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Abstract 

A synthesis of hazard area prediction following the release of a 

hazardous gas cloud is developed. At a fixed risk level the 

predicted hazard area is estimated to depend much upon prediction 

errors for actual atmospheric transport and flow parameters. 

1 Introduction 

The basic theories of turbulent diffusion, developed by Taylor 

and Batchelor, initiated a large scientific activity, directed 

towards accurate prediction of the mean size of a passive cloud 

released into idealized flows with known parameters .. 

The few exceptions, in which other aspects of the dispersion 

in flows with given parameters have been addressed, has been 

summarized by Csanady (1973). Along his wording, the academic 

respectability of the tradition, and even these exceptions, may 

obscure the fact that it is insufficient for some practical pur­ 

poses. The practical applications of gas cloud behaviour is a 

main reason for working with this particular application of 

meteorology at all, so we should constantly try to direct our 

attention towards the most important aspects. 
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The practical application for this study is prediction of the 

hazard area following the accidental release of an explosive or 

toxic gas cloud. The prediction is to be based upon predicted 

(estimated) transport and flow parameters. Therefore, even if 

this is a commonly addressed problem, it is really non-standard 

compared to traditional diffusion theory. The objective is to 

obtain as small and accu~ately predicted hazard area as is 

"optimal", at a given risk. A specific purpose of the present 
\.L.• ."':, l_ • • • 

study is to make different meteorological aspects of hazard area 
. - 

prediction sufficiently explicit so as to allow estimation of 

what aspects are the most important ones in obtaining a small 

predicted hazard area. 

To be specific, it is assumed that the instantaneously generated 
• I , 

cloud is small and the hazard is associated with instantaneous 

gas concentration x above a certain limit Xh• When dealin~ 

with instantaneous concentrations, there will be only little 

differences between the relative spread of this cloud and the 

relative lateral spread of a continuous plume. The scale is 

imagined to be associated with a maximum hazard time and aiong­ 

wind distance ordering Th= 0(10 min) and 81 = 0(5 km), 

respectively. 

Ideas about the relative importance of different meteorological 

aspects of hazard area prediction are obtained from the· 

following observations (e.g. Lumely and Panofsky, ,1965; 

Panchev, 19il; Pasquill, 1974): i) the spectra of itmospheric 

variables have ~ost energy at the larger scales, ii) the atmos­ 

pheric eddies that contribute most to the dispersion of a cloud 
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are of the same dimensions as the ~loud; iii) the atmospheric 

eddies that contribute most to the cloud's centre of gravity 

motion are larger than the cloud; iv) cloud behaviour varies 

considerably with the flow parameters. The first three state­ 

ments indicate that the size of the predicted hazard area depends 

more upon the prediction error for the cen~re of gravity location 

than on cloud dispersion. The last statement suggests that the 

size of the predicted hazard area depends much on the estimation 

errors for actual flow parameters. Analogous arguments apply to 

similar problems related to air pollution, and the ideas may_ 

appear obvious to some. Nevertheless, since the literature on 

approaching such problems is strongly biased towards diffusion 

models, they should be discussed in a more explicit form. 

Although the problem setting may be suited for a Bayesian ap­ 

proach, conventional statistics is used for the exploratory 

purpose of this study. A modified intepretation of the transport 

variable in Gifford's (1959) fluctuating plume model is sufficient 

for applying Gifford's and Csanady's results to the description 

of the concentration field resulting from a cloud, given the 

flow parameters, and now a prediction of the actual centre of 

gravity transport (Section, 2). This framework is used to 

synthesize (parameterize) hazard area prediction based on the 

above information (Sections, 3a, 3b). The uncertainty associated 

with predicting th~ flow parameters is then accounted for, 

choosing unfavourable values (Section, 3c). This model is used to 

outline the importance of main meteorological aspects in 

obtaining a small predicted hazard area (Section, 4). The limited 

space available does not allow a complete treatment of this large 
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subject. 

2 Concentration distribution 

The hazard probability depends on the stochastic concentration 

field in space and time x(~,t) i A complete statistical 

description of this non-homogeneous and non-stationary field is 

beyond reach. An aspect on which there is some information'is 

the probability function of concentration at fixed spatial and 

time coordinates F·(x; x,t). This distribution is therefore 

chosen as the basis for this discussion. It is irnplicitely 

considered to be a function of atmospheric flow parameters. 

It is convenient to discuss the spreading of a cloud in terms of 

the centre of gravity motion and the relative dispersion 

(Gifford, 1959). With source strength Q and the Lagrangian 

centre of gravity velocity u, the centre of gravity vector 

c(t) is: 

c(t) = Q-1 f x X (~,t)d~ 

t 
= f ~(£(T))dT. 

0 

(1) 

The probability density for- the stochastic c vector is 8(£,t). 

The conditional probability density for concentration at fixed 

spatial and time coordinates, given the centre of gravity vector, 
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B(x~ £,t) = B(x/£; ~,t); r = ~ - £, with conditional prabability 

F(x; r,t). The joint density of the two stochastic variables, 

concentration and centre of gravity vector, is then B(x,£; ~,t) = 

B(x;£,t) B(£;t), so that the marginal probability of interest 

becomes (Csanady, 1973): 

( 2) 

a. Conditionil concentration distribution. Experimental evidence 

(Csanady, 1973) indicates that the conditional concentration 

distribution F(x; £,t) may be represented reasonably well by 

3 parameters: the probability of zero concentration, F(0;£,t), 

and the parameters x
0
(r,t) and cr*(r,t) of a lagnormal distribution 

for nonzero concentrations. 

for x = 0 
(3) 

, if X> 0 

As mentioned, most studies of turbulent diffusion are conc~rned 

with properties of the -first moment x{£,t) of F(x; £,t). For a 

passive scalar cloud this moment is commonly found to have 

spatially Gaussian profiles for 1£1 ~ 0(201). With proper 

orientation of coordinate axes, the x-field may then be discussed 

in terms of standard deviations, cri(t); i= 1, 2, 3. Assuming 

isotropy, Smith and Hay'i (1961) diffusion model illustrates 

the dependen.~e between dispersion and flow parameters 

da 1 

dt 

00 

~ ~ f ¢(k)K(k)dk; 
C 

(4) 
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(5) 

The flow parameters are the mean wind, U, and the small scale 

Eulerian three-dimensional wave number turbulence spectrum ~(k), 

with integral scale L=O(l00 m). The transfer function, K(k), 

shows that the most efficient atmospheric eddies to disperse the 

cloud have the same dimensions as the cloud itself. Eqs. '(4) and 

(5) give approximately (Pa_squill; 1974): · .. · ·. :-',s(n.:' 1. 1. 974 / : 

~ 0.2 cru' 

a u 

-1 

~ ( ln l O) U 
zo 

ø 1 
for L -~ O ( 1 )· ,- 

so that a small cloud grows approximately linearly with time •. 

Eqs. (4), (5) and (6) i?dicate that only a small part of the 

turbulence spectrum is active in cloud dispersion at a given 

time. With surface roughness, z
0 

(in metres), the following 

closure equation is commonly estimated as reasonably accurate: 

= 0(0.1. U) 

(6) 

(7) 

Estimates for F(0;£,t) and o*(£,t) are associated with large 

uncertainty (Csanady,· 1973; Eidsvik, 1980 b). Here it is assumed 
-1 

that F(0) < 0(10 ) and o*(r) ~ 0.5 in the interior of the cloud. 

The joint properties of x are generally unknown. However, it 

appears that the p~obability of simultaneous high (or low) 

concentrations at two locations closer together than the expected 

cloud size tends to be high (Eidsvik 1980 b). 



- 7 - 

b. Centre of gravity prediction error distribution. In Gifford's 

and Csanady's works the (horizontal) £ of (2) is measured rela­ 

tive to its expectation, unknown in case of an accidental gas 

release. The information that can be obtained is a prediction of 

the centre of gravity transport: 

t 
= I {;(c(T))dT ~ 

0 

A 

ut. (8) 

A 

Here u is the predicted atmospheric wind along the predicted 

trajec~ory. Since it may _be difficult to estimate u significantly 

more accurately than to be constant over horizontal coordinates 

and times of the order (Ut,t) < 0(5 km, 10 min), (Eidsvik,1978,1981), 

the approximation in (8) is most probably allowed. The prediction 

error is: 

t 
= I r~(£(T)) - ~(c(-r)>Jd-r 

0 

(9) 

t ~ I [u(c(T)) - ~(;(T))]dT • 
. 0 

Since the extrapolation distances in space and time associated 

with this prediction of£ are normally.much larger than the 

difference between cand£, the transcendental and Lagrangian 

character of (9) may, for the purpose of this study, be avoided 

by replacing c with con the right hand side. It is convenient 

to consider x and c to be vedtors in a coordinate system moving 
A 

with cand orient the system so that the 1-axis is along the 

" predicted, but not necessarily constant wind u{t). 
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The distribution of the 'prediction error·for the centre of 

gravity location is then 8('£;t). With this interpretation, 

Gifford's and Csanady's results are applicable to describe dis­ 

persion statistics ~iven the flow parameters and a prediction of 

the actual transport. A main result is that F(x;~,t) depends much 

upon 8('£,t). A simple but important new point is that 8('£;t), 

and therefore F(x;x,t), can now be controlled (i.e. regulated) 

by means of the prediction method for£· 8ince the available time 

for prediction is smaller tha-n the diffusion timet= 0(10 min.), 

the pr~diction method must b~_ based upon simple use_ of local 

information about the atmospheric flow. The best conceivable 

prediction is most likely comparable to the prediction obtained 

by tracking a dummy cloud released at approximately the same 

(time and space) location as the actual. The prediction error 

associated with this may be thought of as the result of two­ 

particle diffusion. For the prediction to be of any use, it must 

be based upon tracking data up to a much less time than the 

maximum hazard time. Extrapolation over a sufficiently long lead 

time must add to give a minimum prediction error that is signifi­ 

cantly larger than cr1 of (4). Realistic prediction methods must 

give larger errors. 

In order to estimate more realistic lower limits to the predicta­ 

bility of c, the cloud trajectory is assigned to the coordinate 

of its predicted centre of gravity over the ~iffusion time, 

(-ox ,t
0
). Measurements occur at the coordinates (x.; t.<t); i= -l. l. 0 

1, 2, .. Usi~g I I· I I as notation for a norm or a typical value, 

the the minimum resolution of this idealisation may be expressed 

as ll6x, 6tll = o l l ue , tll?:: O(L) = 0(100 m), i.e. it is not 
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appropriate for a discussion of small scale effects. However, the 

energetic atmospheric fluctuations have larger scales so that (9) 

may be approximated as: 

A 

'c ~ t[u(x ,t ) - u(x ,t ) ]. 
--0 0 --0 0 

( 10) 

The minimum prediction error may then be discussed in terms 

of optimal interpolation and extrapolation of the atmospheric 

(larger scale) field u(~,t). This is, in principle, a question 

of stochastic models for field variables, a subject in its infancy 

for field dimensions high~r than one (Granger, 1975). However, 

guidance from time-serie analysis and Gandin's (1965) theory for 

optimal interpolation and extrapolation when the measurement setup 

is given, may be used to estimate how the prediction error may be 

most efficiently minimized. Without going into details on this, 

a main result from these theories, as applied to atmospheric 

flucutations, is generally that nothing is more efficient in 

producing accurate predictions than a measurement close to the 

coordinate for which the prediction shall be used (Eidsvik, 1978, 

1981). When the prediction method needs to be specified, we will 

therefore assume that only the nearest measurement is used. With 

additive, combined effects from small scale turbulence and measure­ 

ment error £(~1,t1), the prediction error for£ then becomes 

approximately: 

- 
'c ~ t[u{~

0
,t
0
) - ~{x1,t1) - £(~1,ti)], (11) 

so that the covariance matrice becomes 
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( 12) 

Assuming 'c to be nearly Gaussian with zero mean, (12) exempli­ 

fies how S('£,t) may be controlled by the prediction method, by 
T . . 

varying ~1,t1 and EE E . The diagonal terms of the structure 

function matrice, Q, is estimated to increase approximately 

linearly with its arguments for L << I~ - ~1 I << 100 km and 

L/U << t - t1 << 12 hr (Panchev, 1971). For realistic minimal 
0 

Ix - xii= O(Ut), t - t1 = O(t) and ll_EI I~ -o - 0 

I !E'£'cT! I ~ t2 a~, so that using (6) gives: 

it follows that 

al 
( 13 )· 

Apart from being an order of magnitude estimate, this equation 

also indicates that I !E'£'cTI I is associated with larger 

atmospheric scales than a
1
• The filtering of large scale atmos­ 

pheric fluctuations by the prediction method for c is further 

illustrated, noting that the structure function of a scalar, 

along one spatial coordinate y is: 

oo k •y 
D(y) æ f ¢(ky) sin2 + d ky' 

0 

(14) 

with ¢(k) the one-dimensional spectrum along they-direction y 
(Panchev, 1971). According to (14) the contributions from 

atmospheric eddies of larger dimensions than y are damped. 

However, since ¢(k) has most energy at low wavenumbers, the y 
atmospheric eddies that contribute most to the prediction error 

are of approximately the same dimensions as the distance (in 

time and space) between the nearest measurement and the centre 
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of gravity for the cloud trajectory. This distance will normally 

b I T e much larger than 01, so that the eddies contributing for E'c c• 

are of much larger scales than those contributing to o1 (4,5). 

The picture of cloud dispersion given the flow parameters and 

predicted transport, summarized in this chapter, is illustrated 

in Figure 1. 

3 Actual and predicted hazard area 

This picture will now be used to syntesize (parametrize) hazard 

area prediction, given the flow parameters and a transport pre­ 

diction. For simplicity, the main objective is specified to a 

prediction of the area which may be affected by hazardous 

concentrations at some time following the release. The actual 

realization of hazard occurs in a stochastic area around ~(t) 

where x > xh' illustrated by the shaded area in Figure 1. 

Hazard must be predicted in the area where the distribution 

F(xh;~,t) (or F(xh;~,t) at some time), given a transport prediction, 

exceeds an unacceptable value. Since the predicted hazard area 

must be geometrically simple, it is sufficient to discuss iimple 

aspects of the actual and predicted hazard area only. 

a. Transverse dimension. Suppose that there exists an along-wind 

~ange, x ~ Ut, such that x
0
(r=O) >> xh for all 01 (t=O) << x << ei. 

Since the probability of simultaneously high (or low) concentration 

at two locations closer together than the expected, size of the 

cloud is estimated to be high (Eidsvik, 1980b), most of the actual 

hazard is confined to a compact region around the location of the 
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actual gravity centre in this interval of x (as illustrated in 

Figure 1). The most important aspect of the hazardous concentration 

field then appears to be represented with an ellipse of "optimal" 

shape and orientation, or more simply a circle of radius s. With 

the Heavyside function H, s may be expressed as (compare Csan~dy, 

1969): 

( 15) 

The last approximation is based upon the assumption that in a 

neighbourhood where x0(r=O) >> xh' the probability of x > xh 
is unacceptably high, once x > 0. Since H(x-xh) = O with proba­ 

bility F(xh;E,t) and H(x-xh) = 1 with probability 1-F(xh;E,t), 

E{H(x-xh)} = 1 - F(xh;E,t) so that: 

EITs2 (t) = J [l - F(xh;E,t)] d r i d r z ( 16) 

The large uncertainty associated with F(O;E,t) and therefore, 

the stochastic structure of s cannot be avoided and implies 

that simple estimation should be used. The dominance of the 

large scale eddies in the atmosphere, implying a large I !cl I 
compared to 11 s 11, 'is 

of trying to estimate 

another argument for this (13). Instead 

µ (xi) = (Es2/•2 using (16) (compare 
s 

Csanady, 1969), estimates for the purpose of this study are 

obtained by means of the distance to a given mean concentration, 
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X X in a conventional, three-dimensional isotropic 
~ h' 

Gaussian diffusion equation. This equation is solved with 

respect to the distance from the centre, r, to a concentration 

x, and differentiated with respect to 01 (a monotonic function 

of x) to give the maximum hazard radius for the mean cloud, r~ax 

The following relations hold at the r-maximum: 

01(x) = (2Tie)-½ (Q/x)-113 
; r max = V a l ( x) . ( 1 7 ) 

The expected cloua- becomes· nonhaz a r dou s , , r=O ,- at a a 1 -value /ez 1. 6 S. 
. - < times larger than this. F~r an appropriate choice of x - xh' 

the maximumµ is most probably comparable tor , comparable s max 

to 01 (x) for x somewhere in the interval o1 (t=O)<<x<<01• 

Representative values for the difference between the parameters 
~ 

µs(x) ,01 (x) and {E1ci(x)}2 are shown in Figure 2. The higher 

moments of s require estimates of joint properties for the 

x-field, which are even more uncertain. For simplicity it is 

here assumed thats is nearly normal, n(µs,os), with mean µsand 

standard deviation, reasonably of the order os= O(µs) in the 

interval 01 (t=O) << x << 81. 

The predicted, instantaneous hazard area could be defined as the 

circle with radius 82(t), around the predicted location of the 

centre of gravity, such that the probability of hazard outside 

this circle is smaller than Pr{s(t)+l£(t) !>82} =Ph.When, as 

here, the interest is mainly on the transverse dimension of the 

predicted hazard area, I '£(t) I is replaced by the transverse 

component 'c2(t). With the previous assumptions (s + 'c2) is 

n(µ ;o), o2 = o2 + E'c2 so that 82 is obtained as: 
S S 2' 
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0 2-µ . . s 
a 
£n(O,l)dT = ½ (1 - Ph), 

erf 

( 19) 

with 0:2 = erf-
1 

(1-Ph). The subscript is used to indicate two­ 

sided probability. If risks of the order Ph~ 0(10-
1
) are 

accepted, a2 ~ 2. Even at the particular x-value where µs reaches 

its maximum value (comparable to a cr1 (x)) the last approximation 

in (19) is valid (13, 17). This implies that the transverse 

dimension of the predicted hazard area is dominated py the pre­ 

diction error, {E'c:(t) }½, exemplified by (12) at all distances 

CJ l ( t= 0) < < X. 

For fixed (_x1,t1), t and therefore D(x -xi, t
0
-t1) increases 

0 --0 - 
i 

slightly with t so that {E'c~(t)}2 will at least increase linearly 

with t (or x). Thi~ curvature of transverse hazard ar~a limits is 

unusual compared to the picture obtained from diffusion models. 

The physical reason is different assumptions and filtering of 

the larger scale atmospheric fluctuations. In traditional dif­ 

fusion models, too energetic larger scale flucuations (integral 

scale) are not allowed. 
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b. Maximum hazard distance. The maximum hazard distance should 

also be discussed via s(t) of (15), or rather by means of the last 

passage time to the state s(t) = 0. The distribution of the last 

passage time would, in principle, be given if a model of the 

nonstationary stochastic process s(t) or x (t), existed. It has 
max 

not been advanced, so that a simpler procedure have to be chosen. 

In the spirit of Lagrangian diffusion theory, the time and not 

along-wind spatial coordinate is assumed to be the most relevant 

variable for turbulent diffusion. The predicted maximum hazard 

distance, 81, is therefore discussed via the time, Th' it takes 

before the probability for x > xh in the most hazardous, central 

portion of the cloud becomes small enough, F(x = xh;~ = 0,Th)=Ph. 

In the central portion of the cloud the intermittency factor is 

small, so that the concentration distribution is approximately 

log-normal. Analogous to the derivation of (19), this gives 

(compare Csanady, 1969, 1973): 

( 20) 

-1 
with a1 = erf (1-2Ph). The subscript is used to indicate·one- 

sided probability. Eq. (20) may be written in terms of the mean 

value X, instead of x
0 

and inverted (compare Csanady, 1973): 

-1 
Th = x {xhexp[-lfa1a* + \a}]} 

-1 

~ X {xhexp[-12'a1a*]}. (21) 

The maximum hazard distance is, to first order, (compare 13, 19), 

determined by how far the cloud has been transported during 
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this time, i.e .. , predicted transport £(Th) plus prediction 

error ~(Th). Specifically, 01 is determined as the distance· 

exceeded with probability Ph: 

Th,.._ 
✓2 a i { E ' c ~ (Th) } ½ 0 l :::'. f u(T)dT + 

0 

" /2a 1 {E 2 }½ :::'. U1Th + cl(Th) . (22) 

C. Predicted hazard area. A reasonably rational and simple 

way to estimate the predicted hazard area in an atmosphere with 

known flow structure and predicted transport has now been developed. 

The predicted hazard area is characterized by 01 of (22), and 

02 of (19). The quantile e = {01,82} of the approximate order 

1 - Ph, depends upon the atmospheric diffus~on parameter 

vector~= {F(O) ,ai,x,a*, E'cf; i= 1,2}, through the equations 

developed. The diffusion para~eters depend in turn on the 

atmospheric flow parameter vector of (4) and (12), v = {U,f(~), 

D(~) }, so that the relations may formally be written: 

8=~(}.l_(v)). (23) 

In an actual situation of gas release, the parameters must be 

estimated (predicted). The availabl.e information will be a 

" 
prediction of atmospheric flow parameters, vk. For hazard esti- 

mation, an unfavourable parameter must be chosen, say vk (condi­ 

tional worst case): 

(24) 
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A 

To be specific, vk is imagined to be nearly normally distributed, 

* so that the unfavourable 6vk is selected at the risk level Ph= O(Ph) 

n * A A 2 ½ * -1 * as 6vk '.:::'. 2'a1 {E[vk Evk] } , with a1 = erf (1-2Ph) '.:::'. a1. 'J:'he 

minus sign is chosen when a small vk is most hazardous. Except for 

"' 
0*, the components of dispersion models, H(~), have received much 

attention. Model errors have been discussed by Pasquil (1974) and 

Hanna et al. (1978). In "ideal conditions" an optimistic 10% rela­ 

tive accuracy for the cloud standard deviation seems to be appro- 
-, 

priate. This gives ca 30% relative accuracy for the maximum mean 

concentration of an instantaneously generated cloud so that the 

diffusion model uncertainty in the time to a given mean concen­ 

tration becomes approximately 10%. That is, the predicted maximum 

hazard time ''safety factor" due to dispersion model inaccuracy of 

the ''best mean" models is approximately 1.1 or so. With given 

6vk, a small diffusion model error may not necessarily result in 

a small prediction error forµ .. This may be so if the "real" 
l 

µi varies much over intervals of vj smaller than 6vj. Several 

authors have indicated that the turbulent structure may actually 

have such a property in the neighbourhood of the commonly occuring 

"near neutral conditions" (Busch, 1973). It is, for instance, 

e s t Lma t ed that the "real" u2-spectrum varies considerably from 

slightly positive to slightly negative Richardson numbers. When 

the prediction inaccuracy for Richardson number, 6Ri' is com­ 

parable to or larger than this interval, the prediction accuracy 

for the u2-spectrum (and therefore turbulent diffusion) could be 

better with a spectrum model that is smooth over 6R.-intervals 
1 

than with a "realistic". For the purpose of this study, the 

dispersion model is assumed to be very accurate: 
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- A A - A - 

0 = ~ (~ (~) ) = ~ (~) ·, ( 25) 

A ._ 

It is understood that µi= µi(~) when models exists, and 
A 

a*= a*+ 6a* for µi= a*. Since the~ operator is not necessarily 

commutative with respect to other operators appearing in (25), 

the relation is not unique. However, a reasonable interpretation 

is sufficient for the present purpose. Application of (24) and 

(25) to (19), (21) and (22) give: 

------------------- ~ l2a2[{E'c; (x) }½ + 6{E'c~ (x) }½] 

-1 

{xhexp[-/2'a1~*]}, 

( 2 6) 

(27) 

(28) 

For clouds that are initially large, or rapidly becomes so, 

such as "heavy gas clouds (Eidsvik, 198Oa), (26) and (28) should 

have an additive correction term of the order of a1• Apart from 

this, important aspects of hazard area prediction seems to be 

synthesized by (26, 27 and 28) also for these clouds. 01 and 02, 

depend, to first order, upon the prediction error for wind given 

the flow parameters and prediction error for these parameters. 

~ In addition 01 depends implicitely upon the turbulent diffusion 

through the predicted maximum hazard time Th. · 



- 19 - 

4 Characteristic valuei 

* For a given approximate risk (Ph or Ph•Ph) the control variables 

for making the size of the predicted hazard area small are: ,,,,----..__.,,,, 
E'cf (t), x(r=O; ~) and a*. The discussion of their effectiveness 

is a broad subject, that can only be outlined here. 

a. Transverse dimension. With the use of an error-free measure- 

ment, responsive to small scale turbulence, located at the gas 

release location (26) reads, to first order: 

( 2 9) 

The half angle spanned by the predicted hazard area is then 

~ 8 2 (x) 
X 

( 30) 
u 

Although the estimation of this variable is a traditional problem, 

(30) appears to be the first example of a reasonably explicite way. 

The benefit of a short lead time in the prediction is determined 

by the atmqspheric structure._Since D22 is estimated to be 

approximately proportional to the time (t -ti) for 0(1 hr) < 
0 

t -t1 < 0(12 hr), (Panchev, 1971), the last term of (30} is 
0 

typically as illustrated in Figure 3. The benefit of a short 

lead time is obvious. At the risk level Ph~ 0.1, a2 ~ 2, so 

that the minimum angle must be ca 15°, which appears to be 

representative for most ad hoc estimates. As indicated by (7) 

and (30), it varies considerably with the flow. 
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b. Maximum hazard distance. The expected size of an .Ln Lt.La Lk y 

small passive scalar cloud increases approximately linearly with 

the time, (6), so that the expected maximum concentration 

decreases approximately as: 

x (t) a: ~ t - 
3
• 

u 
(31) 

Introduced into the inverted version of (27): 

~-3 

~3 Th a: xhexp[-12'a1cr*], 
'CTu 

(32) 

this gives the predicted hazard time 

[~h] 1 / 3 [ na, "*)] [U Th a: _ exp{-3-_ 

Th [g] 1/·3 [ ✓2' ~ ] [ 
0 
] ~ exp 3 a1cr* a: , for ø i (Th) ,:s:o (L). ( 3 3) 

Th 

Logarithmic variation of ( 3 3) indicates that Th varies less rapidly 

with prediction error for the released mass, Q, compared to pre- 

diction errors for a* and the flow parameters, au. Figure 4 

illustrates the variation with the prediction errors for a* and 

cru. 

The increase in Th due to concentration fluctuations and their 

" uncertainty is given by the exponential term of (33). For a*~ 
-1 !::.a*~ 0.5 and Ph~ 0(10 ), a1~2, this "safety.factor" for Th 

then becomes approximately 1.5. 
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The increase in Th due to prediction errors for actual flow 

parameters is likely to be large. Based on general experience 

from turbulence experiments in ideal homogenous and stationary 

flows, 6cru/cru = 0(1) is judged as representative for conventional 

estimation methods and commonly occurring flows. It is felt that 

lower limits for the flow parameter prediction error can hardly 

be made smaller than 6cru/ou = O.l. The typical prediction errors 

may therefore, as seen from the last factor of (33), increase 

the predicted hazard time from Th to Th by more than 2, with a 

lower .limit of the order of 1.1. The predicted maximum hazard time 

may thus be much larger than the value obtained from conventional 

use of a most accurate diffusion model. 

The predicted maximum hazard distance is exemplified as obtained 

from (22), (28) and i (29): 
,,,.-~ 

0 l 2 ½ 
Th (D11 (t -t1) + 0 ) 

~ {l + /2'a, l [ 0 U ]} 
~ A Th U1 

-----------------1-'i 
( D 1 1 ( t -t 1 ) + CT ) 2 

Th 
~ {l + n'a.d ~ u ]} rp (34) 

-h 

The first term is obtained as in (30) and illustrated in Figure 3; 

the second comes from (33) and is illustrated in Figure 4. 

Prediction errors for actual flow parameters may increase the 

predicted maximum hazard distance by a factor larger than 2, with 

a lower limit of the order of 1.3. These are large numbers in com­ 

parison to the safety fac'tor of 1.1 or so, caused by the inaccuracy 

of the disp~rsion model, given the transport and flow parameters. 
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5 Concluding remarks 

This exploratory study has shown that hazard area prediction 

following an accidental gas release should be based on the 

equations (26, 27 and 28). 

As for the cloud characteristics, nontraditional aspects 

associated with the (unknown) stochastic structure of hazardous 

cloud size, s(t), appears to be the most relevant for the present 

purpose. The accurate prediction of cloud standard deviation, given 

the flow parameters, is not sufficent for obtaining small and 

accurate predicted hazard area. Flow prediction errors may result 

in so large uncertainty of the predicted hazard distance that the 

simplest (traditional) diffusion models may be accurate enough. 

With a given, representative prediction error for flow parameters, 

it could even be that an accurate and detailed dispersion model 

gives a larger predicted hazard area than a less accurate one. 

Concentration fluctuations and uncertainty about this may affect 

the along-wind dimension of the predicted hazard area as a 

safety fact9r of ca 1.5. 

The prediction errors for the actual transport velocity, given the 

flow parameters and prediction errors for the actual flow para­ 

meters, have been estimated to affect the size of the predicted 

hazard area considerably. Representative flow prediction errors 

increase the linear dimensions of the predicted hazard area by 

a factor larger than 2. Even the ''best" prediction methods result 

in an increase of the order of 1.3 or so. 
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It seems that we should try to design flow prediction (estimation) 

methods so that the predicted hazard area can be made "optimally" 

small. The analysis did not indicate any natural and realistic 

optimal level for the prediction accuracy. 

Acknowledgements. The encouragement of Prof. E. Spjøtvoll and· 

the positive criticism of V. Vitols, Y. Gotaas and B. Ottar 

are app:reciated .. This work was supported by the Norwegian 

Petroleu~ Directorate, through Steering CoIT1P.1ittee for contingency 

plartning on the Continental Shelf. 

References. 

Busch, N.E., Panofsky, H.A., Tennekes, H., 1973: Turbulence·•·:· 

structure in the planetary boundary layer. Bound.- Layer 

Meteo~. 4 211-264. 

Csanady, G.T., 1969: Dosage probabilities and area coverage from 

instantaneous point sources on ground level. 

Atmospheric Environment. l, 25-46. 

Csanady, G.T., 1973: Turbulent diffusion in the environment. 

D. Reidel Publishing Company, Dordrecht, 248 pp. 

Eidsvik, K.J., 1978: On near optimal interpolation and extra­ 

polation of atmospheric variables using a few mea~urement 

stations. Technical note VM-295. Norwegian Defence Research 

Establishment, Kjeller, 30 pp. 

Eidsvik, K.J., 1980a : A Model for heavy Gas dispersion in the 

Atmosphere. Atmospheric Environment. 14. 769-777. 

Eidsvik, K.J., 1980b: Estimates of concentration fluctuations 

in an instantaneous plume. "Atmospheric Environment". !,i. 

1365-1369. 



- 24 

Eidsvik, K.J., 1981: On Optimal Prediction of Ekman Layer 

Fluctuations over short Lead Times. Submitted for publication. 

Gifford, F.A., 1959: Statistical properties of a fluctuating 

plume dispersion model. In: Atmospheric Diffusion and Air 

Pollution, F.N. Frenkiel and P.A. Sheppard, Eds., Advance in 

Geophysics, vol. 6 Academic Press, New York, 117-136. 

Lumley, J.L., Panofsky, H.A., 1964: The structure of atmospheric 

turbulence. John Wiley, New York, 239 pp. 

Gandin, L., 1965: Objective analysis of meteorological fields. 

Hydrometeor. Publ. House, L~ningrad, Translation Jerusalem, 

242 pp. 

Granger, C.W.J., 1975: Aspects of the Analysis and Interpretation 

of Temporal and Spatial Data. The Statistican, ~, 197-210. 

Hanna, S.R., Crawford, T.V., Brendel, W.B., Deardorff, H.J.W., 

Horst, T.W., Fichtl, G.H., Randerson, D., Arya, S.P.S., 

Norman, J.M., 1978: Accuracy of Dispersion Models. Bulletin 

American Meteorology Society, ~, 1025-1026. 

Panchev, S., 1971: Random functions and turbulence. Pergamon 

Press, New York, 444 pp. 

Pasquill, F., 1974: Atmospheric diffusion. The dispersion of 

windborne material from industrial and other sources. 

John Wiley, New York, 429 pp. 

Smith, F.R., Hay, J.S., 1961: The expansion of cluster of 

particles in the atmosphere. Quart. J.R. Meteor. Soc. ~, 82. 

r 



- 25 - 

Hazardous 
conc cn t r a t i o r. 
li.mjt 

Prc-d i c t o d 

I 
I 
I 
I 
I 

~ i
1

1

c2 

\. - 'cl -----P------ - - - - - - - - - - - _J 
I 0,ITI) 

FigUJ:'e 1: The prediction error for 
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Figure 2: Schematic representation 
of the differences between cloud 
standard deviation, a1(x), mini­ 
mv.m prediction error for cloud 
location, {E'c~(x)}, and mean 
size of the hazardous part of a 
cloud, µ (x). s 
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Figure 3: Schematic representation 
of bhe prediction error for cloud 
tiranepont: as a function of the 
lead time (see Eq. 30). 

Figu-Pe 4: Safety factors for> pre­ 
dicted maximum hazard time, 'l'h/TJi, 
due to predic-tion errors for con­ 
centra-tion fluctuations, a*, and 
turbulence, au (see Eq. 33). 
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