NILU	OR	:	41/89	
REFER	ENCE	*	0-8545	
DATE		:	AUGUST	1989
ISBN		•	82-425-	-0048-7

ATMOS PHERIC DISPERSION EXPERIMENTS AT LILLESTRØM

1986-87 Data-report

I. Haugsbakk and D.A. Tønnesen

CONTENTS

1	INTRODUCTION	3
2	DESCRIPTION OF THE AREA AND THE RELEASE POINTS	3
3	EQUIPMENT USED IN DISPERSION EXPERIMENTS	5
	 3.1 The tracer gases 3.2 Emission 3.3 Sampling system 3.4 Analyses of samples 	5 5 7 7
4	A SHORT DESCRIPTION OF THE TRACER EXPERIMENTS	8
	 4.1 Test 1-1986. 9 January 1986 4.2 Test 2-1986. 7 February 1986 4.3 Test 3-1986. 11 February 1986 4.4 Test 4-1986. 13 February 1986 4.5 Test 5-1986. 18 February 1986 4.6 Test 6-1986. 19 February 1986 4.7 Test 7-1986. 21 February 1986 4.8 Test 1-1987. 2 January 1987 4.9 Test 2-1987. 6 January 1987 4.10 Test 3-1987. 7 January 1987 4.11 Test 4-1987. 10 January 1987 4.12 Test 5-1987. 12 January 1987 4.13 Test 6-1987. 17 January 1987 4.14 Test 7-1987. 9 February 1987 4.15 Test 8-1987. 19 February 1987 	9 14 23 32 41 44 53 62 71 80 89 98 107 116 125
5	A SUMMARY OF THE RESULTS	128
6	REFERENCES	133
	APPENDIX A: Vertical profiles of temperature and wind speed . APPENDIX B: SF, and CBrF, data	135 145

ATMOSPHERIC DISPERSION EXPERIMENTS AT LILLESTRØM

1986-1987

DATA REPORT

1 INTRODUCTION

The Norwegian Institute for Air Research (NILU) has carried out a number of atmospheric dispersion experiments at Lillestrøm during the winters of 1986 and 1987. This is a documentation of the results, and further discussion and conclusions will be made in another report. Two tracer gases have been applied; sulphur hexafluoride (SF₆) and brom-trifluoromethane (CBrF₃). When only one tracer was needed, SF₆ was always used. When there was a need for dual tracers, for identifying different sources, CBrF₃ was also applied. The purpose of the experiments was to study the pollutant contributions from oil combustion and road traffic. Only SF₆ was used in one of the experiments. SF₆ was released from a mast either 16 or 36 metres above ground level and CBrF₃ was released from ground level (1 m).

2 DESCRIPTION OF THE AREA AND THE RELEASE POINTS

A map of the test field is shown in Figure 1. The test area is a flat, open area bounded on the south by residential area and on the east by a major road and residential areas. The area is situated between gently rolling hills. The height of roughness elements (houses and trees) is estimated to be about 6-7 m. The figure shows the main roads and the release points.

Figure 1: Map of the field for tracer experiments at Lillestrøm.

- A: Release point A, and automatic weather station (AWS) with 10 m mast.
- B: Release point B, and automatic weather station (AWS) with 36 m mast.

3 EQUIPMENT USED IN DISPERSION EXPERIMENTS

Tracer gases are often used when studying transport and dispersion of air pollutants. The gases are released under controlled conditions. Tracer gases are often benefitial when the dispersion is complex. Such as dispersion in streets surrounded by buildings, in narrow valleys, behind buildings or even in ventilation systems. The method is described in detail by Heggen and Sivertsen (1983).

3.1 THE TRACER GASES

Sulphur hexafluoride (SF_6) is ideal as a tracer. SF_6 is a non-toxic gas which is dissolvent in water and does not occur naturally in the atmosphere. It does not disappear from the air by deposition to the ground, or washed out by precipitation and it is broken down very slowly. SF_6 can be detected at extremely low levels using electron capture gas chromatography with detection 1 ppt (part per trillion, one part per 10^{12} parts of air). A wide range of SF_6 concentrations can be analyzed, from 1 ppt to 10^6 ppt.

The accuracy of bromtrifluoromethane $(CBrF_3)$ analysis is not as good as the SF₆ analysis at low concentrations (detection limit 30-50 ppt). The results of $CBrF_3$ concentrations occur on the same chromatogram using the same air sample.

3.2 EMISSION

The tracer gases are normally emitted directly from a gas cylinder with a pressure valve, connected to a flowmeter and a hose of variable length. In each test, the tracer gases were released continuously at a steady rate. Every release was monitored continuously. The release rate was determined by the gas flowmeter. To control the release rate, the weight of the gas bottles were determined before and after each test. The difference between the release rates determined by these two methods were within 10%. A summary of the release data is given in Table 1.

Table	1:	SF	and	CBrF	release	data.
10010		6			TOTOTOTO	au cu.

Test	Test Tracer gas		Date Emission (GMT +			Release rate
			l hour)		(m)	(g/s)
1-1986 SF ₆		86.01.09	0945-1045	A	10	0.051
2-1986	SF CBrF ₃	86.02.07	0915-1015	В	16 1	0.102 0.104
3-1986	SF CBrF ₃	86.02.11	0905-1005	В	16 1	0.102 0.104
4-1986	SF CBrF 3	86.02.13	0810-0910	В	16 1	0.102 0.104
5-1986	SF CBrF ₃	86.02.18	0815-0915	B	16 1	0.102 0.104
6-1986	SF CBrF ₃	86.02.19	0800-0900	В	16 1	0.102 0.104
7-1986	SF CBrF ₃	86.02.21	0748-0848	В	16 1	0.082 0.078
1-1987	SF CBrF ₃	87.01.02	1005-1105	в	36 1	0.102 0.104
2-1987	SF CBrF ₃	87.01.06	0900-1000	В	36 1	0.102 0.104
3-1987	SF CBrF 3	87.01.07	0900-1000	В	36 1	0.102 0.104
4-1987	SF CBrF ₃	87.01.10	0900-1000	В	36 1	0.102 0.104
5 - 1 9 8 7	SF CBrf ₃	87.01.12	0900-1000	В	36 1	0.102 0.104
6-1987	SF CBrF ₃	87.01.17	0930-1030	В	36 1	0.102 0.104
7-1987	SF CBrF 3	87.02.09	0930-1030	В	36 1	0.102 0.104
8-1987	SF CBrF 3	87.02.19	0930-1030	В	36 1	0.102 0.104

3.3 SAMPLING SYSTEM

Air samples were collected in 20 cm³ plastic syringes, either as instantaneous samples or as fifteen minutes average samples. The samples were collected at fixed points. The samplers used were battery powered, with electronic setting for start and stop. The automatic samplers were loaded with two syringes each. As the first one stops, the second one starts. The air is sucked through a small bore hypodermic needle at the end of each syringe intake to prevent escape of the sampled air.

3.4 ANALYSES OF SAMPLES

Air samples were analyzed using portable gas chromatographs with electron capture detection. The samples are usually analyzed immediately after each experiment. If the analyses were not carried out within the first few hours, the hypodermic needles on all syringes were sealed with caps. The simple sampling and analysis methods permit the collection of a large number of samples during each tracer experiment. In a tracer field study, these techniques allow the results of one experiment to be used in the design of succeeding experiments. Two gas chromatographs were prepared for each field study. The calibration of the chromatographs were made before each field study by means of a dilution chamber. A calibration curve based upon reading maximum values can be determined by an accuracy of ± 5 % (Lamb and Sivertsen, 1978).

A potentially serious problem associated with prolonged use of the gas chromatographs is contamination of the radioactive foil by deposition of diluted contaminates. As the foil becomes contaminated, the detector operating characteristics change. The concentrations of samples analyzed under these conditions can be as much as 15% to 25% in error. One way of monitoring changes in the detector response is to crosscheck samples between the gas chromatographs. Calibrating crosscheck data for these tests indicate that concentrations are accurate to within 15%.

4 A SHORT DESCRIPTION OF THE TRACER EXPERIMENTS

15 tracer experiments were carried out. Seven of the tests have been carried out in January-February 1986, and eight tests in January-February 1987. In the first test we only used SF_6 , but all the others involved both SF_6 and $CBrF_3$. All the tests were carried out within two 15-minutes subsequent periods. The SF_6 tests are referred to as A and B, and the simultaneous $CBrF_3$ tests are referred to as C and D. A summary of data on releases and meteorology in each test is given in Table 2.

Table 2: Summary of the dispersion experiments at Lillestrøm, 1986-1987.

Test	Date	Date Time Height, release rate (SF _/ CBrF ₃) (m) (g/s)		eight, ease rate 6 (g/s)	Win Direction (at 10/36 m) (deg.)	d Speed (at 10/36 m) (m/s)	Temperature (at 3 m) (^O C)	Horizontal turbulence (deg.)
1-1986	86.01.09	0945-1015 0945-1015	10/-	0.051/-	320/- 310/295	1.0/-	-27	- 99
3-1986	86.02.11	0935-1005	16/1	0.102/0.104	305/340	2.9/4.2	-20	59
4-1986 5-1986	86.02.13	0840-0910	16/1	0.102/0.104	290/320 34/ 37	0.7/1.1 1.6/3.0	-18 -10	12
6-1986 7-1986	86.02.19 86.02.21	0830-0900 0818-0848	16/1 16/1	0.102/0.104 0.082/0.078	340/310 330/ 30	0.5/0.5 1.0/0.5	-26 -27	20 51
1-1987	87.01.02	1035-1105	36/1	0.102/0.104	330/-	0.8/0.0	-20	31
2-1987 3-1987	87.01.06*	0930-1000	36/1	0.102/0.104	42/27	0.6/1.9 0.3/0.6	-13 -25	15
4-1987 5-1987	87.01.10* 87.01.12	0930-1000 0930-1000	36/1 36/1	0.102/0.104 0.102/0.104	23/22 69/38	1.5/3.5 1.0/2.9	-25 -20	14 16
6-1987 7-1987	87.01.17* 87.02.09*	1000-1030 1000-1030	36/1 36/1	0.102/0.104	335/327 337/300	0.3/0.7	-22 -14	7 51
8-1987	87.02.19*	1000-1030	36/1	0.102/0.104	146/143	0.3/0.3		30

Method for producing crosswind traverses

First the points to be included in the crosswind concentration profile are selected. The process thereafter is automatic. The azimuth for the vectors from release to sampling point is determined. The azimuths are then checked so that they are ordered "left to right", viewed from the release point, and that there are no "gaps" in the arc of more than 30 degrees between two adjacent points. All the points are then projected along their azimuth the mean distance from the release point. The observations retain their concentration value.

4.1 TEST 1-1986. 9 JANUARY 1986

 SF_6 was released from site A from 0915 to 1015 at a rate of 0.051 g/s. The release height was 10 m.

At Lillestrøm the sky was clear. Light air (1.0 m/s) was blowing from northwest (320°) , with sharp frost (-27°C) and ground level inversion.

Figures 2 and 4 show the average 15-minute concentrations from the dispersion experiment and Figures 3 and 5 show the corresponding traverses marked on Figures 2 and 4.

A well defined plume in quasistationary dispersion conditions was observed.

STED		SF6-LILLE	STRØM	KILDE	1	:	13.950	49.850
TEST NR.	:	1A .						
DATO	:	860 109						
TIDSPKT.	:	0945-1000						
ANT.085.	:	32						
MIN, MAKS X	:	13.450	15.450					
MIN, MAKS Y	:	47.900	49.900					

Figure 2: Test 1A-1986. SF concentrations, Lillestrøm 9 January 1986, 0945-1000. Unit: 0.1 mg/m³.

Figure 3: Crosswind SF concentration profiles observed_along sampling traverses 1 and 2 marked on Figure 2. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 4: Test 1B-1986. SF concentrations, Lillestrøm 9 January 1986, 1000-1015. Unit: 0.1 mg/m³.

Figure 5: Crosswind SF concentration profiles observed_along sampling traverses 3 and 4 marked on Figure 4. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.2 TEST 2-1986. 7 FEBRUARY 1986

 ${\rm SF}_6$ and ${\rm CBrF}_3$ were released from site B from 0915 to 1015 at rates of 0.102 and 0.104 g/s.

At Lillestrøm it was cloudy with some light snowfall. Light air (0.5 m/s) was blowing from northwest (310°) . The temperature was -7° C and the temperature stratification was slightly stable.

Figures 6 and 8 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 7 and 9 show the corresponding traverses marked on Figures 6 and 8.

Figures 10 and 12 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 11 and 13 show the corresponding traverses marked on Figures 10 and 12.

Large horizontal wind fluctuations made large plume fluctuations, giving variable dispersion conditions. The maximum hour concentrations were observed on right hand side of the traverses in the first part of the experiment, and on the left hand side of the traverses on the last part of the experiment. The results should not be used to determine dispersion parametres.

Figure 6: Test 2A-1986. SF concentrations, Lillestrøm 7 February 1986, 0945-1000. Unit: 0.1 mg/m³. The observations close to the source are given in a separate figure.

Figure 7: Crosswind SF concentration profiles observed along sampling traverses 1,⁶2 and 3 marked on Figure 6. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 8: Test 2B-1986. SF concentrations, Lillestrøm 7 February 1986, 1000-1015. Unit: 0.1 mg/m³.

Figure 9: Crosswind SF concentration profiles observed_along sampling traverses 4 and 5 marked on Figure 8. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 10: Test 2C-1986. CBrF₃ concentrations, Lillestrøm 7 February 1986, 0945-1000. Unit: 0.1 mg/m³.

Figure 12: Test 2D-1986. CBrF₃ concentrations, Lillestrøm 7 February 1986, 1000-1015. Unit: 0.1 mg/m³.

Figure 13: Crosswind CBrF concentration profiles observed along sampling traverses 4 and 5 marked on Figure 12. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.3 TEST 3-1986. 11 FEBRUARY 1986

 SF_6 and CBrF_3 were released from site B from 0905 to 1005 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was almost covered with a thin layer of altostratus clouds. Light breeze (2.9 m/s) was blowing from northwest (305°) , the temperature was -20° C and the air temperature stratification was stable as the sun broke through at 0950.

Figures 14 and 16 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 15 and 17 show the corresponding traverses along the routes on Figures 14 and 16.

Figures 18 and 20 show the average 15-minute concentrations from the ${\rm CBrF}_3$ dispersion experiment, and the Figures 19 and 21 show the corresponding traverses along the routes on Figures 18 and 20.

A stationary plume for SF_6 -dispersion in the period 0935-0950 was disrupted during the second part of the experiment, 0950-1015. For $CBrF_3$ a more complicated plume with lower maximum concentrations appeared.

Figure 14: Test 3A-1986. SF concentrations, Lillestrøm 11 February 1986, 0935-0950. Unit: 0.1 mg/m³.

Figure 15: Crosswind SF concentration profiles observed_along sampling traverses 1, 2 and 3 marked on Figure 14. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 16: Test 3B-1986. SF concentrations, Lillestrøm 11 February 1986, 0950-1005. Unit: 0.1 mg/m³.

Figure 17: Crosswind SF concentration profiles observed_along sampling traverses 4, 5 and 6 marked on Figure 16. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 18: Test 3C-1986. CBrF concentrations, Lillestrøm 11 February 1986, 0935-0950. Unit: 0.1 mg/m³.

Figure 19: Crosswind CBrF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 18. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 20: Test 3D-1986. CBrF₃ concentrations, Lillestrøm 11 February 1986, 0950-1005. Unit: 0.1 mg/m³.

Figure 21: Crosswind CBrF₃ concentration profiles observed along sampling traverses 4 and 5 marked on Figure 20. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.4 TEST 4-1986. 13 FEBRUARY 1986

SF and CBrF were released from site B from 0810 to 0910 at rates of 0.102 and 0.104 g/s.

At Lillestrøm half of the sky was covered with altocumulus/stratocumulus clouds. Light air (0.7 m/s) was blowing from northwest (290°) , the temperature was -18° C at bottom of a ground level inversion. Sodar readings estimated an interlocking layer at 125 m. At 0905 this layer was gone.

Figures 22 and 24 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 23 and 25 show the corresponding traverses along the routes on Figures 22 and 24.

Figures 26 and 28 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 27 and 29 show the corresponding traverses along the routes on Figures 26 and 28.

Bifocal plumes were observed both for SF_6 and $CBrF_3$. The concentration maxima were observed along the traverses.

Figure 22: Test 4A-1986. SF concentrations, Lillestrøm 13 February 1986, 0840-0855. Unit: 0.1 mg/m³.

Figure 23: Crosswind SF concentration profiles observed_along sampling traverses 1, 2 and 3 marked on Figure 22. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 24: Test 4B-1986. SF concentrations, Lillestrøm 13 February 1986, 0855-0910. Unit: 0.1 mg/m³.

Figure 26: Test 4C-1986. CBrF₃ concentrations, Lillestrøm 13 February 1986, 0840-0855. Unit: 0.1 mg/m³.

Figure 27: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1 and 2 marked on Figure 26. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 28: Test 4D-1986. CBrF₃ concentrations, Lillestrøm 13 February 1986, 0855-0910. Unit: 0.1 mg/m³.

Figure 29: Crosswind CBrF concentration profile observed along sampling traverse 3 marked on Figure 28. Profile was observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.5 TEST 5-1986. 18 FEBRUARY 1986

 SF_6 and CBrF_3 were released from site B from 0815 to 0915 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear. Light breeze (1.6 m/s) was blowing from east (90°) , the temperature was -10° C at bottom of a slightly stable ground inversion. As the sun rose at 0850 GMT the wind direction shifted from east to northeast (34°) , and the ground level inversion dissolved. The tracer from the high release was not picked up by the samplers, but some of the tracer from the low release was.

Figure 30 shows the average 15-minute concentrations from the SF_{6} dispersion experiment.

Figure 31 shows the average 15-minute concentrations from the ${\rm CBrF}_{_3}$ dispersion experiment.

No crosswind profiles have been produced. More detailed wind observations are require to explain the observed concentration values for $CBrF_3$. The observations should not be used to determined dispersion parametres.

Figure 30: Test 5A and 5B 1986. SF₆ concentrations, Lillestrøm 18 February 1986, from 0845-0900 (5A), and from 0900-0915 (5B). Unit: 0.1 mg/m³.

STED KILDE 1 : 14.890 49.150 : CORFS-LILLESTREM TEST NR. : 50 DATO : 860218 TIDSPKT. : 0845-0900 ANT .OBS . : 16 HIN. MAKS X : 15.460 15.460 HIN, HAKS Y : 47.900 49.900

STED		CORFS-LIL	LESTRIM	KILDE	- 1	:	14.390	49.
TEST NR.		: 50						
DATO		: 3602 18						
TIOSPICT.		: 0900-0918	0900-09 15					
ANT.OBS.		: 13						
HIN, MAKS	x	18.450	15.450					
MIN.MAKS	Y	47.900	49.900					

Figure 31: Test 5C and 5D 1986. CBrF concentrations, Lillestrøm 18 February 1986, from 0845-0900 (5C), and from 0900-0915 (5D). Unit: 0.1 mg/m^3 .

4.6 TEST 6-1986. 19 FEBRUARY 1986

SF and CBrF were released from site B from 0800 to 0900 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear. Light air (0.5 m/s) was blowing from northwest (340°) . The temperature was -26° C at the bottom of a ground level inversion. Sodar readings estimated an interlocking layer at 150 m.

Figures 32 and 34 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 33 and 35 show the corresponding traverses marked on Figures 32 and 34.

Figures 36 and 38 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 37 and 39 show the corresponding traverses marked on Figures 36 and 38.

The plumes were well defined and the maxima were observed within the sampling networks.

Figure 32: Test 6A-1986. SF concentrations, Lillestrøm 19 February 1986, 0830-0845. Unit: 0.1 mg/m³.

Figure 33: Crosswind SF concentration profiles observed along sampling traverses 1 and 2 marked on Figure 32. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

46

Figure 34: Test 6B-1986. SF concentrations, Lillestrøm 19 February 1986, 0845-0900. Unit: 0.1 mg/m³.

Figure 35: Crosswind SF concentration profiles observed along sampling traverses 3 and 4 marked on Figure 34. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 36: Test 6C-1986. CBrF concentrations, Lillestrøm 19 February 1986, 0830-0845. Unit: 0.1 mg/m³.

Figure 37: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1 and 2 marked on Figure 36. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 38: Test 6D-1986. CBrF concentrations, Lillestrøm 19 February 1986, 0845-0900. Unit: 0.1 mg/m³.

Figure 39: Crosswind CBrF concentration profiles observed along sampling traverses 3 and 4 marked on Figure 38. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.7 TEST 7-1986. 21 FEBRUARY 1986

 $\rm SF_6$ and $\rm CBrF_3$ were released from site B from 0748 to 0848 at rates of 0.082 and 0.078 g/s.

At Lillestrøm the sky was clear. Light air (1.0 m/s) was blowing from northwest (330°) . The temperature was -27° C at the bottom of a ground level inversion. As the sun rose at 0822 the windspeed increased to 1.5 m/s.

Figures 40 and 42 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 41 and 43 show the corresponding traverses marked on Figures 40 and 42.

Figures 44 and 46 show the average 15-minute concentrations from the ${\rm CBrF}_3$ dispersion experiment, and the Figures 45 and 47 show the corresponding traverses marked on Figures 44 and 46.

Figure 40: Test 7A-1986. SF concentrations, Lillestrøm 21 February 1986, 0818-0833. Unit: 0.1 mg/m³.

Figure 41: Crosswind SF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 40. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 42: Test 7B-1986. SF concentrations, Lillestrøm 21 February 1986, 0833-0848. Unit: 0.1 mg/m³.

Figure 43: Crosswind SF concentration profiles observed along sampling traverses 4 and 5 marked on Figure 42. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 44: Test 7C-1986. CBrF concentrations, Lillestrøm 21 February 1986, 0818-0833. Unit: 0.1 mg/m³.

Figure 45: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1 and 2 marked on Figure 44. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 46: Test 7D-1986. CBrF₃ concentrations, Lillestrøm 21 February 1986, 0833-0848. Unit: 0.1 mg/m³.

Figure 47: Crosswind CBrF₃ concentration profiles observed along sampling traverses 3 and 4 marked on Figure 46. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.8 TEST 1-1987. 2 JANUARY 1987

SF and CBrF were released from site B from 1005 to 1105 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear. Light air (0.8 m/s) was blowing from northwest (330°) , and the temperature was -20° C at the bottom of a ground level inversion.

Figures 48 and 50 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 49 and 51 show the corresponding traverses marked on Figures 48 and 50.

Figures 52 and 54 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 53 and 55 show the corresponding traverses marked on Figures 52 and 54.

```
STED
: SF6-LILLESTRØM
KILDE 1 : 14.390 49.130

TEST NR.
: 1A

DATO
: 870102

TIDSPKT.
: 1035-1050

ANT.0BS.
: 28

MIN,MAKS X : 14.000 15.400

MIN,MAKS Y : 48.300 49.700
```


Figure 48: Test 1A-1987. SF concentrations, Lillestrøm 2 January 1987, 1035-1050. Unit: 0.1 mg/m³.

Figure 49: Crosswind SF concentration profiles observed along sampling traverses 1 and 2 marked on Figure 48. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

```
STED
: SF6-LILLESTRØM

TEST NR.
: HB

DATO
: 870 102

TIDSPKT.
: 1050-1105

ANT.0BS.
: 27

MIN,MAKS X
: 14.000 15.400

MIN,MAKS Y
: 48.300 49.700
```


Figure 50: Test 1B-1987. SF concentrations, Lillestrøm 2 January 1987, 1050-1105. Unit: 0.1 mg/m³.

Figure 51: Crosswind SF concentration profiles observed along sampling traverse 3 marked on Figure 50. Profile was observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 52: Test 1C-1987. CBrF concentrations, Lillestrøm 2 January 1987, 1035-1050. Unit: 0.1 mg/m³.

Figure 53: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1 and 2 marked on Figure 52. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 54: Test 1D-1987. CBrF concentrations, Lillestrøm 2 January 1987, 1050-1105. Unit: 0.1 mg/m³.

4.9 TEST 2-1987. 6 JANUARY 1987

 SF_6 and $CBrF_3$ were released from site B from 0900 to 1000 at rates of 0.102 and 0.104 g/s.

At Lillestrøm light air (0.6 m/s) was blowing from northeast (42°) , and the temperature was -13° C at the bottom of a ground level inversion. Vertical profiles of wind direction and wind speed are shown in Appendix A.

Figures 56 and 58 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 57 and 59 show the corresponding traverses marked on Figures 56 and 58.

Figures 60 and 62 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 61 and 63 show the corresponding traverses marked on Figures 60 and 62.

Figure 56: Test 2A-1987. SF concentrations, Lillestrøm 6 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 58: Test 2B-1987. SF concentrations, Lillestrøm 6 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 59: Crosswind SF concentration profiles observed along sampling traverses 3 and 4 marked on Figure 58. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 60: Test 2C-1987. CBrF₃ concentrations, Lillestrøm 6 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 62: Test 2D-1987. CBrF₃ concentrations, Lillestrøm 6 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 63: Crosswind CBrF₃ concentration profiles observed along sampling traverses 3 and 4 marked on Figure 62. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.10 TEST 3-1987. 7 JANUARY 1987

SF and CBrF were released from site B from 0857 to 1000 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear with light air (0.3 m/s) blowing from northwest (335°) , and the temperature was -25° C at the bottom of a ground level inversion. Vertical profiles of temperature, wind direction and wind speed are shown in Appendix A.

Figures 64 and 66 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 65 and 67 show the corresponding traverses marked on Figures 64 and 66.

Figures 68 and 70 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 69 and 71 show the corresponding traverses marked on Figures 68 and 70.

Figure 64: Test 3A-1987. SF concentrations, Lillestrøm 7 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 66: Test 3B-1987. SF concentrations, Lillestrøm 7 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 67: Crosswind SF concentration profiles observed along sampling traverses 4 and 5 marked on Figure 66. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 68: Test 3C-1987. CBrF₃ concentrations, Lillestrøm 7 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 69: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 68. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 70: Test 3D-1987. CBrF₃ concentrations, Lillestrøm 7 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 71: Crosswind CBrF₃ concentration profiles observed along sampling traverses 4 and 5 marked on Figure 70. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.11 TEST 4-1987. 10 JANUARY 1987

 SF_6 and CBrF_3 were released from site B from 0900 to 1000 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear with light air (1.5 m/s) blowing from northeast (23°) , and the temperature was -25° C at the bottom of a ground level inversion. A vertical profile of temperature is shown in Appendix A.

Figures 72 and 74 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 73 and 75 show the corresponding traverses marked on Figures 72 and 74.

Figures 76 and 78 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 77 and 79 show the corresponding traverses marked on Figures 76 and 78.

Figure 72: Test 4A-1987. SF concentrations, Lillestrøm 10 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 73: Crosswind SF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 72. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 74: Test 4B-1987. SF concentrations, Lillestrøm 10 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 75: Crosswind SF concentration profiles observed along sampling traverses 4, 5 and 6 marked on Figure 74. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 76: Test 4C-1987. CBrF₃ concentrations, Lillestrøm 10 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 77: Crosswind CBrF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 76. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 78: Test 4D-1987. CBrF₃ concentrations, Lillestrøm 10 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 79: Crosswind CBrF₃ concentration profiles observed along sampling traverses 4, 5 and 6 marked on Figure 76. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.12 TEST 5-1987. 12 JANUARY 1987

 SF_6 and CBrF_3 were released from site B from 0900 to 1000 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear with light air (1.0 m/s) blowing from northeast (69°) . The temperature was -20° C at the bottom of a ground level inversion. Vertical profiles of temperature, wind direction and wind speed are shown in Appendix A.

Figures 80 and 82 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 81 and 83 show the corresponding traverses marked on Figures 80 and 82.

Figures 84 and 86 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 85 and 87 show the corresponding traverses marked on Figures 84 and 86.

```
STED
: SF6-LILLESTRØM
KILDE 1 : 14.390 49.130

TEST NR.
: 5A

DATO
: 870112

TIDSPKT.
: 0930-0945

ANT.OBS.
: 44

MIN,MAKS X : 13.400 14.800

MIN,MAKS Y : 48.000 49.400
```


Figure 80: Test 5A-1987. SF concentrations, Lillestrøm 12 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 81: Crosswind SF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 80. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

```
STED
: SF6-LILLESTRØM
KILDE 1 : 11.390 49.130

TEST NR.
: 5B

DATO
: 870112

TIDSPKT.
: 0945-1000

ANT.OBS.
: 36

MIN,MAKS X : 13.400 11.800

MIN,MAKS Y : 48.000 19.400
```


Figure 82: Test 5B-1987. SF concentrations, Lillestrøm 12 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 83: Crosswind SF concentration profiles observed along sampling traverses 4, 5 and 6 marked on Figure 82. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 84: Test 5C-1987. CBrF₃ concentrations, Lillestrøm 12 January 1987, 0930-0945. Unit: 0.1 mg/m³.

Figure 85: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 84. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 86: Test 5D-1987. CBrF₃ concentrations, Lillestrøm 12 January 1987, 0945-1000. Unit: 0.1 mg/m³.

Figure 87: Crosswind CBrF₃ concentration profiles observed along sampling traverses 4, 5 and 6 marked on Figure 86. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.13 TEST 6-1987. 17 JANUARY 1987

 $\rm SF_{_{6}}$ and $\rm CBrF_{_{3}}$ were released from site B from 0930 to 1030 at rates of 0.102 and 0.104 g/s.

At Lillestrøm the sky was clear with light air (0.3 m/s) blowing from northwest (335°) . The temperature was -22° C at the bottom of a ground level inversion. The vertical profile of the temperature is shown in Appendix A.

Figures 88 and 90 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 89 and 91 show the corresponding traverses marked on Figures 88 and 90.

Figures 92 and 94 show the average 15-minute concentrations from the CBrF_3 dispersion experiment, and the Figures 93 and 95 show the corresponding traverses marked on Figures 92 and 94.

Figure 88: Test 6A-1987. SF concentrations, Lillestrøm 17 January 1987, 1000-1015. Unit: 0.1 mg/m³.

Figure 89: Crosswind SF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 88. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 90: Test 6B-1987. SF concentrations, Lillestrøm 17 January 1987, 1015-1030. Unit: 0.1 mg/m³.

Figure 91: Crosswind SF concentration profiles observed along sampling traverses 4, 5 and 6 marked on Figure 90. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 92: Test 6C-1987. CBrF₃ concentrations, Lillestrøm 17 January 1987, 1000-1015. Unit: 0.1 mg/m³.

Figure 93: Crosswind CBrF concentration profiles observed along sampling traverses 1, 2 and 3 marked on Figure 92. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

Figure 94: Test 6D-1987. CBrF concentrations, Lillestrøm 17 January 1987, 1015-1030. Unit: 0.1 mg/m³.

Figure 95: Crosswind CBrF₃ concentration profiles observed along sampling traverses 4, 5 and 6 marked on Figure 94. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.14 TEST 7-1987. 9 FEBRUARY 1987

116

 ${\rm SF}_6$ and ${\rm CBrF}_3$ were released from site B from 0930 to 1030 at rates of 0.102 and 0.104 g/s.

At Lillestrøm light air (0.3 m/s) was blowing from northwest (337°) and the temperature was -14° C at the bottom of a ground level inversion. The vertical profiles of temperature, wind speed and wind direction are shown in Appendix A.

Figures 96 and 98 show the average 15-minute concentrations from the SF_6 dispersion experiment, and the Figures 97 and 99 show the corresponding traverses marked on Figures 96 and 98.

Figures 100 and 102 show the average 15-minute concentrations from the ${\rm CBrF}_3$ dispersion experiment, and the Figures 101 and 103 show the corresponding traverses marked on Figures 100 and 102.

```
      STED
      : SF6-LILLESTRØM
      KILDE 1 : 14.390 49.130

      TEST NR.
      : 7A

      DATO
      : 870209

      TIDSPKT.
      : 1000-1015

      ANT.0BS.
      : 24

      MIN,MAKS X : 14.300 15.000

      MIN,MAKS Y : 48.700 49.400
```


Figure 96: Test 7A-1987. SF concentrations, Lillestrøm 9 February 1987, 1000-1015. Unit: 0.1 mg/m³.


```
      STED
      : SF6-LILLESTRØM
      KILDE 1 : 14.390 49.130

      TEST NR.
      : 7B

      DATO
      : 870209

      TIDSPKT.
      : 1015-1030

      ANT.0BS.
      : 22

      MIN,MAKS X : 14.300 15.000

      MIN,MAKS Y : 48.700 49.400
```


Figure 98: Test 7B-1987. SF concentrations, Lillestrøm 9 February 1987, 1015-1030. Unit: 0.1 mg/m³.

Figure 99: Crosswind SF concentration profiles observed along sampling traverses 3 and 4 marked on Figure 98. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

120

```
      STED
      : CBRF3-LILLESTRØM
      KILDE
      1 : 14.390
      49.130

      TEST NR.
      : 7C

      DATO
      : 870209

      TIDSPKT.
      : 1000-1015

      ANT.OBS.
      : 24

      MIN,MAKS X : 14.300
      15.000

      MIN,MAKS Y : 48.700
      49.400
```


Figure 100: Test 7C-1987. CBrF₃ concentrations, Lillestrøm 9 February 1987, 1000-1015. Unit: 0.1 mg/m³.

Figure 101: Crosswind CBrF₃ concentration profiles observed along sampling traverses 1 and 2 marked on Figure 100. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

```
STED
       : CBRF3-LILLESTRØM KILDE 1 : 14.390 49.130
TEST NR. : 7D
     : 870209
DATO
TIDSPKT. : 1015-1030
ANT.OBS. : 22
MIN.MAKS X : 14.300 15.000
MIN, MAKS Y : 48.700 49.400
```


Figure 102: Test 7D-1987. CBrF₃ concentrations, Lillestrøm 9 February 1987, 1015-1030. Unit: 0.1 mg/m³.

Figure 103: Crosswind CBrF₃ concentration profiles observed along sampling traverses 3 and 4 marked on Figure 102. Profiles were observed from the point of emission. The abscissa gives distance along crosswind profiles in metres.

4.15 TEST 8-1987. 19 FEBRUARY 1987

 $\rm SF_{_6}$ and $\rm CBrF_{_3}$ were released from site B from 0930 to 1030 at rates of 0.102 and 0.104 g/s.

At Lillestrøm light air (0.3 m/s) was blowing mostly from southeast (146°) , but was very variable during dispersion experiment, and hence this test came out to be a failure. The vertical profiles at temperature are shown in Appendix A.

Figure 104 shows the average 15-minute concentrations from the $SF_{_6}$ dispersion experiment.

Figure 105 shows the average 15-minute concentrations from the ${\rm CBrF}_{_3}$ dispersion experiment.

 STED
 :
 SF6-LILLESTRØM
 KILDE
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 <th:</th>
 :
 <th:</th>
 <th:</th>

Figure 104: Tests 8A and 8B 1987. SF concentrations, Lillestrøm 19 February 1987 from 1000 to 1015 (8A) and from 1015 to 1030 (8B). Unit: $0.1 \ \mu g/m^3$.

Figure 105: Tests 8C and 8D 1987. CBrF concentrations, Lillestrøm 19 February 1987 from 1000 to 1015 (8C) and from 1015 to 1030 (8D). Unit: 0.1 $\mu g/m^3$.

5 A SUMMARY OF THE RESULTS

Tables 3 and 4 give a summary of dispersion parameters from the dispersion experiments with SF_6 and $CBrF_3$. The tests have been carried out with simultaneous release of SF_6 and $CBrF_3$, except from test 1-1986 in which only SF_6 was released. In test 1, 1986 SF_6 was released from 10 m above ground level, in test 2-7, 1986 from 16 m above ground level and in all tests in 1987 from 36 m above ground level. $CBrF_3$ was released from 1 m above ground level.

The tests in general show that the emissions from 10-16 metres above ground level was brought quickly to the ground level, even under inversion conditions.

The standard deviations in Table 3 have been computed from "best fit" gaussian distributions to the observed distribution. The vertical standard deviations are very small, and even negative, in some cases. The negative values are caused by the iteration procedure in the algorithm deciding the "best fit" gaussian plume. Negative or zero vertical standard deviation indicates that there is a vertical transport in the initial stages of the dispersion (negative plume-rise).

Appendix B gives all the SF_6 and $CBrF_3$ data from the dispersion experiments.

Table 3: A summary of the dispersion parameters from the dispersion experiments with SF at Lillestrøm, January-February 1986 and 1987.

 $\boldsymbol{\sigma}_y$ is the standard deviation in horizontal distribution of concentrations.

 $\boldsymbol{\sigma}_z$ is the standard deviation in vertical distribution of concentrations.

Test no.	Date	Time	Tra	averse and stance (m)	О У (m)	0 ⁷ z	Crosswind Integrated tracer (µg/m)	Maximum concentration Observed Estimated (Ug/m)	
1A-1986	86.01.09	0945-1000	1 2	860 1 210	144 132	0.0 -0.1	1 023 1 856	29.6 6.1	28.4 5.6
1B-1986		1000-1015	3 4	890 1 220	157 142	0.0 -0.1	6 962 3 543	20.0 10.6	17.7 9.9
2A-1986	86.02.07	0945-1000	1 2 3	150 510 880	177 539 598	37.2 -0.1 29.8	3 927 6 709 4 628	10.1 6.6 4.1	8.9 5.0 3.1
2B-1986		1000-1015	4 5	510 870	402 691	35.6 33.6	4 052 4 251	4.3 4.2	4.0 2.5
3A-1986	86.02.11	0935-0950	1 2 3	190 490 850	470 91 155	0.0 0.0 20.4	3 059 2 856 990	25.5 17.3 3.7	26.0 12.6 2.6
3B-1986		0950-1005	4 5 6	190 520 850	122 127 157	0.0 0.1 -0.1	6 180 1 060 3 435	24.8 3.8 9.0	20.2 3.3 8.7
4A-1986	86.02.13	0840-0855	1 2 3	180 520 860	83 242 280	55.5 0.1 30.5	1 959 5 410 3 268	14.7 9.4 4.8	9.4 8.9 4.7
4B-1986		0855-0910	4 5 6	180 520 920	81 319 556	-0.1 -0.1 19.5	904 4 539 4 175	46.7 5.9 3.9	44.3 5.7 3.0
6A-1986	86.02.19	0830-0845	1 2	530 890	118 124	58.6 44.5	2 630 3 355	8.4 11.9	8.9 10.8
6B-1986		0845-0900	3	650 910	171 189	26.8 9.4	2 970 2 079	8.6 4.1	6.9 4.4
7A-1986	86.02.21	0818-0833	1 2 3	170 520 900	36 71 118	0.1 0.1 0.1	4 680 3 737 3 379	64.3 23.6 11.1	51.0 21.0 11.4
7B-1986		0833-0848	4 5	510 890	69 114	-0.1 0.1	3 245 2 874	20.0 10.8	18.8 10.1

129

Table 3, cont.

Test no.	Date	Time	Traverse and		σy	0 _z	Crosswind Integrated	Maximum concentration	
			distance (m)		(m)	(m)	tracer 2 (µg/m)	Observed Estimated 3 (µg/m)	
1A-1987	87.01.02	1035-1050	1 2	320 560	79 135	111.8 112.5	847 843	5.3 4.4	4.3 2.5
1B-1987		1050-1105	3	160	77	243.7	405	2.4	2.1
2A-1987	87.01.06	0930-0945	1 2	260 440	91 168	64.1 124.1	1 331 1 027	8.9 4.5	5.8 2.4
2B-1987		0945-1000	3 4	260 460	97 160	54.6 0.2	1 959 3 079	8.9 8.3	8.0 7.7
3A-1987	87.01.07	0930-0945	1 2 3	140 620 440	32 138 188	4 627.0 5 543.0 7 638.0	34 29 21	0.4 0.3 0.05	0.4 0.1 0.05
3B-1987		0945-1000	4 5	160 470	52 310	2 156.0 6 148.0	74 26	0.6 0.04	0.6 0.03
4A-1987	87.01.10	0930-0945	1 2 3	160 490 810	65 129 144	0.2 0.2 0.2	1 082 1 029 1 049	7.6 4.8 3.7	6.7 3.2 2.9
4B-1987		0945-1000	4 5 6	140 440 820	54 132 237	-0.1 0.2 -0.1	1 161 1 337 1 486	8.3 5.2 3.4	8.6 3.4 2.5
5A-1987	87.01.12	0930-0945	1 2 3	150 300 460	49 68 115	-0.1 83.6 46.9	1 060 437 633	11.1 2.7 2.3	8.6 2.6 2.2
5B-1987		0945-1000	4 5 6	160 300 440	52 58 113	-0.2 0.3 -0.3	988 741 774	8.6 5.8 2.8	7.6 5.1 2.7
6A-1987	87.01.17	1000-1015	1 2 3	150 470 900	41 98 134	247.8 327.6 0.3	637 484 2 732	6.9 3.3 7.6	6.1 2.0 8.2
6B-1987		1015-1030	4 5 6	150 490 900	69 79 131	622.4 135.3 114.4	256 1 327 1 138	1.7 6.2 5.8	1.5 5.8 4.0
7A-1987	87.02.09	1000-1015	1 2	190 410	55 95	0.2 54.9	2 342 3 411	29.6 9.7	24.9 9.9
7B-1987		1015-1030	3 4	190 430	59 98	0.1	4 770 5 328	45.8 20.0	35.8 19.4

Table 4: A summary of the dispersion parameters from the dispersion experiments with CBrF_3 at Lillestrøm, January-February 1986 and 1987.

 $\sigma_{\rm y}$ is the standard deviation in horizontal distribution of concentrations.

 $\boldsymbol{\sigma}_{\mathbf{z}}$ is the standard deviation in vertical distribution of concentrations.

Test no.	Date	Time	Traverse and distance (m)		О _У (m)	0 ₂ (m)	Crosswind Integrated tracer (µg/m ²)	Maximum concentration Observed Estimated (µg/m ³)	
2C-1986	86.02.07	0945-1000	1 2 3	150 510 880	182 561 1 040	20.7 12.8 19.4	7 675 12 360 8 189	21.7 11.8 7.4	16.8 8.8 3.1
2D-1986		1000-1015	4 5	510 870	686 1 270	20.0 17.4	7 937 9 116	6.1 4.6	4.6 2.9
3C-1986	86.02.11	0935-0950	1 2 3	190 490 850	64 462 659	10.4 3.9 6.9	2 622 6 786 3 956	19.3 13.4 3.2	16.4 5.9 2.4
3D-1986		0950-1005	4 5	490 850	214 250	17.2 7.0	1 594 3 868	3.6 8.0	3.0 6.2
4C-1986	86.02.13	0840-0855	1 2	500 860	273 505	19.2 23.4	5 912 4 846	12.0 9.1	8.6 3.8
4D-1986		0855-0910	3	520	351	26.2	4 329	5.1	4.9
6C-1986	86.02.19	0830-0845	1 2	530 890	152 173	51.0 39.5	3 113 4 025	10.3 9.5	8.2 9.3
6D-1986		0845-0900	3 4	660 910	382 307	52.0 19.9	1 532 1 994	2.3 3.2	1.6 2.6
7C-1986	86.02.21	0818-0833	1 2	520 900	201 101	29.1 66.7	2 177 953	6.6 4.4	4.3 3.8
7D-1986		0833-0848	3 4	510 890	189 118	17.5 26.9	3 624 2 357	8.5 8.5	7.6 8.0

Table 4, cont.

Test no.	Date	Time	Traverse and		бy	0 _z	Crosswind Integrated	Maximum concentration	
			distance (m)		(m)	(m)	tracer 2 (µg/m)	Observed Estimate (µg/m ³)	
1C-1987	87.01.02	1035-1050	1 2	320 560	110 221	23.6 51.4	4 206 1 929	22.0 5.5	15.3 3.5
1D-1987		1050-1105	3	160	123	24.7	4 023	17.6	13.1
2C-1987	87.01.06	0930-0945	1 2	260 440	126 265	19.3 23.5	5 142 5 636	16.4 14.0	16.3 8.5
2D-1987		0945-1000	3 4	260 460	104 185	17.6 20.0	7 505 6 614	30.5 19.9	28.8 14.3
3C-1987	87.01.07	0930-0945	1 2 3	140 440 620	34 77 183	9.5 17.9 201.2	16 740 8 893 793	187.3 48.1 2.0	195.8 46.0 1.7
3D-1987		0945-1000	4 5	160 470	78 91	3.7 31.6	41 290 5 027	272.5 31.8	212.2 22.0
4C-1987	87.01.10	0930-0945	1 2 3	160 490 810	49 108 145	7.0 26.5 52.2	5 649 1 498 761	55.3 5.9 3.0	45.8 5.5 2.1
4D-1987		0945-1000	4 5 6	140 440 820	50 114 220	4.7 21.2 28.7	8 269 1 870 1 381	68.9 8.1 3.1	65.6 6.6 2.5
5C-1987	87.01.12	0930-0945	1 2 3	150 300 460	55 96 125	2.2 7.0 7.7	16 390 5 618 5 187	139.1 31.2 18.9	118.7 23.3 16.5
5D-1987		0945-1000	4 5 6	160 300 450	57 71 145	0.0 5.2 8.0	24 440 7 565 4 941	198.1 47.6 15.2	172.2 42.3 13.6
6C-1987	87.01.17	1000-1015	1 2 3	150 470 900	50 120 126	16.3 40.4 50.7	975 3 929 3 134	93.6 14.6 10.8	77.5 13.0 9.9
6D-1987		1015-1030	4 5 6	150 480 900	84 133 148	4.8 41.0 43.5	32 390 3 877 3 647	158.1 17.5 10.3	154.3 11.6 9.8
7C-1987	87.02.09	1000-1015	1 2	190 410	105 107	15.4 59.4	10 290 2 672	45.1 11.5	39.3 9.9
7D-1987		1015-1030	3 4	190 430	117 102	10.1 29.9	15 660 5 307	69.6 23.8	53.5 20.7

6 REFERENCES

- Haugsbakk, I. (1988) Meteorologi og luftkvalitet. Lillestrøm vinteren 1986/87. Lillestrøm (NILU OR 1/88).
- Haugsbakk, I. (1987) Meteorologi og luftkvalitet. Lillestrøm vinteren 1985/86. Lillestrøm (NILU OR 10/87).
- Haugsbakk, I. og Grønskei, K.E. (1986) Spredningsforsøk med SF og CBrF for å studere relative forurensningsbidrag fra oljefyring og biltrafikk. Lillestrøm (NILU TR 9/86).
- Heggen, R. og Sivertsen, B. (1983) Tracer gas techniques at NILU. Lillestrøm (NILU TR 7/83).
- Lamb, B.K. og Sivertsen, B. (1978) Atmospheric dispersion experiments using the NILU automatic weather station and SF tracer technique. Lillestrøm (NILU TN 12/78).

APPENDIX A

Vertical profiles of temperature and wind speed.

LILLESTRØM 07.01.87

LILLESTRØM 17.01.87

APPENDIX B

 SF_6 and $CBrF_3$ data.

.

STED		:	SF6-LILLES	STRØM
TEST NR.		2	1A	
DATO		:	86-01-09	
TIDSPKT.		:	1015-1030	
ANT. OBS.		:	32	
MIN. MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

STED		:	SFG-LILLES	STRØM
TEST NR.		:	1B	
DATO		:	86-01-09	
TIDSPKT.		:	1030-1045	
ANT.OBS.		:	29	
MIN.MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

SF6 UG/M3

.03 .03 6.00 20.00

. 00 . 00 . 50 . 00 . 00 . 00 . 00 . 00

KOORD X	INATER Y	SF6 UG/M3		KOORD X	INATER Y
3.620 3.870 4.000 4.150 4.320 4.550 4.550 4.640 4.950 4.840 4.720 4.580 4.720 4.580 4.720 4.320 4.070 3.950 3.950 3.950 3.950 5.270 5.270 5.270 5.270 5.080 4.970 4.900 4.970 4.900 4.830 4.500 4.500 4.260 4.170 4.100 4.020	48.880 49.050 49.050 49.040 49.040 49.060 49.040 48.940 48.940 48.730 48.700 48.700 48.700 48.700 48.840 48.840 48.700 48.820 48.820 48.930 48.930 48.490 48.490 48.300 48.320 48.320 48.280 48.320 48.320	.03 .03 26.77 29.67 5.67 .15 .40 .04 .18 3.40 6.16 4.23 .20 .03 .01 .01 .01 .01 .01 .01 .00		13.620 13.870 14.000 14.320 14.550 14.550 14.840 14.720 14.720 14.720 14.720 14.720 14.720 14.720 14.580 14.580 13.950 13.950 13.950 13.950 13.900 15.080 15.080 14.900 14.020	48.880 49.050 49.060 49.060 49.060 48.940 48.730 48.700 48.700 48.700 48.700 48.700 48.700 48.810 48.800 48.930 48.930 48.560 48.400 48.300 48.300 48.320 48.300 48.320 48.280 48.280

STED		:	SF6-LILLES	STRØM
TEST NR.		:	2A	
DATO		:	86-02-07	
TIDSPKT.		:	0945-1000	
ANT. OBS.		:	34	
MIN. MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

STED		:	SF6-LILLES	STRØM
TEST NR.		:	2 B	
DATO		;	86-02-07	
TIDSPKT.		:	1000-1015	
ANT.OBS.		:	30	
MIN.MAKS	Χ	:	13.450	15.450
MIN, MAKS	Y	:	47.90 0	49.900

KOORD X	INATER Y	SF6 UG/M3
x 14.310 14.330 14.350 14.360 14.390 14.400 14.400 14.520 14.520 14.550 14.550 14.550 14.560 14.920 14.830 14.920 14.830 14.660 14.660 14.450 14.560 14.450 14.560 14.450 14.570 14.570 14.570 14.570 15.170 15.450 15.270 15.390	7 49.030 49.020 49.020 49.020 49.020 49.020 49.020 49.010 49.010 49.030 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 48.990 48.890 48.820 48.760 48.710 48.690 48.760 48.760 48.760 48.390 48.350 48.350 48.350 48.350 48.350 48.680 48.670 48.680 48.680 48.680 48.680 48.970	7.93 8.75 9.89 9.71 8.38 6.69 8.14 7.40 6.68 6.43 10.05 1.01 1.07 1.06 1.33 1.88 3.07 3.85 3.84 4.11 5.30 6.61 4.14 2.58 2.42 2.18 1.99 1.38 5.87 1.38 5.30 6.61 4.14 2.58 2.42 2.18 1.99 1.38 5.34 2.12
15 4/10	14 150	15

X	INATER Y	SF6 UG/M3
14.330 14.350 14.360 14.390 14.390 14.500 14.500 14.520 14.550 15.110 14.990 14.920 15.070 15.970 15.970 15.900 15.900 15.900 15.900 15.900	49.030 49.020 49.020 49.010 49.000 49.000 49.010 49.010 49.190 49.190 48.990 48.980 48.820 48.820 48.710 48.670 48.710 48.690 48.710 48.760 48.710 48.760 48.710 48.690 48.750 48.350 48	.74 .64 .55 4.80 5.06 5.14 6.81 8.93 3.52 4.29 4.09 4.16 3.41 1.49 .92 .71 .61 .56 .60 .49 .57 1.10 1.76 2.17 1.83 2.32 2.47 3.19
10, 700	10.100	N . IV

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	2C	
DATO		:	86-02-07	
TIDSPKT.		:	09 45-1000	
ANT. OBS.		:	34	
MIN. MAKS	X	;	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

...

X	INATER Y	UG/M3
$\begin{array}{c} 14.310\\ 14.330\\ 14.350\\ 14.350\\ 14.360\\ 14.390\\ 14.400\\ 14.400\\ 14.400\\ 14.500\\ 14.500\\ 14.550\\ 14.550\\ 14.560\\ 14.560\\ 14.990\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.920\\ 14.830\\ 14.280\\ 14.280\\ 14.280\\ 14.280\\ 14.450\\ 14.570\\ 14.640\\ 14.820\\ 14.820\\ 14.890\\ 15.070\\ 15.170\\ 15.450\\ 15.390\\ 15.400\\ \end{array}$	49.030 49.020 49.020 49.010 49.010 49.010 49.000 49.000 49.000 49.010 49.030 49.030 49.030 49.030 49.030 49.030 49.030 49.030 48.990 48.820 48.820 48.760 48.770 48.7000 48.7000 48.7000 48.7000 48.7000 48.70000 48.7000000000000000000000000000000000000	13.75 14.48 16.67 16.69 14.75 11.78 17.03 15.46 15.33 14.78 21.67 4.10 2.50 2.55 3.20 3.91 6.61 7.32 8.40 10.17 11.85 7.48 3.97 2.84 2.55 1.77 1.55 1.77 1.55 1.77 1.54 2.40 1.75 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.55 1.77 1.77 1.54 1.77 1.77 1.77 1.54 1.77

STED		:	CBRF3-LILU	ESTROM
TEST NR.		:	20	
DATO		;	86-02-07	
TIDSPKT.		:	1000-1015	
ANT. OBS.		:	30	
MIN.MAKS	X	:	13.450	15.450
MIN, MAKS	Y	:	47.900	49.900

STED		:	SF6-LILLES	STRØM
TEST NR.		:	ЗA	
DATO		•	86-02-11	
TIDSPKT.		:	0935-095 0	
ANT.OBS.		:	34	
MIN.MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

KOORD	INATER	SF6	
X	Y	UG/M3	
14.600 14.600 14.570 14.570 14.570 14.500 14.500 14.440 15.250 15.110 15.030 14.920 14.840 14.920 14.670 14.670 14.550 14.440 14.550 14.450 14.450 14.450 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 15.070 15.070 15.070 15.070 15.070 15.400	49.200 49.170 49.100 49.070 49.040 49.000 49.000 49.000 49.000 49.010 49.010 49.080 48.980 48.920 48.920 48.920 48.920 48.750 48.750 48.700 48.730 48.730 48.730 48.730 48.730 48.350 48.3	08 11 1.08 7.41 17.09 25.48 24.71 21.93 18.71 3.13 03 06 12 5.48 17.41 3.63 19 08 05 03 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 05 05 03 01 01 01 05 05 03 01 01 01 05 05 03 02 03 02 03 02 03 03 03 03 03 05 03 01 01 05 05 03 02 03 02 03 02 03 03 03 03 03 03 03 03 03 03 03 03 03 05 03 01 01 05 05 05 05 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 02 03 03 02 03 03 02 03 02 03 03 02 03 03 02 03 02 03 02 03 02 03 03 02 03 02 03 03 02 03 03 02 03 03 03 02 03	

STED		:	SF6-LILLES	STRØM
TEST NR.		:	3B	
DATO		:	86-02-11	
TIDSPKT.		:	0950-1005	
ANT.OBS.		:	30	
MIN. MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.90 0	49.900

KOORD. X	INATER Y	SF6 UG/M3
14.600 14.600 14.570 14.570 14.570 14.570 14.500 14.500 14.480 15.250 15.110 15.030 14.920 14.840 14.750 14.840 14.750 14.440 14.280 14.280 14.280 14.570 14.640 14.820 14.820 14.980 14.570 14.570 14.570 14.570 15.070 15.070 15.070 15.270 15.270 15.390 15.000	49.200 49.170 49.070 49.040 49.000 49.000 49.000 49.010 49.010 49.080 49.080 48.980 48.920 48.920 48.920 48.920 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.300 48.300 48.310 48.310 48.320 48.310 48.310 48.310 48.320 48.310 48.320 48.310 48.320	$\begin{array}{c} 15.48\\ 12.90\\ 24.90\\ 18.71\\ 17.09\\ 13.87\\ 15.48\\ 13.54\\ 23.22\\ .03\\ .02\\ .04\\ .11\\ 1.11\\ 3.86\\ .29\\ .02\\ .03\\ .01\\ .13\\ 2.31\\ 1.89\\ 7.35\\ 9.03\\ 7.12\\ 1.30\\ .12\\ .04\\ .05\\ .04\end{array}$
1.1	TJ. 1JU	

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	3C	
DATO		:	86-02-11	
TIDSPKT.		:	0935-0950	
ANT.OBS.		;	34	
MIN, MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	30	
DATO		:	86-02-11	
TIDSPKT.		:	0950-1005	
ANT. OBS.		:	30	
MIN.MAKS	Χ	:	13.450	15.450
MIN.MAKS	Y	:	47.900	49.900

KOORD X	INATER Y	CBRF3 UG/M3	
14.600 14.600 14.570 14.570 14.570 14.570 14.500 14.400 14.440 15.250 15.110 15.030 14.920 14.840 14.750 14.670 14.670 14.550 14.440 14.550 14.450 14.450 14.570 14.640 14.570 14.640 14.980 14.980 15.070 15.070 15.390 15.400	49.200 49.170 49.070 49.070 49.000 49.000 49.000 49.010 49.010 49.010 49.010 49.010 49.080 48.980 48.980 48.920 48.800 48.750 48.750 48.700 48.700 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500	.75 .75 2.15 7.10 12.84 17.79 19.31 15.31 8.46 10.99 1.53 2.67 1.29 1.05 5.03 13.41 5.53 3.19 1.69 2.76 1.01 2.67 1.61 1.61 1.61 1.61 3.20 2.07 2.01 1.93	

КО Х	DRDINAT	ER Y	CBRF3 UG/M3
$\begin{array}{c} 14.60\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.50\\ 14.40\\ 15.00\\ 14.40\\ 14.50\\ 14.40\\ 14.50\\ 14.40\\ 14.50\\ 14.60\\ 14.80\\ 14$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200 170 100 070 040 000 990 010 160 080 980 920 830 750 730 830 750 730 830 750 730 830 350 350 350 350 350 350 350 350 350 3	$\begin{array}{c} 11.53\\ 10.31\\ 23.24\\ 18.96\\ 11.57\\ 9.58\\ 10.19\\ 9.82\\ 11.25\\ .96\\ 1.27\\ .92\\ .77\\ 1.75\\ 3.65\\ 1.46\\ .96\\ 1.57\\ .99\\ 1.27\\ 2.38\\ 1.81\\ 5.88\\ 8.01\\ 7.55\\ 1.91\\ 1.41\\ 1.06\\ 1.17\\ 1.34 \end{array}$
1. 7	υ υ τυ.	100	1.07

STED		:	SF6-LILLES	STRØM
TEST NR.		:	4A	
DATO		:	86-02-13	
TIDSPKT.		:	0840-0855	
ANT.OBS.		•	34	
MIN, MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

STED		:	SF6-LILLES	STRØM
TEST NR.		:	4B	
DATO		:	86-02-13	
TIDSPKT.		:	0855-0910	
ANT.OBS.		:	30	
MIN, MAKS	X	:	13.450	15.45 0
MIN. MAKS	Y	:	47.900	49.900

KOORD X	VINATER Y	SF6 UG/M3
14.440 14.470 14.510 14.560 14.560 14.570 14.570 14.570 14.570 14.600 15.250 15.110 15.030 14.920 14.840 14.750	49.010 49.000 49.000 49.500 49.030 49.050 49.070 49.120 49.160 49.160 49.080 48.980 48.920 48.830 48.750	14.83 9.22 5.48 4.38 3.34 2.41 1.92 1.49 1.32 1.17 .08 .04 .06 .09 .59 2.68
14.570 14.550 14.440 14.300 14.190 13.980 14.280 14.280 14.450 14.570 14.640 14.820 14.890 14.890 15.070 15.270 15.270 15.390 15.400	48.670 48.700 48.730 48.730 48.800 48.440 48.390 48.350 48.350 48.300 48.310 48.420 48.420 48.670 48.670 48.670 48.800 48.970 49.150	5.06 6.30 6.75 9.45 5.72 .04 .03 .05 .05 .42 3.45 3.93 4.00 4.85 2.96 2.47 2.52 3.92

14.440 49.010 6.77 14.470 49.000 13.54 14.510 49.000 27.16 14.510 49.000 27.16 14.500 49.500 47.80 14.560 49.030 46.86 14.570 49.050 34.83 14.570 49.050 34.83 14.570 49.070 33.22 14.590 49.120 45.80 14.570 49.070 33.22 14.570 49.070 33.22 14.590 49.120 45.80 14.600 49.160 13.87 15.250 49.160 09 15.110 49.080 09 15.030 48.980 4.78 14.920 48.920 5.90 14.840 48.750 3.10 14.550 48.750 3.10 14.670 48.670 4.23 14.550 48.730 1.82 14.300 48.730 1.82 14.300 48.350 $.10$ 14.820 48.310 1.62 14.980 48.490 3.85 15.070 48.670 1.25 15.270 48.800 3.17 15.270 48.800 3.17 15.270 48.800 3.17	KOORD	INATER	SF6
	X	Y	UG/M3
15 ADD A9 15D 1 76	14.440 14.470 14.510 14.500 14.560 14.560 14.570 14.570 14.570 14.570 14.570 14.600 15.250 15.110 15.030 14.920 14.840 14.750 14.670 14.570 14.500 14.500 14.500 14.500 14.570 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 14.500 15.000 15.000 15.000 15.000	49.010 49.000 49.000 49.000 49.030 49.050 49.050 49.070 49.160 49.160 49.160 49.160 49.160 49.080 48.980 48.920 48.920 48.830 48.750 48.750 48.700 48.700 48.730 48.730 48.730 48.730 48.730 48.730 48.750 48.730 48.750 48.700 48.750 48.700 48.750	6.77 13.54 27.16 34.99 47.80 46.86 34.83 33.22 45.80 13.87 .09 4.78 5.90 5.81 3.10 4.23 5.13 4.92 1.82 .17 .06 .10 1.62 3.85 1.72 3.89 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80 1.72 3.80

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	4C	
DATO		:	86-02-13	
TIDSPKT.		:	0 840-0855	
ANT.OBS.		:	34	
MIN.MAKS	X		13.450	15.450
MIN. MAKS	Y	÷	47.900	49.900

KOORD	INATER	CBRF3
X	Y	UG/M3
14.440 14.470 14.510 14.560 14.560 14.560 14.570 14.570 14.570 14.570 14.600 15.250 15.110 15.030 14.840 14.750 14.670 14.670 14.550 14.440 14.550 14.440 14.570 14.440 14.570 14.570 14.500 14.570 14.500 14.500 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 14.570 15.700 15.070 15.070 15.070 15.400	49.010 49.000 49.000 49.000 49.030 49.050 49.050 49.070 49.120 49.160 49.160 49.160 49.080 48.980 48.920 48.980 48.920 48.800 48.750 48.750 48.700 48.700 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.730 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500 48.7500	8.43 21.05 4.72 3.93 3.37 2.89 2.55 2.28 1.66 2.05 1.17 1.00 .74 .94 .30 2.36 4.32 5.11 5.03 12.01 7.31 .61 1.20 .82 9.10 1.48 2.88 3.32 3.45 4.53 2.80 2.39 2.12 4.43

STED		:	CBRF3-LILL	ESTRØM
TEST NR.		:	40	
DATO		:	86-02-13	
TIDSPKT.		:	0855-0910	
ANT. OBS.		:	30	
MIN. MAKS	X	:	13.450	15.450
MIN, MAKS	Y	:	47.900	49.900

STED		:	SF6-LILLES	STRØM
TEST NR.		:	5A	
DATO		;	86-02-18	
TIDSPKT.		:	0845-0900	
ANT.OBS.		:	16	
MIN. MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

KOORD	INATER	SFG
X	Y	UG/M3
14.180	49.280	. 00
14.140	49.150	. 00
14.180	49.060	. 05
14.150	48.940	. 54
14.020	48.960	. 00
13.950	49.050	. 00
13.920	49.150	. 00
<i>13.900</i>	49.250	.01
13.720	49.310	.01
13.530	49.220	.01
13.490	49.100	. 00
13.590	48.900	. 00
13.900	48.900	.00
13.840	49.070	.01
13.790	49.130	.01
13.710	49.230	. 00

SIED		:	SF6-LILLES	STRØM
TEST NR.		:	5B	
DATO		:	86-02-18	
TIDSPKT.			0900-0915	
ANT.OBS.		:	13	
MIN. MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.300	49.900

KOORD	SF6	
X	Y	UG/M3
14.180	49.280	. 00
14.140	49.150	.01
14.180	49.060	.74
14.150	48.940	9.93
13.920	49.150	. 00
13.900	49.250	.01
13.530	49.220	. 00
13.490	49.100	.01
13.590	48.900	.01
13.90 0	48.900	. 05
13.840	49.070	.03
13.790	49.130	.01
13.710	49.230	. 00

STED		:	CBRF3-LILLESTRØM
TEST NR.		:	5C
DATO		:	86-02-18
TIDSPKT.		:	0845-0900
ANT. OBS.		:	16
MIN. MAKS	X	:	13.450 15.450
MIN. MAKS	Y	:	47.900 49.900

KOO RD X	INATER Y	CBRF3 UG/M3
14.180 14.140 14.180 14.150 14.020 13.950 13.920 13.900 13.720 13.530 13.490 13.590 13.900 13.840 13.840	49.280 49.150 49.060 48.940 48.960 49.050 49.150 49.250 49.310 49.220 49.100 49.220 49.100 48.900 48.900 48.900	. 47 . 85 . 62 1.05 1.81 2.39 . 64 1.26 . 73 . 61 . 82 . 66 . 75
13.710	49.230	. 59

STED		:	CBRF3-LILL	ESTRØM
TEST NR.		:	50	
DATO		:	86-02-18	
TIDSPKT.		:	0900-0915	
ANT.OBS.		:	13	
MIN. MAKS	Χ	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.300

KOORDI	INATER	CBRF3
X	Y	UG/M3
14.180 14.140 14.180 14.150 13.920 13.900 13.530 13.490 13.590 13.900 13.840 13.790 13.710	49.280 49.150 49.060 48.940 49.150 49.250 49.220 49.100 48.900 48.900 48.900 49.070 49.130 49.230	. 67 1. 07 8. 73 13. 49 . 48 . 79 . 77 . 29 . 23 . 43 . 62 . 12 . 41

STED		:	SF6-LILLES	STRØM
TEST NR.		:	6A	
DATO		•	86-02-19	
TIDSPKT.		:	0845-09 00	
ANT.OBS.		:	29	
MIN, MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

-

STED			SF6-LILLES	STRØM
TEST NR.		:	6B	
DATO		:	86-02-19	
TIDSPKT.		:	0900-0915	
ANT. OBS.		:	29	
MIN.MAKS	X	:	13.450	15.450
MIN.MAKS	Y	:	47.900	49.900

KOORD	INATER	SF6
X	Y	UG/M3
KOORD X 14.560 14.520 14.480 14.440 14.440 14.390 15.240 15.110 15.030 14.930 14.930 14.840 14.560 14.560 14.560 14.560 14.570 14.450 14.570 14.640 14.820	INATER Y 49.000 49.000 49.000 49.010 49.010 49.010 49.010 49.010 49.080 48.980 48.980 48.910 48.830 48.750 48.660 48.700 48.740 48.740 48.790 48.800 48.390 48.350 48.310	SF6 UG/M3 46.14 44.80 .58 35.61 29.03 23.92 .03 .05 .08 .12 5.63 8.41 8.43 .78 .00 .00 .00 .00 .01 .01 .01 .01 .57
14.820	48.310	3.72
14.890	48.420	3.72
14.980	48.490	8.93
15.070	48.570	1.30
15.170	48.670	1.34
15.270	48.800	.07
15.39 0	48.97 0	. 08
15.40 0	49.150	. 00

KOORD. X	INATER Y	SF6 UG/M3
14.560 14.520 14.520 14.40 14.390 15.240 15.240 15.240 15.240 15.300 14.390 14.390 14.390 14.300 14.560 14.560 14.560 14.560 14.560 14.560 14.560 14.560 14.560 14.560 14.560 14.570 14.570 14.570 14.570 14.570 14.570 15.270 15.390 15.270 15.390 15.400	49.000 49.000 49.000 49.010 49.010 49.010 49.150 49.080 48.980 48.910 48.830 48.750 48.660 48.750 48.660 48.740 48.740 48.740 48.790 48.300 48.350 48.350 48.350 48.310 48.350 48.310 48.570 570 570 570 570 570 570 570 570 570	2.31 .63 .77 .18 .10 .06 1.53 8.45 8.58 5.72 .32 1.45 .04 .01 .01 .01 .01 .01 .01 .01 .01 .01 .01
10. 700	10.100	. 14

STED TEST NR. DATO TIDSPKT. ANT.OBS. MIN.MAKS MIN.MAKS	: CBRF : 6C : 86-0 : 0830 : 29 X : 13 Y : 47	3-LILLES1 2-19 -0 845 .450 15. .900 49.	-RØM 450 900	STED TEST NR. DATO TIDSPKT. ANT.OBS. MIN.MAKS MIN.MAKS	X : Y :	CBRF3 6D 86-02 0845- 29 13. 47.	8-LILLES 2-19 -0900 450 15 900 49	. 4 50 . 900
KOORD X	DINATER Y	CBR F3 UG/M 3		KOORD X	INAT	T ER Y	CBRF3 UG/M3	
14.560 14.540 14.520 14.480 14.440 14.390 15.240 15.110 15.030 14.840 14.750 14.840 14.750 14.680 14.560 14.280 14.280 14.280 14.280 14.280 14.280 14.570 14.640 14.820	49.000 49.000 49.000 49.010 49.010 49.010 49.150 49.080 48.980 48.980 48.910 48.830 48.750 48.660 48.700 48.700 48.700 48.700 48.700 48.300 48.350 48.300 48.310	5.67 7.01 1.19 25.60 54.68 50.57 .18 .15 .20 .13 1.93 2.25 10.34 7.50 .00 .00 .00 .00 .79 .75 .77 .79 3.22		14.560 14.540 14.520 14.480 14.440 14.390 15.240 15.110 15.030 14.930 14.840 14.750 14.680 14.560 14.560 14.280 14.280 14.280 14.570 14.640 14.820	49 49 49 49 49 49 49 49 49 48 48 48 48 48 48 48 48 48 48 48 48 48	000 000 010 150 080 980 910 830 750 660 700 740 790 800 .440 .390 .350 .300 .310	2.55 1.36 2.27 .37 .46 .57 .70 2.32 1.76 1.34 .54 1.28 .32 .25 .00 .00 .00 .78 .74 .98 .74 .89	

6.19

9.43

9.50

1.81

. 77

. 82

. 88

14.890 48.420

14.980 48.490

15.390 48.970

15.400 49.150

48.570

48.670

48.800

15.070

15.170

15.270

14.890

14.980

15.070

15.170

15.270

15.390

15.400

48.420

48.490

48.570

48.670

48.800

48.970

49.150

1.31

1.75

2.48

3.24

1.93

. 68

.81

STED		:	SF6-LILLES	STRØM
TEST NR.		÷	7A	
DATO		:	86-02-21	
TIDSPKT.		:	0818-0833	
ANT.OBS.		:	25	
MIN, MAKS	X		13.450	15.450
MIN, MAKS	Y	:	47.900	49.900

STED		:	SF6-LILLES	STRØM
TEST NR.			7B	
DATO		;	86-02-21	
TIDSPKT.		:	0833-0848	
ANT.OBS.		:	24	
MIN.MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

KOORD	INATER	SF6	
X	Y	UG/M3	
 14.560 14.540	49.010 49.000	27.41	
14.520	49,000	31.61	
14.480	49.001	64.51	
14.440	49.010	7.80	
14.390	49.010	. 9 5	
15.110	49 .080	.01	
15.030	48.980	.01	
14.930	48.910	. 01	
14.840	48.830	9.54	
14.700	48.730	23.67	
14.000	40.000	.01	
14.300	48 730	07	
14.300	48.740	.02	
14.190	48,790	. 00	
14.280	48.440	. 06	
14.640	48.300	. 02	
14.820	48.310	. 03	
14.890	48.420	. 05	
14.980	48.490	4.80	
15.0/0	48.5/0	0 65	
15 270	40.070	0.0J 01	
15 390	48 970	.01	
10.000	10.010		

KOORD X	INATER Y	SF6 UG/M3
14.560 14.540 14.520 14.480 14.440 14.390 15.110 15.030 14.930 14.750 14.680 14.560 14.640 14.440 14.300 14.190 14.280 14.820 14.890 14.890 15.070 15.170 15.270	49.010 49.000 49.000 49.000 49.010 49.010 49.080 48.980 48.910 48.750 48.660 48.700 48.730 48.740 48.730 48.740 48.730 48.440 48.310 48.420 48.490 48.570 48.670 48.800	47.41 43.87 32.90 37.03 7.74 8.38 .00 .00 .03 20.12 .04 .01 .03 .00 .03 .00 .03 .00 .03 .00 .03 .04 .04 .05 1.10 10.81 8.98 .01
15.390	48.970	. 00

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	7C	
DATO		:	86-02-21	
TIDSPKT.		:	0818-0833	
ANT. OBS.		:	24	
MIN.MAKS	X	:	13.450	15.450
MIN.MAKS	Y	:	47.900	49.900

KOOR	DINATER	CBRF3
X	Y	UG/M3
14.560	49.010	3.89
14.540	49.000	7.94
14.520	49.000	10.88
14.440	49.011	82.50
14.390	49.012	126.58
15.110	49.080	. 32
15.030	48.980	. 88
14.930	48.910	. 36
14.840	48.830	. 62
14.750	48.750	6.64
14.680	48.660	4.93
14.550	48.700	1.14
14.440	48.730	3.42
14.300	48.740	.27
14.190	48.790	. 22
14.280	48,440	. 00
14.640	48.300	. 00
14.820	48.310	. 00
14.890	48.420	. 19
14.980	48.490	2.01
15.0/0	48.570	4.41
15.1/0	48.670	. 72
15.270	48.800	. 00
15.390	48.9/0	00

STED		:	CBRF3-LILL	ESTROM
TEST NR.			70	
DATO		;	86-02-21	
TIDSPKT.		•	0833-0848	
ANT.OBS.		:	20	
MIN. MAKS	X	:	13.450	15.450
MIN. MAKS	Y	:	47.900	49.900

KOORD X	INATER Y	CBRF3 UG/M3
14.560 14.520 14.480 14.390 15.030 14.930 14.680 14.560 14.560 14.680 14.680 14.680 14.930 14.680 14.930 14.930 14.980 14.980 14.980 15.070 15.070 15.070 15.070	49.010 49.000 49.000 49.011 49.012 48.980 48.910 48.750 48.660 48.700 48.730 48.740 48.300 48.310 48.310 48.420 48.490 48.570 48.570	2.71 22.04 41.84 120.25 126.58 .39 .00 8.57 6.28 4.67 6.20 .22 .00 .00 .31 2.92 6.48 8.49 55
15.270	48.800	.00

STED		;	SF6-LILLES	STRØM
TEST NR.			1A	
DATO		:	87-01-02	
TIDSPKT.		:	1035–10 50	
ANT.OBS.		;	28	
MIN, MAKS	X	:	14.000	15.400
MIN. MAKS	Y	:	48.300	49.700

STED		:	SF6-LILLES	STRØM
TEST NR.		:	1B	
DATO		:	87-01-02	
TIDSPKT.		:	1050-1105	
ANT.OBS.		:	27	
MIN.MAKS	X	:	14.000	15.400
MIN, MAKS	Y	:	48.300	49.700

KOOR.	DINATER	SF6	
X	Y	UG/M3	
15.140 15.090 15.050 15.000 14.940 14.880 14.770 14.600 14.600 14.610 14.600 14.500 14.620 14.620 14.620 14.620 14.650 14.650 14.560 14.560 14.570	49.090 49.080 49.040 49.000 48.950 48.900 48.800 48.740 48.700 48.700 48.730 48.750 48.750 48.870 48.870 48.890 48.890 48.940 49.030 49.030 49.080 49.120	.05 .05 .05 .15 1.27 .38 2.99 4.40 1.65 .06 .05 .21 1.27 5.33 2.15 .21 .14 .08 .04 .08	
14.580	49.210	.07	
14.540	48.910	2.33	
14.520	48.880	4.75	
14.400	49.010	.10	
14.440	49.010	1.00	
14.480	49.000	2.07	

KOORD.	INATER	SF6
X	Y	UG/M3
15.140 15.090 15.050 15.000 14.940 14.880 14.770 14.680 14.610 14.610 14.610 14.610 14.600 14.620 14.620 14.640 14.680 14.680 14.550 14.560 14.570 14.570	49.090 49.080 49.040 49.000 48.950 48.900 48.800 48.740 48.740 48.700 48.730 48.750 48.870 48.870 48.830 48.830 48.890 48.940 49.030 49.030 49.070 49.080 49.120 49.150	2.45 2.53 4.32 4.09 4.53 2.80 1.89 .12 .05 .03 .03 .03 .03 .34 4.79 2.70 4.63 1.86 1.47 2.36 1.29
14.520	48.880	2.47
14.400	49.010	.03
14.440	49.010	.28
14.480	49.000	1.54

STED		:	CBRF3-LILLESTRØ	M
TEST NR.		:	1D	
DATO		:	87-01-02	
TIDSPKT.		:	105 0-1105	
ANT. OBS.		:	27	
MIN.MAKS	X	:	14.000 15.40	0
MIN, MAKS	Y	:	48.300 49.70	0

CBRF3	INATER	KOORD
UG/M3	Y	X
86 .78 1.04 .82 .90 1.89 1.38 5.53 5.51 2.03 2.48 .41 3.44 6.09 10.15 8.77 4.13 1.09 6.28 6.04 4.85 32.37	49.090 49.080 49.000 49.000 48.950 48.900 48.900 48.740 48.740 48.700 48.730 48.750 48.750 48.870 48.830 48.890 48.890 48.940 49.030 49.030 49.070 49.030 49.120 49.150	15.140 15.090 15.050 15.000 14.940 14.880 14.770 14.600 14.600 14.610 14.600 14.430 14.430 14.620 14.640 14.640 14.660 14.660 14.560 14.570 14.570
22.03	48.910	14.540
17.03	48.880	14.520
20.99	49.010	14.400
21.01	49.010	14.440
16.46	49.000	14.480

KOORD	INATER	CBRF3
X	Y	UG/M3
15.140 15.090 15.000 14.940 14.880 14.770 14.680 14.610 14.610 14.600 14.430 14.550 14.620 14.680 14.680 14.680 14.550 14.550 14.570 14.570	49.090 49.080 49.040 49.000 48.950 48.900 48.900 48.740 48.740 48.700 48.730 48.730 48.750 48.870 48.870 48.830 48.830 48.940 49.030 49.030 49.070 49.030 49.120 49.150	4.54 4.14 6.38 5.90 5.40 3.93 3.39 9.20 .73 .75 .80 .69 .94 .72 .89 3.04 7.28 7.42 15.42 15.42 15.00 17.58 3.62
14.520	48.880	5.19
14.400	49.010	3.87
14.440	49.010	8.76
14.480	49.000	6.23

STED		:	SF6-LILLES	STRØM
TEST NR.		:	2A	
DATO		:	87-01-06	
TIDSPKT.		:	0930-0945	
ANT.OBS.		:	44	
MIN. MAKS	Х	:	13.600	14.800
MIN. MAKS	Y	:	48.100	49.300

STED		:	SF6-LILLES	STRØM
TEST NR.		:	2B	
DATO		:	87-01-06	
TIDSPKT.		:	0945-1000	
ANT.OBS.		:	36	
MIN, MAKS	Χ	:	13.500	14.800
MIN.MAKS	Y	:	48.100	49.300

KOORD	INATER	SF6
X	Y	UG/M3
14.500 14.480 14.480 14.480 14.400 14.300 14.370 14.370 14.370 14.320 14.280 14.280 14.240 14.240 14.240 14.280 14.300 14.380 14.550 14.550 14.550 14.520 14.550 14.520 14.520 14.520 14.520 14.520 14.50 13.800 13.800 13.800 13.920 13.980 14.070 14.430	$\begin{array}{c} 48.850\\ 48.850\\ 48.860\\ 48.860\\ 48.870\\ 48.870\\ 48.870\\ 48.870\\ 48.900\\ 48.900\\ 48.900\\ 48.920\\ 48.750\\ 48.850\\$	$\begin{array}{c} .15\\ .28\\ .17\\ .59\\ .78\\ 1.18\\ 1.93\\ 2.26\\ 2.57\\ 4.05\\ 5.01\\ 8.94\\ 5.27\\ 4.28\\ 2.57\\ 4.28\\ 2.90\\ 3.72\\ 2.66\\ .16\\ .39\\ 1.08\\ 4.59\\ 3.06\\ 1.99\\ 2.31\\ 1.15\\ 1.95\\ .24\\ .92\\ .54\\ .10\\ .10\\ .13\\ .26\\ .17\\ .22\\ 1\\ 1.14\end{array}$

KOORD. X	INATER Y	SF6 UG/M3
14.500 14.480 14.460 14.460 14.450 14.300 14.370 14.370 14.370 14.320 14.320 14.320 14.320 14.320 14.320 14.320 14.320 14.320 14.320 14.320 14.280 14.210 14.210 14.520 14.580 14.550 14.550 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.520 14.310 14.280 14.280 14.280 14.280 13.940 13.870 13.870 13.830	48.850 48.860 48.860 48.870 48.870 48.870 48.890 48.900 48.900 48.900 48.920 48.920 48.920 48.920 48.930 48.930 48.930 48.930 48.930 48.930 48.750 78.7500 78.7500 78.7500 78.7500 78.7500 78.7500 78.75000 78.7500000000000000000000000000000000000	$ \begin{array}{c} .10 \\ .14 \\ .18 \\ .61 \\ .73 \\ 1.86 \\ 4.59 \\ 4.95 \\ 5.19 \\ 6.05 \\ 5.70 \\ 7.34 \\ 7.03 \\ 8.25 \\ 8.61 \\ 8.90 \\ 1.78 \\ .09 \\ .16 \\ .24 \\ .34 \\ .76 \\ 4.35 \\ 7.97 \\ 8.34 \\ 7.76 \\ 4.69 \\ 4.71 \\ 3.83 \\ 1.73 \\ .39 \\ .36 \\ .31 \\ $
14.430	48.380	. 45

STED : CBRF TEST NR. : 20 DATO : 87-0 TIDSPKT. : 0930 ANT.OBS. : 44 MIN.MAKS X : 13 MIN.MAKS Y : 48	53-LILLESTRØM 01-06 0-09 45 1.600 14.800 0.100 49.300	STED TEST NR. DATO TIDSPKT. ANT.OBS. MIN.MAKS MIN.MAKS	: CBRF : 2D : 87-0 : 0945 : 36 X : 13 Y : 48	3-LILLESTA 1-06 -1000 .600 14.8 .100 49.3	80 M 30 0 300
KOORDINATER X Y	CBRF3 UG/M3	KOORI X	D INATER Y	CBRF3 UG/M3	
14.500 48.850 14.480 48.860 14.480 48.860 14.460 48.860 14.430 48.870 14.410 48.870 14.370 48.890 14.370 48.900 14.320 48.900 14.320 48.910 14.320 48.910 14.280 48.920 14.240 48.930 14.260 48.920 14.260 48.920 14.260 48.930 14.270 48.930 14.270 48.930 14.580 48.750 14.310 49.050 14.350 48.750 14.550 48.700 14.550 48.700 14.520 48.700 14.520 48.700 14.450 48.750 14.310 48.750 14.320 48.700 14.350 48.700 14.350 48.700 14.350 48.700 14.350 48.700 14.350 48.700 14.350 48.700 14.350 48.700 14.350 48.800 13.70 48.800 13.870 48.850 13.620 48.850 13.620 48.630 13.920 48.480 13.980 48.460 14.430 48.380		$\begin{array}{c} 14.500\\ 14.480\\ 14.480\\ 14.460\\ 14.430\\ 14.370\\ 14.370\\ 14.370\\ 14.320\\ 14.320\\ 14.280\\ 14.260\\ 14.240\\ 14.240\\ 14.240\\ 14.210\\ 14.310\\ 14.380\\ 14.550\\ 14.550\\ 14.550\\ 14.550\\ 14.550\\ 14.550\\ 14.450\\ 14.450\\ 14.450\\ 14.450\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.450\\ 14.450\\ 14.450\\ 14.450\\ 14.450\\ 14.450\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.350\\ 14.450\\ 13.870\\ 13.870\\ 13.830\\ 14.430\\$	48.850 48.860 48.860 48.870 48.870 48.870 48.890 48.900 48.910 48.920 48.920 48.920 48.920 48.920 48.920 48.920 48.920 48.920 48.920 48.920 48.920 48.730 48.750 48.750 48.770 48.770 48.770 48.770 48.770 48.750 78.7500 78.7500 78.7500 78.7500 78.7500 78.7500077000770007700000000000000000000	4.06 3.86 4.65 13.36 18.76 21.19 22.23 25.08 30.54 29.78 23.29 20.29 20.68 23.17 20.31 16.59 47.64 103.59 1.53 1.67 1.87 2.74 3.25 5.72 13.28 19.94 16.94 12.85 7.22 6.44 3.72 4.34 1.61 .90 1.46 2.97	

STED		:	SF6-LILLES	STRØM
TEST NR.		:	ЗA	
DATO		:	87-01-07	
TIDSPKT.		:	0930-0945	
ANT.OBS.		:	44	
MIN. MAKS	X	:	14.200	15.500
MIN. MAKS	Y	:	48.200	49.500

-

KOORD	INATER	SF6
X	Y	UG/M3
15.210 15.170 15.060 15.010 14.980 14.980 14.820 14.820 14.820 14.820 14.680 14.500 14.500 14.500 14.500 15.300 15.300 15.300 15.300 15.240 15.300 15.260 15.300 15.300 15.300 15.500 15.500 15.500 14.5	49.180 49.100 49.000 49.020 48.970 48.970 48.970 48.970 48.950 48.860 48.860 48.780 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.950 48.950 48.950 48.950 48.900 48.950 48.900 48.900 48.950 48.900 48.000 48.000 49.0000 49.0000 49.0000 49.000 49.000 49.000 4	$\begin{array}{c} .04\\ .03\\ .03\\ .03\\ .03\\ .03\\ .03\\ .02\\ .05\\ .03\\ .03\\ .03\\ .03\\ .03\\ .03\\ .03\\ .03$

STED			SF6-LILLES	STRØM
TEST NR.		:	3B	
DATO		:	87-01-07	
TIDSPKT.		:	0945-1000	
ANT. OBS.		;	40	
MIN, MAKS	X	:	14.200	15.500
MIN. MAKS	Y	:	4 8 .20 0	49.500

KOORDI X	INATER Y	SF6 UG/M3
KOORDI X 15.210 15.170 15.060 15.010 14.980 14.950 14.850 14.850 14.820 14.780 14.780 14.780 14.740 14.680 14.450 14.450 14.450 14.450 14.450 14.450 15.260 15.260 15.260 15.240 15.260 15.240 15.260 15.240 15.260 14.600 15.260 15.260 15.260 15.260	INATER Y 49.180 49.100 49.060 49.020 48.970 48.950 48.860 48.860 48.720	SF6 UG/M3 .03 .03 .03 .03 .03 .03 .03 .03 .03 .0
14.740 14.600 14.600 14.590 14.580 14.550 14.550 14.550 14.550 14.520 14.520 14.500 14.470 14.430 14.430 14.430 14.470	$\begin{array}{c} 48.450\\ 48.520\\ 49.200\\ 49.180\\ 49.160\\ 49.090\\ 49.070\\ 49.040\\ 49.020\\ 49.000\\ 49.000\\ 49.000\\ 49.000\\ 49.010\\ 49.010\\ 49.020\\ 49.020\\ 49.020\\ 49.100\end{array}$	03 05 03 01 03 03 03 03 03 03 03 05 04 06 12 63 61 29 02

STED : CBR TEST NR. : 34 DATO : 87- TIDSPKT. : 0934 ANT.0BS. : 4 MIN.MAKS X : 1 MIN.MAKS Y : 4	F3-LILLESTRØM C 01-07 0-0 945 4 4.200 15.500 8.200 49.500	STED TEST NR. DATO TIDSPKT. ANT.OBS. MIN.MAKS	: CBRF: : 3D : 87-0 : 0945 : 40 X : 14 Y : 48	3-LILLEST 1-07 -1000 .200 15. .200 49.	Г. Г
KOORDINATER X Y	CBRF3 UG/M3	KOORD X	INATER Y	CBRF3 UG/M3	
15.210 49.180 15.170 49.060 15.060 49.020 14.980 48.970 14.980 48.970 14.950 48.950 14.820 48.800 14.820 48.810 14.820 48.800 14.820 48.600 14.680 48.690 14.500 48.700 14.680 48.690 14.500 48.700 14.500 48.700 14.500 48.700 14.500 48.700 14.500 48.700 14.500 48.700 15.200 48.700 15.360 48.950 15.260 48.840 15.260 48.840 15.260 48.900 15.260 48.900 15.260 48.900 15.260 48.900 15.260 48.900 15.260 48.900 15.260 48.900 15.260 48.900 15.260 48.900 14.500 48.520 14.900 48.450 14.500 49.000 14.550 49.000 14.550 49.000 14.550 49.000 14.550 49.000 14.470 49.010 14.430 49.010 14.430 49.010 14.430 49.020 14.430 49.020 14.430 49.020 14.430 49.020 14.470 49.020	$\begin{array}{c} 1.12\\ 1.93\\ 2.03\\ 1.52\\ 1.70\\ .61\\ 1.62\\ .53\\ .34\\ .21\\ .16\\ .63\\ 23.71\\ 48.09\\ 39.82\\ 19.56\\ 2.68\\ .23\\ .39\\ .25\\ .61\\ .39\\ .25\\ .61\\ .39\\ .29\\ .26\\ .35\\ .31\\ .32\\ .85\\ .20\\ .00\\ .00\\ 4.31\\ 1.30\\ 2.15\\ 1.86\\ 3.78\\ 13.88\\ 44.35\\ 152.57\\ 187.30\\ 179.18\\ 125.32\\ 40.75\\ 101.67\\ \end{array}$	$\begin{array}{c} 15.210\\ 15.170\\ 15.060\\ 15.010\\ 14.980\\ 14.980\\ 14.950\\ 14.820\\ 14.820\\ 14.820\\ 14.800\\ 14.680\\ 14.500\\ 14.500\\ 14.400\\ 14.400\\ 14.300\\ 14.250\\ 15.410\\ 15.360\\ 15.260\\ 15.240\\ 15.260\\ 15.240\\ 15.260\\ 15.240\\ 15.260\\ 14.500\\ 14.500\\ 14.590\\ 14.590\\ 14.550\\ 14.550\\ 14.550\\ 14.500\\ 14.500\\ 14.500\\ 14.500\\ 14.500\\ 14.500\\ 14.500\\ 14.400\\ 14.400\\ 14.400\\ 14.400\\ 14.470\\$	49.180 49.000 49.000 49.020 48.970 48.970 48.970 48.970 48.950 48.720 49.010 49.020 49.000 49.020 49.0000 49.0000 49.0000 49.0000 49.0000	$\begin{array}{c} 1.07\\ 1.08\\ .90\\ .82\\ .87\\ 1.00\\ 1.18\\ .89\\ .77\\ .76\\ 1.41\\ 32.01\\ 14.92\\ 5.80\\ .26\\ .86\\ .12\\ .42\\ .65\\ .30\\ .26\\ .68\\ .21\\ .44\\ .34\\ 4.08\\ 1.49\\ 1.14\\ 16.46\\ 28.57\\ 29.30\\ 64.47\\ 52.69\\ 99.05\\ 132.28\\ 126.84\\ 191.60\\ 273.56\\ 120.79\\ 8.57\end{array}$	

STED		:	SF6-LILLES	STRØM
TEST NR.		:	4A	
DATO		:	87-01-10	
TIDSPKT.		:	093 0-0945	
ANT.OBS.		:	45	
MIN. MAKS	X	:	13.600	15.500
MIN. MAKS	Y	:	48.100	50.00 0

/ \	Y	UG/M3	
14.930 4 14.840 4 14.770 4 14.680 4 14.590 4 14.680 4 14.590 4 14.680 4 14.590 4 14.680 4 14.200 4 14.360 4 14.360 4 14.360 4 14.260 4 14.360 4 13.980 4 13.770 4 13.700 4 13.700 4 14.370 4 14.300 4 14.300 4 14.300 4 14.300 4 14.300 4 14.300 4 14.300 4 13.600 13.600 13.900 13.900 13.900 14.200 14.200 14.300 14.300 14.400 14.400 14.400 14.400	Y 18.910 18.770 18.700 18.700 18.700 18.700 18.700 18.700 18.700 18.750 18.760 18.760 18.760 18.760 18.760 18.700 18.700 18.800 18.	UG/M3 . 13 . 14 . 37 2.73 4.86 4.37 1.11 . 30 . 21 . 20 . 42 . 23 . 18 15.39 . 08 . 74 . 49 3.70 7.61 4.39 . 06 . 17 . 34 . 48 . 50 1.34 3.19 3.75 3.22 1.90 . 86 . 07 1.80 . 07 1.80	

STED		:	SF6-LILLES	STRØM
TEST NR.		:	4B	
DATO		:	87-01-10	
TIDSPKT.		:	0945-1000	
ANT.OBS.		:	34	
MIN, MAKS	X	:	13.600	15.500
MIN. MAKS	Y	:	48.100	50.000

STED		:	CBRF3-LILLESTROM	
TEST NR.		:	4C	
DATO		:	87-01-10	
TIDSPKT.		:	093 0-0945	
ANT.OBS.		:	45	
MIN, MAKS	X	:	13.600 15.500	
MIN, MAKS	Y	:	48.100 50.000	

....

KOORD	INATER	CBRF3
X	Y	UG/M3
χ 14.930 14.840 14.770 14.680 14.590 14.480 14.420 14.420 14.310 14.260 14.210 14.210 14.210 14.260 13.980 13.770 13.770 13.770 13.770 13.770 14.370 14.370 14.370 14.340 14.340 14.340 14.240 14.200 13.600 13.600 13.900 14.0000 14.0000 14.0000 14.0000 14.0000000000	Y 48.910 48.830 48.770 48.700 48.700 48.700 48.700 48.750 48.750 48.750 48.760 48.780 48.780 48.810 48.830 48.830 48.830 48.840 48.890 48.950 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.020 49.030 49.020 49.030 49.050 49.050 49.070 49.050 48.850 48.450 48.350 350 48.350 48.350 350 48.350 48.350 350 48.350 48.350 350 48.350 48.350 350 3	UG/M3 . 61 . 00 . 00 . 00 . 11 . 15 . 00 2.68 5.53 5.88 4.85 1.38 4.85 1.38 4.44 . 24 . 37 . 15 . 00 188.84 . 00 . 55 . 37 12.27 55.44 18.53 1.83 . 00 . 55 . 37 12.27 55.44 18.53 1.83 . 00 . 11 . 15 . 00 . 30 2.68 5.53 5.88 4.85 1.38 . 44 . 24 . 37 . 15 . 00 . 30 . 30 . 44 . 24 . 37 . 15 . 00 . 30 . 44 . 24 . 37 . 15 . 00 . 37 12.27 55.44 18.53 1.83 . 00 . 17 . 41 . 61 1.32 2.98 1.96 1.17 . 49 . 00 . 00
14.440	48.880	3.25
14.150	48.920	3.16

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	4D	
DATO			87-01-10	
TIDSPKT.		:	0945-1000	
ANT.OBS.		;	34	
MIN. MAKS	X	:	13.600	15.500
MIN. MAKS	Y	:	48.100	50.000

KOORD	INATER	CBRF3
X	Y	UG/M3
14.930	48.910	. 00
14.840	48.830	. 00
14.770	48.770	. 00
14.680	48.700	. 00
14.590	48.700	. 15
14.480	48.710	1.22
14.420	48.740	5.76
14.360	48.750	7.66
14.310	48.750	8.13
14.200	48.770	2.21
13.880	48.840	.00
13.770	40.030	122 77
14.370	43.110	133.77
14.550	49.000	31 77
14 390	49 020	69 05
14 340	49 040	33 79
14 300	49 050	1 29
14 240	49.070	.34
14,120	49.090	. 33
13.660	48.850	.00
13.670	48.660	.09
13.700	48.600	. 37
13.800	48.500	. 38
13.900	48.480	. 52
13.960	48.450	1.16
14.020	48.460	1.35
14.060	48.420	1.46
14.200	48.350	3.15
14.310	48.400	2.35
14.460	48.380	1.24
14.540	48.330	. 42
14.840	48.290	.00
14.150	48.920	. 00

STED		:	SF6-LILLES	STRØM
TEST NR.		:	5A	
DATO		;	87-01-12	
TIDSPKT.		:	0930-0945	
ANT.OBS.		:	44	
MIN. MAKS	X	:	13.400	14.800
MIN. MAKS	Y		<i>48.000</i>	49.400

KOORDINATER	SF6
X Y	UG/M3
14.500 48.870 14.440 48.880 14.360 48.990 14.360 48.910 14.270 48.910 14.270 48.930 14.160 48.950 14.080 48.960 14.030 48.970 14.000 49.000 13.990 49.050 13.950 49.100 13.950 49.240 13.850 49.280 13.850 49.280 13.780 49.300 14.570 48.700 14.240 48.540 14.240 48.540 14.240 48.540 14.210 48.770 14.240 48.800 14.210 48.800 13.900 48.800 13.900 48.800 13.900 48.800 13.790 48.800 13.790 48.970 13.700 49.100 13.700 49.160 13.700 49.160 13.700 49.020 14.370 49.030 14.340 49.020 14.340 49.050 14.260 49.070 14.170 49.070 14.170 49.080 14.170 49.080 14.170 49.230 14.180 49.280	

STED		:	SF6-LILLES	STRØM
TEST NR.		:	5 B	
DATO		:	87-01-12	
TIDSPKT.		:	0945-1000	
ANT.OBS.		:	36	
MIN. MAKS	X	:	13.400	14.800
MIN. MAKS	Y	:	48.00 0	49.400

	KOORD.	INATER	SF6
	X	Y	UG/M3
$\begin{array}{c} 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 13\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$. 360 . 270 . 230 . 230 . 230 . 230 . 230 . 230 . 230 . 300 . 990 . 990 . 990 . 990 . 350 . 210 . 240 . 240 . 240 . 240 . 250 . 210 . 200 . 780 . 780	48.890 48.910 48.930 48.950 48.950 48.950 48.950 49.000 49.000 49.050 49.000 49.280 48.700 48.700 48.700 48.700 48.700 48.700 48.700 48.800 48.800 48.800 48.800 48.800 48.800 48.800 48.940 48.940 48.940 48.920 49.100 49.180 49.290 49.000 49.000 49.050 49.000 49.050 49.000 49.050 49.050 49.000 49.050 49.000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000 40.00000000	

STED		:	CBRF3-LILL	ESTROM	
TEST NR.		:	5C		
DATO		:	87-01-12		
TIDSPKT.		;	093 0-0945		
ANT.OBS.		:	44		
MIN. MAKS	X	:	13.400	14.800	
MIN.MAKS	Y	:	48.00 0	49.400	

STED		:	CBRF3-LILL	ESTROM
TEST NR.		:	5D	
DATO		:	87-01-12	
TIDSPKT.		:	0945-1000	
ANT.OBS.		:	36	
MIN.MAKS	X	:	13.400	14.800
MIN. MAKS	Y	:	<i>48.000</i>	49.400

KOORE	DINATER	CBRF3	KOORD	INATER	CBRF3
X	Y	UG/M3	X	Y	UG/M3
$\begin{array}{c} 14.500\\ 14.440\\ 14.360\\ 14.270\\ 14.230\\ 14.230\\ 14.080\\ 14.080\\ 14.080\\ 14.000\\ 13.990\\ 13.990\\ 13.950\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 13.920\\ 14.210\\ 14.210\\ 14.210\\ 14.210\\ 14.210\\ 14.090\\ 14.210\\ 14.090\\ 13.780\\$	48.870 48.880 48.890 48.910 48.930 48.950 48.950 48.950 48.950 48.950 49.200 49.240 49.240 49.280 49.240 49.240 49.280 49.300 48.700 48.700 48.700 48.700 48.800 48.800 48.800 48.800 48.800 48.800 48.940 48.940 48.940 48.970 48.920 48.900 49.000 49.0	$\begin{array}{c} 2.71\\ 3.25\\ 2.75\\ 31.31\\ 26.27\\ 6.34\\ 2.25\\ 6.27\\ 3.10\\ 2.47\\ 2.74\\ 3.41\\ 4.24\\ 2.53\\ 5.81\\ 1.34\\ 1.24\\ 1.39\\ 6.23\\ 18.91\\ 11.38\\ 3.37\\ .68\\ 1.13\\ 1.24\\ 1.39\\ 6.23\\ 18.91\\ 1.38\\ 3.37\\ .68\\ 3.37\\ .68\\ 1.13\\ 1.16\\ 1.02\\ .76\\ .84\\ .77\\ .31\\ 3.28\\ 2.65\\ 13.25\\ 2.65\\ 2.78\\ 3.84\\ 2.49\\ 1.04\end{array}$	14.360 14.270 14.230 14.230 14.080 14.030 14.030 14.030 13.990 13.950 13.950 13.950 14.570 14.240 14.240 14.240 14.240 14.240 14.240 14.240 14.350 13.780 13.780 13.780 13.780 13.780 13.700 13.700 13.700 13.600 14.000 14.460 14.310 14.210 14.460 14.340 14.310 14.210 14.460 14.310 14.180	48.890 48.910 48.930 48.950 48.950 48.970 49.000 49.050 49.050 49.280 48.730 48.730 48.730 48.750 48.750 48.750 48.750 48.800 48.800 48.800 48.800 48.800 48.940 48.970 49.100 49.160 49.180 49.290 49.020 49.020 49.020 49.050 49.050 49.050 49.050 49.050 49.050 49.050 49.050 49.050 49.080 49.280	7.10 47.69 32.48 13.94 2.64 2.63 2.60 2.45 5.96 1.27 1.17 7.98 18.79 15.19 8.69 .15 .81 1.31 1.01 .52 .45 .81 1.31 1.01 .52 .45 .81 1.31 1.93 2.42 2.59 2.78

STED		:	SF6-LILLES	STRØM
TEST NR.		:	6A	
DATO		:	87-01-17	
TIDSPKT.		:	1000-1015	
ANT.OBS.		:	46	
MIN. MAKS	X	:	14.200	15.300
MIN.MAKS	Y	:	48.200	49.300

KOORD	INATER	SF6
X	Y	UG/M3
14.400 14.410 14.420 14.430 14.430 14.430 14.440 14.450 14.460 14.550 14.550 14.600 14.600 14.600 14.650 14.650 14.630 14.630 14.630 14.630 14.630 14.630 14.630 14.630 14.630 14.530 14.630 14.530 14.620 14.620 14.900 14.900 14.900 14.900 14.620 14.720 14.620 14.620 14.720 14.620 14.620 14.730 14.620 14.700 14.620 14.700 15.000 15.000 15.130 15.000 15.000 15.000 15.000 14.950 14.950 14.900 14.9	49.100 49.080 49.080 49.080 49.000 49.000 49.000 49.000 49.000 49.020 49.030 49.020 49.030 49.030 49.030 49.030 48.980 48.970 48.970 48.970 48.970 48.900 48.900 48.900 48.330 48.500 48.500 48.500 48.900 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.700 48.900 48.7	$\begin{array}{c} .88\\ \textbf{3.85}\\ 12.58\\ 15.16\\ 13.87\\ 10.97\\ .05\\ .10\\ 6.97\\ \textbf{3.94}\\ .71\\ .03\\ .02\\ .06\\ .03\\ 1.54\\ .29\\ 2.54\\ 1.60\\ .55\\ .39\\ .06\\ 1.29\\ 2.54\\ 1.60\\ .55\\ .39\\ .06\\ 1.29\\ .03\\ .02\\ .03\\ .01\\ .03\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .02\\ .03\\ .01\\ .01\\ .03\\ .02\\ .02\\ .03\\ .01\\ .01\\ .01\\ .01\\ .01\\ .01\\ .01\\ .01$

ANT. OBS. MIN MAKS	: 39 X · 14	200 15	ากก
MIN. MAKS	Y : 48	.200 49	. 300
KOORD X	PINATER Y	SF6 UG/M3	
$\begin{array}{c} 14.410\\ 14.420\\ 14.420\\ 14.420\\ 14.430\\ 14.450\\ 14.340\\ 14.550\\ 14.550\\ 14.550\\ 14.660\\ 14.660\\ 14.660\\ 14.660\\ 14.650\\ 14.650\\ 14.650\\ 14.650\\ 14.650\\ 14.650\\ 14.650\\ 14.620\\ 14.620\\ 14.620\\ 14.620\\ 14.620\\ 14.620\\ 14.850\\ 14.930\\ 15.000\\ 15.130\\ 15.000\\ 15.000\\ 15.000\\ 15.000\\ 15.000\\ 15.000\\ 15.000\\ 15.000\\ 15.000\\ 14.860\\ 14.840\\ 14.780\\ 14.780\\ 14.760\\ 14.520\\ 14.520\\ 14.390\\ 14.280\\ 14.280\\ \end{array}$	49.090 49.080 49.080 49.080 49.000 49.000 49.000 49.000 49.000 49.030 49.030 49.030 48.980 48.970 48.970 48.970 48.970 48.900 48.900 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.500 48.570 48.500 48.570 48.570 48.500 48.570 48.570 48.570 48.570 48.570 48.700 48.930 48.930 48.930 48.930 48.930 48.930 48.930 48.750 48.710 48.740 48.770	32.26 14.84 9.48 .30 .34 1.68 4.83 .05 .01 .05 .32 .66 .29 6.19 3.04 .10 .07 .03 .97 2.68 5.86 .58 .65 .01 .07 .03 .97 2.68 5.86 .58 .65 .01 .07 .03 .97 2.68 5.86 .58 .65 .01 .07 .03 .97 2.68 5.86 .58 .65 .01 .01 .07 .03 .97 2.68 5.86 .58 .65 .01 .03 .01 .01 .00 .03 .01 .01 .00 .01 .00 .03 .01 .01 .00 1.10 5.23 6.19 3.46 .02 .03 .03 .03 .03 .03 .03 .12	

STED

DATO TIDSPKT.

-

TEST NR.

: SF6-LILLESTRØM

: 6B : 87-01-17

: 1015-1030

STED : CBRF3-L TEST NR. : 6C DATO : 87-01-1 TIDSPKT. : 1000-10 ANT.0BS. : 46 MIN.MAKS X : 14.20 MIN.MAKS Y : 48.20 KOORDINATER C X Y L	LILLESTRØM 17 015 00 15.300 00 49.300 CBRF3 UG/M3	STED : CBRF TEST NR. : 6D DATO : 87-0 TIDSPKT. : 1015 ANT.OBS. : 39 MIN.MAKS X : 14 MIN.MAKS Y : 48 KOORDINATER X Y	3-LILLESTRØM 1-17 -1030 .200 15.300 .200 49.300 CBRF3 UG/M3
14.400 49.100 22 14.410 49.090 24 14.420 49.080 32 14.420 49.080 32 14.430 49.080 32 14.430 49.080 32 14.440 49.000 18 14.450 49.000 17 14.340 49.040 14.400 14.460 49.020 32 14.550 49.000 41.550 14.50 49.000 41.580 14.50 49.040 14.50 49.030 14.660 49.120 14.660 49.120 14.660 49.030 14.650 48.980 14.720 48.970 14.630 48.910 14.720 48.970 14.630 48.800 14.430 48.880 24.850 48.330 14.930 48.420 15.000 48.500 15.130 49.090 15.030 49.030 15.090 49.030 15.090 49.030 15.090 48.900 14.860 48.870 14.920 48.900 14.920 48.900 14.920 48.900 14.920 48.700 14.920 48.700 14.920 48.700 14.920 48.700 14.920 48.700 14.920 48.700 14.930 48.740 14.930 48.740 14.930 <t< td=""><td>34.18 40.51 22.78 08.86 83.54 70.89 1.03 16.32 93.91 43.11 8.91 .00 .00 .61 .00 13.18 3.51 19.82 15.89 10.32 21.44 1.77 1.24 10.84 7.41 1.37 .20 .09 .00</td><td>14.410$49.090$$14.420$$49.080$$14.430$$49.080$$14.430$$49.080$$14.450$$49.100$$14.340$$49.040$$14.400$$49.030$$14.550$$49.000$$14.580$$49.060$$14.600$$49.120$$14.660$$49.040$$14.660$$49.040$$14.660$$49.040$$14.660$$49.040$$14.660$$49.040$$14.660$$49.040$$14.660$$49.040$$14.670$$48.970$$14.650$$48.980$$14.720$$48.970$$14.630$$48.910$$14.530$$48.850$$14.320$$49.000$$14.620$$48.290$$14.620$$48.290$$14.620$$48.500$$15.130$$48.570$$15.000$$48.570$$15.000$$48.570$$15.030$$49.030$$15.090$$49.030$$15.090$$49.030$$15.090$$49.030$$15.090$$48.700$$14.860$$48.870$$14.840$$48.780$$14.760$$48.730$$14.670$$48.730$$14.670$$48.740$$14.280$$48.740$$14.280$$48.770$$14.280$$48.770$</td><td>360.76 303.80 180.38 4.35 158.23 131.65 34.67 .74 .00 .00 .30 .48 5.06 2.66 29.75 12.23 6.98 1.31 .00 6.20 8.64 10.33 2.13 .00 .01</td></t<>	34.18 40.51 22.78 08.86 83.54 70.89 1.03 16.32 93.91 43.11 8.91 .00 .00 .61 .00 13.18 3.51 19.82 15.89 10.32 21.44 1.77 1.24 10.84 7.41 1.37 .20 .09 .00	14.410 49.090 14.420 49.080 14.430 49.080 14.430 49.080 14.450 49.100 14.340 49.040 14.400 49.030 14.550 49.000 14.580 49.060 14.600 49.120 14.660 49.040 14.660 49.040 14.660 49.040 14.660 49.040 14.660 49.040 14.660 49.040 14.660 49.040 14.670 48.970 14.650 48.980 14.720 48.970 14.630 48.910 14.530 48.850 14.320 49.000 14.620 48.290 14.620 48.290 14.620 48.500 15.130 48.570 15.000 48.570 15.000 48.570 15.030 49.030 15.090 49.030 15.090 49.030 15.090 49.030 15.090 48.700 14.860 48.870 14.840 48.780 14.760 48.730 14.670 48.730 14.670 48.740 14.280 48.740 14.280 48.770 14.280 48.770	360.76 303.80 180.38 4.35 158.23 131.65 34.67 .74 .00 .00 .30 .48 5.06 2.66 29.75 12.23 6.98 1.31 .00 6.20 8.64 10.33 2.13 .00 .01

L/U

STED		:	SF6-LILLES	STRØM
TEST NR.		:	7A	
DATO		:	87-02-0 9	
TIDSPKT.		:	1000-1015	
ANT.OBS.		:	24	
MIN. MAKS	X	:	14.300	15.00 0
MIN. MAKS	Y	:	48.700	49.400

00
00
1

14.740 48.800 7.03 14.670 48.820 2.33 14.670 48.820 2.33 14.580 48.840 $.14$ 14.510 48.860 $.05$ 14.450 48.870 $.04$ 14.450 48.880 $.03$ 14.470 49.140 7.87 14.460 49.090 $.65$ 14.380 49.090 $.65$ 14.380 49.000 $.06$ 14.410 49.030 $.16$ 14.550 49.000 $.28$ 14.510 49.000 1.93 14.550 49.000 1.93 14.550 49.000 15.48 14.590 49.220 $.08$ 14.640 49.310 $.03$ 14.640 49.310 $.03$ 14.830 49.170 $.03$ 14.840 49.100 1.98 14.840 49.200 7.10 14.920 48.920 6.81	KOORD	INATER	SF6
	X	Y	UG/M3
14.850 49.020 7.10 14.920 48.920 6.81	X 14.740 14.670 14.580 14.510 14.450 14.400 14.470 14.470 14.470 14.460 14.350 14.350 14.510 14.550 14.570 14.570 14.610 14.630 14.630 14.830 14.840	Y 48.800 48.820 48.840 48.860 48.860 48.870 48.880 49.140 49.090 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.010 49.170 49.170 49.100	UG/M3 7.03 2.33 .14 .05 .04 .03 7.87 .65 4.80 .06 .16 .28 1.93 17.42 29.68 15.48 6.77 .08 .03 .04 1.98
1 <u>4 840 48 860 9 74</u>	14.850	49.020	7.10
	14.920	48.920	6.81
	14.840	48.860	9.74

	KOORD	SF6	
	X	Y	UG/M3
	KOORD X . 740 . 670 . 580 . 510 . 450 . 450 . 470 . 460 . 380 . 350 . 410 . 350 . 510 . 550 . 570 . 590 . 630	INATER Y 48.800 48.820 48.840 48.860 48.870 49.140 49.090 49.090 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000 49.000	SF6 UG/M3 16.13 20.00 1.87 .57 .42 28.39 1.45 4.48 .21 .30 1.68 23.23 45.81 33.87 14.84 1.10
14	1.630 1.640	49.220 49.310	1.10
14 14 14 14	1,830 1,840 1,850 1,850 1,920 1,840	49.170 49.100 49.020 48.920 48.860	. 18 . 59 6. 13 10. 71 17. 42

1/1

STED TEST NR. DATO TIDSPKT. ANT.OBS.	: CBRF : 7D : 87-0 : 1015 : 22	3-LILLES 1 2-09 -1030	STRØM	STED TEST NR. DATO TIDSPKT. ANT.OBS.		CBRF 7C 87-0 1000 24	3-LILLE 2-09 -1015	STRØM
MIN, MAKS	X: 14	. 300 15	. 00 0	MIN. MAKS	X :	14	. 300 1	5.000
MIN, MAKS	Y: 48	1.700 45	1.400	MIN, MAKS	Υ:	48	.700 4	9.400
KOORE	DINATER	CBRF3		KOORL	DINAT	ER	CBRF3	
X	Y	UG/M3		X		Y	UG/M3	
14.740	48.800	21.52		14.740	48.	800	11.49	1
14.670	48.820	23.75		14.670	48.	820	10.59	1
14.580	48.840	7.90		14.580	48.	840	2.78	}
14.510	48.860	2.53		14.510	48.	860	1.73	1
14.450	48.870	1.60		14.450	48	870	. 92	
14.470	49.140	47.64		14.400	48.	880	. 62	
14.460	49.090	335.44		14.4/0	49	140	32.20	
14.380	49.100	189.87		14.460	49.	090	632.91	
14.350	49.040	38.44		14.380	49	100	164.56	
14.410	49.030	52.61		14.350	49	040	2.56	-
14.460	49.000	16.35		14.410	49.	030	45.15)
14.510	49.000	57. 53		14.460	49.	000	35.65	1
14.550	49.000	69.62		14.510	49	000	21.80	
14.570	49.040	26.20		14.550	49.	000	31.06	
14.590	49.090	5.06		14.570	49	.040	25.55	
44 000	40 000	40			40	000		

. 46 . 39 . 46 . 66 2. 47

6.54

16.08

14.590 14.630

14.640

14.830 14.840 14.850

14.920

14.840

49.220

49.310

49.170 49.100 49.020

48.920

48.860

TEST NR. DATO TIDSPKT. ANT.OBS.	: :	7C 87-02 1000- 24	2-09 1015	45,000
MIN.MAKS	X :	14.	300	49 400
MIN MAKS	Y :	48	70 0	
KOORD	INAT	TER	CBRI	=3
X		Y	UG/I	43
14.740	48	. <i>800</i>	11.	49
14.670	48	. <i>820</i>	10.	59

14.740	48.800	11.49
14.670	48.820	10.59
14.580	48.840	2.78
14 510	48.860	1.73
14 450	48 870	.92
14 400	48 880	62
14 470	49 140	32 20
14 460	49 090	632 91
11 380	19 100	164 56
14.300	49.100	2 56
14.330	49.040	Z.J0
14.410	49.030	45.15
14.460	49.000	35.65
14.510	49.000	21.80
14.550	49.000	31.06
14.570	49.040	25.55
14.590	49.090	8.65
14.610	49.170	2.78
14 630	49,220	43
14 640	49 310	20
14 830	49 170	00
14 840	49 100	. 39
14 850	49 020	2 114
14 920	48 920	2 24
14.040	40.000	2.27
14.840	48.86U	3.81

STED		:	SF6-LILLES	STRØM
TEST NR.		:	8A	
DATO		:	87-02-19	
TIDSPKT.		:	1000-1015	
ANT.OBS.		:	24	
MIN, MAKS	X	:	<i>13.900</i>	15.00 0
MIN. MAKS	Y	:	48.500	49.600

STED		:	SF6-LILLES	STRØM
TEST NR.		:	3B	
DATO		:	87-02-19	
TIDSPKT.		:	1015-1030	
ANT.OBS.		:	21	
MIN.MAKS	X	:	13.900	15.00 0
MIN. MAKS	Y	:	<i>48.500</i>	49.600

KOORD X	INATER Y	SF 6 UG/M3
X 14.180 14.090 13.980 14.150 14.330 14.460 14.370 14.460 14.570 14.610 14.620 14.830 14.830 14.850 14.840 14.850 14.840 14.840 14.840 14.610 14.610	Y 48.950 48.970 49.070 49.090 49.020 49.000 49.070 49.070 49.110 49.070 49.150 49.120 49.120 49.120 49.120 49.120 49.120 49.120 49.520 48.830 48.870 48.820 48.840 48.860	UG/M3 . 08 . 02 . 00 . 03 . 03 . 03 . 01 . 01 . 01 . 01 . 01 . 01 . 01 . 01 . 02 . 02 . 01 . 02 . 02 . 01 . 02 . 02 . 01 . 02 . 02 . 01 . 02 . 01 . 02 . 02 . 01 . 02 . 02 . 02 . 01 . 02 . 01 . 02 . 02 . 02 . 01 . 02 . 02 . 01 . 02 . 02 . 02 . 01 . 02 . 02 . 01 . 02 . 02 . 01 . 02 . 01 . 02 . 02
14.320 14.250	48.900	.02

KOORD	KOORDINATER						
^							
14.090	48.970	. 04					
13.9 80	49.070	. 02					
14.150	49.090	. 12					
14.460	49.000	. 02					
14.370	49.110	. 03					
14.570	49.070	. 00					
14.610	49.150	. 02					
14.620	49.220	. 10					
14.830	49.180	. 01					
14.720	49.120	. 02					
14.840	49.110	.01					
14.850	49.020	. 03					
14.920	48.930	. 02					
14.840	48.870	.01					
14.750	48.780	.01					
14.680	48.820	.01					
14.010	40.040	.01					
14.310	40.000	.01					
14.400	40.0/0						
14.320	40.300	.01					
14.230	40.320	.01					

STED		:	CBRF3-LILL	ESTRØM
TEST NR.		:	8C	
DATO		:	87-02-19	
TIDSPKT.		:	1000-1015	
ANT.OBS.		:	23	
MIN. MAKS	X	:	13.9 00	15.00 0
MIN. MAKS	Y	:	48.500	49.600

STED		-	CBRF3-LILL	ESTROM
TEST NR.		:	8D	
DATO		:	87-02-19	
TIDSPKT.		:	1015-1030	
ANT.OBS.		:	21	
MIN. MAKS	X	:	13.900	15.000
MIN. MAKS	Y	:	48.500	49.600

KOORD X	INATER Y	CBRF3 UG/M3
 14.180	48.950	. 00
14.090	48.970	. 00
13.980	49.070	. 00
14.330	49.020	. 00
14.460	49.000	. 00
14.370	49.110	. 00
14.460	49.090	. 00
14.570	49.070	. 00
14.610	49.150	. 00
14.620	49.220	. 25
14.830	49.180	. 00
14.720	49.120	. 00
14.840	49.110	.00
14.850	49.020	. 00
14.920	48.930	. 00
14.840	48.870	. 00
14.760	48.780	. 00
14.680	48.820	. 00
14.610	48.840	. 00
14.510	48.860	. 00
14.450	48.870	. 00
14.320	48.900	. 00
14.250	48.920	. 00

	.00
14.090 48.970 13.980 49.070 14.150 49.090 14.460 49.090 14.460 49.090 14.570 49.070 14.610 49.150 14.620 49.220 14.830 49.180 14.720 49.120 14.840 49.110 14.850 49.020 14.840 48.870 14.680 48.870 14.680 48.870 14.610 48.840 14.610 48.840 14.510 48.860 14.450 48.900 14.250 48.920	. 00 5. 42 . 00 2. 66 . 00 2. 66 . 00 . 00 . 00 . 00 . 00 . 00 . 00

NORSK INSTITUTT FOR LUFTFORSKNING (NILU) NORWEGIAN INSTITUTE FOR AIR RESEARCH POSTBOKS 64, N-2001 LILLESTRØM

RAPPORTTYPE OPPDRAGSRAPPORT	RAPPORTNR. OR 41/89	ISBN-82-425-0048-7				
DATO AUGUST 1989	ANSV. SIGN.	ANT. SIDER 174	PRIS Kr 205,-			
TITTEL Atmospheric dispersion expe	eriments at Lillestrøm.	PROSJEKTLEDER D.A. Tønnesen				
1900-1907 Data-report		NILU PROSJEKT NR. 0-8545				
FORFATTER(E) I. Haugsbakk and D.A. Tønne	TILGJENGELIGHET A					
	OPPDRAGSGIVERS REF.					
OPPDRAGSGIVER (NAVN OG ADRESSE) Statens forurensningstilsyn Postboks 8100 Dep., 0032 Oslo 1						
3 STIKKORD (à maks. 20 ansla Utslipp	ag) Sporstoffer	Spredning	3			
REFERAT (maks. 300 anslag, 7 linjer) Rapporten beskriver spredningsforsøk med SF og CBrF på Lillestrøm. SF og CBrF er sluppet henholdsvis fra en gitt høyde og fra bakkenivå for å simulere spredning fra oljefyring og biltrafikk. Resultatene indikerer dårligere spredning fra bakkenivå enn fra en gitt høyde over bakken.						
TITLE Atmospheric dispersion experiments at Lillestrøm. 1986–1987 Data-report						
ABSTRACT (max. 300 characters, 7 lines) A description of emission tests with SF and CBrF carried out at Lillestrøm. SF has been released from above ground level to simulate oil combustion, and CBrF has been released from ground level to simulate vehicle exhaust. The tests indicate that dispersion is favorized from above ground level.						
* Kategorier: Åpen - kan bes	stilles fra NILU A					

Må bestilles gjennom oppdragsgiver B C Kan ikke utleveres