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INTRODUCTION 

Consider p variables measured on individuals of a given popu­ 

lation, for example p chemical components measured in samples 

of air. The population in this case is the mass of air from 

which the sample was taken, and our aim is to describe this 

population in terms of a few physically or chemically meaning­ 

ful combinations of the original variables, for example char­ 

acterising sources of components. In other words, we want to 

transform the original set of variables into a space with 

fewer dimensions where the axes will describe the behaviour of 

the whole population more clearly. For this purpose principal 

component analysis and factor analysis are often used. When­ 

ever we have some insight into the rules that are affecting 

our population, we may use this knowledge to construct a model 

for the factor analysis: we assume that a certain percentage 

of variability in the population is due to some well described 

causes (for ex. the composition of particles produced by wind 

erosion or the emission of certain pollutants by vehicles), 

while the rest is due to random effects influencing the mea­ 

surements. We usually consider these random or error effects 

to be independent and identically normally distributed with a 

zero mean vector. The parameters characterizing such a model 

can be estimated. Tests of hypotheses for these parameters are 

well described, at least for normal populations (cf.eg. Lawley 

& Maxwell (16], Jørgenskog (11], Harman (12]). We shall not, 

however, consider the factor model in the present paper. 

If our knowledge of the population is rather restricted, prin­ 

cipal component analysis may be used to investigate the co­ 

variance or correlation structure of the underlying space. The 

present paper is limited to a discussion of the case when a 

sample correlation matrix is used. Our aim is to give some 

insight into the power of principal component analysis and to 

outline several practical directions about how to treat 

multiple response data in problems concerning air pollution. 
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The basic concept of principal component analysis, the neces­ 

sary definitions, and a summary of properties of the principal 

components is briefly sketched in section 1. Section 2 con­ 

tains a survey of statistical tests that can be used to con­ 

trol different hypotheses concerning the principal components 

of a correlation matrix, so that the reader should be able to 

apply them to his data, even if he is not very familiar with 

the mathematical statistics. Paragraph 3.2 indicates the pro- 

blems connected with formulating and testing hypotheses about 

eigenvectors. To facilitate the reading of this paper, and as 

it is not possible to avoid some statistical terms, an 

abstract of terminology used in the statistical discipline of 

testing hypotheses is included as Appendix A. To illustrate 

the procedures described in 3.1.1 and 3.1.2 some examples are 

presented in Appendix B, using some of the precipitation data 

I had the opportunity to work with at NILU. For completeness, 

the tables of chisquare distribution are also included in 

Appendix D. 

2 PRINCIPAL COMPONENT ANALYSIS CPCAl- DESCRIPTION AND 
OBJECTIVES 

PCA is one of several methods which can be used to reduce 

the dimensionality of multiple response data: the main 

consideration here is the possibility to interpret the lower 

dimensional representation. It should be stressed here that 

the PCA does not necessarily yield directly interpretable 

results. 

Circumstances, under which one may be interested 

the dimensionality of multiple response data 

following (cf. Gnanadesikan [9]): 

in reducing 

include the 

1. exploratory situations in data analysis, especially when 

it is not known what is important in the measurement 

planning. One may want to screen out redundant 

coordinates (if any) or to find more insightful ones as a 

preliminary 

collection. 

step to further data analysis or data 



2. Preliminary 

to be used 

classification procedures. 

3. Situations in which one is interested in the detection of 

possible 

high-dimensional space. 

A problem of particular interest in connection with transfor- 

mation of coordinates and reduction of dimensionality is 

the reduced coordinates should have a meaning or an interpre- 

tation that will facilitate an understanding of 

although 

able. 

PCA 

190 1 

who 

Since 

as 

related 

The 

new set 

Principal 

a 

also 

then 

basic 

the 

specification 

as 

functional 

derived coordinates may not be directly observ- 

technique was first described by Karl Pearson in 

Further developement is due to 

was the first to use the term principal components. 

many statisticians 

to PCA, but the more widely used technique was factor 

analysis, applied mostly on 

coordinates 

idea 

are 

transformation of 

of 

in 

PCA 

a 

7 
of a space that eventually is 

basis 

dependencies 

have 

for 

Harald 

psychological 

array of N points in ap-dimensional space 

variances of the given points with respect 

principal component has maximum variance 

discrimination 

among observations in 

dealt 

the 

Hotelling 

with 

research 

(cf. Rummel [19] for further discussion and references.) 

by 

among 

these 

all 

or 

that 

problem, 

[ 1 3]. 

problems 

problems 

of orthogonal linear coordinates, so that the sample 

variance subject to being orthogonal to the first one 

on. 

components are 

original 

is to describe the dispersion of an 

increasing order of magnitude. The first 

not invariant 

coordinates, 

introducing 

to 

including 

derived 

possible 

linear coordinates, the second principal component has maximum 

and 

a 

so 

under the linear 

separate 

scaling. Therefore the principal components of the covariance 

matrix are not the same as those of the correlation matrix, or 

when some other type of scaling is used according to measures 

of importance. Note, that when the correlation matrix is used, 

the principal components are invariant to separate scaling of 
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original variables. 

preforming 

scales of the measured variables are not comparable. 

for 

PCA on the correlation matrix, especially when the 

reasons 

inference, 

highly 

Let X'. 
J 

= 

of 

For 

statistical 

distribution 

preferable 

this 

theory, 

to work with 

X . ) 
PJ 

reason we 

nature 

are 

(formal 

asymptotic 

in favour of 

statistical 

theory) 

However, 

it is 

covariance matrix, though 

recently there are some results available for the 

matrix, too. 

j=l, .. , N, be a 

correlation 

random sample of 

size N=n+l, n~p. from ap-variate distribution with mean vec- 

torµ and a positive semidefinite covariance matrix [ = 

let 

(a .. ) • 
l. J 

s = ( s . . ) = ~ (X.- X) (X. X) 
l. J j=l J J 

- ~ X = ( l/N) X. 
j=l J 

X is an unbiased estimate ofµ, S/n is an unbiased estimate of 

[. Here and further on the prime denotes transposition of a 

vector resp. matrix. The population correlation coefficient 

between the i-th and the j-th component of the random vector 

is defined as 

g .. = 
l. J 

1 
a .. I (a .. a .. )2 
l. J l.l. J J 

The pxp matrix P = (Q .. ) is called the population correlation 
l. J 

matrix. We estimate g .. as 
l. J 

r .. 
l. J 

1 / 2 = S . . / ( S . . 5 . . ) 
l. J l.l. JJ 



9 

The pxp matris R = (r .. ) is 
1J 

We need not suppose that the 

formulate the theory of PCA, 

called the sample correlation matrix. 

X .·s are normally distributed to 
J 

however, if the X .'s are drawn from a 
J 

normal population, the statistical theory is considerably 

simplified. 

Since Pis positive semidefinite, there exists an orthogonal 

matrix H such that 

H'P H = A 
( 1 ) or 

P H = H A , A = diag C ,\ , 'A ) p 
where 

_. 'A 
p 

are the latent roots (or eigenvalues) of P, and the columns of 

H = ( h
1
, ... , h ) 

pxp P 

are the corresponding orthonormal latent vectors of P. We can 

rewrite these relations as 

( 2) 
h '. p h. = 'A. 
J J J 

h '. p hk = 0 
J 

The linear combination y .= h'.X is called the j-th principal 
J J 

component of P. It follows from (2) that the principal 

components are uncorrelated, and that the variance of the j-th 

principal component is 'A .• 
J 

is maximal among all linear combinations of X such that 

It can be shown that the var(hiX) 

h'.h .= 1, and that the var(h
2
'X) is maximal among all linear 

J J 
combinations of X such that h'.h .= 1, h'.h

1 
= O, etc. 

J J J 
Consequently, it can be shown that if B1, ... ,Bk, k < p, is a 

set of orthonormal vectors in p-dimensional space, then 

+ 'A = max 
k B1, .. ,Bk 

= var (hi X) + .• + var(hkX) k < p, 

and that the linear prediction of X based on the first k 

characteristic vectors is optimal in terms of minimizing the 

residual variance. 

It should be noted, that for the indicated linear transform 

y = HX the sum of the variances of all the principal 

components is p - the same as the sum of the variances of the 
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original normalized variables. Also, the generalized variance 

(of the normalized variables, i.e. the determinant of P) of 

the population is preserved. This follows from the fact that H 

is orthonormal. For proofs of these results cf. Anderson (1], 

Rao (21 J. 

To estimate the characteristic roots and the characteristic 

vectors of the population correlation matrix P we compute the 

characteristic roots and vectors of its sample equivalent R. 

When the X values are drawn from a normal population and P has· 

p distinct characteristic roots, the estimates of the corre­ 

sponding population parameters are of maximum likelihood type 

(it can be shown in the same way as for the covariance matrix, 

cf. Anderson [1]). 

However, let 

decomposition 

characteristic 

us 

of 

note that the basis of the PCA 

a 

roots 

positive semidefinite 

is a spectral 

matrix. The 

of such matrix are always real and non- 

negative, and the characteristic vectors are real. It is 

to facilitate the development of the statistical theory, 

only 

that 

we require a random sample drawn from a normal population. But 

it is clear that when one wants to construct a general basis 

for the theory and its validation, this is a vital 

consideration, since the statistical inference in non-normal 

cases is very complicated and of restricted practical value 

till now. 

3 TESTING HYPOTHESES WITHIN THE PCA 

By a decomposition of the correlation matrix into the prin­ 

cipal components we have obtained a set of new variables 

each a linear combination of the original ones. Now two basic 

problems arise: the first and perhaps the most important one 

is to find whether we can ascribe some meaning to the new 

variables. It may not be always true: when the original vari­ 

ables are chosen so that they do not describe the population 

sufficiently in the sense that the set of original variables 

is highly intercorrelated, then the largest eigenvalue will be 
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close top - the number of variables, while the others will be 

close to zero. In a less boundary case we may obtain a new set 

of variables such that there are only some sources of variabi- 

lity mixed together in one linear 

introduce a new variable that is able to 

these sources, we can not separate 

combination. Unless we 

distinguish 

them by means of any 

analysis of linear dependencies. In other words, a failure in 

interpreting results of the decomposition is likely to lead us 

to the conclusion that the chosen variables do not 

suitable description of the population under study. 

The second problem concerns statistical inference: we would 

like to know which principal components represent only 

(or error) influences and which can be ascribed to a specific 

well-described process. Also the true value of 

each principal 

between 

component vector 

provide a 

random 

components of 

is of interest, e.g., to 

deduce that the coefficients of the original variables are 

either zero or nonzero with some probability. 

We shall reformulate these vague questions and describe them 

in the language of statistical hypotheses. 

3 . 1 Hypotheses about the rank of a population correlation 

matrix e, 

One of 

analysis 

factors" 

derived 

the 

these 

meters 

the 

is 

to 

for 

significance 

number 

values, 

we 

observations, 

fundamental 

the 

be 

the 

similar problems 

of 

wish 

problems 

determination of 

in 

the 

both PCA 

number 

and factor 

of common 

used as a basis for a further description of 

the population. There 

factor 

in 

level) 

original 

even 

to 

are 

PCA. 

the 

otherwise 

several 

model, 

We 

number of substantive influences in 

our physical population. This will generally be 

variables 

sample, since the confidence region 

estimate 

the 

wish 

is 

criteria, 

but 

problem 

to 

less 

they are applicable to 

and 

is a 

is 

determine 

model should fulfill the condition that the 

on 

function 

when using heuristic criteria. Also, the 

number 

than 

most of 

dependent 

them 

the 

singular 

(on 

also 

some 

on 

the size of the 

of 

of para- 

number of 

and no 
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statistical inference is possible. On the other hand, having a 

finite number of variables describing a theoretically infinite 

population we can always find a finite number of components to 

fit our observations. 

3 . 1 . 1 Distribution independent criteria 

3 . 1 . 1 . 1 Three lower bounds to the rank of P 

Let us 

positive 

matrix 

satisfies 

( 3 ) 

remain 

p the 

number 

consider 

semidefinite. 

such 

0 

that 

2 u. 
J 

a 

G = P - u2 

and our objective 

the 

Then we define a symmetric matrix G by pxp 

is to 

real positive 

rank. Actually, 

u2 might be 

the relation 

regarded as 

variance due 

causes 

population correlation 
2 

Let U be 

j-th diagonal element denoted 

an arbitrary real diagonal 
2 

by u. 
J 

~ 1, j = 1, ... ,p. 

find a matrix u2 

semidefinite with the smallest possible 

( 3) 

the 

states a 

covariance 

matrix p real 

such that G will 

factor model, as 

matrix of unique 

factors or uncorrelated errors. In (3) we have subtracted from 

to the causes influencing the original 

variates independently, and we want to estimate the minimum 

of influencing them as a whole, that is , the 

rank of G. Again, we are looking only for linear dependencies. 

Guttman [10] 

of G making 

s2 equals 

matrix 

has found three lower bounds to the minimum rank 
2 

no additional assumptions about U or about an 

underlying distribution whatsoever. 

He defines the f o 11 owing boundaries s 
1 

, s 
2 

, s 
3 

: 

s
1 

equals the number of eigenvalues of P greater than or 

equal to unity. 

the number of non-negative eigenvalues of the 
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where 

element is equal to 

multiple 

variable with the remaining p-1 observed ones. 

s
3 

equals 

maximum 

of 

components 

is a 

correlation 

the number 

matrix s3 = P-D3, where 

j-th diagonal element 

correlation 

observed variable and any of the p-1 remaining ones. 

Let k be an unknown minimal rank of G given P. Then using only 

linear algebra it can be shown that 

So far we have dealt only with the population characteristics, 

now we shall use their sample equivalents. 

the sample correlation matrix 

This lower bound to the rank of 

practical justification: it determines the number of principal 

with a variance 

variance of each primary 

this connection 

resp.Ris 1. 

All the 

certainly 

that 

diagonal 
2 1 - r . , 
J 

underestimate 

of 

is 

the 

matrix whose 

j = 1 •...• p. 

coefficient 

non-negative eigenvalues of the 

o3 is the diagonal matrix whose 
~2 

equal to 1-r ., where 
J 

coefficient 

R give us directly the estimate 

larger 

proper 

of the j-th observed 

between 

than 

p 

r. 
J 

or 

number 

j-th diagonal 

denotes the 

r . is 
J 

the 

normalized variable. Let us note 

the 

j-th 

The eigenvalues of 

has also another 

equal to the 

in 

the mean value of the eigenvalues of P 

three lower boundaries should be used carefully: they 

of components 

corresponding to the global influences we are looking for. 

3.1.1.2 The scree test 

This 

his 

criterion was proposed by Cattel [4] and it is based on 

empirical knowledge. 

underlying 

To give an 

philosophy, let us use Cattel's own words: "In any 

case the scree-test does not rest for its 

impression of the 

practical validity 

upon the correctness of the theory or inferences from it, but 

on an inductive law, some of the empirical evidence for which 

is presented here 

can find a lot of 

And indeed, the reader of Cattel paper 

empirical evidence there. A theoretical 

justification of the suggested criterion is not to be easily 

found (it can hardly be 

sense), nevertheless, 

called a test in the statistical 

I am quite convinced of its value as a 
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practical guide, when other criteria are employed, too. 

As a basis for determining how many of the principal com- 

ponents express non-trivial processes (physical influences), 

we use a plot of the eigenvalues as shown in Figure 1: 

s.o 

4.0 

l­ o 
0 a: 3.0 
1- z 
w 
1- 
5 2.0 

LL. 
0 
w 
N 
en 1.0 

• 

• 
Ideal case, data 
without random variation. 

• 

This 

this 

plot 

• 

• 
• 
• 
• 
• ••• 

0 5 10 15 20 25 30 P 

Figure 1: Eigenvalues corresponding to 30 factors - ideal case. 

straightness 

first falls off steep by, and then straightens out 

in a line which runs only with small irregular deviations from 

(fig. shows an ideal case). This straight end 

part we call the scree - "from the straight line of rubble and 

boulders which forms at the pitch of sliding stability at the 

foot of mountain", to quote Cattel again. The 

is 

Finally, 

that 

implication of 

this scree represents small error factors. The 

criterion then is to consider all components corresponding to 

the eigenvalues rising above the scree physical meaningful. 

let us outline some motives that led Cattel to adopt 

this heuristic theory. He argues that 
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1. it is not possible to describe the population in terms of a 

smaller number of linear components; the cut-off point is 

determined in an objective manner using a concept of 

non-trivial common variance, which may be adjusted at 951. 

or 991. of total variability, according to the circum- 

stances, 

2. the model for the scree-test is a "complex stratified 

factor model", different from both the PCA and factor 

analysis models. It considers contributions from factors of 

temporarily-specific origine, general error factors and a 

truly specific primary factors (so-called unique factors), 

in addition to the variance in each variable accounted for 

by the substantive common or general physical factor. 

3.1.2 Criteria for samples from a normal population 

The tests described in this section are based on the result 

obtained by Wilks (24], who has shown that under certain 

conditions imposed on the population distribution, the 

asymptotic distribution of the logarithm of likelihood ratio 

is chi-square with degrees of freedom corresponding to the 

difference between hypothesis and alternative. 

Let us assume that we have a random sample drawn from a 

p-variate normal distribution NP(µ,[) 

with mean vectorµ and covariance matrix [. 

consider a hypothesis 

>,. = 1 =>- = 1 p 

that the characteric roots >,.i' i=1, ... ,p, 

First we shall 

of the population 

correlation matrix P are equal and therefore equal to 1. pxp 
This hypothesis states that 

p = I , 

where I denotes the identity matrix, i.e. that the original 

variables 

Ho holds, 

are uncorrelated and therefore since the 

underlying distribution is assumed normal - independent. If 

there is no point in trying to find a new set of 
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uncorrelated variables as the conditions imposed on the 

principal components are met by the original variables. A 

suitable statistics for the test of H0 against the general 

alternative that H0 does not hold is 

p 

/I 1 A0 = ln ( IR I ) = ln 

where 1. denotes the sample values of A. (i.e. ,the eigenvalues 
J J 

of R), the IRI denotes the determinant of the sample corre- 

lation matrix R, the ln(x) denotes the natural logarith of x. 

Bartlett (3) has shown that the expression 

1 T0 = - {n - 6 (2p+5)} A0, n = N-1 

is asymptotically (for n tending to infinity) distributed 

after a 

freedom. 

chi-square distribution with p(p-1)/2 degrees of 

To test H0 we compute the value of T0. We reject H0 
on the level a when 

2 
T0 > xp(p-1)12 (1-al, 

and we can not reject H0 when the opposite inequality is true. 

x:(p-1)12(1-a) denotes the 100(1-a)Z quantile of a chi-square 

distribution with p(p-1)/2 degrees of freedom, a is the chosen 

significance level; we usualy take a= .05 or a= .01. 

If in the given set of variables some observed correlation 

coefficients are high (say .95 or higher), then several 

variables are likely to be lineary dependent and therefore the 

correlation matrix is near to a singular one. In this case H0 
will be rejected. Also it is quite probable that we shall meet 

a considerable computational troubles when trying to compute 

the eigenvalues of a singular matrix R, especially when the 

number of variables is large, as most of the algorithms do not 

converge to a suitable solution in such a border case. Both 

these problems are simplified without much loss of information 

by removing one or more of the most highly correlated 

variables from the set under study. 

Nagarsenker (18) has derived an exact null distribution of the 

determinant of the correlation matrix R by using techniques 
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based on series expansion of certain functions. His aim was to 

test and in addition to the exact distribution of IRI 

he computed also its significance points for a= .05 and a= .01 

for a number of variables ranging from 3 to 8 and sample sizes 

from 4 to 100. The tables are reproduced in Appendix C. 

Let us consider a more general hypothesis about the population 

correlation matrix Pin the form 

>.. 
J 

= >. p j p 

based again on the indicated random sample from N ( µ' [) . H1 p 
includes HO as a special case when j = 1 . H1 states that the p-j 

smallest eigenvalues of p are equal, that is, we can not dis- 

tinguish between the variances of the corresponding principal 

components. 

H
1 

holds for 

If the last eigenvalues are small enough, and if 

some j, j < p, and does not hold for j+1<p, then 

we can consider the corresponding principal components to be 

the result of some trivial random process, 

focus our further interest on 

(in the sense of larger variance) ones. 

The statistic used to test H
1 

against the general hypothesis 

that H
1 

does not hold is 

p p 
(k~j lK)/{[1/(p-j)]k~j lK}p-j = 

the remaining more 

For N large a null distribution of T
1

, 

T1= - (n - ~ (2p+5) - j(j-1)) ln /\1 

can be approximated as a chi-square distribution with (p-j-1)* 

(p-j+2)/2 degrees 
2 

T1~ x(p-j-1l(p-j+2l/2 

asymptotically on 

of freedom. 

( 1 -a) . 

freedom connected with the 

the amount 

The 

test 

of 

of 

variance 

or simply we can 

We reject 

number of 

important 

H 
1 

when 

degrees of 

depends 

removed 

even 

from H
1 

with (p-j-1)(p-j+2)/2 being the maximum value. For details see 

Bartlett [3], Lawley [15], Rao [20], Konishi [14], Anderson [2]. 

Of particular interest would be to test a hypothesis 
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* H
1 

: Aj= Aj+1-. =Aj+å that is that the eigenvalues from a sub- 

set A.) A. 
1
) ... )A. of A1) ~ A have the same value. 

J J+ J+a P 
This would mean that the corresponding principal compo- 

nents are of the same importance, again in the sense of equal 

variances. The statistic used could be 

* 
T 1 = - ( 

1 * n - 6(2p+5)) ln A1 

where j+a 
( 1T 
k=j 

j+a 
1. )/[(a+1)-1 [ l.]a+, 
J k=j J 

1 < p-a, a<p. 

* But even the asymptotic distribution of T1 is not generally 

solved. 

Another special case of interest is to consider P=P2, where 

I 1 g g ... g 

Q 1 Q 

p2 = 
Q 

\ Q ...... Q . 1 

\ 

I 

that is 
P 2 = ( 1 - g) I + gee 

where I is the identity matrix, g denotes the common value pxp 
of the correlation coefficients ande is a vector 

e = (1, .. ,1)'. 
px1 

population is affected by only one nontrivial source of 

P
2 

reflects the situation when the 

variability. The eigenvalues of P2 are A1 = (1+(p-1)g ) of 

multiplicity 1 and A2 = (1-Q) of multiplicity p-1. 

To test the hypothesis 

H2: p = p2 

against the alternative that H2 does not hold we can use the 

results summarized by Gleser [8]. On the basis of a random 

sample of size N=n+1 from NP(µ,[) we can chose between two 

statistics T21 and T
22

. 

T21 

p p 
= N ( log( [ 1.) - [ log li) 

i=2 1 i=2 
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where 1. denotes the i-th largest eigenvalue of the sample 
l. 

correlation matrix R. r22 can be computed without any 

knowledge of the eigenvalues of R: 

[ 
i<j 

- 2 ( y .. - y) 
l. J 

p 
- "( [ 

k=1 

- 2 
(yk - y) ) 

where 

>.
2 

= (1-g), 

2 2 2 -1 
'Y =(p-1) (1-)\2 )(p-(p-2))\2 ) , 

- 1 = ( p- 1 ) [ y. k' 
i*k 

1 

y = {p(p-1)}-1 [ y, . 
• .A • l. J 
l..- J 

1 / 2 y .. = n (r .. -g), i*j, 
l.J l.J 

rij is a sample correlation coefficient between ith and jth 

variable; >-2 and 'Y can be computed from the data by replacing 

Q by Q (the mean value of the correlation coefficients r .. ): 
l. J 

= ( p(p-1))-1 [ 
i*j 

Under H
2 

the asymptotic distribution of r
21 

is 

Q r ... 
l. J 

£1 = 2 +(1 - .Q..=Z >-2 ) 2 
X p(p-3)/2 p 2 Xp-1 

and of r22 is 

2 
£2 = x(p+1l(p-2lt2· 

In setting up the test of H2 we want to restrain the maximum 

probability of type I error, i.e. of rejecting H2 when it 

holds. With this consideration in mind we obtain the same 

rejection region when using r21 as for r22, namely 
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( 4 ) 2 
) X (p+1)(p-2)/2(1-a) • i= 1 , 2, 

where 2 
x(p+1)(p-2l/2 (1-al 

chi-square distribution with 

is the 100(1-a)Z quantile of 

(p-2)(p+1)/2 degrees of freedom; 

a again denotes the chosen significance level. We reject H2 
when (4) is true, otherwise H2 can not be rejected. 

3. 1 . 3 Samples from a non-normal population 

As a first step in any statistical analysis we should evaluate 

statistical 

consideration, 

characteristics of the variables under 

say the first and second moments and several 

quantiles. This will give us some ideas 

dealing with chemical data, 

lagnormal, that is, 

described in 2.1.1. 

about the marginal 

distribution from which every variable was drawn. Often, when 

the supposed distribution is 

the logarithm of a theoretical value is 

distributed according to the normal law. Several tests 

available for hypotheses about the shape of the distribution 

(e.g. a chi-square test of goodness of fitt, 

[21]), and when the hypothesis of a lognormal distribution can 

not be rejected, we may deal with the logarithm of the data as 

with a random sample from a normal population. A normalizing 

transformation can be found also for 

distribution functions. 

holds, 

other 

distribution of the considered random variable. 

cf. e.g. 

types 

are 

Rao 

of 

Sometimes no knowledge about the shape of the distribution is 

available, but we may usually suppose that several first 

moments exist. We may also suppose that the unknown distribu­ 

tion function is differentiable with respect to both para­ 

meters and a random variable. Then under a general conditions 

the theory of the logarithm of likelihood ratio partly 

but the problem lies in finding 

suitable estimators of the parameters, because the properties 

of the estimators are dependent on the shape of the unknown 

As we have 

already seen, the general theory is far from simple, even in 

the normal case, so we can foresee even more difficulties when 

less is known. Here we shall contend ourselves by stating that 

so far only the asymptotic distribution of certain functions 
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of the eigenvalues of a sample correlation matrix as well as 

the asymptotic distribution of its latent vectors have been 

developed. 

[6], Fang~ Krishnaiah [7) and others, but the theory is not 

yet ready 

approaches to PCA have appeared in the literature. 

is a robust PCA by Ruymgaart 

general results obtained when applying PCA to 

processes 

The distributions can be derived as shown by Oawis 

for direct practical use. Recently also two other 

(cf. 

The first 

(23]. The second gives some 

stochastic 

Oaudiox, Pousse and Romain (5]), but there is 

still some way to go before we shall be able to use these 

results for the problems outlined above. 

3.2 Hypotheses about eigenvectors of P 

This section is based on the asymptotic results obtained by 

Konishi (4], and its purpose is only to indicate a possible 

way to achieve a more complete statistical analysis of the 

results obtained by PCA. 

Let the sample correlation matrix R be based on N=n+1 

observations from ap-variate normal distribution with 

positive definite covariance matrix[. Let A1> ... > AP >O 

be the ordered eigenvalues of the population correlation 

matrix P, and let h1, ... ,hp be the corresponding orthonormal 

eigenvectors of P, so that 

H'P H = A H'H = I 

where 

H = pxp 

Apxp= diag(A1, ... ,AP) is a diagonal matrix and 

(h1, ... ,hp). We shall now consider two hypotheses: 

h g 

that the normalized eigenvector h g 
sponding to the distinct eigenvalue A g 
Pis equal to a specified vector h

90 
such 

(i.e. h' h = 1) corre­ g g 
of multiplicity 1 of 

, and 

hj = hjO , j = 1, ... ,a , a(p 

that a specified set of orthonormal vectors are eigenvectors 
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of P. Let us denote by f an eigenvector corresponding to the g 
g-th largest eigenvalue of the sample correlation matrix R. 

First, let us focus on H
3
. Konishi has shown that 

= n(f -h ) 'H Q-
1 H' (f -h ) 

g g g g g 9 g 

has a limiting chi-square distribution with p-1 

freedom. Here H = ( h 
1 

, .. , h 
1 

. h 
1
, g g- g+ 

i,j*g are a (p-l)x(p-l) matrices, 

( 5 ) 

+ 

2 
xp-1 

degrees of 

,h ) and Q = (q .. l 
p g 1J.g 

{6 .. A.A .-(2A.A .A+ A
2
(A.+A .) l* 

1J 1 J 1 Jg g 1 J 

6 .. denotes the Kronecker's delta function 6 .. : 6 .. = 1 i=j, 
1J 1J 1J 

6ij= 0 itj. Testing H3 we shall replace hg by a specified 

hgO and we shall estimate the unknown parameters A , h .. , jtg, 
g 1J 

Q .. by their sample values. After evaluating the T3 we shall 
1J 

reject H3 on the significance level a if 

( 1-a) 1 

otherwise H
3 

can not be rejected. The symbols in (5) are used 

with the same meaning as in section 3.1.2. 

H
4 

is even more complicated. Also it may not be easy to 

formulate H4 so that the designed set of hjO' 

orthonormal. Therefore we shall only sketch the idea of 

deriving the test with no details; an interested reader is 

referred to Konishi [14]. Let us denote 

H,o= (h10' · · · ,hao) 

/\a= diag (A1, ..• ,Aa) 

Let H
2
= ( h 

1
, ... , h ) be any px ( p-a) matrix such that 

a+ P 
H = ( H

10
, H

2 
) is an orthogonal pxp matrix. Then using 

the presumption that H
4 

holds, Konishi [14] suggests the 

statistic T
4 

for the test H
4

: 

T4 = N ln 
a 

( 1T 
j=1 

j = 1 1 • • • I a is 
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The problem of finding its distribution he labels as 

"intractable" (as in general T
4 

will not have a chi-square 

distribution); however, a chi-square approximation could be 

obtained using the expectation of T
4 

as the degrees of freedom 

(cf. Konishi (14), p.681). 

4 CONCLUDING REMARKS 

The presented paper outlines possible ways to handle and 

analyze multiple response data. Several rather simple criteria 

for reducing the dimensionality of these have been described, 

so that a reader interested in using the results in practice 

would find all the necessary information here. If the problem 

is more complicated, and no previous use of theory in 

applications is referred in literature as in case of sections 

3.1.3 and 3.2, our aim was to provide a brief description and 

to indicate possible further literature on the topic. 

Finally, I would like to point out a few more papers and text­ 

books dealing with PCA in a way accessible to non-mathematic- 

ians. Morrison (17) has dedicated two chapters of his book to 

PCA and factor analysis, pointing out for ex. their interpre- 

tation and sampling properties, as well as the most frequent 

special cases. The books of Anderson 

(9), 

[ 1 ] and Rao [21) are 

written for statisticians,but especially in the latter others 

may also find a lot of inspiration. The book of Gnanadesikan 

is even more readable. A valuable and detailed examina- 

tion of the role of the PCA in applied research is provided by 

Rao (22). 
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AN INTRODUCTION TO TESTING OF STATISTICAL HYPOTHESES 

Let us have a theoretical probability space and a random 

variable X defined on it. Let S denote the sample space of 

outcomes of an experiment (through which we observe the 

probability space) and x denote an arbitrary element of S, 

say, s being a (p-dimensional) real Euclidean space with 

(p-dimensional) vectors as its elements and (p-dimensional) 

intervals as sets in S. Let HO be a hypothesis (to be called 

a null hypothesis) which specifies partly or completely 

the distribution function over the sets in S. Clearly, xis an 

observed value of X, and the distribution function describes 

the properties of the population of x·s. The problem of 

testing of hypotheses is then to decide on the basis of an 

observed x, whether HO is true or not. 

Whatever procedure may be employed for testing a null 

hypothesis, that is, deciding whether to reject HO or not, 

there are two types of error involved, viz., that of rejecting 

HO when it is true (the type I error: its probability is 

called the level of significance), and not rejecting HO when 

an alternative hypothesis is true ( the type II error). 

A test procedure consists in dividing the sample space into 

two regions, w and S-w, and deciding to reject HO if the 

observed x falls into wand not to reject HO otherwise. We call 

w the critical region. To test H
O 

we may write a function T 

defined over Sas a function T(X) of X with the value T(x) 

when X=x, where X denotes a theoretical random variable, x its 

sample equivalent. Tis called a test function or, sometimes, 

a test statistic. The term statistic in general denotes a 

random variable, and consequently, 

variable. 

a function of a random 

There exists a class of tests T with an optimal property of 

minimizing the type II error when the probability of type I 

error is prescribed - the likelihood ratio tests. When we 

consider the distribution function as a function of its 
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parameters instead of 

likelihood function. As a likelihood ratio we denote the ratio 

of the likelihood function with the parameters 

as a variables) specified by alternative hypothesis divided by 

the likelihood function with the parameters specified 

null hypothesis. 

A likelihood ratio or some other principle provides us with a 

statistic 

random sample. The function T(X) itself is a random variable - 

a transformation of the random variable X - 

usually able 

enables us to decide whether xis an element of w, 

whether 

regions (on level a) for several most common distributions of 

T(X) 

too, 

The 

are 

or 

T whose value is determined on 

to 

not 

ascertain 

to 

tabulated 

the 

reject 

in 

random variable, 

its 

statistical 

100(1-a)r. quantiles of the distribution of T (X). 

Another problem is to estimate the parameters of a theoretical 

distribution function. For this 

the 

distribution. The value T(x) 

The boundaries of critical 

tables 

purpose we 

we 

so 

call 

basis 

that we 

that 

it a 

(now regarded 

by the 

of the 

are 

is, 

suitable estimator, that is, a function of the original random 

variable. Its distribution again can usually 

we can 

we calculate a 

estimator 

reader 

use 

we 

the 

value corresponding 

obtain 

should 

likelihood 

the point 

region for this point estimate on a 

function 

estimate the parameter on the basis of a given 

to 

mostly 

first derive 

be found. 

as 

this sample for 

estimate. 

level a, 

Using 

as a 

a 

Here, 

distribution of the estimator, we can determine the confidence 

random set which with 

value of the parameter. 

a basis. To 

random sample 

that 

the 

the 

is, the 

probability (1-a) contains the true 

not be confused by alternative use of 1-a 

and a values. Their use differs from author 

meaning is usually clear from the context. 

to author, the 
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APPENDIX B 

Several examples 
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SEVERAL EXAMPLES 

We shall illustrate with several examples some of the tests 

described in sections 3.1.1 and 3.1.2. We shall use some of 

the precipitation data obtained from background stations in 

Norway in 1980, viz. ,N15 Tustervatn and the adjoining mete­ 

orological station Bolna, and meteorological stations at Røros 

and Tynset. Station N15 was selected because of the small 

number of days with precipitation (95), so that the tables 

computed by Nagarsenker can be used. The stations at Røros and 

Tynset are separate from Bolna. They are supposed to be suf­ 

ficiently close to represent the same population. 

From the analysis of separate variables (which is not presen­ 

ted here) we could conclude that the chemical variables are 

distributed according to the log-normal distribution, while 

the meteorological variables except precipitation amounts are 

mixtures of normal distributions. The observed distribution of 

the precipitation amounts is usually very close to the expo­ 

nential law. To obtain a sample from a population as close to 

a normal one as possible we logarithmically transform the 

chemical variables: in the course of the present analysis no 

transformation was used on the precipitation amounts. As the 

assumption of normality may not be fulfilled, the results 

based on the normal theory should be regarded as proximate. 

Also, we have neglected possible autocorrelation within the 

data, which violates the assumption of random sample. No 

regard was taken to possible time dependence either. 

The characteristics of variables, correlation matrices and 

corresponding eigenvalues and eigenvectors were computed on a 

NORD 100 computer using the double precision arithmetics for 

the eigenvalue analysis. The original programme was written by 

R.C. Henry. The values of remaining statistics were obtained 

with the aid of the scientific calculator Sharp EL-512. 

The variables are listed in Table 81 and their characteristics 

are given in Table B2 for the stations Tustervatn and Bolna. 

The correlation matrix R
0 

of all these variables is presented 
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in Table BJ together with the matrix of coefficients of the 

principal components of R
0
• Tables 

results of statistical analysis of correlation matrix R
0
. 

Figure 81 shows the plot of eigenvalues with the scree marked. 

The character of presented tests and estimators can be seen 

from the analysis of R
0
• Table B2 can be used also for the 

tests of normality: critical values for skewness and kurtosis 

of normal distribution can be found in tables 

Snedekor,G.W. 

State University Press, Ames, Iowa, 

later editions). 

outlying observations considerably increase the values of 

skewness and kurtosis. 

usually underestimate the number of principal components which 

are needed 

B4 and 85 contain the 

and R3 (Tables 

(Tables 812-814 

g. Cochran,W.G.: 

Tables 

Statistical methods, The Iowa 

U.S.A. 

We should be aware of errors in our data: 

84 and B5 

1937 

(e.g. in 

and many 

to describe the population. When we are looking 

for some well-described influences we should bear this 

in mind. After the ana- lysis of R0 
its submatrices: 

show that we 

fact 

I have selected three of 

R1 (Tables 86 and 87) with at least 2 non-trivial components, 

R2 (Tables 88 and B9) with at least 3 non-tri val components, 

810 and 811) with also at least 3 nontrivial 

principal components. 

The analysis of meteorological data 

and 815-817) 

similar in many ways. For a valid inference about this simi- 

larity we need some other statistical technique, 

canonical correlations. 

from Røros and Tynset 

show that the stations are 

e.g., the 

The departure from normality of TEMP 

and all the windspeeds is due to their being very likely a 

mixture of at least two normal distributions. 

Whenever there is an asterisk (*) attached to the test value, 

(except in the tests for normality - skewness and kurtosis), 

it means that on the basis of this test value we reject the 

hypothesis on the level a= .05. Two asterisks (**) mark the 

rejection on the level a= .01. In the tables of skewness and 

kurtosis asterisk (*) marks the significance level a=. 10, two 
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asterisks denote the level a= .02. For the tests about kur- 

tosis the levels are only proximate {we have used one-tailed 

tables and the distribution is not symmetrical). 

Eigenvalue 
6 • 

5 

4 

3 

2 

• 

• 
• 
• 
• • • • • • • 

5 10 15 20 
LrHE SCREE 

25 P Rank of 
eigenvalue 

Figure B1: The scree for correlation matrix R
0 

(all variables from 
Tustervatn and Bolna included). 
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Table B1 

LIST OF VARIABLES 

MM1 Precipitation amount 

S04C Sulphate in precipitation (corrected for sea salts) 

NH4 Ammonium in precipitation 

NOJ Nitrate in precipitation 

NA Sodium in precipitation 

MG Magnesium in precipitation 

CA Calcium in precipitation 

H Strong acid in precipitation 

K 

COND 

PSUM 

S02M 

U850 

V850 

S02C 

PSUC 

MM4 

TEMP 

HUMI 

USUR 

VSUR 

WSPE 

Potassium in precipitation 

Conductinity 

Sulphate in aerosols (measured) 

Sulphur dioxide in aerosols (measured) 

Wind speed, east-west component at 850m8 

Wind speed, north-south component at 850mB 

Sulphur dioxide in aerosols (computed) 

Sulphate in aerosols (computed) 

Precipitation amount at neighbour meteorological station 

Air temperature at neighbour meteorological station 

Relative humidity at neighbour meteorological station 

Windspeed, east-west component at surface at neighbour 

meteorological station 

Windspeed, north-south component at surface at neighbour 

meteorological station 

Windspeed, total at surface at neighbour meteorological 

station 
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Table 84: Analysis of R0 

The eigenvalues 
of R0 of S3 

5.99 
4.50 
2.26 
1 . 8 8 
1 . 3 5 
1 • 0 6 

. 9 4 

.86 
• 7 4 
. 6 1 
. 5 2 
.43 
.34 
.32 
.24 
.22 
• 1 8 
. 1 4 
. 1 2 
. 1 1 
.09 
.08 
.03 

2.35 
1 . 7 2 

.09 

.07 

.05 

.04 

.02 

.02 

.02 

. 0 1 

.002 

. 0 0 1 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

lower bounds to the rank of R0: s = 6 
s 1 = 1 2 
2 

Number of observations: 95 

The determinant of R0: IR01 = 2.57E-10 

Test of the hypothesis H0: R0 = I T0= 1972.64** O.F. 

X~53 ( .95) = 289.89 

= 253 

2 (normal approximation of x ) 

Test of the hypothesis H
2
: R=(1-g)I gee 

Q ••• the common value of correlation coefficient 
H2: only one non-trivial principal component 

T = 1948.10** O.F. 
2 1 
2 x504 (.95) = 556.07 

= 504 

2 (normal approximation of x ) 
** . o = .01 significane level. 
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Table 86: ANALYSIS OF R, 

Correlation Matrix R 
1 

S04 NH4 N03 K COND PSUM U850 

S04 1.00 
NH4 .76 1.00 
N03 .83 . 7 1 1.00 
K . 41 .60 .33 1.00 
CONO . 57 . 61 . 4 7 . 56 1.00 
PSUM .60 . 41 .65 .04 .36 1.00 
U850 -.26 -.47 - . 41 . 18 .23 -.28 1.00 
HUMI - . 41 -.26 - . 41 -.08 - . 15 - . 31 -.37 

Eigenvalues of R, : 3.92 t. 72 . 7 7 .63 .34 .30 . 18 . 15 1 Eigenvalues of SJ: 3.40 t. 46 . 51 .37 0.00 0.00 0.00 0.00 

Number of observations: 95 

Value of the determinant of R1 : IR I = 8.818E-3** 

Critical values for test of H : R = I a= .05 crit.v. = .63 
0 1 

(Nagarsenker) a= . 01 crit.v. = .59 

Test of the hypothesis H
0
: R

1 
=I ** T = 422.63 O.F. = 28 

0 

2 x28 !.95l = 41.34 

Test for the hypothesis H
2
: R

1 
=(1-Q)I+Qee· 

Q ... the common value of corr. coef. 
H
2
: only one non-trivial principal 

component. r
21

= 2739.67** D.F. = 27 

2 x
27 

(.95) = 40.11 

Lower bounds to the rank of R : s =2 s =4 
1 1 3 

Matrix of the principal component coefficients (in columns; 
the columns are arranged in descending order of magnitude of 
the respective eigenvalues). 

t. 2. 3. 4. 5. 6. 7. 8. 

so .92 .06 .05 -.06 . 1 5 - . 10 -.25 .22 
NH4 

.85 -.26 -.07 - .17 .30 .02 .28 .05 
N04 

.90 .22 .09 - . 15 .09 -.05 - . 11 - . 31 
K 3 .54 -.62 -.38 -.20 -.23 .28 -.07 . 01 
CONO .69 - . 51 . 12 .23 -.28 -.33 . 07 - . 01 
PSUM .68 .33 .52 . 21 - . 14 .30 .06 -.04 
U850 -.26 - . 81 . 18 . 39 .26 . 1 1 - . 10 -.06 
HUM! .49 -.45 . 53 -.53 -.04 -.03 -.02 -.02 

** ... a= .01 significance level. 
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TABLE B8: Analysis of R2 

Correlation matrix R2 

S04 NA HG CA H U850 V850 

S04 1.00 
NA .07 1.00 
HG .14 .93 1.00 
CA .02 .46 .55 1.00 
H .54 -.28 - . 31 -.63 1.00 
U850 -.27 .63 .57 . 18 -.36 1.00 
V850 -.03 .20 . 12 . 21 -.04 .00 1.00 
HUHI - . 41 . 18 .14 .07 -.33 . 37 .07 

. Eigenvalues of R2: 3. 19 1. 70 1. 11 .95 .57 .28 . 15 .06 
Eigenvalues of SJ: 2.67 1. 33 .93 . 73 .34 0.00 0.00 0.00 

Number of observations: 95 

Value of the determinant of R2: I R2 I = 7.771E-3** 

Critical values for test of HO: R2 = I: a =.05 crit.v. = .63 
(Nagarsenker) a =.01 crit.v. = .59 

Test of the hypothesis H
0
: R

2
=I ** T = 439.58 O.F.= 28 

0 
2 x28 ( . 9 5 I = 4 1 • 34 

Test of the hypothesis H
2
: R

2
=(1-p)l+pee' 

p ... the common value of carrel. coef. 
T21= 398.91** O.F.= 27 

H2: only one non-trivial principal x27(.95)= 40.11 
component. 

Lower bounds to the rank of R
2
: s

1 
= 3 , sJ = 5. 

Matrix of the principal component coefficients (in columns; 
the columns are arranged in descending order of magnitude of 
the respective eigenvelues). 

1. 2. 3. 4. 5. 6. 7. 8. 

S04 -.26 -.86 . 04 -.04 -.33 -.23 - . 15 - . 01 
NA .85 -.39 .20 . 10 .06 .20 -.05 - . 16 
HG .84 -.45 . 15 -.04 -.01 . 19 .00 .17 
CA .68 - . 17 -.56 - . 31 - . 18 - . 11 .22 -.03 
H -.68 -.46 .37 .34 -.04 .06 .26 -.01 
U850 . 74 . 11 . 49 .09 .25 -.36 .05 . 01 
V850 .22 - . 12 -.55 .79 . 13 -.06 -.04 .02 
HUHI .43 .57 .23 . 31 -.58 . 01 . 01 .00 

* a= .05 significance level 
** a= .01 significance level 



45 

·r, 

(II 

::, 
0 
·.-i 
1-, 
ns 
> 
1-, 
0 
~ 

N ei 
-< 
II 

II 
.- 
+ 

N·r, 
-< 
.- 

N ~ 
0:: 

(II 

~ ·.-i 
0 (II 

Q) 

(II .c. ..... ., 
II) 0 
:>, ei 
,-f :>, 
ns .c. 
C 
< Q) 

.c. ., 
en 
C0 ~ 

0 
(IJ ., 
,-f 
.0 II) 

I'll Q) 
I- I- 

- "' "' Q tC '° - tC - co tC .., '° - N Q '° - Il') 

Q) "' Il') - "' .... 
:, u.. - N N M 
.-! 
C,SNQ 
> ),( 

Q) 

.-! 
u - ·"4 in 
+' "' - - "' Il') Q 
·"4 "' .... - co - I,., - "' Q "' '° .., 
u 

in - <D M - u.. - - N M 

NQ 
),( 

u.. N Il') "' .., Q - N 
Q 

- < " " " " " " " " " " Cl 
0 N tC .... Il') tC 
.-! "' Q - co N 

"' .., - co .... e .... "' - M N 
li - .., - co M - - N - I- 

- N ..... - - I 
'!"'I - N 
I Q .... M Q .... 

Q tC M Q tC 
tC Il') - co in - ..... - tC .... .... co "' Il') co co co co co 
♦
C: 
N - I 
C: - I 
II e 

- co .... in co Q 
< Q tC tC .... - N in N Q '° Cl 
0 I I - N N 
.-! I I I 

'!"'I Il') Il') Il') .., .., 
.-! Q = Il') Q - '!"'I N .., Q Q - O.L-.111 

.,➔ - N M 

- I 
'l'"'I N M .., in '° I 
a. 

'l'"'I .... tC Il') .., M 

.-! .-! 
Q) Ill 
> > 
Q) Q) 

.-! .-! 

Ill Ill 
u u 
C: C: 
c,s c,s 
u u 
·"4 ·"4 ~~ 
·"4 ·"4 
C: C: 
Cl Cl 
·"4 ·"4 ., ., 
in 
QQ 

li II 

o o 



46 

TABLE 810: ANALYSIS OF RJ 

Correlation matrix RJ 

S04C NA CA K U850 V850 SUOE 

S04C 1.00 
NA . 01 1.00 
CA .02 .46 1.00 
K . 41 . 5 7 . 41 1.00 
U850 -.27 .63 . 18 . 18 1.00 
V850 -.03 .20 . 21 . 11 .00 1.00 
SUOE - . 11 -.08 - . 11 -.32 .04 .20 1.00 
HUHI - . 41 . 18 .07 -.08 . 3 7 .07 .33 

Eigenvalues of RJ 2.38 1.95 1. 16 .84 .65 .53 .30 . 21 
Eigenvalues of sJ 2.06 1. 76 1. 05 .68 .44 . 34 .05 0.00 

Number of observations: 95 I R3 I Value of the determinent of RJ: = 9.690E-2** 

Critical values for the test of H
0 

: R
3 

= I a= .05 crit.v. = .63 
(Nagasenker) a= . 01 crit.v. = .59 

Test of hypothesis H
0 

R =I 
3 

** T
0 

= 211.2 O.F. = 28 

x! 8 ( • 9 5 l = 4 o. o 1 
Test of hypothesis H : R

3 
= (1-p)I+pee' 

Q •• common value of the correl.coef. 
H2: only 1 nontrivial principal component 

Lower bounds to the rank of R3: s1 = 3, 

** T21= 298.28 O.F. = 27 

2 x2 7 ( . 9 5 I = 4 0 . 11 

Matrix of the principal component coefficients (in columns; 
the columns are arranged in descending order of magnitude of 
the respective eigenvalues). 

1. 2. 3. 4. 5. 6. 1. 8. 

S04C .08 -.75 .25 -.52 .08 -.03 -.30 -.04 
NA .90 .06 -.05 - . 15 - . 15 . 10 -.00 .35 
CA .68 -.09 .17 .40 . 51 .26 - . 10 -.06 
K • 73 -.48 .02 - . 14 .06 -.28 .34 - . 13 
U850 .64 .47 -.36 - . 19 -.29 .20 - . 11 -.26 
V850 .28 . 13 .80 .30 -.39 - . 14 -.08 -.05 
SUOE - .17 .57 .54 -.47 . 18 .27 . 19 -.02 
HUHI .23 . 11 -.03 - . 12 .30 -.48 - . 15 .02 

** a = . 01 significance level 
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TABLE 813: DATA FROM RØROS 

Correlation matrix R: 

MM4 PRES PTEN TEMP HUMi USUR USUR 

MM4 1.00 
PRES -.26 1.00 
PTEN -.08 .04 1.00 
TEMP .20 -.24 - . 11 1.00 
HUMi .35 -.30 .08 -.42 1.00 
USUR . 10 -.06 .22 - . 01 . 13 1.00 
VSUR -.07 -.09 - . 19 .17 - . 21 -.38 1.00 
WSPE .03 - . 3 1 . 01 . 31 - . 18 .04 .45 

' 
Eigenvalues of R: 2.02 1. 68 1. 24 1. 04 .73 .65 .37 .27 
Eigenvalues of s . 1. 85 1. 4 7 1.08 .70 . 34 . 21 0.00 0.00 3. 

Number of observations: 365 
Value of the determinant of R: IRI= 2.070E-1 

Test of hypothesis H0: R=I ** T
0
= 567.87 O.F. = 28 

2 x2 8 ( • 9 5 ) = 4 1 • 3 4 

Test of hypothesis H
2 

: R = ( 1-p) I + pee 
Q ••• the common value of correlation coeff., 
H
2
: only one non-trivial principal component. 

T21 = 1484.87** O.F. = 27 

2 x
2 7 ( • 9 5 ) = 4 0 • 1 1 

Lower bounds to the rank of R: s
1 

= 4, 

Matrix of the principal component coefficients (in columns: 
the columns are arranged in descending order of magnitude of 
the respective eigenvelues). 

1. 2. 3. 4. 5. 6. 7. 8. 

MM4 .05 . 71 . 19 .38 .32 .42 .06 - .17 
PRES- .23 -. 10-· -.07 . 18 .08 .53 .06 .20 
PTEN .33 . 04 -.57 -.49 . 5 7 - . 01 -.06 -.02 
TEHP -.64 .24 -.36 .49 . 21 - . 16 - . 13 .28 
HUMi .55 .56 .43 -.28 -.02 .04 -.06 .34 
USUR .39 .35 -.64 .07 - • 47 .22 -.23 -.03 
VSUR - • 74 -.07 .28 -.37 .02 . 27 -.39 -.04 
WSPE -.67 .32 -.27 -.40 - . 18 .22 .37 .08 

• * tt = .05 significance level 

** Cl = .01 
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TABLE 815: 
Characteristics of data from Tynset 

HEAN STD.DEV VARIANCE SKEWNESS KURTOSIS HAXIHUH MINIMUM 

HH4 1 . 18 2.50 6.23 3.15** 12.14** 19.00 0.0 
PRES 1014 12.55 157. 4 .21* .22 1049 973 
PTEN .05 1.08 1 . 1 7 -.42** 1.69** 2.93 -4.64 
TEMP -.65 12.97 168.3 -.60** -.38 21.03 -35.05 
HUHI 78.4 12.33 152.3 -.56** -.47 98.64 41 . 4 2 
USUR .05 1. 28 1. 64 1.39** 6.58** 7. 64 -3.33 
VSUR . 7 1 1. 37 1 . 89 1.41** 6.71** 9.96 -4.69 
WSPE 1 . 4 3 1. 4 0 1. 96 2.40** 9. 99** 11. 81 0.00 

* a = . 10 significance level 
** a = .02 significance level 
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TABLE B 16: DATA FROM TYNSET 

Correlation matrix R: 

MM4 PRES PTEN TEMP HUMi USUR VSUR 

MH4 1.00 
PRES -.29 1.00 
PTEN -.05 .08 1.00 
TEMP .25 -.27 -.06 1.00 
HUMi .27 - . 19 -.07 -.45 1.00 
USUR .02 - . 11 .03 . 01 .00 1.00 
VSUR -.02 -.07 -.22 .09 -.05 .02 1.00 
WSPE .05 -.20 - .14 . 18 - . 11 .26 .63 

---- 
Eigenvalues of R: 1 . 9 7 1 . 50 1 . 3 3 1.09 .84 .68 . 31 .28 
Eigenvalues of SJ: 1. 76 1. 4 2 1 . 18 1.02 .73 .64 .24 .00 

Number of observations: 365 
IR I Value of the determinant of R: = 2.131E-1 

Test of hypothesis H0: R=I ** T0 = 557.28 D.F. = 28 

2 x
28 

( . 9 5 ) = 4 1 . 34 

Test of hypothesis H2: R = (1-p)I + pee ** 
Q ••• the common value of corr. coeff. T21= 1467.09 D.F.=27 
H2: only one non-trivial principal 

2 component x27 (.95) = 40.11 

Lower bounds to the rank of R: s
1 

= 4, s = 7 
2 

Matrix of the principal component coefficients (in columns: 
the columns are arranged in descending order of magnitude of 
the respective eigenvalues). 

1. 2. 3. 4. 5. 6. 7. 8. 

MM4 -.29 . 6 7 - . 34 . 11 . 13 -.53 - . 15 - . 12 
PRES . 4 8 -.54 .27 .07 -.02 - . 61 . 10 . 11 
PTEN .35 - . 11 -.29 - . 51 . 72 .03 .05 -.01 
TEMP -.53 - . 18 -.73 . 14 -.06 -.03 .30 .17 
HUMi . 17 .80 .45 .00 . 1 0 .02 . 27 . 21 
USUR -.26 .06 .06 -.85 -.40 - . 14 . 11 - . 10 
VSUR - • 70 - . 21 .47 . 18 .30 -.04 . 21 -.28 
WSPE -.81 - . 16 . 31 -.20 . 18 -.05 -.22 . 31 

• ** .. a= .01 significance level 
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APPENDIX C 

Tables of the distribution of the determinant IRI of 

sample correlation matrix 

SOURCE: NAGARSENKER (18) 
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Table C1 

l? Points of !RI 
Np 3 4· 5 6 7 8 

4 4 
.0237877 5 5 .o 51559 .0283414 5 6 .027706 .o 15806 .0324479 6 7 .065713 .010309 .0251475 .0379738 

.0623717 8 .11136 .028229 .o 39086 .o 17298 

9 .15898 .053352 .012072 2 4 7 
.0214901 .0359233 .0469806 

10 .20548 .082925 .025106 .o 51096 .0256880 .0320544 
ll .24940 .11470 .042152 .011580 .0221402 .0321704 
12 .29018 .14713 .062115 .020879 .o 52458 .0388792 
13 .32772 .17922 .083991 .032659 .010106 .o 23389 

.016726 
2 

14 .36214 .21038 .10697 .046453 .0247941 
15 .39366 .24026 .13044 .061784 .024976 • 0 83719 
16 .42254 .26870 .15395 . 078223 .034651 .013099 
17 .• 44902 .29564 .17719 .095402 .045521 .018933 
18 .47336 .32109 .19994 .11302 .057356 .025788 

19 .49576 .34508 .22207 .13085 .069945 .033555 
20 .51644 .36769 .24348 .14870 .083097 .042115 
25 .59944 .46263 .33884 .23436 .15243 . 092832 
30 .65864 .53421 .41592 .30979 .22016 .14891 
35 .70280 .58956 .47824 .37417 .28185 .20406 

40 .73695 .63344 .52919 .42883 .33661 .25563 
45 . 76411 .66899 . 5 7142 .47539 .38480 .30277 
50 .78622 .69834 .60690 . 51534 .42718 .34543 
60 .82000 .74389 .66303 .57999 .49763 .41857 
70 .84459 • 77757 .70532 .62981 .55336 .47821 

80 .86328 .80346 .73827 .66925 .59832 .52737 
90 .87796 .82397 .76464 .70120 .63524 .56839 

100 .88980 .84061 .78620 . 72758 .66606 .60306 - 
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Table C2 

5% Points of IRI 
. 

Np 3 4 5 6 7 8 

4 .0
2
10183 3 5 .026873 .0224025 4 6 .084781 • 0 86215 .0266687 4 7 .15341 .033427 .o 29095 .0220033 

.0561052 8 .22052 .070026 .013279 .o 10067 

9 .28177 .11213 .031479 .0
2
52641 3 5 .0235344 .0319002 

10 .33621 .15558 ,055468 .013903 .0220781 .0312528 
11 .38420 .19807 .083017 .026714 .o 60434 .0281667 
12 ,42644 .23847 ,11237 .042905 .012570 .0225909 
13 .46372 .27630 .14231 .061570 .021567 .o 57984 

14 ,49674 ,31143 .17202 .081894 .032721 .010585 
15 .52614 .34393 . 20101 .10321 .045639 .016936 
16 .55243 .37393 .22896 , 12502 .059925 .024731 
17 ,57605 .40162 .25572 .14692 .075219 .033798 
18 .59738 .42720 .28121 .16866 .091212 .043943 

19 .61672 .45087 .30542 ,19002 .10765 • 054971 
20 .63433 .47278 .32837 .21089 .12431 .066703 
25 .70291 .56146 .42600 ,30562 .20651 .13089 
30 .75003 .62530 ,50067 .38381 .28099 .19598 
35 .78432 .67320 .55892 .44781 .34564 .25658 

40 .81038 • 71038 .60536 .50057 ,40112 .31112 
45 • 83083 .74003 .64315 .54456 .44876 .35959 
50 .84732 .76421 .67444 .58167 .48986 .40253 
60 .87223 • 80125 .72317 .64066 .55677 .47444 
70 .89017 • 82827 .75930 .68529 .60863 .53174 

80 .90369 .84883 • 78714 .72017 .64986 .57820 
90 .91425 .86501 .80923 .74815 .68335 .61650 

100 . 92272 .87806 .82718 • 77108 • 71106 .64856 
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Al!eEN.DlX_D 

Tables of the Chi-square distribution 

SOURCE: OWEN, D.B.: HANDBOOK OF STATISTICAL TABLES, Addison 

- Wesley, Reading 1962 

The value tabled is x~ (~). 
2 2 

Xf(~) : Prob {x r.v. with f degrees of freedom< tabled 
value} = ~ 

Significance level a= 1-~ 
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Table 01 

Critical Values for the Chi-Square Distribution 
Pr [x2 r.v, with f degrees of freedom < tabled value} - Y 

y 

. f 0.005 0.01 0.025 0.05 0 .10 0.25 

1 . . 0.001 0.004 0.016 0 .102 
2 0.010 0.020 0.051 0.103 0.211 0.575 
3 0.072 0.11.5 0.216 0 .352 0.584 1. 213 
4 0. 207 0. 297 0.484 o. 711 1.064 l. 923 
5 0.412 0.554 0.831 l .145 1.610 2.675 

6 0.676 0.872 1. 237 1.635 2.204 3.455 
7 0. 989 1.239 1.690 2.167 2.833 4.255 
8 1.344 1.646 2 .180 2 .733 3 .490 5 .071 
9 1. 735 Z.086 2.700 3 .325 4.168 5.899 

10 2.156 2.558 · 3. 247 3 .940 4. 86.5 6.737 

11 2.603 3 .0.53 3.816 4 . .575 5. 578 7.584 
12 3.074 3 .571 4.404 .5.226 6.304 8.438 
13 3 . .565 4 .107 5.009 S .892 7.042 9.299 
14 4.075 4.660 5.629 6.571 7. 790 10 .165 
15 4.601 5.229 6.262 7.261 8.547 11.037 

16 .5 .142 5.812 6. 908 7.962 9.312 n . 912 
17 5.697 6.408 7 . .56~ 8.672 10;08.5 12.792 
18 6.265 7 .015 8.211 9.390 10.86.5 13.675 
19 6.844 7.633 8. 907 10. ll 7 ll .651 14 . .562 
20 7.434 8.260 9 .591 10.851 12.443 15 .452 

21 8.034 8.897 10. 283 ll.59i 13.240 16.344 
22 8.643 9.542 10. 982 12.338 14.042 17.240 
23 9.260 10 .196 ll. 689 13.091 14.848 18 .137 
24 9.886 10.856 12.401 13 .848 15 .659 19.037 
2.5 10.520 11.524 13 .110 14.611 16.473 19. 939 

26 U.160 l2 .198 13 .844 1.5 .379 17.292 20.843 
27 ll,808 12.879 14.573 16.lSl 18 .114 21.749 
28 12.461 13.565 15 .308 16.928 18. 939 22.657 
29 13.121 14.257 16.047 17. 708 19.768 23.567 
JO 13.787 14.954 16. 791 18.493 20 . .599 24.478 

31 14.4.58 1.5.655 17 .539 !9;281 21.434 25 .390 
32 15 .134 16.362 18.291 20.072 22.271 26.304 
33 15.81.5 17 .074 19.047 20.867 23 .110 27 .219 
34 16 • .501 17~789". 19.806 21.664 23.9.52 28.136 
3.5 17.192 18 • .509 20:569 22.465 24. 797 29.054 

36 17 .887 19.233 21.336 23. 269 25 .643 29.973 
37 18.586 19.960 . 22 .106 24.075 26.49% JO. 89) 
38 19.289 20.691 22.878 24,884 27.343 Jl. 815 
39 19.996 21.426 23 .. 654 25. 695 28.196 32.737 
40 20.707 22.164 24.433 26.509 29.0Sl J).660 

41 21.421 22.906 25.215 27.326 29.907 34.585 
42 22 .138 23.650 2.5. 999 28.144 30.76.5 3.5.510 
43 22.8.59. 24.398 26.785 28.965 31.625 36.436 
44 23 .584 25 .148 27.57.5 29.787 32.487 37.363 
45 24 .311 25. 901 28.360 30.612 .33.350 38.291 
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Table D1 cont. 

-y 

I 0.75 0.90 0.95 0.975 0.99 0. 995 

1 l.323 2. 706 3.841 5.024 6.635 7 .879 

2 2. 773 4.605 5.991 7.378 9.210 10.597 

J 4.108 6.251 . 7.815 9.348 11.345 12.838 
4 5.385 7. 779 9.488 11.143 13. 277 14.860 

5 6.626 9.236 11.071 12.833 15.086 16.750 

b 7. 841 10.645 ·12.592 14.449 16.812 18.548 
7 9.037 12 .017 14.067 16.013 18.475 20. 278 
8 to. 219 13 .362 15.507 17.535 20.090 21.955 
9 11.389 14.684 16.919 19 .023 21.666 23.589 

10 12.549 15. 987 18.307 20.483 23.209 25 .188 

l l 1). 70 l 17. 275 19.675 21. 920 24. 725 26.757 
l2 14.845 18.549 21.026 23.337 26.217 28.299 
1) 15. 984 19.812 22.362 24. 736 27.688 29.819 
14 17 .117 21.064 23.685 26.119 29.141 31.319 
is 18. 245 22.307 24.996 27.488 30.578 32. 801 

16 19.369 23.542 26.296 28.845 32.000 )4.267 
17 20.489 24. 769 27.587 30.191 3).409 35. 718 
18 21.605 25. 989 28.869 31.526 34.805 · 37 .156 
19 22. 718 27.204 J0.144 32. 852 36.191 38.582 
20 23.828 28.412 31.410 34.170 37.566 39. 997 

21 24. 935 29.615 32.671 35.479 38.932 41.401 
22 26.039 30.813 33.924 36.781 40. 289 42. 796 
23 27 .141 32.007 JS .172 38.076 41.638 44.181 
24 .28.241 33.196 36.415 39.364 42.980 45.559 
25 29.339 34.382 37 .652 40.646 44.314 46.928 

26 30.435 35.563 38.885 41.923 45.642 48.290 
27 31.528 36.741 40,113 43.194 46.963 49.645 
28 32.620 37.916 41.337 44.461 48.278 50.993 
29 33. 711 39.087 42.557 45.722 49.588 52.336 
JO 34.800 40.256 43. 773 46.979 50.892 53.672 

31 35.887 41.422 44.985 48.232 52.191 55.003 
32 36.973 42.585 46.194 49.480 53·.486 56.328 
33 38.058 43. 745 47.400 so. 725 54. 776 57.648 
34 39.141 44.903 48.602 51.966 56.061 58.964 
35 40.223 46.059 49.802 53.203 57.342 60.275 

36 41.304 47 .212 50.998 54.437 58.619 61.581 
37 42.383 48.363 52.192 55.668 59.892." 62.883 
38 43.462 ···49_513 53.384 56.896 61.162 64 .181 
39 44.539 50.660 54.572 58.120 62.428 65.476 
40 45.616 51.805 55. 758 59 .342 63.691 66.766 

41 46.691 52.949 56. 942 60.561 64.950 68.053 
42 47.766 54.090 58.124 61. 777 66.206 69.336 
43 48.840 55.230. 59.)04 62. 990 67.459 70.616 
44 49_·913 56.369 60.481 64 :201 68.710 71.893 
45 50.985 57.505 61.656 65.410 69.957 73 .166 
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Table 02 

Critical Values for the Chi-Square Distribution 

f 0.005 0.01 0.025 0.05 0.10 0.25 

46 25.041 26.657 29.160 31.439 34.215 . 39.220 
47 25. 775 27.416 29.956 32.268 35.081 4o .149 
48 26.511 28 .177 30.755 33.098 35.949 41.079 
49 27.249 28.941 31,555 33.930 36,818 42.010 
50 27.991 29.707 32.357 34.764 37.689 42.942 

51 28. 735 30.475 33.162 35.600 38.560 43.874 
52 29.481 31. 246 33.968 36.437 39.433 44.808 
53 30.230 ' 32 .018 34.776 37.276 40.308 45.741 
54 30.981 32. 793 35.586 38 .116 41.183 46.676 
55 31.735. 33.570 '36 .398 38.958 42.060 47.610 

56 .32.490 34.350 37 .212 39.801 42.937 48.546 
57 33.248 35 .131 38 .027 40.646 43.816 49.482 
58 34.008 35.913 38.844 41.492 44.696 50.419 
59 34.770 36.698 39.662 42.339 45.577 51.356 
60 35.534 37.485 40.482 43 .188 46.459 52.294 

61 36.300 38 .273 41.303 44.038 47.342 53.232 
62 37.0'i8 39.063 42.126 44.889 48. 226 · 54.171 
63 37 .838 39.855 42.950 45.741 49 .111 55 .110 
64 38.610 40.649 43 .776 46.595 49.996 56,050 
65 39.383 41.444 44.603 47.450 50.883 56,990 

66 40 .158 42.240 45.431 48.305 51.770 57.931 
67 40.935 43.038 46.261 49.162 52.659 58.872 
68 41. 713 . 43 .838 47 .092 50.020 53.548 59.814 
69 42.494 44.639 47.924 50.879 54.438 60.756 
70 43 .275 45 .442 48.758 Sl. 739 55 .329 61. 698 

71 44.058 46.246 49.592 52.600 56.221 62.641 
72 44.843 47 .051 50.428 53.462 57 .113 63.585 
73 45.629 47.858 51.265 54.325 58.006 64.528 
74 46.417 48.666 52 .103 55.189 58 .900 65 .472 
75 47. 206 49.475 52.942 56 .054 59. 795 6(t.417 

76 47.997 50.286 53.782 56.920 60.690 67.362 
77 48.788 51.097 54.623 57.786 61.586 68.307 
78 49.582 51.910 55 .466 58.654 62.483 69. 252 
79 50.376 52. 725 56.309 59.522 63.380 70 .198 
80 51.172 53.540 57 .153 60 .391 64.278 71.145 

81 51. 969 54.357 57.998 61. 261 65. 176 72.091 
82 52.767 . 55.174 58.845 62 .132 66.076 73.038 
83 53.567 55. 993 59.692 63.004 66.976 73. 985 
84 54.368 56.813 60.540 63.876 67-. 876 74.933 
85 55.170 57.634 61.389 64. 749 68. 777 75.881 

86 55. 973 58 .456 62.2~ 65.623 69.679 76.829 
87 56. 777 59. 279 63.089 66.498 70.581 77. 777 
88 57.582 60 .103 63.941 67 .373 71.484 78. 726 
89 58.389 60. 928 64. 793 68.249 72.387 79.675 
90 59.196 61.754 65.647 69 .126 73.291 80.625 



64 

Table D2 cont. 

'Y 

f 0,75 0.90 0 .95 0,975 0.99 0. 995 

46 52.056 58.641 62.830 66.617 71. 201 74.437 
47 53 .127 59.774 64.001 67.821 72.443. 75.704 
48 54.196 60. 907 65 .171 69 .023 73.683 76.969 
49 55.265 62,038 66.339 70.222 74.9:.9 78 .231 
50 56.334 63.167 67.505 71.420 76.154 79.490 

51 57 .401 64.295 68.669 72.616 77 .186 80.747 
52 58.468 65.422 69.832 73.810 78.616 82_.001 
53 59.534 66.548 70.993 75.002 79.843 83. 2.53 
54 60.600 67 .673 72 .153 76.192 81.069 84.502 
55 61.665 68. 796 73 .311 77 .380 82.292 85.749 

.56 62.729 69.919 74.468 78.567 83.513 36.994 
57 63. 793 71.,040 75.624 79.752 84. 733 88. 236 
58 64.8.57 72.160 76. 778 80.936 85. 9.50 89.477 
59 65.919 73. 279 77 .931 82.117 ·87.166 90.715 
60 66.981 74.397 79.082 83.298 88:379 91. 9.52 

61 68,043 75.514 80.232 84.476 89 .591 93 .186 
62 69.104 76.630 81.381 85.654 90.P02 94.419 
63 70.165 77. 745 82.529 86.830 92.010 95. 649 
64 71.225 78.860 83.675 88.004 93 .217 96.878 
65 72.285 79.973 84.821 89.177 94.422 · 98 .105 

66 73.344 81.08.S 85 .965 90.349 95. 626 99.330 
67 74.403 82.197 87.108 91.519 96.828 100.554 
68 75.461 83.308 88.2.50 92.689 98.028 101. 776 
69 76.519 84.418 89.391 93.856 99,228 102. 996 
70 77 • .577 85 • .527 90.531 95 .023 100 .425 104. 21.S 

71 78.634 86.63.S 91:610 96.189 101.621 105.432 
72 79 .690 87.743 92.808 97 .353 · 102 .816 106.648 
73 80.747 88.850 93.94.S 98 . .516 104.010 107.862 
74 81.803 89.9.56 9.S.081 99.678 10.S. 202 109.074 
75 82.858 91.061 96.217 100.839 106 .393 110. 286 

76 83. 913 92.166 97.351 101. 999 107 . .583 111.495 
77 84.968 93 .270 98.484 103 .158 108. 771 112. 704 
78 86.022 94.374 99.617 104,316 109. 958 113. 911 
79 87 .077 95.476 100.749 105 .473 111.144 115 .117 
80 88.130 96 . .578 101.879 106.629 112.329 116 .321 

81 89 .184 97.680 103.010 107.783 113.512 117.524 
82 90. 237 98.780 104 .139 108. 937 114.695 118. 726 
83 91. 289 99.880 105.267 110.090 11.5.876 119.927 
84 92.342 100. 980 106.395 111.242 117 .057 121.126 
85 93.394 102.079 107.522 112 .393 118 .236 122 .325 

86 94.446 103 .177 108.648 113 .544 119.414 123 .522 
87 95 .497 104.275 109. 773 114.693 120.591 124. 718 
88 96 . .548 10.5.372 110.898 115. 841 121. 767 12.5.913 
89 97 . .599 106,469 112.022 116. 989 122. 942 127 .106 
90 98.6.SO 107 . .565 113 .145 118.136 124.116 128.299 
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Table 03 

Critical Values for the Chi-Square Distribulion 

.., 
1 0.005 0.01 0.025 0.05 0.10 0.25 

91 60.00.5 62 • .581 66.501 70.003 74.196 81.574 
92 60.815 63.409 67.356 70.882 75.100 82.524 
93 61.62.5 64.238 68.211 71.760 76.006 83.474 
94 62.437 65.068 69.068 72.640 76. 912 84 .42.5 
95 63 .250 65.898 69.925 73.520 77 .818 85.376 

96 64.063 66.730 70.783 74.401 78.72.5 86.327 
97 64.878 67.562 71.642 75.282 79.63"3 87.278 
98 65.694 68.396 72 • .501 76.164 80.541 88.229 
99 66.510 69.230 73.361 77 .046 81.449 89 .181 

100 67.328 70.065 74.222 77 .929 82.3.58 90.133 

102 68.96.5 71.737 7.5.946 79.697 84.177 92.038 
104 70.606 73.413 77 .672 81.468 85.998 93.944 
106 72.251 75.092 7.9.401 83.240 87.821 95.850 
108 73.899 76.774 81.133 85.015 89.645 97. 758 
110 75 • .5.50 78.458 82.867 86.792 91.471 99.666 

111 77 .104 80.146 84.604 88 •. 570 93.199 101.575 
114 78.862 81.836 86.342 90.351 95.128 103.485 
116 80.521 83 .529 88.084 92.134 96. 958 105 .396 
118 82.185 85.225 89.827 93.918 98. 790 107.307 
120 83 .8.52 86. 923 91.573 95.705 100.624 109.210 

122 8.5 • .520 88.624 93.320 97 .493 102.458 111.133 
124 87.192 90.327 9.5.070 99.283 104.295 113.046 
126 88.866 92.033 96.822 101.074 106 .131 114. 961 
128 90 • .543 93. 741 98.576 102.867 107.971 116.876 
130 92.221 9.5.4.51 100.331 104.662 109.811 118. 792 

132 93.904 97 .163 102.089 106.4.59 111.6.51 110.708 
134 9.5 . .588 98.878 103.848 108. 257 113 .49.5 122.625 
136 97 .27.5 100.59.5 10.5.609 110.0.56 11.5.338 124 • .543 
138 98.964 102.314 107.372 111.8.57 117 .183 126 .461. 
140 100.65.5 104.034 109.137 113.6.59 119.029 128.380 

142 102.348 10.5.757 110.903 11.5.463 120.876 130.299 
144 104.044 107.482 112.671 117 .268 122.724 132.219 
146 10.5.741 109.209 114.441 119.075 124 • .574 134.140 
148 107 .441 110.937 116.212 120.883 126.424 136.061 
150 109.142 112.668 117. 98.5 122.692 118.275 137. 983 

200 1.52.241 156 .432 162.728 168. 279 174.83.5 186.172 
2.50 196.161 200.939 208.098 214.392 221.806 234.577 
300 240.663 24.5.972 253. 912 260.878 269.068 283.13.5 
400 330.903 337 .1.5.5 346.482 3.54.641 364.207 380 • .577 
.500 422.303 429.388 439.936 449.147 4.59,926 478.323 

600 514 • .529 .522.36.5 .534.019 .544.180 5.56.0.56 576.286 
700 607.380 61.5.907 628 • .577 639.613 6.52.497 674.413 
800 700.725 709.897 723 • .513 73.5.362 749 .185 772.669 
900 794.47.5 804.2.52 818.756 831.370 846.075 871.032 

1000 888 • .564 898.912 914. 2.57 927 . .594 943.133 969.484 
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Table D3 cont. 

'Y 

f 0.75 0.90 0.95 0.975 0.99 0.995 

91 99.700 108.661 114.268 119.282 125.289 129.491 
92 100.750 109. 756 115 .390 120.427 126.462 130.681 
93 101.800 110.850 l16.511 121.571 127.633 131.871 
94 102.850 111.944 117 .632 122. 71.5 128.803 133.059 
95 103.899 113 .038 118. 752 123.858 129.973 134.247 . 
96 104.948 114.131 119.871 .125.000 lJ°l.141 135.433 
97 105.997 115 .223 120.990 126.141 132.309 136. 619 
98 107.045 116.31.5 122.108 127.282 133.476 137 .803 
99 108.093 117.4'J7 123.225 128.422 134.642 138. 987 

100 109.141 118.498 124.342 129.561 135.807 14'J.169 

102 111.236 120.679 126.574 131.838 138 .134 142.532 
104 113.331 122.818 . 128.804 134.111 14'J .459 144.891 
106 115.424 125.035 131.031 136.382 142.780 147.247 
108 117 .517 127 .211 133.257 138 .651 145 .099 149.599 
110 119.608 129.385 135 .480 14'J. 917 147.414 151.948 

112 121.699 131.558 137.701 143.180 149. 727 154.294 
114 123.789 133.729 139. 921 145.441 152.037 156.637 
116 125.878 13.5 .898 142.138 147.700 154.344 158. 977 
118 127.967 138.066 144.3.54 149.957 156.648 161.314 
120 130.055 14'J .233 146.567 1.52. 211 1.58. 950 163.648 

122 132.142. 142.398 148.779 1.54.464 161.250 165.980 
124 134. 228 144.562 150.989 156. 714 163.546 168.308 
126 136.313 146.724 153 .198 1.58.962 165.841 170.634 
128 138.398 148.885 155.4'J5 161.209 168.133. 172. 957 
130 14'J.482 151.045 1.57 .610 · 163 .453 170.423 17S.278 

132 142 . .566 153.204 159.814 16.5.696 :17_2.711 177 .597 · 
134 144.649 155.361 162.016 167.936 174.996 179.913 
136 146.731 157 .518 164.216 170.175 177 .280 182.226 
138 148.813 159.673 166.415 172.412 179.561 184.538 
14(J 1.50.894 161.827 168.613 174.648 181.84'J 186.847 

142 152 .• 975 163.980 170.809 176.882 184.118 189.1.54 
144 155.055 166.132 173.C04 179.114 186.393 191.4.58 
146 157 .134 168. 283 175.198 181.344 188.666 193.761 
148 159. 213 170.432 177 .390 183 • .573 190.938 196.062 
150 161.291 172 . .581 179 • .581 185.800 193 .208 198.360 

200 213.102 226.021 233. 994 241.058 249.44.5 25.5.264 
~o 264.697 279.050 287.882 29.5.689 304. 94'J 311.346 
)00- 316.138 331. 789 341.39.5 349.874 3.59.906 366.844 
400 418.697 436.649 447.632 457.305 468.724 476.606 
500 520.950 .54'J.930 n3.l27 .563. 852 .576.493 58.5.207 
600 622.988 644.800 6.58.094 669.769 683.516 692. 982 
700 724. 861 748.3.59 762.661 77.5 .211 789.974 800.131 
800 826.604 851.671 866. 911 880.275 895.984 906.786 
900 928.241 954.782 970.904 98.5.032 1001.630 1013.036 

1000 1029. 790 1057. 724 1074.679 1089 • .531 1106. 969 1118.948 



................... ·.•-:•:•:-:,,:.:-:-:•:•:-:< 

j}i;:;;::::·:··· .. :::::;::::i:j 

- NORSK INSTITUTT FOR LUFTFORSKNING -t~jjfJ{litil!'!II!L-i --(~.N_O_R_G_E_S_T-EK_N_I_S~K-_-N_A_T_U_R_V_I_T_E_N_SKAP--E-L_I_G_E_F_O_R_S_K_N_I_NG_S_RÅD) 
POSTBOKS 130, 2001 LILLESTRØM 

TLF. ( 02) 71 41 70 E;LVEGT. 52. 

RAPPORTTYPE RAPPORT NR. 
Oppdragsrapport OR 16/84 ISBN--82-7247-479_4 

DATO ANSV.SIGN. ANT. SIDER 

APRIL 1984 O.F.Skogvold 66 

TITTEL PROS,JE~'rLEDER 
J. Sc aug 

Tests of hypotheses in principal NILU PROS,JEKT N!L 
component analysis. E-8414 

FORFATTER(E) TILGJENGELIGHET** 
A 

Alena Moldanova OPPDRAGSGIVERS REF. 

OPPDRAGSGIVER 

- 
3 S'l'IKKORD (a ruak s • 20 anslag) 

P~incipa1·componentslstatistical analysis Test of hypotheses 
..... - --·•·1 REFERAT (maks. 300 anslag, 5-10 linjer) 

TITLE 
Tests of hypotheses in the principal compoBent analysis 

ABSTRACT (max. 300 characters, 5-10 lines. 
The principal compone!lt analysis (PCA) has been described 
and its applications have been indicated. The purpose was to 
present a self-contained account of the tests of statistical 
hypotheses in the PCA to enable their propper use. Several 
examples are included as well as a review of literature. 

- 
**Kategorier: Apen - kan bestilles fra NILU A 

Må bestilles gjennom oppdraqsgiver B 
Kan ikke utle~eres C 


