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Abstract
Large-eddy simulation (LES) experiments have been performed using the Parallelized LES
Model (PALM). A methodology for validating and understanding LES results for plume
dispersion and concentration fluctuations in an atmospheric-like flow is presented. A wide
range of grid resolutions is shown to be necessary for investigating the convergence of sta-
tistical characteristics of velocity and scalar fields. For the scalar, the statistical moments up
to the fourth order and the shape of the concentration probability density function (p.d.f.) are
examined. The mean concentration is influenced by grid resolution, with the highest reso-
lution simulation showing a lower mean concentration, linked to larger turbulent structures.
However, a clear tendency to convergence of the concentration variance is observed at the
two higher resolutions. This behaviour is explained by showing that the mechanisms driving
the mean and the variance are differently influenced by the grid resolution. The analysis of
skewness and kurtosis allows also the obtaining of general results on plume concentration
fluctuations. Irrespective of grid resolution, a family of Gamma p.d.f.s well represents the
shape of the concentration p.d.f. but only beyond the peak of the concentration fluctuation
intensity. In the early plume dispersion phases, the moments of the p.d.f. are in good agree-
ment with those generated by a fluctuating plume model. To the best of our knowledge,
our study demonstrates for the first time that, if resolution and averaging time are adequate,
atmospheric LES provides a trustworthy representation of the high order moments of the
concentration field, up to the fourth order, for a dispersing plume.
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1 Introduction

The dispersion of substances from a small punctiform source in an atmospheric turbulent
flow is a physical phenomenon of capital importance in many ecological, environmental, and
industrial applications. The concentration field of the dispersing substance displays a ran-
dom behaviour that, for a specific point in space and time, can be fully characterized by its
single-point probability density function (p.d.f.) (e.g., Pope 2000). The mean state of many
processes with only a linear dependence on the concentration can bewell characterized by the
knowledge of the first moment of this p.d.f., the mean concentration. However in other cases,
e.g., olfactory processes (Balkovsky and Shraiman 2002; Schauberger et al. 2011), or the
release of toxic and flammable substances (Hilderman et al. 1999), non-linearity is observed.
In such cases, knowledge of the higher moments of the concentration p.d.f. is needed. Certain
modelling approaches such as the two-particle Lagrangian model (Durbin 1980; Thomson
1990; Franzese and Borgas 2002), the Eulerian model resolving the concentration-variance
balance equation (Milliez and Carissimo 2008; Yee 2009), and heuristic Lagrangian meth-
ods based on single particle models (Ferrero et al. 2016; Cassiani 2013; Manor 2014) are
able to estimate only the first two moments of the concentration. The meandering plume
approach (Gifford 1959; Cassiani and Giostra 2002) can potentially estimate all concentra-
tionmoments and the p.d.f.. However, the assumption behind themodel formulation becomes
less justified further away from the source where empirical parametrization and assumptions
about the p.d.f. shape have to be made (Yee and Wilson 2000; Luhar et al. 2000; Cassiani
and Giostra 2002; Franzese 2003; Mortarini et al. 2009; Marro et al. 2015). To the best of our
knowledge, there are two modelling methods that potentially allow the explicit simulation
of the concentration p.d.f. and its higher moments in real world conditions and at very high
Reynolds numbers (Re = Uδ/ν with U a mean flow velocity scale, δ the boundary-layer
height and ν the viscosity) typical of atmospheric flows. These models are the Lagrangian or
Eulerian p.d.f. (micromixing) method (Pope 2000; Luhar and Sawford 2005; Cassiani et al.
2005a, b, c; Garmory et al. 2006; Cassiani et al. 2007, 2010; Postma et al. 2011; Amicarelli
et al. 2012; Leuzzi et al. 2012) and the large-eddy simulation (LES) method (Henn and Sykes
1992; Sykes and Henn 1992; Weil et al. 2004; Xie et al. 2004a; Vinkovic et al. 2006; Xie
et al. 2007; Philips et al. 2013).

Among these modelling approaches, LES is nowadays often viewed as the reference
method to simulate the atmospheric flow and dispersion. Large-eddy simulation provides
access to the three-dimensional turbulent flow field and it is sometimes used as a replacement
for experimental measurements at high Reynolds number. Large scales of the turbulent flow
are explicitly simulated byLESbut the subfilter scales need to be parametrized using a subgrid
scale (SGS) model (e.g., Deardorff 1973; Moeng 1984; Meneveau et al. 1996; Pope 2000;
Celik et al. 2009). Implicit or explicit approaches to LES filtering are possible (e.g., Sagaut
2000; Celik et al. 2009) based on the decomposition of the unknown filtered correlations
involving or not explicit filtering operations. In the context of implicit filtering the filter
width enters into the modelling of the SGS stress tensor and depends on the grid size but it
can still be made larger than the grid size to ensure results are independent of the grid and
numerics (e.g., Mason and Callen 1986; Geurts and Frohlich 2002; Pope 2004; Geurts 2006).
However, in most applications the filter is implicitly defined to be exactly or very close to the
grid size, which makes the LES results dependent on the grid definition and on the numerical
methods used (e.g., Pope 2004; Geurts 2006; Kemenov et al. 2012).

In engineering applications, various methods have been proposed to estimate the quality
of the turbulent flow simulated by an LES model (e.g., Celik et al. 2005, 2009). However,
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we note that these methods are mostly suited for relatively low Reynolds number flows as
they involve the actual viscosity of the fluid and convergence to direct numerical simulation
(DNS) results. Large-eddy simulation of atmospheric flow is different as it involves the further
assumption of infinite Reynolds number, totally neglecting the molecular viscous term in the
equations, and the use of awall-stressmodel (e.g.,Moeng 1984; Porté-Agel et al. 2000; Chow
et al. 2005; Sullivan and Patton 2011; Maronga et al. 2015). This implies that the viscous
layer is totally unresolved or that the surface is rough but with unresolved roughness scale
(Brasseur and Wei 2010).

The dispersion of scalars introduces further approximations associated with the numerical
methods and SGS model used for the scalars. Subgrid-scale scalar fluctuations in LES can
be obtained from algebraic and transport equation methods (e.g., Colucci et al. 1998; Pierce
and Moin 1998; Jimenez et al. 2001; Balarac et al. 2008; Kaul et al. 2009). In atmospheric
dispersion applications, the SGS scalar fluctuations are usually not explicitly modelled by a
transport equation (e.g., Mironov et al. 2000; Heinze et al. 2015).

Despite the uncertainties related to the filter and numerical implementation, in recent years
LES has become a tool used in many applied atmospheric dispersion studies, including the
urban environment, and for critical applications such as the release of toxic gas substances
(e.g., Fossum et al. 2012; Nakayama et al. 2013; Lateb et al. 2016). However, very few
thorough evaluations of LES for plume dispersion and concentration fluctuations from small
(point-like) sources in very high Reynolds number boundary layers are available. Henn and
Sykes (1992) and Sykes and Henn (1992) studied dispersion and concentration fluctuations
in the convective and neutral boundary layers, respectively. The maximum achievable res-
olution was limited by the available computing power, but source sizes smaller than grid
resolution could be simulated by using a puff model for scalar dispersion with a semi-
empirical parametrized SGS puff expansion (Sykes et al. 1984). This was empirically set by
Sykes and Henn (1992) to match the Fackrell and Robins (1982) wind-tunnel experiment,
thus allowing a satisfactory comparison with this dataset. Xie et al. (2004a, 2007) inves-
tigated plume dispersion and concentration fluctuations (including extremes) in a neutral
boundary layer with the highest achievable LES grid resolution capable to resolve the scalar
source size with one grid cell. More recently, Boppana et al. (2012) studied the relatively
simpler case of dispersion from a line source in channel flow at a finite Reynolds number of
10800 and still underlines the difficulty implied in investigating scalar dispersion from small
sources by means of LES, and the need of thorough validations.

Validating LES involving scalar fluctuations for a dispersing plume, at the very high
Reynolds number typical of atmospheric flows, is a complicated task. For instance, the
comparison with DNS is not feasible. Atmospheric dispersion experiments (e.g., Mylne and
Mason 1991; Mylne 1992, 1993; Jørgensen and Mikkelsen 1993; Yee et al. 1993a, b; Mole
and Jones 1994) providing concentration-fluctuation statistics have some characteristics that
make them unsuitable for the purpose of validating LES results. These are, (1) the extremely
small scalar sources used which are unreachable even for nowadays LES, (2) sensors located
quite far downwind from the source so that the effects related to the source size have been
mostly forgotten, and (3) emissions and measurements are located very close to the ground,
where the effect of the wall-model parametrization in the LES are critical because most of
the energy may not be explicitly resolved. A viable alternative, also used in previous LES
studies that are mentioned above, is to use the few available wind-tunnel dispersion studies
resembling atmospheric boundary-layer conditions (Fackrell and Robins 1982; Nironi et al.
2015). In these experiments the emitting sources are small compared to the boundary-layer
thickness but within LES possibility (comparable to a few metres in the atmosphere) and are
also placed at relatively high elevationwhere the LES explicitly resolvesmost of the turbulent
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kinetic energy (TKE). One general advantage of the wind-tunnel experiments compared to
atmospheric measurements is that they are non-affected by unsteadiness and can use very
long averaging time, which for higher moments of concentration is necessary. One potential
disadvantage is that wind-tunnel data may be affected by an Re dependence if Re is not very
high.

As recognized by many authors, evaluation of LES results should always involve a wide
range of grid resolutions (e.g., Pope 2004; Celik et al. 2005; Klein 2005; Klein et al. 2008;
Sullivan and Patton 2011; Kemenov et al. 2012) but these studies are rare in the literature.
To our knowledge, there exists no study that systematically examines the grid dependence
of the LES results for concentration fluctuations from a continuous small finite (point-like)
source in an infinite-Re neutral boundary-layer configuration.

The tendency of the error to decrease towards zero by increasing grid resolution can
potentially be investigated for low Reynolds number LES with explicit wall simulation that
converge to a DNS solution when their resolution increases (e.g., Kemenov et al. 2012).
However, as mentioned above, typical atmospheric LES are not part of this category because
the Reynolds number is far above the reach of DNS feasibility. Nonetheless, exploring the
dependence of the results on the grid resolution and comparison to experimental measure-
ments are fundamental for determining whether the LES results for the scalar converge, in
some sense, and to evaluating the expected range of variability in the results.

We take a heuristic but rational and comprehensive approach and explore many statistics,
and characteristic scales of the velocity and scalar fields to find evidences of convergence in
the turbulent fields of our LES. The analysis of the statistical characteristics of the fluctuating
concentration field includes moments up to the fourth order and the concentration p.d.f. with
an unprecedented level of detail for a LES. A clear indication on the range of validity of
the Gamma p.d.f. model (e.g., Duplat and Villermaux 2008) for the concentration p.d.f. is
also obtained. We use the freely available and widely used open source Parallelized LES
Model (PALM) (Maronga et al. 2015) to make our analysis directly useful towards practical
applications.

The paper is organized as follows. Section 2provides a description of the numericalmethod
and the simulated cases, and subsequently, turbulent flow statistics are discussed in detail in
Sect. 3.1. The spectra of the TKE and two-point statistics are addressed in Sect. 3.2, and the
analysis continues with the investigation of the scalar field. The mean concentration, con-
centration variance and its budget are discussed, respectively in Sects. 4.1 and 4.2, while the
mechanisms generating concentration fluctuations, and how this are altered by not adequate
resolution, are examined in Sect. 4.3. In Sect. 4.4, we examine the shape of the concentra-
tion p.d.f. using the scaled moments of scalar concentration, including the ratio of standard
deviation and mean, the skewness and the kurtosis. Finally, a summary and discussion are
presented in Sect. 5.

2 Methods

PALM is an open source model code developed mainly at University of Hannover (Maronga
et al. 2015). Here the code is used to solve the non-hydrostatic, filtered incompressible
Navier–Stokes equations in Boussinesq-approximated form at formally infinite Reynolds
number (Re = u∞δ/ν, with u∞ the freestream velocity) due to the neglect of molecular
viscous stress (e.g., Geurts and Frohlich 2002; Stevens et al. 2014), with an advection–
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diffusion equation for the transport of a passive scalar. Details of the governing equations are
reported in Appendix 1 for completeness.

For the advective term in the incompressible LES model equations, the Piacsek and
Williams (1970) second-order, formally energy conserving scheme, was chosen over the
fifth-order dissipative scheme proposed by Wicker and Skamarock (2002). Heinze et al.
(2015) compared these two schemes in PALM and found that the Wicker and Skamarock
(2002) scheme is much more dissipative, artificially reducing the scale-interaction term and
therefore the transfer of kinetic energy from the resolved scale part of the energy spectrum
to the subgrid scale part. Indeed the use of high-order finite-difference dissipative schemes
in LES generates excessive damping of the high frequencies and often shows numerical dis-
sipation larger than subgrid scale dissipation (e.g., Beudan and Moin 1994; Mittal and Moin
1997; Sagaut 2000; Park et al. 2004). This can be avoided if themixing length ismade suitably
larger than the grid size (e.g., Mason and Callen 1986) but this is seldom done, especially
in practical applications, as grid resolution is usually at the limit of available computational
resources. On the other hand the Piacsek andWilliams (1970) second-order scheme has been
successfully used in LES (e.g., Sykes and Henn 1988; Cuijpers and Duynkerke 1993; Mason
and Brown 1999; Brown et al. 2000; Dosio et al. 2003). For the dispersing scalar plume,
PALM allows the use of two possible schemes. The monotone, locally modified version of
Bott’s advection scheme proposed by Chlond (1994) is used, ensuring positive definite scalar
values and mass conservation. The non-monotone scheme of Wicker and Skamarock (2002)
is also available, but was found to be inadequate for simulating plume dispersion

A three-dimensional domain of 4.8 m×0.8 m×0.8 m, respectively in the along-wind (x),
crosswind (y) and vertical (z) directions is simulated to reproduce thewind-tunnel experiment
of Nironi et al. (2015) where a boundary-layer thickness of δ = 0.8 m was measured. Some
aspects of the turbulent field are also comparable to the wind-tunnel experiment of Fackrell
and Robins (1982) (hereafter F&R) if appropriately scaled, as extensively discussed in Nironi
et al. (2015). Therefore, the measurements of F&R will also be used when possible.

The neutral boundary layer is simulated as an incompressible half-channel flow at infinite
Reynolds number with a strictly symmetric, stress-free condition at the top of the domain
(∂u/∂z = 0, ∂v/∂z = 0). The flow is driven by a constant mean pressure gradient. Although
this flow configuration is not realizable in nature, it is often used in order to simulate wind-
tunnel-generated boundary layers and the atmospheric boundary layer, neglecting Coriolis
effects (e.g., Schumman 1989; Porté-Agel et al. 2000; Xie et al. 2004b; Cassiani et al. 2008;
Brasseur and Wei 2010; Margairaz et al. 2018). The constant mean pressure gradient is
defined as ∂ p/∂x = −u2∗/δ, where u∗ = 0.185 m s−1 is the friction velocity measured in
the wind tunnel. On the bottom wall the roughness length z0 = 1.1 × 10−4 m is also set
equal to that estimated in the wind tunnel of Nironi et al. (2015). The roughness length enters
in the wall model as the wall is not explicitly resolved but a constant-flux layer is used as is
commonly done in atmospheric simulations (e.g., Moeng 1984;Maronga et al. 2015). For the
velocity, periodic boundary conditions are used on the lateral boundaries, while non-periodic
boundary conditions are set for the passive scalar (see Appendix 2 for more information
about the boundary conditions).

The number of nodes of the computational grid (Nx ×Ny×Nz , with Nx , Ny , and Nz being
the number of grid points in along-wind, crosswind, and vertical directions, respectively) is
ranging from 256 × 64 × 64 ≈ 106 nodes to 2048 × 512 × 512 ≈ 5 × 108 nodes. The
size of the source is ds = 12 mm = 0.015δ in the vertical and crosswind directions. This
initial source size is in the middle of the range of the source sizes investigated in F&R, where
ds/δ = 0.0025, 0.007, 0.0125, 0.0208, 0.0291were considered, but it is larger than the range
investigated in Nironi et al. (2015), ds/δ = 0.00375 and 0.0075. This initial source size was
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chosen so that the grid convergence of the statistics is fully investigated among four different
grid resolutions used to resolve the flow. The emission source is simulated with exactly one
grid cell in Nx = 256, 23, 43, and 83 grid cells in Nx = 512, Nx = 1024, and Nx = 2048
simulations, respectively. Hereafter, the four simulations are referred to according to their
Nx value. The source is located at ys , corresponding to the centre of computational domain
in crosswind direction, and at the elevation of zs = 0.19δ which corresponds to the elevation
used in both Nironi et al. (2015) and F&R. Table 1 lists some important quantities of the
wind-tunnel and numerical experiments.

For a horizontally homogeneous boundary-layer flow discussed here, both time averages
and plane averages can be used to calculate one-point flow statistics. However, the scalar field
from a small (point-like) source is fully non-homogeneous with only a statistical symmetry,
with respect to source location along the y direction, potentially usable to increase the sam-
ples. In the following, we will use only time averages to calculate the scalar statistics unless
otherwise explicitly stated and explained. Large averaging times are necessary to obtain con-
vergence in higher-order statistical moments if the plane average is not used. The averaging
time used for the statistics is 150 s, i.e. between 600 and 800 times the estimated Lagrangian
time scale as further discussed below. A spin-up time of 120 s was used to ensure that flow
statistics are in steady state before starting the time average. These spin-up and averaging
times imply that about 8 × 105 core hours were used typically for one 2048 simulation.

In the following we adopt a standard notation with the overbar (̄) denoting a resolved scale
(filtered) variable, the single prime ()′ a subfilter scale fluctuation, the angle brackets 〈()〉
a space and/or time average and the double prime ()

′′
a fluctuation from this average. Any

flow variable φ can be decomposed as: φ = 〈
φ̄
〉 + φ̄

′′ + φ′. Meteorological or index notation
are used as convenient so u1 = u, u2 = v, u3 = w represent the velocity components in the
along-wind x1 = x , crosswind x2 = y, and vertical x3 = z, directions respectively. Vectors
are represented in bold characters, e.g. x = (x1, x2, x3).

3 Turbulent Velocity Field

To correctly interpret the scalar dispersion it is necessary to understand the statistical charac-
teristics of the velocity field. Here the first- and second-order statistical moments of velocity
and turbulent structures are examined, including their change with grid resolution.

3.1 Turbulent Flow Statistics

The LES flow is compared with the wind-tunnel measurements of Nironi et al. (2015) and
F&R. Averaging is done over the horizontal plane and in time. The mean wind speed at the
top of the boundary layer (u∞) is equal to 4.8 m s−1 in the LES; it is 5 m s−1 in Nironi et al.
(2015), and 4 m s−1 in F&R, as listed in Table 1. We remark that the Nironi et al. (2015)
experiment has the same values for roughness length, boundary-layer thickness and a very
similar friction velocity as in our simulations and should also have very similar mean wind
profiles having very similar u∞.

Figure 1a shows the mean wind profile 〈ū〉 scaled by friction velocity. The LES results
are weakly sensitive to resolution with small but visible changes. By increasing the grid
resolution, the mean wind speed increases at the source elevation, although it tends to be
similar at the top of the boundary layer (see Table 1). TheLES overestimatesmeanwind speed
profiles compared to the wind-tunnel measurements in the lower part of the domain. This
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Fig. 1 a Mean wind velocity profile scaled by friction velocity. b Total and SGS TKE as a function of height.
c Dissipation rate from the residual of the resolved scale TKE balance (Eq. 1). Normalized variances of the
resolved scale d along-wind, e crosswind and f vertical velocity components

overestimation of mean wind speed in LES using wall models, compared to the logarithmic
law profile, has been investigated by many authors (Xie et al. 2004b; Brasseur andWei 2010;
Hultmark et al. 2013; Ercolani et al. 2017) and some correction methods have been proposed
(e.g., Xie et al. 2004b; Hultmark et al. 2013). The factors influencing this aspect are the
SGS model, the grid aspect ratio and the wall model. Based on the SGS model closure,
grid resolution and grid aspect ratio, all the simulations here but the coarsest fall in the high
accuracy zone estimated by Brasseur and Wei (2010), their Fig. 7, in relation to the LES
capability of predicting the logarithmic law of the wall. More recent literature (Ercolani et al.
2017) found that the SGS model used here gives overestimation of mean wind speed when
used with an almost isotropic grid aspect ratio between one and two, and this is confirmed
by our results. Ercolani et al. (2017) suggested that the overestimation is linked to the over
dissipative nature of the SGS model and that this behaviour is somewhat masked by the use
of an anisotropic grid with an aspect ratio of (Δx = Δy)/Δz = 4. This was not attempted
here as the recommended aspect ratio is not ideal for the plume dispersion modelling that
ideally requires the crosswind and vertical grid size to be the same. The wall model used in
PALM (see Appendix 2) assumes that the log law is valid for the instantaneous resolved wind
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velocity magnitude. Wall models belonging to this class are commonly used in atmospheric
LES (e.g., Moeng 1984; Maronga et al. 2015) and are known to overestimate the mean wind
speed compared to the log law as discussed in Hultmark et al. (2013). However, again from
the plume dispersion perspective, which is our main focus, the difference in the mean wind
speed at source elevations is small and this is the main advection velocity for plumes.

The difference of mean wind speed among different resolutions is quite small here, but
we mention that an aspect that influences the convergence (among grid resolutions) of mean
wind profiles in the wall-model LES is the height used to inject information in the wall
model (Kawai and Larsson 2012). The PALM code uses the standard LES approach and
takes advantage of the available grid resolution feeding information to the wall model at
Δz/2. Kawai and Larsson (2012) found that convergence is improved if the information is
transferred to the wall model at a constant height irrespective of grid resolution.

Figure 1b shows the SGS and total TKE. The SGS TKE (e = 1
2u

′
i u

′
i ) is calculated in

PALM by solving a model equation (e.g., Moeng 1984; Maronga et al. 2015) as it is common
inmany atmospheric LESmodels. The total TKE is E+ewhere E is the resolved scale TKE,
E = 1

2

〈
ū′′
i ū

′′
i

〉
. The total TKE is in very good agreement with both experimental datasets at all

grid resolutions. Pope (2000) suggested that LES is properly resolved if at least 80%ofTKE is
resolved, and for LESwith wall modelling this is possible only away from the surface. For the
current simulations this condition is fulfilled for z/δ � 0.05, 0.02, 0.01, 0.005, respectively,
moving from coarser to finer resolved simulations. Therefore, at the elevation where the
plume is released most of the energy is explicitly resolved in all cases. This also means that
numerical dissipation plays an important role.

Figure 1c shows the mean dissipation rate (εE ) of TKE as obtained from the residual of
the resolved TKE balance, Eq. 1,(e.g., Mironov et al. 2000),

∂E

∂t
= 0 = − 〈

u′′w′′〉 ∂ 〈u〉
∂z

− ∂
〈
w′′E

〉

∂z
− 1

ρ

∂
〈
w′′ p′′〉

∂z
− 2

3

∂
〈
w′′e′′〉

∂z
− εE , (1)

where horizontal homogeneity and steady state have been used. In this equation, p represents
the perturbation pressure (see e.g. Moeng 1984; Maronga et al. 2015, and Appendix 1 for
more details). The dissipation rate εE , is the last term on the right-hand side (r.h.s), and has
been evaluated as a residual. The agreement between this estimation of the dissipation and
the experimental value of F&R is extremely good. The experimental values of Nironi et al.
(2015) shows a just slightly higher dissipation. We remark again that the values in Fig. 1c
pertain to elevations where most of the TKE is resolved (z/δ ≥ 0.05) and therefore Eq. 1 is
well representative of the total TKE. We found that other estimates of the mean dissipation
are not representative of the actual dissipation. This agrees with Heinze et al. (2015), who
used the PALM code to compare three methods of estimation of the TKE dissipation; (i) the
parametrized form in the SGS TKE equation

εSGS =
(
0.19 + 0.74

l

Δ

)
e
3
2

l
, (2)

where Δ = 3
√

ΔxΔyΔz with Δx,Δy,Δz being the grid spacing in the x, y and z directions,
respectively and l is the SGS mixing length; (ii) the computation of the scale-interaction
term describing the transfer of energy between resolved and subgrid scales (Brown 1994;
Heinze et al. 2015; Mironov and Sullivan 2016); and (iii) the residual of the TKE budget.
They found that the only reliable method to compute energy dissipation is from the residual
of the TKE budget. This is not surprising, as the latter method includes numerical dissipation,
which can be a dominating fraction of dissipation where LES resolves most of the TKE. This
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also agrees with Glendening and Haack (2001) who compared several numerical schemes
and found that in the presence of strong mean advection only pseudo-spectral methods were
able to correctly avoid spurious dissipation at high wavenumbers. We note that Heinze et al.
(2015) used the total TKE balance, but for the elevation considered here most of the energy
is resolved. For values z/δ � 0.05, 0.02, 0.01, 0.005, respectively, moving from coarser to
finer resolved simulations the SGS dissipation starts to dominate over the resolved scales
(not shown here).

Figure 1d–f show the scaled resolved variance of the three velocity components. The
variance of the resolved scale along-wind component, σ 2

u , progressively gets closer to the
experimental values when increasing the grid resolution, and for the highest resolutions the
agreement is very good. The crosswind and vertical velocity variance similarly become closer
to thewind-tunnel experimental valueswhen increasing the grid resolution, but the agreement
is not as good as for the along-wind velocity component. Similar values of crosswind velocity
variance were obtained in the LES of Xie et al. (2004a) using the SGS mixed-scale model
of Sagaut (1995). Porté-Agel et al. (2000) obtained similar values of crosswind velocity
component using a Smagorinsky model closure, but higher values using a scale dependent
dynamic model. The two wind-tunnel experiments have very similar values, except for the
crosswind component (v), where F&R is more similar to the LES results compared to Nironi
et al. (2015). The Reynolds stress, 〈ū′′w̄′′〉 (not shown here) is a straight line as expected and
matches very well the experimental data. In the highest resolution case, the observations are
nearly captured, even without the contribution of the SGS stress. Obviously in the lowermost
layer close to the wall everything is subgrid.

It can be anticipated that by considering the difference in the crosswind and vertical
velocity components variance (Fig. 1e, f), a lower plume spread may be expected for the LES
when compared to the wind-tunnel data of Nironi et al. (2015). However, overall the second
moments of the high resolution LES are similar to the wind-tunnel experimental values.
Plume dispersion statistics in neutral boundary layers are mainly driven by second-order
velocity statistics and by velocity length and time scales, which are the footprint of turbulent
velocity structures. In the next section, we complete the velocity field analysis using the
spectrum, two-point correlation and turbulent length scales across LES resolutions before
turning our attention to the scalar field.

3.2 Turbulent Flow Structures and Length Scales

To examine the existence and extension of the inertial subrange, the two dimensional spectra
of the TKE on the horizontal plane are now considered. As discussed in Sullivan and Patton
(2011) the two-dimensional spectra are more representative of the spatial eddy scale than
one-dimensional spectra. Figure 2 shows the time-averaged spectrum of the TKE E(kh, z)
(e.g., Pope 2000), where kh is here the horizontal dimensionless wave vector module kh =
kδ(2π)−1with k being the horizontal angular wave vector module (rad m−1) (e.g., Wyngaard
2010). The spectrum is obtained by integrating circles of increasing radius and it is presented
for all grid resolutions both at the source elevation, z = 0.19δ, and at the middle of the
boundary layer, z = 0.5δ. The k−5/3

h Kolmogorov inertial subrange scaling is also shown as
a straight line. The inertial subrange is visible only in the two higher resolved simulations
(1024 and 2048), which therefore can be assumed to converge in this sense. The lowest
resolution seems especially under-resolved, lacking the display of an inertial subrange.

Large-scale turbulent structures are fundamental for plume dispersion as they define the
persistence of spatial and time correlations. In an inhomogeneous and anisotropic shear flow
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Fig. 2 Two-dimensional spectrum of TKE E(kh , z) for different grid resolutions with the k−5/3
h scaling at, a

source elevation, and b in the middle of the boundary layer

a variety of integral length scales exists to describe these structures. These length scales
can be estimated from the two-point spatial correlation coefficient, which is defined as (e.g.,
Carlotti and Drobinski 2004; Nironi et al. 2015)

ρi j (x, r) =
〈
u′′
i (x)u

′′
j (x + r)

〉

〈
u′′
i u

′′
j

〉 , (3)

where x is a fixed point and r is a generic vector. In vertically inhomogeneous turbulence, the
two-point correlation depends on the vertical position. However, the most significant position
to characterize plume dispersion for an elevated small (point-like) source is certainly that of
the source. Therefore, the analysis here is about the correlations centred at source position and
limited to the single velocity component correlation coefficients, ρi i (no summation implied
in repeated index here), which are used to obtain the relevant integral length scales. As
extensively discussed in Carlotti and Drobinski (2004) many integral scales can be defined in
inhomogeneous anisotropic turbulence by integrating the spatial correlation coefficient over
the distance r along all the possible orthogonal directions,

L(+/−)
i i, j (xs) =

∫ ∞

0
ρi i (xs,±re j )dr =

∫ ∞

0

〈
u′′
i (xs)u

′′
i (xs ± re j )

〉

〈
u′′
i u

′′
i

〉 dr , (4)

where e j is the unit vector in x, y, z directions; xs is the source position; and no summation
is implied in repeated index. In the present case of wall bounded flow, the only non homo-
geneity and possible asymmetry is in the vertical direction (Carlotti and Drobinski 2004).
Following Nironi et al. (2015) our analysis is limited to Luu,x = L11,1, Lvv,y = L22,2 and
Lww,z = L33,3, with the latter two being the more relevant for understanding plume dis-
persion in the crosswind and vertical directions (Nironi et al. 2015). The computed length
scale values are reported in Table 2. The values of the length scales are obtained by fit-
ting the exponential function of the form of exp(∓r/Lii, j ) to the profiles of the correlation
coefficient, where the signs depend on the direction being positive or negative, respectively.
These profiles must be symmetric except for the vertical correlation coefficient (ρ33) where
the wall effect causes asymmetry. Considering the average value of the length scales in
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Table 2 Estimate of the Eulerian length scales from the two-point spatial correlation coefficient, by fitting the
exponential function of the form exp(∓r/Lii, j )e j to the profiles of the correlation coefficient. The first value
in Lww,z column corresponds to the positive distance+re j and the second value is for negative distance−re j
as specified in Eq. 4

Resolution Luu,x (m) Lvv,y(m) L(+/−)
ww,z (m)

256 × 64 × 64 0.239 0.080 0.089–0.064

512 × 128 × 128 0.669 0.068 0.067–0.049

1024 × 256 × 256 0.740 0.068 0.063–0.046

2048 × 512 × 512 0.919 0.098 0.076–0.048

Fig. 3 Snapshots of the turbulent scalar field in (x, y) plane at the source elevation for a 256, b 512, c 1024,
and d 2048 simulation. The plot shows a range of 0 < x < 6δ and 0 < y < δ. Note that in the following,
x = 0 corresponds to the emission point

along-wind and crosswind directions, the Table shows that the 2048 simulation has more
persistent correlations with longer length scales in all directions compared to the 512 and
1024 simulations. The low resolution (256) simulation shows different characteristics, hav-
ing a much smaller Luu,x and being the only one with Lww,z > Lvv,y and having larger
Lww,z compared to the 2048 simulation. This further shows that this simulation is under
resolved.
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Fig. 4 Time series of the normalized scalar concentration for different grid resolutions at, a x/δ = 0.13, and
b x/δ = 3.75, for a period of 1 s. Here c̄max is the maximum concentration of the time series data (over an
averaging period) of the corresponding resolutions

4 Turbulent Scalar Field

The transport of the passive scalar in PALM is simply obtained by solving an advection
diffusion equation for the resolved scalar field,

∂c

∂t
= −∂(ui c)

∂xi
+ ∂

∂xi

(
Ks

∂c

∂xi

)
, (5)

where the SGS scalar diffusivity is defined as Ks = (
1 + 2l

Δ

)
Km , and l = min(1.8z,Δ)

(Moeng andWyngaard 1988;Maronga et al. 2015). As remarked in Sect. 2, the Bott advection
scheme as modified by Chlond (1994) has been used in this study. Figure 3 shows snapshots
of the concentration field for all the resolutions on the (x, y) plane at z = zs = 0.19δ.
There are obvious visual differences in the scalar field up to 1024 resolution, while between
1024 and 2048 these differences become more subtle. Interestingly, this visual impression
is somewhat confirmed by the quantitative analysis below. Time series of the concentration
at the location of maximum mean concentration are shown in Fig. 4 for x/δ = 0.13 and
x/δ = 3.75. Similarly to what was observed in the snapshots, the differences are rather
obvious up to 1024 resolution and become more subtle between 1024 and 2048.

4.1 Mean Concentration Field

Crosswind and vertical profiles of the mean concentration 〈c〉, through its maximum for
different grid resolutions at various downwind distances are plotted in Fig. 5. Angle brackets
represent only the time average when the scalar is involved. The concentrations are reported
following Nironi et al. (2015) by using the scaling c∗ = c(usδ2/Q) where Q = 1 kg s−1 is
the mass flow rate at the source located at zs . We would expect that the mean concentration
is minimally sensitive to the grid resolution in LES, as the mean concentration is influenced
by the whole turbulent spectrum and the LES should explicitly capture most of the energy.
Contrary to this intuitive picture some difference among grid resolutions is visible. The 2048
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simulation stands out with a much higher spread and lower peak concentrations compared
with lower grid resolutions for all downwind distances but the first one, and this is more
evident for x/δ = 3.75. On the contrary, at the first downwind distance the numerical
diffusion dominates and the 256 and 512 resolutions show low concentration values.

Figure 6a shows the scaled maximum mean concentration as a function of the equivalent
along-wind distance from the source x∗ defined below. Here we include in the comparison
the experimental measurements of Nironi et al. (2015) and F&R. As reported in Table 1, the
simulations and the experiments have differentmean velocity at the source; this in turn implies
that the plume advection time at a certain distance from the source is different. Following
Nironi et al. (2015), an appropriate dimensionless advection time can be defined accounting
for different mean velocity at the source and different scaling parameter u∗ and δ as

T ∗ = x

us

u∗
δ

. (6)

The comparison of plume results from different experiments should be done at the same
dimensionless time, i.e., in our case T ∗

(exp) = T ∗
(LES). This equality allows the definition of

an equivalent dimensionless advection distance where the experimental results have the same
dimensionless advection time as the LES results,

x(exp)

δ(exp)
= x(LES)

δ(LES)

us(exp)
us(LES)

u∗(LES)

u∗(exp)
. (7)

Based on this equality, we define the equivalent distance x∗ as

x∗ =
{
x, LES

x
us(LES)

us(exp)

u∗(exp)
u∗(LES)

, Wind-tunnel experiments.
(8)

Similarly to the use of the dimensionless advection time, using this distance eliminates the
difference originating simply by the mean advection velocity difference and allows also the
comparison of plume dispersion from experiments with different u∗ and δ. The LES results
and the data of Nironi et al. (2015) have the same u∗ and δ, so the scaling only differs through
the mean velocities, us , but is limited since the difference in velocity is small. For us(LES),
needed in Eq. 8, the average value between the two most resolved simulations was used. We
note that the LES results have not been corrected for the slightly different advection velocities
as we want to underline the difference originating from grid resolution in the same exact
simulation settings (the correction would be anyway minimal). In Fig. 6a the measurements
of Nironi et al. (2015) and F&R have a source size that is smaller than (about half of) that
used in the simulations, but source size has a very limited effect on mean concentration and
can be neglected here. The model results are in quite good agreement with the measurements,
especially those of Nironi et al. (2015), but the maximum mean concentration is generally
overestimated and therefore plume spread must be underestimated. This is consistent with
the lower simulated variances in the crosswind and vertical velocity components as shown
in Fig. 1e, f. Figure 6b, c show the calculated crosswind and vertical plume spread standard
deviation as a function of the distance from the source. These standard deviations are defined
as the square root of the following variances

σ 2
y (x) =

∫ 〈c(x)〉 (y − 〈y(x)〉)2 dydz
∫ 〈c(x)〉 dydz , σ 2

z (x) =
∫ 〈c(x)〉 (z − 〈z(x)〉)2 dydz

∫ 〈c(x)〉 dydz (9a)

with

〈y(x)〉 =
∫ 〈c(x)〉 y dydz
∫ 〈c(x)〉 dydz , 〈z(x)〉 =

∫ 〈c(x)〉 z dydz
∫ 〈c(x)〉 dydz (9b)
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Fig. 5 a–d Transversal, and e–h vertical profiles of mean concentration at various downwind distances, a, e
x∗/δ = 0.13, b, f x∗/δ = 0.725, c, g x∗/δ = 1.25 and d, h x∗/δ = 3.75. Experimental data are extracted
from Nironi et al. (2015)

Fig. 6 a Maximum mean concentration as a function of along-wind distance. Large-eddy simulation plume
spread in b crosswind and c vertical directions. Insets in b, c are zoom over 0.02 < x∗/δ < 0.15

being the local time-averaged mean plume centre of mass coordinates. The variances σ 2
y

and σ 2
z are also commonly called the absolute plume dispersion (e.g., Arya 1999; Dosio and

de Arellano 2006). In the main panels of Fig. 6b, c, it is evident that the 2048 simulation has
a larger averaged plume spread compared to the other simulations for σi/δ larger than about
0.06, and that the simulations have generally lower averaged plume spread compared to the
wind-tunnel measurements apart from the closest location. The insets in 6b, c show the near
source behaviour. In this case the two less resolved simulations have a higher spread and this
is due to numerical diffusion as further discussed in Sect. 4.3.
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Table 3 Estimate of the Lagrangian time scales (Tlv, Tlw) from a fit of Taylor’s dispersion relations (Eq. 10) to
the plume spread in crosswind and vertical directions for all grid resolutions. The estimates of the Lagrangian
time scales as the ratio of length scales and standard deviations of velocity components following Tennekes
and Lumley (1972) are also given

Resolution TLv(s) TLw(s) Luu,x/σu(s) Lvv,y/σv(s) L(+/−)
ww,z /σw(s)

256 × 64 × 64 0.15332 0.12187 0.755 0.347 0.450–0.324

512 × 128 × 128 0.14766 0.12217 1.950 0.301 0.338–0.247

1024 × 256 × 256 0.17305 0.10488 2.012 0.297 0.318–0.232

2048 × 512 × 512 0.20859 0.14121 2.525 0.417 0.374–0.236

To explain the mean concentration behaviour it is useful to recall an approximation of
plume-spread standard deviation commonly used in conjunction with Gaussian dispersion
models. Using the slender plume approximation (e.g., Arya 1999) and adapting Taylor’s
dispersion theory (Taylor 1922) to anisotropic turbulence the evolution of the plume-spread
standard deviation, in crosswind (σy) and vertical (σz) directions can be approximately
written as

σ 2
y = σ 2

s + σ 2
v T

2
Lv

[
2

t

TLv

− 2

(
1 − exp

(
− t

TLv

))]
(10a)

σ 2
z = σ 2

s + σ 2
wT

2
Lw

[
2

t

TLw

− 2

(
1 − exp

(
− t

TLw

))]
, (10b)

where σs is the source standard deviation, σ 2
v and σ 2

w are the variances of the crosswind and
vertical velocity components, and TLv and TLw are the crosswind and vertical Lagrangian
integral time scales, respectively (e.g., Arya 1999). For an elevated plume this approximation
is commonly used to describe plume dispersion by taking all the values as those at the source
elevation and replacing time and downwind distance according to Taylor’s hypothesis t =
x/ 〈u〉. These formulations remind us (e.g., Arya 1999) that for t << TL turbulent dispersion
is insensitive to TL , while for t >> TL standard deviation of plume dispersion increases
proportionally to (TLt)1/2. Close to the source the mean concentration is mainly influenced
by the velocity variance, themeanplume increases asσ 2

y,z = σ 2
s +σ 2

v,wt
2 (e.g.,Arya 1999).As

discussed above, the 2048 simulation has slightly greater variances (σ 2
v , σ 2

w) but considerably
larger structures (seeTable 2) compared to lower resolutions. Larger structures result in longer
correlation time scales including Lagrangian autocorrelations. For a neutral boundary-layer
flow following Tennekes and Lumley (1972) the two-point length scales can be directly
related to the Lagrangian integral time scales as TLv ≈ Lvv,y/σv , TLw ≈ Lww,z/σw, TLu ≈
Luu,x/σu . Table 3 shows the Lagrangian time scale estimate according to Tennekes and
Lumley (1972) and the estimates obtained by fitting Taylor’s dispersion relation (Eq. 10) to
the plume spread in the crosswind and vertical directions. These are all rather crude estimates,
especially in the vertical direction, but are adequate for cross comparing grid resolutions.
The 2048 simulation has larger structures and accordingly longer Lagrangian time scales,
especially in the crosswind direction, compared to the lower-resolution simulations, which
leads to the lower maximum mean concentration of the scalar.
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Fig. 7 a–d Transversal, and e–h vertical profiles of concentration fluctuation standard deviation at various
downwind distances, a, e x∗/δ = 0.13, b, f x∗/δ = 0.725, c, g x∗/δ = 1.25 and d, h x∗/δ = 3.75.
Experimental data are from Nironi et al. (2015). Note that the source size of Nironi et al. (2015) data is
ds = 7.5 × 10−3δ

4.2 Concentration Fluctuations Variance and Budget

Figure 7 shows the crosswind and vertical profiles, passing through the position of maximum
mean concentration, for the scaled standard deviation of concentration σ ∗

c = σc(usδ2/Q),
σc = (〈c̄′′2〉)(1/2). The effect of grid resolution on scalar fluctuations is evident in the standard
deviation (Fig. 7). The change in the mesh resolution between the 256 and 1024 simulations
does not produce significant change in the mean field while the scalar fluctuations are more
than doubled. The increase is also substantial between the 512 and 1024 grid specifications.
In contrast, 2048 and 1024 grid configurations seem to converge to quite similar results and
are the only simulations able to capture the presence of the double peak at x∗/δ = 0.13. The
behaviour in Fig. 7 can be summarized stating that the standard deviation converges at the
1024 grid configuration. This behaviour is in striking contrast with what was observed for
the mean concentration where all the simulations but the 2048 one gave quite similar results.
This is due to the fact that the mechanisms driving the evolution of the mean and the variance
of the concentration are different and are differently influenced by the numerical resolution.

The budget analysis of the resolved scalar variance is introduced to highlight the relevant
terms defining the observed concentration variance. The budget is calculated at the position
of maximum mean concentration where most of the TKE is resolved for all resolutions. In a
stationary state, the budget equation for the resolved scale mean scalar variance is written as

0 = −〈ūi 〉∂〈c̄′′2〉
∂xi︸ ︷︷ ︸

Adv.

−2〈ū′′
i c̄

′′〉∂〈c̄〉
∂xi︸ ︷︷ ︸

Prod.

−∂〈ū′′
i c̄

′′2〉
∂xi︸ ︷︷ ︸
T.T.

−ξres (11)
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where the first term on the r.h.s. corresponds to the advection (Adv.), the second term cor-
responds to the production (Prod.), the third one corresponds to the turbulent transport (TT)
and ξres is the mean scalar dissipation from the residual. The definition of the scalar dissi-
pation residual follows the same logic applied above to the resolved scale TKE budget and
it is comprehensive of numerical dissipation. Two additional estimates of the mean scalar
dissipation are possible: one is based on the equilibrium approximation for the SGS (Sykes
and Henn 1992; Kaul et al. 2009; Heinze et al. 2015) and reads,

ξeqm = Ks

〈
∂ c̄

∂xi

∂ c̄

∂xi

〉
. (12)

Alternatively the transfer of resolved-scale scalar variance to the SGS may be defined as
(Heinze et al. 2015; Mironov and Sullivan 2016),

ξtra =
〈
∂τ ′′

ci

∂xi
c̄′′

〉
(13)

where τci = u′
i c

′ is the SGS scalar flux computed by theSGSmodel. These two estimates have
been calculated and considered in the analysis. However, they do not account for numerical
dissipation. Therefore, similarly to what was discussed above for the TKE, they cannot
be considered reliable. Figure 8a–c show the budget at the elevation of maximum mean
concentration in the crosswind direction for the 2048 simulation. All the terms are indicated

as φ, and are reported normalized on the ordinate as φ∗ = φ δ
u∗

(
usδ2

Q

)2
. The production

term, turbulent transport and advection are all important close to the source (x/δ = 0.13)
but already at x/δ = 0.725 the budget is dominated by advection and turbulent transport.
At x/δ = 1.92 advection dominates and dissipation (ξres) becomes as large as turbulent
transport. This analysis agrees and completes what was found by F&R, that for distances
x/δ > 1.92 advection and dissipation dominates the balance. Figure 8d–f show the budget at
x/δ = 0.13 but for the grid resolutions 256, 512 and 1024. Production is the dominant term
but for 256 and 512 simulations it has much lower values compared to the 2048 one (Fig. 8a).
The shape of the terms is quite different in the 256 and 512 simulations compared to the
2048 one. In contrast, the 1024 simulation shows quite similar values and shape to those of
the 2048 simulation. However, the production is still lower. This confirms that a tendency to
converge is observed between 1024 and 2048 resolutions for the concentration variance, but
the convergence is not yet perfect.

This analysis demonstrates that production close to the source is the critical phase for
plume concentration fluctuations variance and that only an appropriate resolution can capture
it. As the production of concentration variance occurs close to the source while afterward
advection is the dominant term, we may conclude that significant converge, albeit not total in
the concentration variance, is ensured by the source being resolved by at least 43 grid nodes
with the current numerical schemes. The next section analyzes the mechanism-generating
fluctuations and how the insufficient resolution alters it.

4.3 Absolute and Relative Dispersion, MeanderingMotions, and Production of
Fluctuations

Eddies of a size larger than the plume generate meandering fluctuations (Gifford 1959;
Csanady 1973; Franzese and Cassiani 2007; Cassiani et al. 2009), i.e. large-scale undulations
of the plume as a whole and the sweeping of the plume centreline with respect to the source
location. By contrast, eddies of a size comparable to, but smaller than, the plume generate
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Fig. 8 a–c Variance budget analysis of scalar concentration as a function of crosswind direction at different
downwind distances, a x∗/δ = 0.13, b x∗/δ = 0.725, and c x∗/δ = 1.92, for 2048 simulation with
Ny × Nz = 512 × 512. d–f The same analysis but at x∗/δ = 0.13 for different grid resolutions, d 256 with
Ny × Nz = 64 × 64, e 512 with Ny × Nz = 128 × 128 and f 1024 simulation with Ny × Nz = 256 × 256

relative dispersion, that is the spreading of the plume in a coordinate system relative to
the instantaneous centre of mass position (Richardson 1926; Batchelor 1952; Monin and
Yaglom 1975; Sawford 2001; Franzese and Cassiani 2007). Eddies much smaller than the
plume contribute little to relative dispersion (e.g., Mikkelsen et al. 1987).

When assuming that the associated spatial scales are separated, the absolute dispersion
of the plume can be partitioned between two statistically independent components (Gifford
1959; Csanady 1973; Franzese and Cassiani 2007). Therefore the absolute dispersion defined
in (9a), can also be written as

σ 2
y = σ 2

my + σ 2
r y , σ 2

z = σ 2
mz + σ 2

r z . (14)

The meandering variance can be readily defined from the local centre-of-mass definition,

ym(x) =
∫
c(x) y dydz

∫
c(x) dydz

, zm(x) =
∫
c(x) z dydz

∫
c(x) dydz

, (15)

as

σ 2
my = 〈

y2m
〉 − 〈ym〉2 , σ 2

mz = 〈
z2m

〉 − 〈zm〉2. (16)

The relative dispersion can then be calculated from Eq. 14. Absolute dispersion, relative
dispersion andmeandering, as a function of along-wind distance from the source, are reported
in Fig. 9 for the 2048 simulation. Figure 10 represents the comparison of the absolute and
relative dispersion between different grid resolutions. At a constant absolute dispersion, the
smaller the relative dispersion is, the higher the fluctuations are since the meandering related
production of fluctuations is enhanced by two mechanisms, the increased flapping of the
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Fig. 9 Absolute and relative dispersion, and the meandering motion of the plume, as a function of downwind
distance for the 2048 simulation for, a crosswind, and b vertical directions

plume and the fact that a smaller and more concentrated plume is moving. This is most
important very close to the source, as illustrated in Fig. 10c, d, where most of the production
of the scalar variance occurs, as extensively discussed above using the variance budget.
Therefore we may hypothesize that a coarse grid resolution increases the relative dispersion
by numerical diffusion and artificially damps the meandering production of concentration
fluctuations in a way similar to an increase in the source size and this decreases the production
of scalar variance. After this initial phase the scalar variance is mainly transported away and
eventually dissipated far away from the source.

The hypotheses discussed above can be nicely and quantitatively demonstrated by using
the meandering plume model of Gifford (1959) (see Appendix 3 for more details). In this
model the concentration moments can be obtained from σ 2

m and σ 2
r , which, in the present

case, are those directly obtained from the LES concentration field with no parametrization
used. The meandering plume model shows that the production of fluctuations by meandering
depends on the ratio M = σ 2

m/σ 2
r and on the value of σ 2

r (see Appendix 3), larger σ 2
r and

smaller M generate a decrease in fluctuations.
The second moment of the concentration from LES and from the meandering plume

model are compared in Fig. 11 as a function of downwind distance from the source. Dashed
lines correspond to the meandering plume model and solid lines correspond to the LES
results at various grid resolutions and at the position of the peak of mean concentration.
The meandering plume model reproduces well the value of the variance peak generated by
the LES concentration time series at different resolutions. Increasing values are observed by
increasing resolution both for themeanderingmodel and for the LES. The agreement is better
at the highest resolution. The position of the peak in the meandering is slightly displaced
compared to the LES but this difference decreases with resolution. Further downwind, as
expected, a considerable difference arises between the meandering plume model and the
LES because in the fluctuating plume formulation used here any contribution of internal
fluctuations, in the coordinate system relative to the local plume centre of mass, is neglected.

The meandering results in Fig. 11 prove the physical picture discussed above showing that
the production of fluctuations at coarse resolutions decreases because of artificially enhanced
relative dispersion by numerical diffusion. It also shows that the meandering production of
fluctuations for the 1024 and 2048 simulations is similar, thus supporting the existence of a
convergence of LES results for the concentration fluctuations variance between the 1024 and
2048 resolutions.
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Fig. 10 Comparison of a, b the absolute, c, d the relative dispersion, and e, f meandering motion among the
different grid resolutions. Left panels a, c, e are for the crosswind direction and right panels b, d, f are for the
vertical directions

Fig. 11 Comparison of the scalar
variance of LES and the
meandering plume model.
Dashed lines represent the
meandering plume model on the
centreline while the solid lines
correspond to the LES results in
the position of maximum mean
concentration. All the quantities
in the meandering plume model
(Eq. 28 in Appendix 3) are
derived from the LES
concentration field with no
parametrization
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Fig. 12 Intensity of concentration
fluctuations max(σc)

max(〈c〉) for different
grid resolutions as a function of
downwind position, and
comparison with Nironi et al.
(2015) and Fackrell and Robins
(1982) experimental data for
several source sizes

4.4 Scaled ConcentrationMoments and Probability Density Function

So far the mean concentration and the variance have been analyzed, and wewill now focus on
the shape of the concentration p.d.f.. A parameter that is often used to characterize the p.d.f.
shape is the relative intensity of concentration fluctuations (see e.g. F&R) defined as ic =
σc/ 〈c〉. This is also called the coefficient of variation in statistical textbooks, and describes the
spread of the p.d.f. relative to its mean value. As discussed in, e.g., Yee et al. (1993c), Nironi
et al. (2015), Marro et al. (2018) ic suffices to define the shape of the Gamma p.d.f., which is
often used as an analytical model of the concentration p.d.f. based on experimental evidences
and theoretical arguments on scalar mixing in confined domains (Duplat and Villermaux
2008). So far it was observed that the Nx = 2048 simulation has different flow structures,with
larger TL , which generates larger mean dispersion and lower maximum mean concentration.
The concentrationvariance insteadwas found to approach convergenceonly for (Nx ) ≥ 1024.

Following F&R and Nironi et al. (2015), Fig. 12 shows the intensity of concentration
fluctuations defined as max(σc(x))

max(
〈
c(x)

〉
)
as a function of along-wind distance from the source. Note

that these two maxima are not necessarily in the same position, and that the ratio increases
systematically with increasing of the resolution. However, following the results above on
mean concentration and variance, it is clear that the changes in the relative intensity of
the concentration fluctuations moving from 256 to 512 resolutions and from 512 to 1024
resolutions is dominated by an increase in the fluctuations, i.e. σc. On the contrary, the
increase in intensity from 1024 to 2048 resolutions is dominated by the change (decrease)
of mean concentration (〈c〉) while the standard deviations of fluctuations are very similar
between the two resolutions.

Overall, ic does not tend to converge as nicely as the standard deviation when moving
from the 1024 to 2048 resolution, with a relative difference of about 30% over most of the
distances. However, the fractional variation between 512 and 1024 simulations is clearly
more pronounced than between 1024 and 2048 simulations.

The comparison with the wind-tunnel experiments in Fig. 12 shows that the 2048 simu-
lation is in better agreement with the measurements. We note that the source sizes are not
identical but our source size lies in between the Nironi et al. (2015) and F&R configurations.
A remarkable point is that the relative intensity of fluctuations in the LES seems to have a
slower decay compared to the wind-tunnel observations. This indicates that, despite SGS and
numerical diffusivity and despite neglecting SGS fluctuations, the LES has less mixing and
lower dissipation.
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Fig. 13 a Intensity of concentration fluctuation (ic = σc〈c〉 ) in the crosswind direction at position of maximum
mean concentration and x/δ = 1.25 for all resolutions; b same as panel (a) but plotted as a function of y/σy ;
c intensity of concentration fluctuation in crosswind direction for 2048 simulation at different downwind
distances from the source. The vertical lines correspond to ±2σy at the various downwind distances

Figure 13a shows the crosswind profile of ic at the downwind distance x/δ = 1.25
and elevation of maximum mean concentration for all the mesh refinements. The centreline
(y/δ = 0) is a point of minimum in the intensity of concentration fluctuations. Apparently,
the lines become progressively closer to the crosswind distance and for |y| /δ ≥ 0.1 the
values of 1024 and 2048 simulations are almost indistinguishable. However, this is an effect
of the different plume spreads. Figure 13b shows that normalizing the crosswind coordinate
by the local standard deviation of plume spread, σy , the curves become similarly spaced in
the centreline and towards the plume edges. Figure 13c shows ic for the 2048 simulation,
as a function of the crosswind position and for three downwind distances from the source.
The vertical dashed lines mark distances of 2σy from the plume centreline on each side and
indicate the position of the plume edges.

The skewness Sk = 〈
(c̄ − 〈c̄〉)3〉/σ 3

c and kurtosis Ku = 〈
(c̄ − 〈c̄〉)4〉/σ 4

c are commonly
used indicators of p.d.f. shape. The skewness measures the degree of asymmetry of the p.d.f.
and the kurtosis indicates the significance of the tails of the p.d.f.. However, the concentration
is bounded at zero, c ≥ 0, and the p.d.f. is positively skewed over most of the downwind
distances. Therefore, Sk and Ku are both strongly influenced by the right tail of the p.d.f..

Figures 14a, c show the crosswind variation of Sk and Ku at an elevation of maximum
mean concentration, for x/δ = 1.25 and all grid resolutions, plotted as a function of y/σy

to avoid overlapping due to the differences in mean plume spread. Both Sk and Ku strongly
increase while moving towards the plume edges where the concentration is more intermittent.
Moving towards the plume edges, it seems that the relative difference found in the centreline
between grid resolutions disappears between 256 and 512 resolutions while it is conserved
between 1024 and 2048 resolutions. However, despite the long averaging time, these high-
order statistics are subject to large statistical fluctuations for both 1024 and 2048 resolutions.
The statistical fluctuationsmake the interpretation of the data difficult, especially in the plume
edges. However, according to the Gamma p.d.f. (Eq. 17) model Sk = 2ic ≈ 100 for our
dataset in the plume edges, and Ku = 1.5Sk2 + 3 ≈ 15000, this seems to suggest that the
values reported are not far from reality.

Figures 14b, d show the along-wind variation of Sk and Ku on the position of maximum
mean concentration.More precisely, theminimumof the statistics over a small area (Δy×Δz)
surrounding the position of maximum mean concentration is reported together with the
spatially-averaged value over the same area. The area starts with source size and afterward
expands up to Δy = Δz = 2 × 0.037δ to account for the plume expansion. This approach
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Fig. 14 a Crosswind variation of skewness at elevation of maximum mean concentration for x/δ = 1.25; b
along-wind variation of skewness on the position of maximum mean concentration. For the 1024 and 2048
simulations, the lower curves are the minimum in a small area surrounding the mean concentration maximum,
while the upper curves correspond to the average over the same area used for the minimum. For 256 and 512
simulations, the two estimates are very similar and only the minimum is reported. See text for more details. c,
d As in a, b but for the kurtosis

was used because the value exactly in the position of maximum was affected by fluctuations
that hindered the detection of the along-wind variation. The two estimates are respectively
biased towards low values (the minimum over the area) and towards high values (the average
over the area). For the average, the bias arises from the crosswind profile strongly increasing
away from the plume centre. Together, the two curves provide an upper and lower bound and
give a good indication of the behaviour of the statistics along the plume centreline. For the
lower resolutions, i.e., the 256 and 512 simulations, only one line (the minimum) is reported
because the two estimates are very similar.

On the plume centreline, a significant increase is visible for both Sk and Ku while increas-
ing the resolution, and is similar to the behaviour of ic but more pronounced. This means that
the weight of the right tail in the p.d.f. increases with the grid resolution. However, a careful
inspection of Fig. 14b reveals that, for Sk, the relative difference between the 2048 and 1024
simulations is about 50% and much lower than between 1024 and 512, about 100%. This
suggests that also for Sk a clear tendency to convergence is observed between the 1024 and
2048 simulations. It is remarkable that the difference between 256 and 512 is rather small,
highlighting again that LES-grid sensitivity studies must span a wide range of resolutions to
be meaningful. Understanding the actual behaviour of Ku is more difficult since this statistic
is affected by the largest statistical errors. Considering only the lower bound of the estimate
(the curve given by the minimum in Fig. 14d) a tendency to converge could be again deduced
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between the 1024 and 2048 simulations, but this is not the case considering the average over
the area, i.e. the upper bounds of the shaded area.

Overall, these results show that the behaviour of the right tail of the p.d.f. is even more
sensitive to the changes of resolution than is the variance. This was perhaps expected but
could be clearly appreciated only when the grid resolution moved from 512 to 1024 and
2048. In contrast, a change between 256 and 512 resolutions showed very limited change in
Sk and Ku and would erroneously point towards an almost perfect convergence, while both
these resolutions are clearly incapable of correctly capturing Sk and Ku and therefore the
tail of the p.d.f..

A significant point is that the 1024 and 2048 simulations have very similar standard
deviations of concentration over most of the downwind distances. Therefore, similar Sk
and Ku values imply similar third- and fourth-order centred moments. This implies very
similar actual concentration values in the p.d.f. tail considering that the differences are greatly
enhanced for the third and fourth moment of concentration. Kurtosis especially highlights
even quite limited discrepancies in the p.d.f. tail between the 1024 and 2048 resolutions.

Despite the different source sizes in the wind-tunnel experiment and LES, the comparison
with the experimental values of Nironi et al. (2015) (see also Marro et al. 2018) shows that
the values of both Sk and Ku for the 2048 simulation are reasonable and realistic. However,
considering the larger source size in the LES, the upper bound of the LES estimates is
somewhat higher than the experimental observations while the lower bound is in a good
agreement with the observations.

As is evident from the changes in ic, Sk and Ku, the shape of the p.d.f. significantly
changes with the distance from the source, both in the along-wind and crosswind directions.
This is true for any grid resolution.

An analytical model of the concentration p.d.f. that in recent years has gained consider-
able experimental and theoretical support is a family of one parameter Gamma distributions
(Duplat andVillermaux 2008;Yee and Skvortsov 2011;Nironi et al. 2015). The concentration
p.d.f. is defined as

p(χ) = κκ

Γ (κ)
χκ−1exp(−κχ) (17)

with Γ (κ) the Gamma function, κ = i−2
c and χ = c/〈c〉. For the Gamma p.d.f. Sk = 2ic

and Ku = 1.5Sk2 + 3 (e.g., Nironi et al. 2015).
Complementary to the Gamma p.d.f. model is the meandering plume model, extensively

discussed above,which fully describes the concentration p.d.f. in the early phase of dispersion
where concentration fluctuations are produced. According to the meandering plume model,
the centred moments, skewness and kurtosis can be calculated using a standard relationship
between centred and uncentredmoments (e.g.,Monin andYaglom 1971). This (seeAppendix
3, Eq. 28) highlights that close to the source and along the plume centreline (y = ys, z = zs),
scaled moments such as ic, Sk and Ku are only a function of My = σ 2

my/σ
2
r y and Mz =

σ 2
mz/σ

2
r z . Therefore plotting Sk and Ku as a function of ic gives a unique curve.

Figures 15a, b show the minumum values of skewness and kurtosis in the small area
surrounding the maximum mean concentration for all grid resolutions as a function of i2c .
The LES data show a clear path, with data moving from the meandering p.d.f. limit, close to
the source (dashed line) with low values of ic progressively increasing toward the peak, to
the Gamma p.d.f. far away from the source (solid line) with progressively decreasing value
of ic after its peak. The peak in ic thus marks the start of the phase where the Gamma p.d.f.
is the optimal model. This was never discussed before to our knowledge.
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Fig. 15 Minimum values of, a Skewness, and b kurtosis in the small area surrounding the maximum mean
concentration as a function of i2c where ic is the intensity of concentration fluctuations. c Skewness and d
kurtosis at 2σy from the maximum mean concentration as a function of i2c

We note that the meandering plume model values are only shown for the increasing value
of ic up to its peak (see also Fig. 11). Different resolutions seem to behave slightly different
with the higher resolutions more closely following both the meandering model close to the
source and the Gamma p.d.f. after the ic peak. This confirms that by increasing the resolution,
the LES better captures the physics of dispersion.

Figure 15c, d report similar comparison but for the off centreline position y = 2σy . The
meandering plume model values almost perfectly collapse on a single curve, therefore only
one line is reported in Fig. 15c, d. It overall confirms the behaviour observed on the centreline
but noticeably, at constant ic, the difference between values of Sk and Ku in the meandering
and dissipative phases is strongly reduced.

5 Summary and Discussion

Four different grid resolutions have been used to perform LES of plume dispersion and
concentration fluctuations in an incompressible half-channel flow at infinite Reynolds num-
ber. The analysis of the difference in results for changing resolution was supported by a
comparison with wind-tunnel experimental data.

For the velocity field, the most salient points of the comparison among resolutions were
that, despite the good consistency of one-point second-order velocity statistics, the two-point
correlation analysis showed that the highest resolution simulation (2048) developed larger
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turbulent structures, characterized by longer length scales and time scales. The TKE spectrum
revealed that an inertial subrange was present in the two more resolved simulations.

The comparison with the wind-tunnel data showed that the variance of the along-wind
velocity component and TKE were well captured, especially at high resolutions, while the
variance of crosswind and vertical components (which are more important for plume dis-
persion) was lower in the LES than in the measurements. The LES showed also a generally
higher mean flow speed at source elevation compared to the experimental data of Nironi et al.
(2015) and this could be mainly attributed to the specific wall model used in PALM.

Moving to the scalar field, the comparison of the mean concentration among the different
resolutions showed that the highest resolution simulation (2048) had a markedly different
mean field characterized by higher plume spread and lower mean concentrations. This was
tracked back to a larger TL resulting from the larger turbulent structures generated at this grid
resolution. As a result, the absolute dispersion obtained at this resolution was more similar
to the wind-tunnel measurements despite still being underestimated.

The analysis of concentration variance among different resolutions showed a clear ten-
dency to converge in the two higher resolved simulations (1024 and 2048). The analysis
demonstrated that production close to the source is the most critical phase for plume con-
centration fluctuations and that only an appropriate resolution can capture it, corresponding
to Nz, Ny ≥ 256 and Nx ≥ 1024 here. More precisely, the conservation equation of scalar
variance showed that the production of fluctuations mainly occured close to the source while
afterward advection was the dominant term. Therefore, significant convergence in the vari-
ance was ensured by the source being adequately resolved by at least 43 grid nodes.

The mechanism of generating fluctuations was analyzed by separating plume dispersion
in meandering and relative dispersion and using the Gifford (1959) meandering model for
a quantitative analysis. This analysis demonstrated that inadequate resolution artificially
enhanced relative dispersion, therefore suppressing meandering related production of fluctu-
ations. As the meandering is often thought to be associated with the large eddies, one could
think that a relatively low resolution LES is sufficient to capture it correctly. This intuitive
picture is not correct and, as demonstrated in our analysis, numerical diffusion can suppress
fluctuations produced by the meandering close to the source if the source itself is not properly
resolved. This early meandering phase turns out to be very important for the production of
concentration variance. The artificial diffusion imposed by a coarse grid resolution seems to
result in a larger effective source size with the corresponding lower level of fluctuations.

The analysis of the shape of the p.d.f. included the examination of scaled moments up
to the fourth, ic, Sk, Ku. Regarding ic, by comparing all the grid resolutions, the combined
behaviour of mean concentration and standard deviation generated a weaker convergence
of this scaled moment although a tendency to converge was again visible between the 1024
and 2048 simulations. However, two distinct reasons of this behaviour could be determined:
(i) an increase in concentration variance production acting mainly on all resolutions up to
1024, and (ii) a decrease in the mean concentration acting on the 2048 resolution. Therefore,
insufficient scalar source definition acted mainly on the 256 and 512 resolutions totally
preventing ic convergence at these resolutions, while a change in the turbulent structure
modified the mean value of the 2048 simulation.

Regarding Sk and Ku, some tendency to converge was again visible between the 1024
and 2048 simulations, especially for Sk. From 256 to 512 to 1024 resolutions, the production
of fluctuations close to the source increases significantly. Here, the third and fourth centred
moments increase even more than σc, because the plume retains a progressively thinner
initial structure that afterward is transported by mean advection and turbulence; significantly
different internal plume structure is present at different resolutions.Moving from1024 to 2048
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resolution the production of concentration variance is very similar and therefore the internal
plume structure is similar over most of the concentration values. However the third and, more
markedly, the fourth centred moments are mostly influenced by the higher concentration
values in the right tail of the p.d.f. and strongly enhance even limited differences in the actual
concentrations.

Irrespective of grid resolution,we found that the different p.d.f. shapes could be very nicely
reproduced by a family of Gamma distribution in the decaying phase of ic, i.e. downwind of
its peak. While the use and observation of the Gamma p.d.f. is not new in the literature of
plume dispersion (e.g Yee et al. 1993c; Yee and Skvortsov 2011; Nironi et al. 2015), this very
clear transition of the concentration p.d.f. to a family of Gamma p.d.f. after the peak of ic was
not observed before to our knowledge. We emphasize that a similar behaviour was observed
here in the plume centre and in the plume periphery. The fact that all LES resolutions showed
similar behaviour, irrespective of the quite different turbulent velocity spectrum, indicates
that the mechanism generating the Gamma p.d.f. is rather general and well captured by the
LES.

Complementary to the Gamma p.d.f. model is the concentration p.d.f. generated by the
meandering plume model of Gifford (1959), which was shown to quite accurately capture
the concentration p.d.f. generated by the LES in the early phase of plume dispersion, before
the peak of ic. This is especially the case for the higher resolutions, 1024 and 2048.

We underline that our study highlighted once more that convergence in the turbulent flow
of LES is difficult to achieve and this is exacerbated for the scalar field from a localized small
source. Differentmechanisms drive the production of fluctuations and the long term evolution
of mean plume dispersion and therefore multiple distinct factors could prevent convergence
of the concentration p.d.f. shape. However, we systematically investigated the differences in
the results among grid resolutions and discussed themechanisms producing these differences.
This provides a useful reference to anybody interested in validating and using LES for plume
dispersion and concentration fluctuations at very high Reynolds number, and provides a
quantification of the uncertainty involved in this type of studies. A very important point is
that the grid dependency quantification should span a wide range of grid refinements, in our
case the difference in scalar fluctuations between 256 and 512 resolutions was minimal while
there was a large change between 512 and 1024 resolutions. Furthermore, the results clearly
show that p.d.f. shapes could be very nicely reproduced by a family of Gamma distributions
only in the decaying phase of ic, downwind of its peak. The meandering p.d.f. was a better
model in the early phase of dispersion.

Detailed analysis and comparison with wind-tunnel measurements showed that, as
expected, the 2048 simulation produced the more realistic turbulent structures and therefore
concentration p.d.f. evolution. Simulating a wind-tunnel flow means that some important
characteristics of the real atmosphere are neglected in the simulations, like for example the
momentum flux and TKE shear production at the boundary-layer top. However, the scalar
source considered here is placed in the lower part of the boundary layer where these effects
should be negligible compared to the interaction with the wall. It remains a task for future
studies to elucidate any difference in concentration fluctuations between the current wind-
tunnel setting and a full atmospheric boundary-layer simulation.

Finally, we remark that our results are somewhat specific to our set-up, in particular
the SGS model, wall model and numerical methods. Many models are available and the
convergence of the model results and the turbulence statistics may depend on the SGS model
(e.g., Salesky et al. 2017) and wall model (e.g., Hultmark et al. 2013). In particular, it is
likely that the use of suitably formulated Lagrangian stochastic SGS models for the scalar
field may improve the convergence of the scalar field results and will be further investigated
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in future studies. However, the methodology presented here to validate and understand LES
results for plume dispersion and concentration fluctuations is general and should be a useful
guidance for anyone interested in using LES for such tasks.
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Appendix 1: Governing Equations

The equations for the conservation of mass, momentum and passive scalar, filtered over a
grid volume on a cartesian grid, in PALM (Maronga et al. 2015) are

∂u j

∂x j
= 0 (18a)

∂ui
∂t

= −∂uiu j

∂x j
− 1

ρ0

∂π∗
∂xi

− ∂

∂x j

(
u′
i u

′
j − 2

3
eδi j

)
(18b)

∂c

∂t
= −∂(ui c)

∂xi
− ∂

∂xi

(
u′
i c

′
)

(18c)

where π∗ = p+ 2/3ρ0e is the modified perturbation pressure with p being the perturbation
pressure, ρ0 = 1 kg m−3 is the density of dry air at the surface, and e = 1

2u
′
i u

′
i is the SGS

TKE. The SGS terms are parametrized using a 1.5-order closure after Deardorff (1980). The
PALM code uses the modified version ofMoeng andWyngaard (1988) and Saiki et al. (2000)
as

u′
i u

′
j − 2

3
eδi j = −Km

(
∂ui
∂x j

+ ∂u j

∂xi

)
, (19a)

u′
i c

′ = −Ks
∂c

∂xi
, (19b)

where Km = cml
√
e is the local SGS diffusivity of momentum, cm = 0.1 is amodel constant,

l = min(1.8z,Δ) is the SGS mixing length, andΔ = 3
√

ΔxΔyΔz with Δx,Δy,Δz being the
grid spacing in the x, y and z directions, respectively. The SGS scalar diffusivity is defined as
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Ks = (
1 + 2l

Δ

)
Km . Moreover the closure includes a prognostic equation for the SGS TKE,

∂e

∂t
= −ui

∂e

∂xi
−

(
u′
i u

′
j

) ∂u j

∂xi
− ∂

∂xi

[

u′
i

(
e + p′

ρ0

)]

− ε, (20)

in which the pressure term and ε are parametrized as
[

u′
i

(
e + p′

ρ0

)]

= −2Km
∂e

∂xi
, (21a)

ε =
(
0.19 + 0.74

l

Δ

)
e3/2

l
. (21b)

Appendix 2: Boundary Conditions

A variety of boundary conditions are available in PALM. In the current study, for the velocity
field a periodic boundary condition is used in along-wind (x) and crosswind (y) directions.
At the bottom wall, the lowest grid level for horizontal velocity components and scalar
quantities is not staggered vertically and is defined at the surface (z = 0). Between the
surface and the first grid level where the scalars and horizontal velocity components are
defined (z = 0.5Δz), a constant-flux layer is assumed based on Monin–Obukhov similarity
theory (see Maronga et al. (2015) for full description; here we only report the boundary
conditions for the neutral stratification case). The vertical profile of the horizontal velocity
magnitude (uh = (u2 + v2)1/2) is given in the surface layer by

∂uh
∂z

= u∗
κz

(22)

where κ = 0.4 is the von Kármán constant. In PALM, u∗ is calculated from uh at z = 0.5Δz
by integrating Eq. 22 over z from the roughness length z0 to z = 0.5Δz. The definition of u∗
is as follows

u∗ =
[(

u′w′
0

)2 +
(
v′w′

0

)2]1/4
, (23)

and therefore the surface momentum fluxes can be obtained by integrating the following
equations over z from z0 to z = 0.5Δz

∂u

∂z
= −u′w′

0

u∗κz
,

∂v

∂z
= −v′w′

0

u∗κz
. (24)

The components of the ground stress tensor are used to calculate the vertical derivative of the
velocity components at the first grid node. These derivatives are used in the calculation of the
shear production term of the SGS TKE, Eq. 20. Furthermore, the ground stress components
are used in the ground treatment of the diffusion term, last term in (18b). At the top, Neumann
boundary conditions are applied (∂u/∂z = ∂v/∂z = 0).

Neumann boundary conditions (∂e/∂z = 0) are also used for the SGS TKE. Vertical
velocity is assumed to be zero (w = 0) at the surface and top boundaries, which implies
using Neumann boundary conditions for the pressure.

For the passive scalar, PALM allowed only periodic boundary conditions in along-wind
(x) and crosswind (y) directions if periodic boundary conditions were applied to the flow
field. However, this was not suitable for the purpose of this study. Therefore the boundary
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conditions for the passive scalar in along-wind (x) and crosswind (y) directionsweremodified
and tested thoroughly. In the inlet plane (the (y, z) plane corresponding to the first grid point
in along-wind direction), Dirichlet boundary condition is used. This means that the scalar
quantity is set to zero (c = 0), therefore no entrance of scalar is allowed from the inlet
side. From the opposite side (outlet), the scalar can only exit. This is done by setting the
scalar in ghost layers equal to that of the last grid point in (x), up to which the prognostic
equation is solved (∂c/∂x = 0). This was done according to what PALM used for the
scalar in conjunction with non periodic boundary conditions for velocity (outflow). Note
that in PALM, some number of ghost layers are considered on each lateral boundary of the
processor subdomains. The exchange of ghost layers is adapted to a dynamic number of
ghost layers, depending on the applied advection scheme. In the crosswind (lateral) direction
(y), the scalar is set to zero at both sides and also the ghost layers before the first grid point
in y and after the last grid point in y (for which the prognostic equations are solved). We
also used Neumann boundary condition on crosswind direction (∂c/∂ y = 0), however the
effect of the lateral boundaries on scalar dispersion statistics was found to be negligible for
the range we explored here (x/δ ≤ 4). At the bottom and top, the default PALM boundary
conditions of the form of Neumann are used for scalar (∂c/∂z = 0). Boundary conditions of
the velocity and scalar fields are detailed in Table 4.

Appendix 3: TheMeandering PlumeModel

In the meandering plume model of Gifford (1959) the concentration p.d.f., p, can be written
as

p(c; x, y, z) =
∫ ∞

0

∫ ∞

−∞
pcr (c; x, y, z, ym , zm)pm(x, ym, zm)dymdzm, (25)

where c is the instantaneous concentration, pcr is the p.d.f. of the concentration in the
meandering reference system centred in (ym, zm) and pm is the p.d.f. of the position of
the centre-of-mass. Assuming independence of meandering motions in crosswind and ver-
tical directions and neglecting concentration fluctuations in the relative coordinate system,
i.e. pcr = δD(c − 〈cr 〉), where δD here is the Dirac delta function and 〈cr 〉 is the mean
concentration in relative coordinates (e.g., a Gaussian) which is a function of σr y and σr z
(see Luhar et al. 2000; Cassiani and Giostra 2002; Marro et al. 2015), Eq. 25 can be rewritten
as

p(c; x, y, z) =
∫ ∞

0

∫ ∞

−∞
δD(c − 〈cr (x, y, z, ym, zm)〉)pmy(x, ym)pmz(x, zm)dymdzm .

(26)

pm = pmy pmz and in the neutral baundary layer case these two p.d.f. can be taken asGaussian
functions of σmy and σmz . The nth concentration moment can be obtained (see Luhar et al.
2000; Marro et al. 2015) from

〈cn〉 =
(

Q

2π 〈us〉 σr yσr z

)n σr y
[
nσ 2

my + σ 2
r y

](1/2)

σr z
[
nσ 2

mz + σ 2
r z

](1/2)

× exp

(

− n(y − ys)2

2(nσ 2
my + σ 2

r y)

)

exp

(
− n(z − zs)2

2(nσ 2
mz + σ 2

r z)

)
,

(27)
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where Q is the emitted mass at the source located in ys, zs . Using the relative dispersion and
meandering generated by the LES, all the concentrationmoments can be calculated according
to the meandering plume model. Equation 27 can be rewritten in the form of

〈cn〉 =
(

Q

2π 〈us〉 σr yσr z

)n 1
[
1 + nMy

](1/2)
1

[
1 + nMz

](1/2)

× exp

(

− n(y − ys)2

2σ 2
r y(1 + nMy)

)

exp

(
− n(z − zs)2

2σ 2
r z(1 + nMz)

) (28)

with My = σ 2
my/σ

2
r y and Mz = σ 2

mz/σ
2
r z . Q is 1 kg s−1, us is the LES velocity at source

elevation, σr and σm are relative dispersion and meandering, respectively as derived from
the LES concentration data for crosswind and vertical directions, no parametrization is used.
The contribution of internal concentration fluctuations, in the coordinate system relative to
the local plume centre of mass, is neglected in this standard meandering formulation. In the
simplified case with My = Mz = M and in the plume centreline, Yee and Wilson (2000)
demonstrated that

σ 2
c =

(
(1 + M)2

(1 + 2M)
− 1

)
〈c〉2. (29)

Therefore, with a constant absolute dispersion the variance of the concentration fluctuations
will always increase with M .
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