notable negative emission anomaly for 2000-2005, however, is not captured, 255 
as it is not due to a change in N-input but rather likely to EF changes driven by meteorological 256 
conditions. Precipitation data47 and the Palmer Drought Severity Index48 (PDSI) in areas with 257 
non-negligible N2O emissions show persistent dry conditions during 1999-2003, which may 258 
have led to a decrease in the EF during that time (Supplementary Figure 11). In the other 259 
regions studied, however, there was no clear relationship between N2O emission anomaly 260 
and precipitation, PSDI, or soil temperature. For Europe, the emissions estimated using the 261 
EF approach are close to those from the inversions. Although the EF approach shows a small 262 
decrease, of 0.01 TgN y-1 between 2000-2005 and 2010-2013, no trend is seen in the 263 
inversion-based estimate, but it may be that trends related to N-input are still too small to be 264 
captured by global scale inversions. 265 

Conclusions and implications 266 
N2O emissions increased globally by 1.6 (1.4-1.7) TgN y-1 between 2000-2005 and 2010-267 
2015, however the rate of increase from 2009 is underestimated using the IPCC Tier-1 default 268 
EF. We hypothesize that this is due to an increase in the EF associated with a growing N-269 
surplus. This suggests that the Tier-1 method, which assumes a constant EF, may 270 
underestimate emissions when the rate of N-input and the N-surplus are high. This has been 271 
demonstrated at field scale, but we show this likely also applies at regional and global scales. 272 
We therefore recommend using IPCC Tier-2 approaches and region-specific EFs, especially 273 
for high N-input and/or N-surplus conditions, but this would require a body of field 274 
measurements to determine accurate values for these EFs. Alternatively, process-based 275 
modelling (as used in the IPCC Tier-3 method) validated against observations could help 276 
estimate emissions where the N-input and/or N-surplus is high. Our results show that 277 
reducing N-surplus (and improving NUE) in high N-input regions should have a more than 278 
proportionate outcome in reducing N2O emissions. 279 
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Methods  406 
Emissions were estimated using three independent atmospheric inversion frameworks (see 407 
Supplementary Table 1). The frameworks all used the Bayesian inversion method, which 408 
finds the optimal emissions, that is, those, which when coupled to a model of atmospheric 409 
transport, provide the best agreement to observed N2O mixing ratios while remaining with 410 
the uncertainty limits of the prior estimates. In other words, the emissions that minimize the 411 
cost function: 412 

   (1) 413 

where x and xb are, respectively, vectors of the optimal and prior emissions, B is the prior 414 
error covariance matrix, y is a vector of observed N2O mixing ratios, R is the observation 415 
error covariance matrix, and H(x) is the model of atmospheric transport (for details on the 416 
inversion method see Ref. 49). The optimal emissions, x, were found by solving the first 417 
order derivative of equation (1): 418 

      (2) 419 

where (H′(x))T is the adjoint model of transport. In frameworks INV1 and INV2, equation 420 
(2) was solved using the variational approach50,51, which uses a descent algorithm and 421 
computations involving the forward and adjoint models52. In framework INV3, equation (2) 422 
was solved directly by computing a transport operator, H from integrations of the forward 423 
model, such that Hx is equivalent to H(x), and taking the transpose of H53. 424 
Each of the inversion frameworks used a different model of atmospheric transport with 425 
different horizontal and vertical resolutions (see Supplementary Table 1). The transport 426 
models TOMCAT and LMDz, used in INV1 and INV2 respectively, were driven by ECMWF 427 
ERA-Interim wind fields, and the model, MIROC4-ACTM, used in INV3, was driven by 428 
JRA-55 wind fields. While INV1 and INV2 optimized the emissions at the spatial resolution 429 
of the transport model, INV3 optimized the error in the emissions aggregated into 84 land 430 
and ocean regions53. All frameworks optimized the emissions with monthly temporal 431 
resolution. The transport models included an online calculation of the loss of N2O in the 432 

J(x) = 1
2
x − xb( )TB−1 x − xb( ) + 1

2
y − H (x)( )TR−1 y − H (x)( )

′J (x) = B−1 x − xb( ) + ′H (x)( )TR−1 y − H (x)( ) = 0
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stratosphere due to photolysis and oxidation by O(1D) resulting in mean atmospheric 433 
lifetimes of between 118 and 129 years, broadly consistent with recent independent estimates 434 
of the lifetime of 116 ± 9 years26. 435 
The inversions used N2O measurements of discrete air samples from the National Oceanic 436 
and Atmospheric Administration Carbon Cycle Cooperative Global Air Sampling Network 437 
(NOAA) and the Commonwealth Scientific and Industrial Research Organisation network 438 
(CSIRO). In addition, we used measurements from in-situ instruments in the Advanced 439 
Global Atmospheric Gases Experiment network (AGAGE), the NOAA CATS network, and 440 
from individual sites operated by University of Edinburgh (UE), National Institute for 441 
Environmental Studies (NIES) and the Finish Meteorological Institute (FMI) (see 442 
Supplementary Figure 1). Measurements from networks other than NOAA were corrected to 443 
the NOAA calibration scale, NOAA-2006A54, using the results of the WMO Round Robin 444 
inter-comparison experiment (https://www.esrl.noaa.gov/gmd/ccgg/wmorr/). Frameworks 445 
INV1 and INV2 used a total of 83 discrete air sampling sites, 15 in-situ sampling sites and 446 
discrete air samples from the NOAA network of ships and moorings, and INV3 used 37 447 
discrete air sampling sites. Daily average observations were assimilated in INV1 and INV3, 448 
while INV2 assimilated hourly afternoon values for low altitude sites and nighttime values 449 
for mountain sites to minimize errors in the modeled mixing ratios from errors in the modeled 450 
planetary boundary layer heights and local mountain-valley circulation. 451 
Each framework applied its own method for calculating the uncertainty in the observation 452 
space, the square of which gives the diagonal elements of the observation error covariance 453 
matrix R. The observation space uncertainty accounts for measurement and model 454 
representation errors and is equal to the quadratic sum of these terms. INV1 assumed a 455 
measurement uncertainty of 0.4 ppb and, in addition, estimated the model representation error 456 
as the mixing ratio gradient across the grid cell in which the observation is located and the 457 
surrounding ones, resulting in a mean total uncertainty of 0.48 ppb. INV2 assumed a 458 
measurement uncertainty of 0.3 ppb and estimated the representation error in the same way 459 
as INV1, resulting in a mean total uncertainty of 0.50 ppb. INV3 used a measurement 460 
uncertainty of 0.32 ppb and estimated the representation error as 1-sigma standard deviation 461 
of daily observations at each site. 462 
Prior emissions were used in all frameworks and were based on existing estimates from 463 
terrestrial biosphere and ocean biogeochemistry models as well as from inventories (see 464 
Supplementary Table 2). INV1 and INV2 used the same prior estimates for emissions from 465 
natural and agricultural soils from the model OCN-v1.1, for ocean emissions from the model 466 
PlankTOM5, and for biomass burning emissions from the Global Fire Emissions Database 467 
(GFED-v4.1s). OCN parameterizes N2O emissions from nitrification and denitrification in 468 
soils and accounts for N-input from N-fertilizer, manure, atmospheric deposition, and 469 
biological nitrogen fixation. The model is driven by CRU-NCEP meteorological data and 470 
uses inter-annually varying N-input55. PlankTOM5 uses the observed correlation between 471 
apparent oxygen utilisation and excess N2O in oxic waters to estimate the open ocean source 472 
of N2O production and the increased yield of N2O in suboxic waters from both nitrification 473 
and denitrification as an additional source in oxygen minimum zones56. The model, 474 
PlankTOM5, is incorporated into the ocean general circulation model, NEMO v3.1, which is 475 
forced with NCEP meteorology. For non-soil anthropogenic emissions (namely those from 476 
energy, industry and waste sectors), both INV1 and INV2 use the Emission Database for 477 
Greenhouse Gas Research (EDGAR) but differing versions (see Supplementary Table 2). 478 
INV3 used GEIA (Global Emissions Initiative) for emissions from natural soils and ocean 479 
emissions from Manizza et al. 201257. Manizza et al. model ocean emission using the 480 
correlation of apparent oxygen utilization and excess N2O in oxic waters and their model is 481 
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incorporated into the MIT General Circulation Model. For soil and non-soil anthropogenic 482 
emissions, INV3 used a third version of EDGAR (see Supplementary Table 2), which also 483 
includes agricultural burning but they did not specifically account for wildfire emissions in 484 
the prior estimates. 485 
Prior uncertainties were estimated in all the inversion frameworks for each grid cell (INV1 486 
and INV2) or for each region (INV3) and square of the uncertainties formed the diagonal 487 
elements of the prior error covariance matrix B. INV1 and INV2 estimated the uncertainty 488 
as proportional to the prior value in each grid cell, and INV2 set lower and upper limits for 489 
the uncertainty of 3×10-9 and 5×10-8 kgN m-2 h-1, respectively. INV3, on the other hand, set 490 
the uncertainty uniformly for the land regions at 1 TgN y-1 and for the ocean regions at 0.5 491 
TgN y-1. INV2 was the only framework to account for spatial and temporal correlations in 492 
the errors (resulting in off-diagonal elements in the prior error covariance matrix) using an 493 
exponential decay model with distance and time with correlation scale lengths of 500 km 494 
over land and 1000 km over ocean and 90 days. 495 
The optimized emissions were interpolated to 1°×1° (see Supplementary Figure 2) and the 496 
regional emissions were calculated by integrating the gridded emissions within each region 497 
or country. For each region, estimates of the non-soil anthropogenic emissions (i.e., from 498 
industry, energy and waste sectors) from EDGAR-v4.32 and the biomass burning emissions 499 
from GFED-v4.1s were subtracted from the total emissions from the inversions to give only 500 
the contribution from soil, which is assumed to be proportional to N-input. This assumes that 501 
the error in the estimate for non-soil anthropogenic emissions is substantially smaller than 502 
that in the soil emissions (Supplementary Figure 7). 503 
The inversions were validated by integrating the forward models with the posterior emissions 504 
and comparing the simulated mixing ratios with independent observations, i.e., observations 505 
that were not assimilated in the inversions. We compared with CONTRAIL (Comprehensive 506 
Observation Network for TRace gases by AirLiner, http://www.jal-507 
foundation.or.jp/shintaikikansokue/contrail_index.htm), which has N2O observations at 508 
regular intervals across the Pacific since 2005 (Supplementary Figure 3). All three inversions 509 
showed a similar level of performance with differences typically of <0.5 ppb. We also 510 
compared with aircraft profile measurements over USA from NOAA from sites with data for 511 
the early 2000s (Supplementary Figure 4). We found that INV1 tended to underestimate N2O 512 
in the lower troposphere over the contiguous USA for the early 2000s, hence we did not 513 
include the emissions data for USA prior to 2005 in our analyses. 514 
We calculated N inputs to the whole agricultural system including crops and grasslands. Total 515 
inputs correspond to synthetic fertilizer application, animal excretion (even if finally not 516 
reaching crops or grasslands), biological nitrogen fixation, and NOx deposition on 517 
agricultural land. Total outputs correspond to crop and animal production. Total surplus is 518 
calculated as the difference between inputs and outputs. In this budget, we neglected the 519 
small part of crop production that is locally consumed by livestock. Synthetic fertilizer 520 
application is based on the FAOSTAT dataset (http://www.fao.org/home/en/) with several 521 
inputs from the International Fertilizer Association (https://www.fertilizer.org/). Total 522 
animal excretion is calculated using the FAOSTAT livestock inventory and dynamic 523 
excretion factors, biological N fixation is calculated from crop productivities58 and 524 
atmospheric deposition was from Ref 59. Grassland nitrogen fixation was based on the 525 
grassland production estimated following Ref 60 and validated through comparison with the 526 
IMAGE model61. We consider 20% of grass species to be N fixing legumes and that their N 527 
fixation is equal to 1.4 times the N from aerial production to also account for below ground 528 
biomass production, which would otherwise not be included58. N output in harvested crops 529 
is based on crop productivity and N content of 177 crops, utilizing data from the FAOSTAT 530 
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database. See also the detailed methodology in Refs 32 and 60. We consider the N-surplus 531 
and NUE of cropping systems, as they are widely used as an indicator of the agronomic and 532 
environmental performance of agricultural systems.  533 
Emission factors were determined by a linear regression of N2O soil emission versus total N-534 
input. The total N-input consisted of sources of N from synthetic fertilizer (NSF), organic 535 
fertilizer and manure (NON), biological nitrogen fixation (NBNF) and NOx deposition from 536 
non-agricultural sources. This emission factor represents the total of direct and indirect 537 
emissions. The emission factors calculated in this study were compared to the IPCC Tier-1 538 
default values, where the total IPCC EF was calculated by taking the weighted average of the 539 
direct (EFdir) and indirect factors for deposition (EFdep) and leaching (EFleach) according to: 540 

    (3) 541 

where fSF and fON are the fractions of synthetic and organic fertilizer volatized, respectively, 542 
and fleach is the fraction of N lost by leaching and runoff 12. The modelled N2O emission 543 
(FN2O) using the IPCC emission factors was calculated as: 544 

    (4) 545 

using the N-input dataset described above. 546 
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Figure 1. Observed and modelled global mean growth rates of N2O. Observed growth rates 
are shown based on the NOAA discrete sampling network and, for comparison, the AGAGE 
network. Modelled growth rates were calculated by sampling 4D mixing ratio fields at the 
times and locations of the NOAA observations. All growth rates were calculated with annual 
time steps and are shown as 1-year running averages. 
 

 
Figure 2. Annual N2O emissions from the atmospheric inversions for 1998 to 2016 (units 
TgN y-1). Dashed lines show the prior and solid lines the posterior emissions. INV1 data prior 
to 2005 for USA are shown as a dotted line as these data are more uncertain (see Methods). 
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Figure 3. N-inputs to world crops and grasslands (units TgN y-1) and N-surplus in the 
cropping systems. (N-fert is synthetic fertilizer, N-fixed is biologically fixed N, NOx-dep is 
NOx deposition, N-surplus is surplus only for cropping systems).  

 
Figure 4. Scatter plots of the N2O emission anomalies versus N-input (units TgN y-1). The 
emissions were corrected for the non-soil component and the anomalies were calculated 
relative to the mean for 1998 to 2013. The symbols are colour-coded by year (circles = INV1, 
squares = INV2, diamonds = INV3). The solid line shows the regression and the dotted lines 
the confidence range. In the case that the regression is not significant (P > 0.05) a dashed line 
is used for the regression. (INV1 was excluded for USA owing to the poorer model-
observation comparison for 1998-2005). 
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Figure 5. Comparison of emission factors (EF) from this study and from recent literature. 
The white to red circles are the EFs calculated over all inversions in this study and the colour 
indicates the correlation coefficient (see legend). The grey points are the EFs calculated from 
the individual inversions where the correlation was significant (circles = INV1, squares = 
INV2, diamonds = INV3). A second EF is shown (red diamond) for China using the GAINS 
estimate for the non-soil anthropogenic emissions. For the values reported by this study, the 
error bars show the standard error and for the other studies, they show the reported 
uncertainty. 
 

Figure 6. Comparison of N2O emissions from the inversions (corrected for the non-soil 
component) with those calculated using the EF approach (units TgN y-1). The inversion 
results are shown as the mean (black line) and range (grey shading). A scalar value was added 
to the emissions time series’ so that they matched the inversion mean in the year 2000. The 
EF results are shown using the IPCC value (blue) and the linear fit from this study (green). 
For USA and Europe the regional EFs from this study were not significant so the global EF 
from this study was used instead. For China, the emissions corrected using GAINS for the 
non-soil component (instead of EDGAR-v4.32) are also shown (black dotted line).  
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