

Urban Air Quality Management Strategy in Asia

KATHMANDU VALLEY City Specific Report **APPENDICES**

Prepared under contract from The World Bank Asia Technical Division

The Norwegian Institute for Air Research NILU P.O.Box 100, N-2007 Kjeller, Norway

Instituut voor Milieuvraagstukken Vrije Universiteit, De Boelelaan 1115, 1081 HV Amsterdam, The Netherlands

NILU	:	OR 55/95 App.
REFERENCE	:	O-92117
DATE	:	SEPTEMBER 1996
ISBN	:	82-425-0716-3

URBAIR

Urban Air Quality Management Strategy in Asia

KATHMANDU VALLEY

Appendices

Prepared by

Steinar Larssen, Frederick Gram and Ivar Haugsbakk Norwegian Institute for Air Research (NILU) Kjeller, Norway

Huib Jansen and Xander Olsthoorn Instituut voor Milieuvraagstukken (IVM) Vrije Universiteit, Amsterdam, the Netherlands

Anil S. Giri Royal Nepal Academy of Science and Technology (RONAST) Kathmandu, Nepal

Madan L. Shrestha Dpt. of Hydrology and Meteorology, Min. of Water Resources Kathmandu, Nepal

Notice

This report from the URBAIR project conducted under the Metropolitan Environment Improvement Program of the World Bank, ASTEN Division, is the version produced by the project consultants (Norwegian Institute for Air Research and Institute for Environmental Studies in Amsterdam) for the World Bank. The World Bank publishes the official version of this report. The contents is basically the same, but the layout is somewhat different.

This present version of the report is distributed upon request, from NILU, until the official World Bank version is available. The two versions can be used interchangably, as they are basically identical.

Preface

In view of the potential environmental consequences of continuing growth of Asian metropolitan areas, the World Bank and UNDP launched the Metropolitan Environmental Improvement Program (MEIP) in five Asian metropolitan areas - Beijing, Bombay, Colombo, Jakarta, and Metro Manila. In 1993, Kathmandu joined the intercountry program as the sixth MEIP city. The mission of MEIP is to assist Asian urban areas in tackling their rapidly growing environmental problems. Presently, MEIP is supported by the governments of Australia, Netherlands and Belgium.

Recognizing the growing severity caused by industrial expansion and increasing vehicle population, the World Bank started the Urban Air Quality Improvement (URBAIR) initiative in 1992 as a part of the MEIP. The first phase of URBAIR covered four cities - Bombay, Jakarta, Kathmandu, and Metro Manila. URBAIR is an international collaborative effort involving governments, academia, international organizations, NGOs, and the private sector. The main objective of URBAIR is to help local institutions in these cities to develop action plans which would be an integral part of their air quality management system (AQMS) for the metropolitan regions. The approach used to achieve this objective involves the assessment of air quality and environmental damage (e.g. on health, materials), the assessment of control options, and comparison of costs of damage and costs of control options (cost-benefit or cost-effectiveness analysis). From this, an action plan can be set up containing the selected abatement measures, for implementation within the short/medium/long term.

The preparation of this city-specific report for Kathmandu Valley is based upon the collection of data and specific studies carried out by the local consultants, and upon workshops and fact-finding missions carried out in April and August 1993, and May 1994. A first draft of the report was prepared by Norwegian Institute for Air Research (NILU) and Instituut voor Milieuvraagstukken (IVM, Institute for Environmental Studies) before the first workshop, based upon general and cityspecific information available from earlier studies. A second draft report was prepared before the second workshop, with substantial inputs from the local consultants, and assessment of air quality, damage and control options, and cost analysis carried out by NILU and IES.

This report contains the appendices to the main report.

Acknowledgements are presented in the main report.

Contents

Page

Preface		1
	Air Quality Status, Kathmandu Valley	
Appendix 2	Air Quality Guidelines	.49
Appendix 3	Emission Inventory	53
Appendix 4	Emission Factors, Particles	85
~ ~	Spreadsheet for Calculating Effects of Control Measures on	93
Appendix 6	Project Descriptions, Local Consultants	99

Appendix 1

Air Quality Status, Kathmandu Valley

Contents

			Page
1	Out	door (ambient) concentrations	7
	1.1	Past measurements	7
	1.2	Results of measurements after 1992	10
2	Inde	oor air pollution exposure	25
3	Visi	bility	26
4		erences	31
	Ann	1ex	33

1.1 Past measurements

Prior to 1993, only scattered measurements of air pollution concentrations have been performed. The KVVECP (Kathmandu Valley Vehicle Exhaust Control Program) (Mathur, 1993) study identified 7 previous studies, which included some measurements (Table 1). In these studies, measurements were confined to roadside sites. Thus, the results are not representing the status of general population exposure.

Mathema et al. (1992) describes some results from measurements done, in the following manner:

"A 1980-study carried out by Bhattarai and Shrestha (1981) on dust pollution at Kathmandu concludes that at 18 spots where the data was collected, lead content was far in excess of the reasonably acceptable level of 0.6 parts per million. At busy street and cross-roads the lead content was found to be in the range of 544 ppm (Maitighar) to 153 ppm (Tripureswor). A 1987 study on pollution in the Kathmandu city carried out experiments to determine "particulate loading" (extent of dust present in the air) in the month of September when dust pollution is expected to be low. It was found that at the three locations where measurements were recorded (Jochhen Tole, Singha Durbar, and Lazimpat) the amounts of dust particles per cubic meter of air were between 6 and 11 times the relevant US standard (MHPP, 1991(b). Similar experiments carried out by CEDA (1990) in Pokhara, Kathmandu, and Biratnagar have led to similar conclusions, during the 1989/90 India-Nepal trade impasse when vehicular traffic volume was considerably lowered due to shortage of gasoline/petrol. Davidson and Pandey (1986/p 115-119) have shown that the concentration of SO₄, NO₃ and C (organic) and lead at the curb of a busy street of Kathmandu is comparable to those in urban areas in industrialized countries."

Measurements of particles and their content of mycoflora in Kathmandu city were performed in June, October and November, 1992 (U. Sharma et al., 1992). 16 samples were collected at 16 different locations near roads, using a Millipore pump and filters (6-8 hours of sampling). The sampling method indicates that the measurements are related to measurements of Total Suspended Particle (TSP), as measured with a high volume sampler.

The particle concentration was within the range $197-524 \,\mu g/m^3$, averaging $304 \,\mu g/m^3$. The corresponding Air Quality Guideline of WHO is $120 \,\mu g/m^3$. Thus, the measured concentrations were all above this guideline. It can be expected that the **TSP** concentrations are considerably higher in the dry season, especially during the January-April period.

Various species of fungi were isolated from the particle samples described above. The fungi may be agents of different diseases, and some of them are allergens. The source of this mycoflora in the particles is resuspended dust on the roads. This dust is composed of dust from dirt roads and construction sites, as well as scattered refuse from human activities.

S.No.	Reference of study	Year	Conclusions
1.	Bhattarai and Shrestha	1980	Kathmandu: Pb Maitighar : 544 ppm Tripureshwor : 153 ppm
2.	MHPP Pollution study	1987	Kathmandu: Road side dust: 6 to 11 times of US Std.
3.	CEDA study	1989/90	Pokhara, Kathmandu Biratnagar, road side dust: (SPM) higher than WHO standards.
4.	Davidson and Pandey	1986	Kathmandu: SO ₂ , NO _x and Pb higher than WHO std.
5.	Sharma and Pradhanang	1992	Kathmandu: Milipore pump & micro flora SPM range: 197-524 µg/m ³ .
6.	NILU Team observation	1993	Kathmandu: Low visibility and haze, road side SPM high
7.	RONAST	1993	Kathmandu: Road side SPM 197-775 µg/m ³ higher than international stds.

Table 1:	Air quality related studies in Kathmandu Valley prior to 1993
	(Ref.: KVVECP study).

The latest study before the KVVECP measurements, the ENPHO (NGO) study, confirmed the very high TSP concentrations roadside in the valley, with daytime concentrations up to 2258 μ g/m³ (at Kuleswore). This study also included PM₁₀ measurements giving concentrations within 50-130 μ g/m³. Measurements of CO, SO₂ and NO₂ gave rather low values, within WHO standards.

NILU observations, April 1993

During a field trip to Kathmandu 18-21 April, 1993, the CO concentrations were monitored along some road routes (Figure 1). Generally, the recorded CO concentrations in highly trafficked areas were in the range 15-20 ppm, with peaks up to 60 ppm.

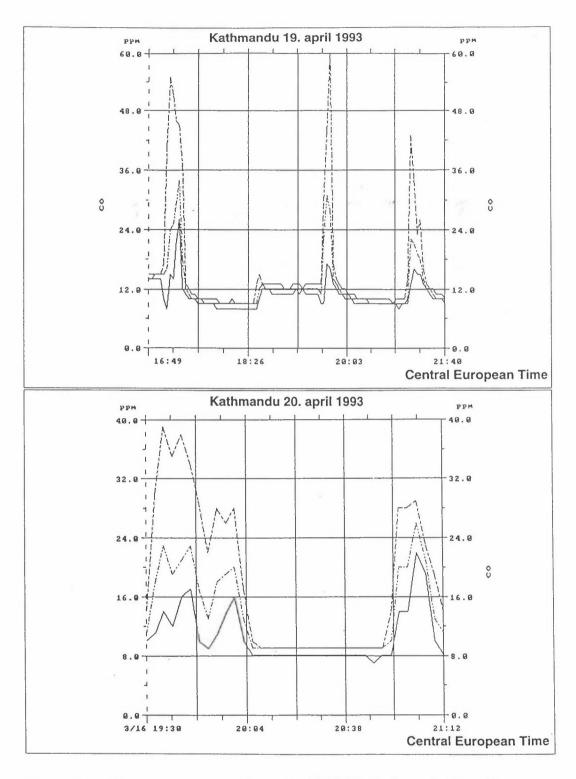


Figure 1: CO measurements performed by NILU in Kathmandu, travelling on roads by taxi, April 1993.

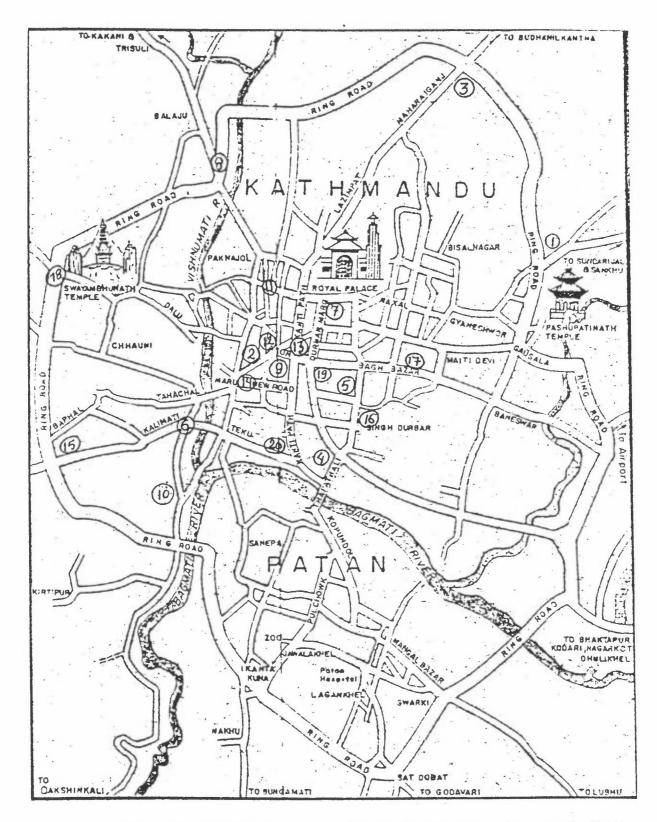
1.2 Results of measurements after 1992

The following measurement campaigns have been carried out after 1992 (in chronological order):

- Environment & Public Health Organization (ENPHO) carried out TSP, PM₁₀, NO_x, CO, SO₂ and lead measurements at a total of 20 sites in Kathmandu City, in November 1992 and February 1993 (Karmacharya and Shrestha, 1993).
- The Kathmandu Valley Vehicle Exhaust Control Program (KVVECP) carried out a measurement campaign of TSP, PM₁₀, NO₂, SO₂, CO and lead at 14 sites during September-December 1993 (Devkota, 1993).
- Measurements by NESS (Pvt) Ltd. of PM₁₀ and lead at a number of sites in Kathmandu City during September-November, 1993 (Sharma et al., 1994).
- Measurements of TSP by the Hydrological and Meteorological Service at the HMS building at Babar Mahal, starting from January 1993.

In addition, visibility observations have been made at Tribhuvan International Airport since the early 1970's (see Chapter 3 of this Appendix).

Results from the ENPHO measurements


The measurements were carried out in two phases (Karmacharya et al., 1993):

- In November 1992, at 9 sites of various height and distance from roads, to get a general picture of the air quality of the area. 24-hour averages.
- In February, 1993, at 11 roadside sites, to get a picture of roadside exposure. 9-hour averages.

Monitoring sites are shown in Figure 2, and described in Table 2. The methods are given in Table 6. The description of the project indicates that only one sample was taken at each site. Results are given in Table 3 and 4 for phase 1 and 2 respectively.

The results indicate that TSP is the main problem compared to the WHO guideline. The measurements from phase 1 (24 hour averages) averaged 308 μ g/m³, with maximum concentration of 555 μ g/m³, at Chabahil. PM₁₀ also exceeded the guideline at many of the sites, but to a lesser extent than TSP. Maximum PM₁₀ concentration was 127 μ g/m³ (WHO guideline: 70 μ g/m³). The SO₂, NO_x and CO measurements indicated rather low concentrations.

The lead measurements also indicated fairly low concentrations, with a maximum 24-hour value of $0.53 \ \mu g/m^3$, against a long-term WHO guideline of $0.5-1 \ \mu g/m^3$.

S.No.	Sampling station	Height (m)	Distance from closest road	Distance from popular junction	Direction from the popular junction	Type of area	Traffic density
4	Chababil	0	(m)	(m)	(m)	D. C.L. B.H	
1	Chabahil	3	5	100	North-East	Residential/ Market	Busy
2	Indrachowk	12	5	50	North-West	Residential/ Market	Busy
3	Maharajgunj (Ring Road)	5	15	30	South-East	Residential	Moderate
4	Thapathali	3	5	75	North-West	Residential/ Market	Busy
5	Putalisadak	6	8	75	South	Residential/ Market	Busy
6	Kalimati	10	5	25	North	Residential/ Market	Busy
7	Royal Palace	5	8	30	South-West	Market	Busy
8	Balaju (Ring Road)	6	15	35	North-West	Residential/ Market	Busy
9	Bir Hospital	3	5	25	North-West	Residential/ Market	Busy
10	Kuleswor	0.75	2	Right at the junction	West	Residential/ Market	Busy
11	Thamel	0.75	0	Right at the junction	East	Residential/ Market	Busy
12	Ason	0.75	0	Right at the junction	South-West	Residential/ Market	Low
13	Nachghar (Jamal)	0.75	0	Right at the junction	North	Residential/ Market	Busy
14	Kasthamandap	0.75	2	Right at the junction	South-East	Residential/ Market	Moderate
15	Kalanki (Ring Road)	0.75	2	Right at the junction	North-West	Residential (outskirt)	Busy
16	Singha Durbar	0.75	2	Right at the junction	South-West	Office Complex	Busy
17	Dillibazar (Pipalbot)	0.75	2	Right at the junction	North	Residential/ Market	Moderate
18	Swayambhoo (Ring Road)	0.75	2	Right at the junction	South-West	Residential (outskirt)	Moderate
19	Ratna Park (Bus park)	0.75	2	Right at the junction	North-West	Residential	Busy
20	Tripureswor	0.75	2	50	South-East	Residential/ Market	Busy

Table 2:Description of ENPHO campaign measurement sites (Karmacharya et
al., 1993).

S. No.	Stations	TSP µg/m ³	ΡΜ ₁₀ μg/m ³	SO ₂ µg/m ³	NO _x µg/m ³	CO mg/m ³	Pb µg/m ³
1	Chabahil	555	127	<13.0	28	<11	0.35
2	Indrachowk	194	59	<13.0	24	<11	0.21
3	Maharajgunj (Ring Road)	233	64	<13.0	17	<11	0.18
4	Thapathali	206	74	<13.0	12	<11	0.31
5	Putalisadak	267	92	<13.0	28	<11	0.37
6	Kalimati	232	76	<13.0	24	<11	0.30
7	Royal Palace	182	93	<13.0	25	<11	0.53
8	Balaju	465	102	<13.0	24	<11	0.23
9	Bir Hosptal	438	116	<13.0	36	<11	0.43
	Average	308	89	*6.5	24.2	<11	0.32
	WHO Standard	120	70	125	150		0.5-1.0

Table 3:Concentration of the pollutants (first part - 24 hour averaging time),
ENPHO study.

Table 4:Concentration of the pollutants (Second part - 9 hour averaging time),
ENPHO study.

S. No.	Stations	TSP µg/m ³	ΡΜ ₁₀ μg/m ³	SO ₂ µg/m ³	NO _x µg/m ³	CO mg/m ³	Pb µg/m ³
10	Kuleswor	2258	415	19	59	<11	0.7
11	Thamel	1978	498	<13	48	<11	1.2
12	Ason	1772	281	<13	28	<11	0.5
13	Nachghar (Jamal)	1283	257	<13	32	<11	0.9
14	Kasthamandap	1056	182	<13	17	<11	0.4
15	Kalanki (Ring Road)	1201	239	22	40	<11	0.2
16	Sinha Durbar	789	225	20	69	<11	0.2
17	Dillibazar	1077	240	18	30	<11	0.5
18	Swayambhu (Ring Road)	1161	258	<13	26	<11	0.3
19	Bus Park (Ratna Park)	1709	355	17	41	<11	0.6
20	Tripureswor	1090	313	<13	30	<11	0.4
	Average	1397	296	12.3	38	<11	0.54

* SO₂ - <13 has been arbitrarily considered half of 13, i.e. 6.5.

The phase 2 measurements at roadside sites gave much higher concentrations. Also here, TSP and PM_{10} , presented the largest problem compared to guidelines.

TSP-concentrations (9-hour day-time average) averaged almost 1400 μ g/m³, with max. concentration 2258 μ g/m³, at Kuleswor. PM₁₀ averaged almost 300 μ g/m³, with maximum 498 μ g/m³ at Thamel.

Again SO₂, NO_x and CO concentrations were low, while the lead concentrations were up to $1.2 \ \mu g/m^3$, averaging 0.54 $\mu g/m^3$. Still fairly low, but increased compared to the phase 1 sites.

These measurements, covering a number of sites in general Kathmandu City atmosphere and the roadside atmosphere, can be used to give a rough estimate of a long-term average TSP and PM_{10} concentration which might represent a typical exposure value for the population in central Kathmandu City, based on the following assumptions:

- Consider that the average 24 hour average roadside concentration is 50% of the 9 hour average, i.e. 700 µg/m³ for TSP and 150 µg/m³ for PM₁₀.
- Consider that the average person spends 25% of the time roadside.
- Consider that the summer (monsoon) season average is 50% of the winter season average.

This results in an annual average of $300 \,\mu\text{g/m}^3$ for TSP and $75 \,\mu\text{g/m}^3$ for PM₁₀ for an average person living in central Kathmandu City spending 25% of his time roadside.

Results from the KVVECP study

As part of the Kathmandu Valley Vehicle Exhaust Control Program (KVVECP), measurements of TSP, PM_{10} , NO_2 , SO_2 , CO and Pb were made at a number of sites (roadside, residential, industrial). Results have been reported for the period September-December, 1993 (Devkota, 1993).

The measurement sites are shown in Figure 3 and described in Table 5. Individual results, as reported by Devkota, are annexed to this appendix. Methods are listed in Table 6.

S. No.	Category	Locations	Distance from main road	Height of the station
			(m)	(m)
1	Commercial Areas:			
	i. Heavy traffic	Singha Durbar,	2	3
	(30-40,000 ADT)	GPO	3	3
	ii. Medium traffic	Ratnapark,	4	3
	(20-30,000 ADT)	Lainchaur,	2	2.5
		Kalimati	3	3
	iii. Low traffic (<7000ADT)	Thimi (NTC)	2	2.5
2	Residential Areas	Maharajgunj (TUTH),	30	3
		Naya Baneswor,	20	7
		Jaya Bageshwori	15	8
3	Industrial Areas	Balaju,	15	4
		Bhaktapur,	50	3
		Patan Industrialized districts,	5	5
		Himal Cement Factory surrounding	100	10
4	Regional background/ control site	Tribhuvan University Kirtipur	50	3

Table 5:	Ambient Air	Quality Monitoring	Stations, KVVECP study.
----------	-------------	--------------------	-------------------------

ADT: Average Daily Traffic

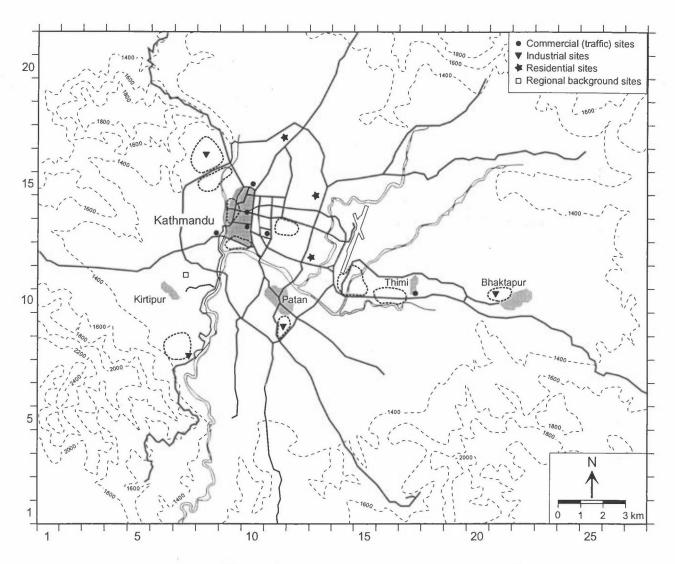


Figure 3: Measurement sites, KVVECP study.

The results of the 24-hour measurements are summarized in Table 7. Figures 4-7 show the average and maximum concentrations at the measurement sites for TSP, PM_{10} , SO₂ and NO₂ respectively.

Table 6:Monitoring methods, ENPHO and KVVECP study.

Sampling:	
	spirable Dust Sampler (Indian produce) was used as and NO_2 . The flow rate for TSP/PM ₁₀ was 0.8-1 NO_x 1 l/min.
	hour samples (midnight-to-midnight), and partly 8 aytime traffic (9-10 AM to 5-6 PM).
Analysis:	
SO ₂ :	Pararosaniline method
NO ₂ :	Jacobs-Hochheiser Arsenite, Modified method
TSP :	Gravimetric analysis, Whatman GF/A filter (PM_{10}) and ceramic thimble (non-respirable fractions).
CO :	Roadside spot measurements with Kitegava Precision Gas Detector, Model APS. Gas Detector tubes, 5-50 ppm.
Heavy metals (Cr, Fe, Pb) :	AAS analysis (Perkin Elmer - 2380) of the glass fibre filters.

Table 7:	Summary	of AQ	measurements,	KVVECP stud	у.
----------	---------	---------	---------------	-------------	----

		Average	e/max 24 h c	onc. (µg/m ³))
	TSP	PM ₁₀	SO ₂	NO ₂	No. of days
Commercial (traffic) sites					
Singha Durbar (heavy traffic)	303 / 375	142 / 175	49/64	37/64	22 (nov./dec.)
GPO (heavy)	380 / 474	137 / 201	37 / 64	11/ 16	16 (nov.)
Ratnapark (medium)	187/319	67 / 86	32 / 102	18/28	16 (sept.)
Lainchaur (medium)	228 / 386	103 / 146	17/26	19/40	13 (nov.)
Kalimati (medium)	391 / 441	135 / 154	77 / 202	19/31	12 (nov.)
Thimi (low)	337 / 867	115/117	49/65	19/24	20 (dec.)
Residential sites					
Maharajgunj	191 / 350	72 / 126	19/ 34	12/14	13 (nov.)
New Baneswor	200 / 270	113/161	13/13	14/25	5 (sept./nov.)
Jaya Bageshwori	228 / 273	112/132	110 / 225	49 / 126	10 (dec.)
ndustrial areas					
Balaju	108 / 137	40 / 77	15/21	31 / 71	9 (sept.)
Patan	87 / 102	47 / 53	13/13	40/83	5 (sept.)
Bhaktapur	213/290	105 / 131	58 / 79	20/24	6 (dec.)
Himal Cement surrounding	430 / 560	166 / 194	57 / 65	38/ 58	5 (dec.)
Regional background site					
ribhuvan Univ.	94 / 155	66 / 81	38 / 77	18/35	19 (nov./des.)

Figure 4: TSP measurements, KVVECP study.

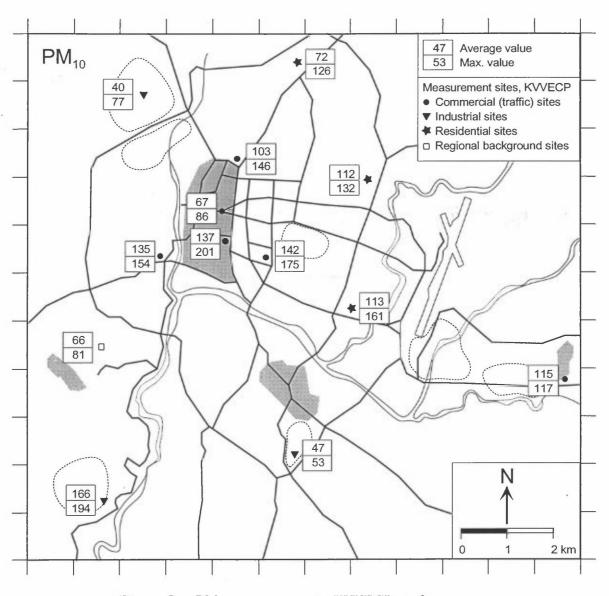


Figure 5: PM₁₀ measurements, KVVECP study.

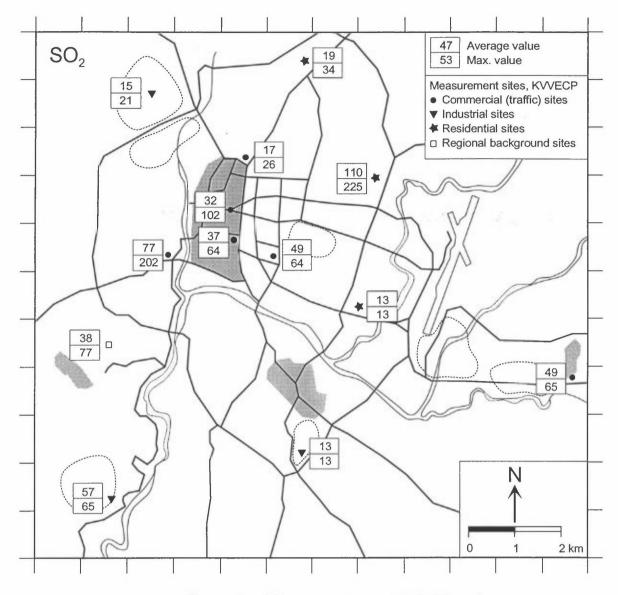


Figure 6: SO₂ measurements, KVVECP study.

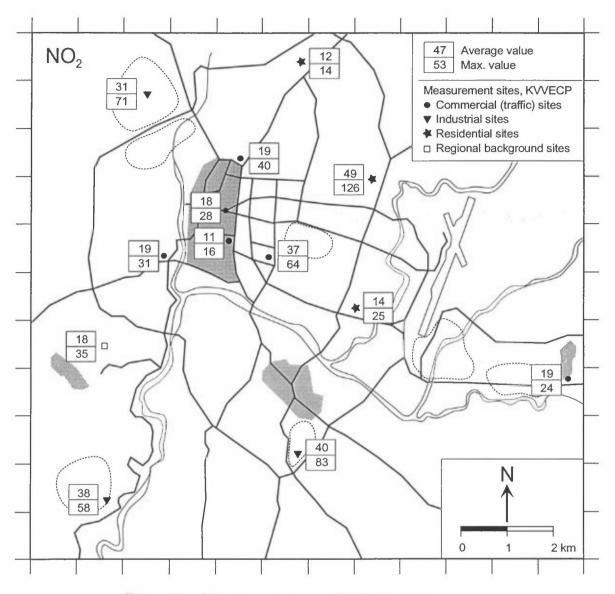


Figure 7: NO₂ measurements, KVVECP study.

For TSP, the concentration ranges for average and maximum values are 94 (background value)-430 μ g/m³ and 102-867 μ g/m³, respectively.

Granted that the measurement periods differ from site to site, the traffic sites have generally higher TSP concentrations than the other sites (except Himal Cement). However, differences between the traffic sites reflect also other parameters than just the amount of traffic. Thimi, with low traffic, has very high TSP concentrations. Local sources/conditions seem important.

For PM_{10} , the traffic and residential sites seem to have similar levels, higher than the industrial sites (again except Himal Cement). Actually, the Balaju and Patan sites have values similar to the regional background at Tribhuvan Univ., as was also the case for TSP.

 SO_2 and NO_2 concentrations were generally low, according to the measurements, except at Kalimati (SO_2) and Jaya Bageshwori (SO_2 and NO_2).

The very short measurement periods at some sites reduce to some extent the general nature of these conclusions.

The measurements at the Tribhuvan Univ. indicate that the general background level of TSP was on the average some 90-100 μ g/m³ in the autumn of 1993, with maximum concentrations up towards 150 μ g/m³. The similar figure for PM₁₀ was some 50 μ g/m³ (average) and 80 μ g/m³ (maximum).

On top of this, sources nearby the monitoring sites gave higher concentrations. The variation from site-to-site does not seem to be explained simply by amount of traffic, or being in an industrial area.

The Himal Cement site had the highest average concentrations of TSP and PM_{10} , being close to the cement factory.

Relative to WHO guidelines, the TSP and PM_{10} concentrations both rise to twice the guidelines. For TSP, about 70% of all the measurement days were above the lower guideline value (150 µg/m³), and about 50% of the days were above the higher guideline value (230 µg/m³). About 50% of the total days of measurement had PM_{10} above the guideline of 70 µg/m³.

The results of the KVVECP CO measurements gave typical values below 5 ppm, and the highest value measured was 7.5 ppm, using detector tubes with range 0-50 ppm. Morning wind speeds were reported generally below 0.5 m/s. These are very low CO values considering the heavy traffic at some of the roads, and they are considerably lower than the results from the NILU measurements.

Results from TSP measurements on the Hydrology and Meteorology Service Building

TSP measurements were performed on the roof of the building at Babar Mahal, some 15 m above ground, from January to August 1994 (Shrestha, 1994). Results are given in Table 8, and shown in Figure 8.

	Jan.	Feb	Mar	April	May	June	July	Aug	Average Jan-April	Average May-Aug
Average	226	227	312	310	185	137	100	106	269	132
Max.	363	422	384	467	437	302	138	192		
No. of days above AQG:										
-150 µg/m ³	21	14	10	18	15	9	0	2	63*	26*
-230 µg/m ³	12	4	10	15	6	1	0	0	41*	7*
No. of rainy days	2	2	6	1	10	18	25	22	11*	75*
No. of samples	24	15	10	19	25	25	23	16	68*	89*

Table 8:	TSP measurements at Babar Mahal, 1994 (Hydr. and Met. Service
	Building) (Shrestha, 1994).

* Total no. of days.

The highest TSP concentrations occurred in February-April, the dry season, as expected. The TSP levels are substantially reduced on rainy days.

The results are at the same level as the KVVECP data for New Baneswar residential site from September and November 1993 (aver.: $200 \ \mu g/m^3$; max: $270 \ \mu g/m^3$; 5 sampling days).

The WHO guidelines were exceeded on the majority of the days. The highest concentration, $467 \ \mu g/m^3$, was more than twice the upper level of the 24-hour guideline range, $230 \ \mu g/m^3$.

The 8-month average concentration was $200 \,\mu\text{g/m^3}$, compared to the WHO guideline for annual average, $60-90 \,\mu\text{g/m^3}$.

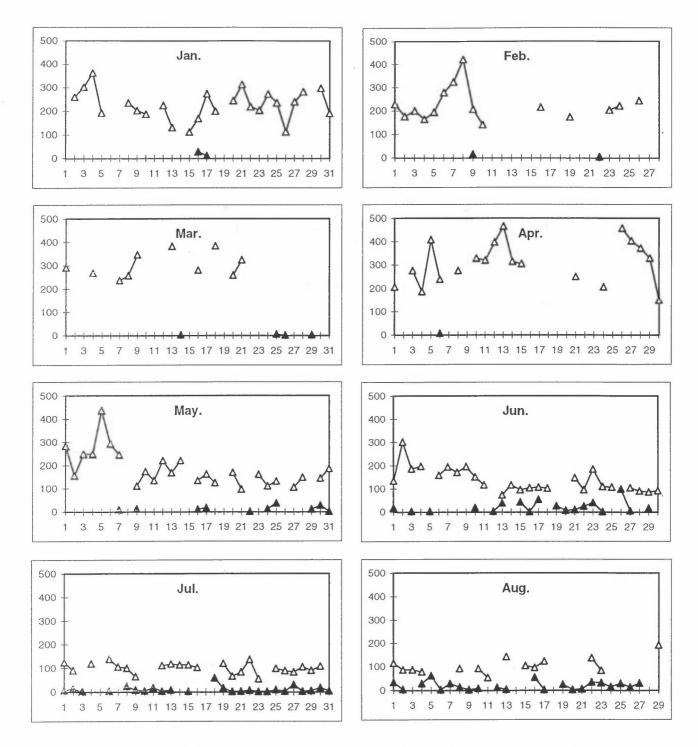


Figure 8: TSP measurements at Babar Mahal, 1994 (HMS building) (Shrestha, 1994).

Results from the NESS (Pvt) Ltd campaign

The following samples were taken in 1993:

- Dust samples from roads, for lead analysis, at 10 road sites on September 10, 22 and 23, and 21 road sites on October 27 and 28.
- PM_{10} samples from air at 4 sites on September 5-6, and at 9 sites on October 27 and November 1-2, using a Sibata high-volume air sampler HVS-500-5, with a 10 μ m cut off slotted impactor in front.
- Monitoring of particle concentration by a Laser Dust Monitor (Japanese make) at 59 sites during November 3-19.

The measured road dust lead content is given in Table 9.

Table 9:Lead content in street dust of Kathmandu City, 1993 (NESS study,
T. Sharma et al., undated).

Samples	No. of sites	ppm Pb in dust					
		Average	Range	Average	Range		
September 10, 22, 23	10	275	50-1,187	140	81-344		
October 27-28	21	160	1-965		-		

Lead, assumingly mainly from lead in gasoline, is clearly present in roadside dust. The concentration of lead is typically 200-300 ppm in the >2 mm fraction, and somewhat less in the <0.2 mm fraction.

The measured PM_{10} and lead concentrations in air are presented in Table 10. The values represent typical one-hour averages during daytime hours.

Table 10: PM_{10} and lead in air analyzed from samples drawn with the Sibata high-volume sampler.

Period	No. of sites	PM ₁₀ ((mg/m ³)	Lead (µg/m ³)	
		Average	Range	Average	Range
September 5-6	3			3.5	0.23-6.08
October 25 and November 1-2	9	0.80	0.23-2.11	1.1	0.65-2.60

The PM_{10} concentrations are very high (up to 2,100 µg/m³), much higher than those from the ENPHA and KVVECP studies. The Sibata sampler has a slotted 10 µm impactor in front of the filter where particles are collected. The function of the impactor is to hold back particles of diameter above 10 µm from the filter. It is possible, as known from experience with similar impactors, that dry dust particles are not collected with full efficiency. However, it is still difficult to explain the high PM_{10} concentrations measured, when compared to those of the other studies.

The lead concentrations are also substantially higher than those measured in the ENPHA and KVVECP studies.

Based on these results, and the Laser dust monitor samples from 59 roadside sites, Otaki et al. (undated) has plotted PM_{10} and lead pollution indicator values for the road network of Kathmandu City, and also a dust deposit map.

2. Indoor air pollution exposure

High indoor air pollution exposure due to cooking practices is recognized as a potentially significant environmental health impact in Nepal (e.g. Pandey, 1984; Reid et.al., 1986; Pandey et al., 1989). The cooking practices undoubtedly also create localized outdoor air pollution problems in settlements in meteorologically shielded locations.

Extremely high TSP and CO concentrations have been measured in village houses, and a pronounced positive effect of improved cooking practices has been detected. Table 11 shows results obtained by Reid et al. (1986). Pandey et al. (1990) obtained similar results.

	Tra	ditional	Im	Р	
	n	х	n	х	(%)
TSP (mg/m ³)					
Gorkha	11	3.17 (2.2)	13	0.87 (0.71)	<5
Beni	11	3.11 (2.9)	14	1.37 (1.3)	<2.5
Mustang	2	1.75	2	0.92	>10
CO (ppm)					
Gorkha	13	280 (230)	14	70 (35)	<0.5
Beni	14	310 (220)	12	64 (39)	<0.1
Mustang	2	64	2	41	>20

Table 11: Mean personal exposures to TSP and CO area concentrations by village and stove type (Reid et.al., 1986).

Note that there is a statistically significant (<5%) difference between the levels for both pollutants, experienced by women cooking with improved stoves compared to traditional ones in both Middle Hill villages. There are too few samples in Mustang.

- n = sample size
- X= mean (geometric mean)
- P= level of significance, i.e. probability that observed difference between the averages of improved and combined traditional stoves has occurred by chance based on a two-tailed t-test. All calculations are based on sample standard deviations (n-l).

This situation in Kathmandu is described by Mathema et.al. (1992) as follows:

"About 82% of the urban households depend on fuel-wood for cooking purposes. If Kathmandu is a typical example then very few urban families have the provision of a smokeless chulo and chimney. They are increasingly becoming more dependent on kerosene. A recent study found that only 0.6% of families in the Kathmandu city have a smokeless chulo, 47% have no chimney, and 6.97% of those who have a chimney felt that their kitchen is still "full of smoke" (REGMI & JOSHI, 1988/p45-47). Furthermore, about 36.5% use a Kerosene stove for cooking. The smokeless chulo, chimney and use of kerosene when used in absence of good ventilation are potential sources of indoor pollution. The fact that almost one-third of the households have their kitchen on the ground floor, a preference which is becoming very common with the advent of modern one-storey house constructions, suggests that the problem of indoor smoke could spread over the rest of the house.

The composition of major pollutant emissions from different types of traditional fuel sources, based on an Indian study, is shown in Table 48^{*} . From the table it is seen that, measured in terms of pollutants emitted from firewood, the most common form of fuel source in urban areas, appears to be the worst among the three sources shown. Assuming a 6 hours cooking period per day, an average urban household is subjected to 16 mg/cu.m. of particulate per day - a figure which is extremely high when seen in terms of its impacts on health. Shrestha states that a traditional Nepali chulo emits a high dose of Carbon Monoxide and "working in such an environment for more than ten minutes is considered poisoning" (SHRESTHA, 1986/p42)."

3. Visibility

The meteorological visibility of the Kathmandu Valley has been recorded at the Kathmandu airport since 1969. Shrestha (1994) has made a thorough and valuable analysis of the visibility data for the period 1969-1993, based on hourly meteorological observations and 3-hourly synoptic reports at the airport. The following text is a brief summary of Dr. Shrestha's findings.

Diurnal and annual variation of visibility

The present visibility situations is such that during the period November-February the visibility is very poor before 9AM, with only 10% of the day with visibility >8000 m (Figure 9). The visibility improves generally during the day, with typically good visibility in the afternoon. During the monsoon season and early fall, the visibility is generally good.

²⁶

^{*} Not shown here.

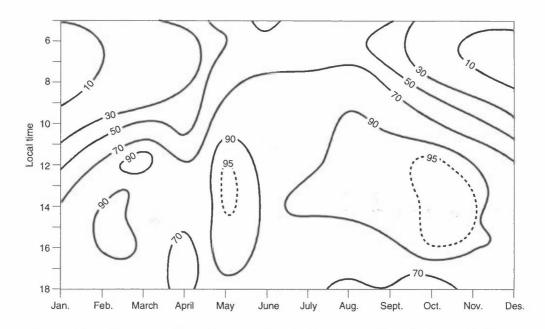


Figure 9: Fraction of days (percent) with fair-to-good visibility (>8000 m), Kathmandu Valley, November-February, 1993. (Ref.: Shrestha, 1994).

This annual variation, with improved visibility during the summer months, reflects several of the following conditions:

- generally better dispersion during summer,
- reduced resuspension during summer (wet surface),
- increased rain-out of particles,
- reduced fine particle emissions in summer (no brick industry).

Trend of reduced visibility

The trend towards reduced visibility in the valley is quite dramatic for the months November-March, and particularly for December-February (Figure 10). While in the early 70's, visibility >8000 m prevailed (at 1145AM) for 25-30 days per month, there has been a steep downwards trend since about 1980. Today, the number of days per month in December-February with good visibility at noon approaches zero!

The nature of the worsened visibility situation in the winter (dry season) is also shown by the example of Figure 11. For the month of January, this figure shows how the natural lifting of the fog and haze during the morning hours, which in the early 70's occurred around 9-10AM, is typically delayed until noon or early afternoon at present.

The relative humidity (RH) is an important parameter for visibility variation. Figure 13 shows the average RH as a function of time at Tribhuwan Airport in 1993.

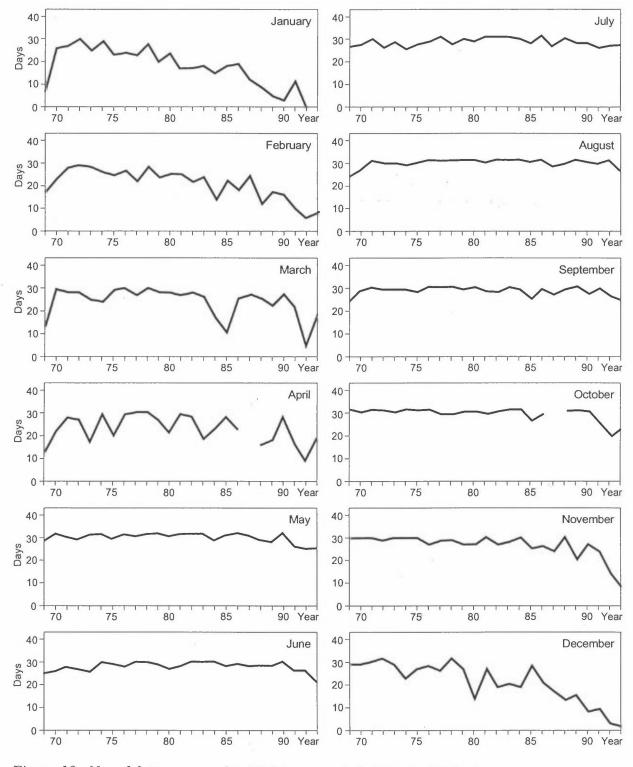


Figure 10: No. of days per month with fair-to-good visibility (>8000 m), Kathmandu Valley, 1969-93. (Ref.: Shrestha, 1994).

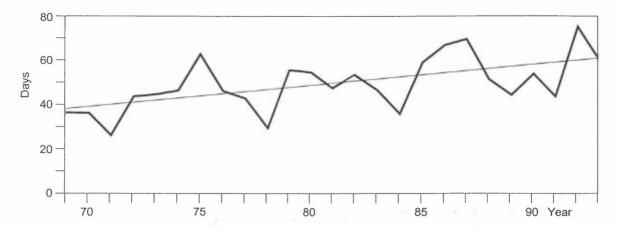


Figure 11: No. of foggy days at 9 a.m. for the period November-February, Kathmandu Valley, 1969-93. (Ref.: Shrestha, 1994).

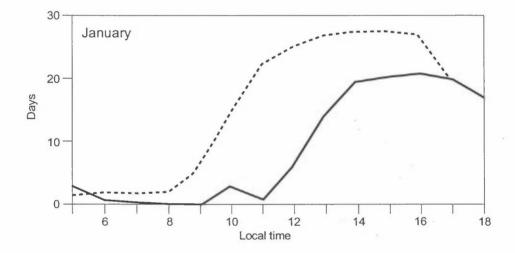


Figure 12: No. of days in January with visibility >8000 m, at given hours, 1970 (full line) and 1993 (dotted line) (Shrestha, 1994).

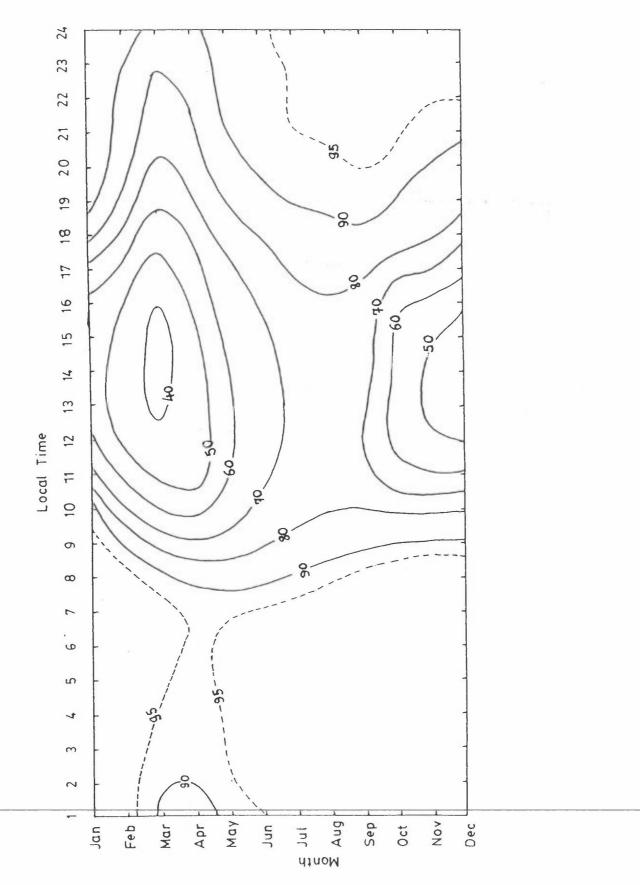
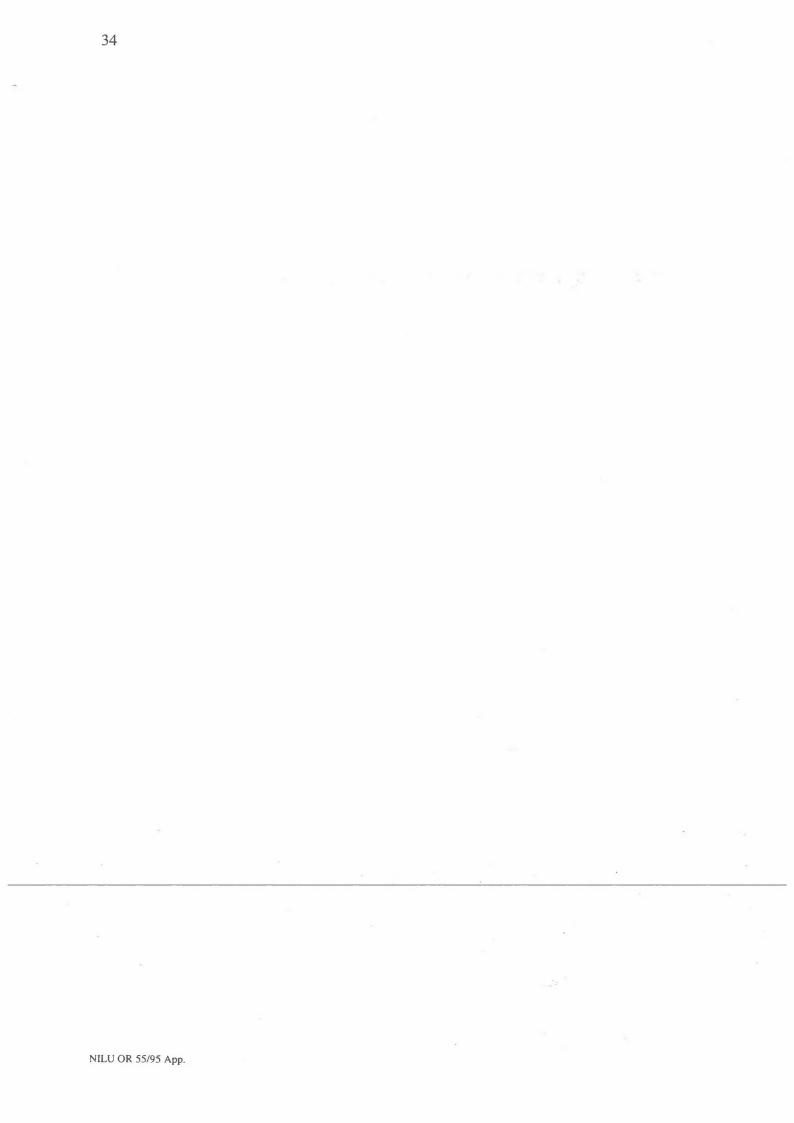


Figure 13: Temporal variation of Relative Humidity at Tribhuwan Airport, 1993 (per cent).

Trend of foggy days

Further description of the visibility situation is given in Figure 12 which shows that the number of foggy days, at 0845AM, during the four winter months November-February has increased from 35-40 around 1970 to more than 60 in 1992-93.

Dr. Shrestha's analysis clearly shows the dramatically worsened visibility situation in the Kathmandu Valley. It seems clear that the reason is the increased particle concentration in the atmosphere, particularly in the fine particle fraction (diameter $<1 \mu m$). It is probable that this increase has taken place in the regional atmosphere in general, as well as for sure in the local valley atmosphere, due to the increased industrial and commercial activities in the valley as well as increased population, resulting in increased fine particle emissions and concentrations.


4. References

- Devkota, S. R. (1993) Ambient air quality monitoring in Kathmandu Valley. A report submitted to Kathmandu Valley Vehicular Emission Control Project. (HMG/UNDP/NEP/92/034).
- Karmacharya, A. P. and Shrestha, R. K. (1993) Air quality assessment in Kathmandu City 1993. Kathmandu, Environment & Public Health Organization.
- Mathema, M.B., Joshi, A.R., Shrestha, S.L. and Shrestha, C.L. (1992) Environmental problems of urbanization and industrialization: the existing situation and the future direction. Report submitted to UNDP/Nepal, Environmental Management Action Group, Kathmandu.
- Mathur, H.B. (1993) Final report on the Kathmandu valley vehicular emission control project. HMG/UNDP Joint project for environmental protection, KVVECP-project. Kathmandu.
- Otaki, K., Sharma, T. and Upadhyaya, N.P. (undated) Respirable air particulate (PM₁₀) potential in Kathmandu municipality. Kathmandu, NESS (Pvt) Ltd.
- Pandey, M.R. (1984) Prevalence of chronic bronchitis in a rural community of the Hill Region of Nepal. *Thorax*, 39, 331-336.
- Pandey, M.R., Neupane, R.P., Gautam, A. and Shrestha, I.B. (1989) Domestic smoke pollution and acute respiratory infections in a rural community of the hill region of Nepal. *Environ. Int.*, 15, 337-340.
- Pandey, M.R., Neupane, R.P., Gautam, A. and Shrestha, I.B. (1990) *Mountain Res. Dev.*, 10, No. 4, 313-320.

- Reid, H.F., Smith, K.R. and Sherchand, B. (1986) Indoor smoke exposures from traditional and improved cookstoves. Comparisons among rural Nepali women. *Mountain Res. Dev.*, 6, No. 4, 293-304.
- Sharma, T., Upadhyaya, N. P. and Shahi, K. B. (undated) Extent and dimension of lead pollution through leaded emission in the Kathmandu municipality. Kathmandu, NESS (Pvt) Ltd.
- Sharma, U., Shahi, R.R., Shrestha, A., Thapa, J., Sijapati, J., Rana, P. and Pradhananga, M. (1992) Atmospheric Pollution in Kathmandu City I: Particulate Matter in the Kathmandu City and study of Mycoflora in it. J.Nep.Chem.Soc., 11, 1-8.
- Shrestha, M. L. (1994) Meteorological aspect and air pollution in Kathmandu Valley. Final report. Kathmandu, Dept. of Hydrology and Meteorology, His Majesty's Government in Nepal.

ANNEX

Copy of the KVVECP air quality measurements (Ref.: Devkota, 1993).

Date		Pollutants ug/m ³				Sampling hour	Remark
				ug/m ³			
		TSP		NO ₂	SO2		
	PM ₁₀	Particle	TOTAL		1. 12. 1		
3/11/93	201	273	474	16	29	24	
5/11/93	157	213	370	15	18	8	
6/11/93	152	590	742	29	13	8	Holiday
7/11/93	172	414	586	: 30	13	8	-
8/11/93	200	527	727	22	46	8	Holiday
9/11/93	168	632	800	25	14	7	
10/11/93	99	267	366	10	46	22	
11/11/93	172	665	837	19	35	8	12- 8.30
12/11/93	121	79	200	17	13	8	8.30-4.30
12/11/93	173	1399	1572	17	13	8	5-12 pm
12/11/93	138	257	395	23	13	7	
13/11/93	106	527	633	12	13	8	Holiday
14/11/93	129	367	496	25	13	8	Hoilday
16/11/93	108	229	337	9	13	24	
17/11/93	152	431	583	41	13	7	
18/11/93	142	179	321	11	35	24	
19/11/93	179	409	588	22	81	8	
20/11/93	135	265	403	11	64	24	Holiday
21/11/93	179	697	876	35	162	8	

Table 2 :Ambient Air Quality Monitoring in
Commercial Area - Heavy Traffic (GPO Complex)

(I) Range :

	SPM	:	321	-	474	(24 ł	1)	
		:	200	-	1572	(8 h)		
	PM10	:	99	-	201	(24 h	1)	
		:	106	-	200	(8 h)		
	NO2	:	9	-	16	(24 h	1)	
	-	. :	12	-	41	(8 h)		
	SO2	:	13	-	64	(24 h	1)	
	2	:	13	-	162	(8 h)		
<u>(II)</u>	Avera	<u>qe</u> :						
	SPM	:	380	(2	24 h),	682	(8	h)
	PM10	:		(2		157		h)
	NO,	:	11			24	(8)	h)
	SO2	:	37		24 h),		(8)	h)

Date			Pollutants			Sampling hour	Remark
				ug/m³			
		SPM		NO ₂	SO2		
	PM10	Particle	TOTAL				
23/11/93 24/11/93 25/11/93 26/11/93 27/11/93 28/11/93 29/11/93 01/12/93 02/12/93 04/12/93 05/12/93 06/12/93 07/12/93 08/12/93 09/12/93 10/12/93 11/12/93 12/1	146 180 123 152 112 132 127 102 167 112 120 134 165 170 119 143 121 128 164 175 214	236 419 252 713 105 161 957 107 201 208 219 292 216 97 341 120 332 137 241 213 256 169	382 599 375 865 217 274 1089 234 303 375 331 412 350 262 511 239 475 308 369 377 331 383	31 52 27 45 29 49 39 26 75 88 52 34 41 24 45 20 40 22 33 68 55 101	93 99 46 51 31 13 67 64 188 61 69 80 95 35 93 51 85 45 74 59 41 37	19 8 24 8 19 8 24 20 24 10 8 8 24 8 24 8 24 8 24 8 24 8 24 8 24 24 20	Holiday 5-12 pm Holiday Holiday
. Range: I. Average		: 274 : 119 : 113 : 20 : 33 : 35 : 13	- 180 (8 h) - 88 (24 h) - 686 (8 h) - 64 (24 h) - 99 (8 h)	.) .) .)			
	TSP PM ₁₀ NO ₂ SO ₂	: 142 : 37	(24 h), 532 (24 h), 144 (24 h), 45 (24 h), 72	(8 h) (8 h)	ţ		

Table 3 Ambient Air Quality Monitoring in Commcercial Area - Heavy Traffic, Singha Durbar

Date				Sampling hour	Remark		
				ug/m³			
	TSP			NO ₂	SO2		
	PM10	Particle	TOTAL				
20/11/93 21/11/93 22/11/93 23/11/93 24/11/93 25/11/93 26/11/93 27/11/93 28/11/93 29/11/93 30/11/93 01/12/93	114 110 134 164 154 179 137 170 122 133 168 165	241 492 243 533 282 861 194 469 450 308 534 721	355 602 377 697 436 1040 331 639 572 441 702 886	22 40 27 48 31 51 12 45 28 12 26 9	64 57 45 103 24 35 202 23 131 16 100 163	24 8 14 8 24 8 24 8 8 24 8 8 24 8 8	Holiday Holiday

Table 4 Ambient Air Quality Monitoring in Commercial Area - Medium Traffic Kalimati

I. Range:

TSP	:	331	-	441	(24 h)
	:	377	**	1040	(8 h)
PM10	:	114	-	154	(24 h)
	:	110	~	179	(8 h)
NO ₂	:	12	-	31	(24 h)
	:	10	-	51	(8 h)
SO2	:	16	-	202	(24 h)
	:	13	-	163	(8 h)

II. Average:

TSP	:	391	(24	h),	734	(8)	h)
PM10	:	135	(24	h),	154	(8)	h)
NO ₂	:	19	(24	h),	35	(8)	h)
SO2	:	77	(24	h),	71	(8)	h)

Date			Pollutants			Sampling hour	Remark
				ug/m ³			
		TSP	•	NÓ2	SO2		
	PM10	Particle	TOTAL	1.5			
10/9/93	67	252	319	17	13	24	
15/9/93	59	87	146	6	16	24	Rainfall
13/9/93	57	91	148	28	102	19	Rainfall
05/9/93	46	10	56	24	13	16	Rainfall
17/9/93	86	181	267	15	16	24	
18/9/93	76	307	383	30	20	10	Holiday
08/9/93	100	139	239	29	13	8	Rainfall
09/9/93	114	386	500	32	13	8	
11/9/93	56	156 .	212	35	13	8	Holiday
12/9/93	78	212	290	28	14	8	
06/9/93	n.a	n.a.	n.a.	29	13	7	Rainfall
14/9/93	67	115	182	33	21	7	
16/9/93	75	309	384	25	13	8	
19/9/93	78	242	320	21	13	8	Rainfall
20/9/93	100	211	321	20	17	8	Rainfall
21/9/93	109	59	168	11	22	10	NepalBanda

Table 5 Ambient Air Quality Monitored in Commercial Area- Medium Traffic (Ranipokhari Traffic Complex).

I. Range:

TSP	:	56 - 319	(24 h)
	:	182 - 500	(8 h)
PM10	:	57 - 86	(24 h)
	:	67 - 114	(8 h)
SO2	: .	13 - 102	(24 h)
	:	13 - 22	(8 h)
NO ₂	:	6 - 28	(24 h)
	:	11 - 35	(8 h)

II. Average :

SPM		187	(24	h)	300	(8)	h)
PM ₁₀			(24		74		
SO,			(24				
-						(8)	
NO ₂	:	18	(24	n),	19	(8)	n)

Table 6Ambient Air Quality Monitoring in
Commercial Area - Medium Traffic (Lainchaur DOMG)

Date			Pollutants		Sampling hour	Remark	
1			>	ug/m ³			
	TSP		NO ₂	SO2			
	PM10	Particle	TOTAL				
6/11/93 7/11/93	78 82	129 201	207	19 18	13 13	24	Holiday
8/11/93	100	74	174	14	26	24	Holiday
9/11/93 10/11/93	82 146	261 240	343 386	18 12	13 23	7 24	
11/11/93	115	242	357	36	13	8	
12/11/93	103	91	194	40	13	24	
13/11/93 14/11/93	116 64	221 157	337 221	12 14	13 13	8	Holiday
16/11/93	67	96	163	10	13	24	Holiday
17/11/93	87	158	245	23	13	8	
18/11/93	121	125	246	19	13	24	
19/11/93	151	630	781	27	178	6	

(I) Range :

TSP	:	163	-	386	(24 h)
	:	221	-	781	(8 h) ⁻
PM10	:	67	-	146	(24 h)
	:	64	-	151	(8 h)
NO ₂	:	10	~	40	(24 h)
	:	12	-	36	(8 h)
SO2	:	13	-	26	(24 h)
	:	13	-	178	(8 h)
5 8 2					
(II) Averad	<u>ie</u> :				

:	228	(24	h),	367	(8	h)
:	103	(24	h),	100	(8)	h)
:	19	(24	h),	25	(8)	h)
:	17	(24	h),	38	(8	h)
	:	: 103 : 19	: 103 (24 : 19 (24	: 103 (24 h), : 19 (24 h),	: 103 (24 h), 100 : 19 (24 h), 25	: 103 (24 h), 100 (8 : 19 (24 h), 25 (8

Date			Pollutants		2	Sampling hour	Remark
				ug/m³			
		TSP		NO ₂	SO2		
	PM10	Particle	TOTAL				
20/11/93	114	241	355	n.a	n.a	24	Holiday
21/11/93	115	70	185	24	35	22	
22/11/93	138	273	411	32	87	8	
23/11/93	117	102	219	19	49	24	
24/11/93	136	233	369	43	23	8	
25/11/93	111	66	177	24	45	24	
26/11/93	141	192	333	48	15	8	
28/11/93	158	203	361	32	70	8	5-12 pm
29/11/93	104	381	485	13	118	8	
30/11/93	115	104	219	10	65	24	
01/12/93	124	327	451	36	132	8	
02/12/93	115	752	867	20	45	24	
04/12/93	81	94	175	30	57	18	
05/12/93	263	288	551	116	69	8	Holiday
06/12/93	243	274	517	77	184	8	
07/12/93	208	165	373	18	79	16	
08/12/93	214	669	883	58	73	8	
09/12/93	118	561	679	31	59	8	
10/12/93	132	351	483	32	72	8	
11/12/93	132	594	726	22	70	8	Holiday

Table 7 Ambient Air Quality Monitoring in Low Traffic - Thimi

I. Range:

TSP	:	185	-	867	(24 h)
3	:	333	-	883	(8 h)
PM10	:	111	-	117	(24 h)
8	:	104	-	263	(8 h)
NO ₂	:	10	-	24	(24 h)
	:	13	-	116	(8 h)
SO2	:	35	~	65	(24 h)
	:	15	-	184	(8 h)

II. Average:

TSP	:	337	(24	h),	521	(8	h)	
PM ₁₀	:	115	(24	h),	159	(8)	h)	
NO ₂	:	19	(24	h),	45	(8	h)	
SO2	:	49	(24	h),	81	(8	h)	

Date		Pollutants				Sampling hour	Remark
				ug/m³			
		TSP	`	NO ₂	SO2		
	PM ₁₀	Particle	TOTAL				
3/11/93 4/11/93	126 36	224 50	350 86	16 n.a	13 n.a	24 8	
5/11/93 6/11/93	32 51	54 84	86 135	14 14	13	8 24	Saturday
7/11/93 8/11/93	55 68	49 52	104	19 20	34	8	Holiday
9/11/93 10/11/93	60 56	98 106	158 162	55 9	13 13	5 24	
11/11/93 12/11/93	76 56	42 59	118 115	16 10	16 13	8 24	Hoilday
13/11/93 14/11/93 16/11/93	67 44 39	35 19 19	102 63 58	16 12 11	13 13 13	6 8 16	Holiday

Table 8 Ambient Air Quality Monitoring in Residential Area (TUTH, Maharajgunj)

(I) Range :

TSP	:	115	-	350	(24 h)
	:	63	-	118	(8 h)
PM10	:	51	-	126	(24 h)
	:	32	-	76	(8 h)
NO ₂	:	9	-	14	(24 h)
	:	12	-	19	(8 h)
SO2	:	13	-	34	(24 h)
	:	13	-	13	(8 h)

(II) Average :

SPM	:	191	(24	h),	93	(8)	h)
PM10	:	72	(24	h),	49	(8)	h)
NO ₂	:	12	(24	h),	15	(8)	h)
SO2	:	19	(24	h),	13	(8	h)

Date	Pollutants				Sampling hour	Remark	
		SPM		NO ₂	SO2		
	PM10	Particle	TOTAL				
01/9/93 02/9/93 03/9/93 11/11/93 13/11/93	27 19 43 150 161	48 16 21 120 161	75 35 64 270 254	25 57 66 9 9	13 14 13 13 13	24 8 8 24 24	Rainfall Rainfall Rainfall

Table 9 Ambient air Quality Monitoring in Residential Area - Naya Baneshwor.

I. Range:

TSP	:	75 -	270	(24 h)
	:	35 -	64	(8 h)
PM10	:	27 -	161	(24 h)
	:	19 -	43	(8 h)
SO2	:	0 -	13	(24 h)
	:	13 -	14	(8 h)
NO ₂	:	0 -	25	(24 h)
-	:	57 -	66	(8 h)

II. Average :

SPM	:	200	(24	h),	50	(8)	h)
PM10	:	113	(24	h),	31	(8)	h)
SO2	:	13	(24	h),	14	(8)	h)
NO ₂		25	(24	h),	62	(8	h)

Date		Pollutants					Remark
		ug/m³					
		SPM		NO ₂	SO2		
	PM10	Particle	TOTAL				
07/12/93	131	230	361	28	71	8	
08/12/93	108	125	233	20	23	24	
09/12/93	123	231	354	34	164	8	
10/12/93	95	76	171	17	23	8	
12/12/93	132	468	600	126	225	24	
13/12/93	132	141	273	11	41	5	
15/12/93	109	193	302	30	65	24	
17/12/93	93	142	235	23	49	20	
18/12/93	145	118	265	27	55	20	
19/12/93	115	292	307	53	121	20	
						8	

Table 10 Ambient Air Quality Monitoring in Residential Area - Jaya Bageshwori (Chabahill)

I. Range:

					1
TSP	:	171	-	273	(24 h)
	:	307	-	361	(8 h)
PM10	:	95	-	132	(24 h)
	:	123		131	(8 h)
NO_2	:	17	-	341	(24 h)
	:	28		53	(8 h)
SO2	:	23	-	41	(24 h)
	:	71	-	164	(8 h)

II. Average:

TSP	:	228 (24	h),	341	(8	h),	267	(20	h)
PM10	:	112 (24	h),	116	(8	h),	123	(20	h)
NO ₂	:	49 (24	h),	38	(8	h),	37	(20	h)
SO2	:	29 (24	h),	119	(8	h),	56	(20	h)

Date		Pollutants					Sampling hour	Remark
8C					ug/m ³			
		TSP			NO ₂	SO2		
	PM10	Particle	TOTAL					
01/9/93 10/9/93 13/9/93 16/9/93 17/9/93 18/9/93 02/9/93 09/9/93 05/9/93	21 77 32 30 46 35 42 35 n.a.	50 60 81 79 116 75 14 72 n.a.	71 137 113 109 162 110 56 107 n.a.		71 11 14 28 34 21 63 8 42	13 13.4 21 13 26 21 13 13 13 13	24 24 22 8 8 8 8 8 8 6	.Rainfall Rainfall Rainfall

Table 11 Ambient Air Quality Monitoring in Industrial Area - Balaju (BID).

<u>I. Ranqe</u>:

TSP	:	71 -	137	(24 h)
	:	56 -	162	(8 h)
PM10	:	21 -	77	(24 h)
	:	35 -	46	(8 h)
SO2	:	13 -	21	(24 h)
	:	13 -	26	(8 h).
NO ₂	:	11 -	71	(24 h)
	:	8 -	63	(8 h)

II. Average :

TSP	:	108	(24	h),	109	(8	h)
PM_{10}	:	40	(24	h),	40	(8)	h)
SO2	:	15	(24	h),	17	(8)	h)
NO_2	:	31	(24	h),	34	(8)	h)

Table 12 Ambient Air Quality Monitoring in Industrial Area - Patan (PID)

Date	Pollutants			Pollutants			Remark
		TSP		NO ₂	SO2		
	PM10	Particle	TOTAL				
01/9/93 10/9/93 13/9/93	53 36 53	37 33 49	90 69 102	83 26 12	13 13 13	24 24 21	Rainfall Rainfall
02/9/93 05/9/93	64 n.a	61 n.a.	125 n.a.	69 80	13 13	8 8	Rainfall Rainfall

I. Range:

TSP	:	69 -	102	(24 h)
	:	0 -	125	(8 h)
PM10	:	36 -	53	(24 h)
	:	0 -	64	(8 h)
SO2	:	13 -	13	(24 h)
	:	13 -	13	(8 h)
NO ₂	:	12 -	83	(24 h)
	:	69 -	80	(8 h)

II. Average :

TSP	:	87	(24	h),	125	(8)	h) .	
PM10	:	47	(24	h),	64	(8)	h)	
SO2	:	13	(24	h),	13	(8)	h)	
NO ₂	:	40	(24	h),	75	(8	h)	

Date		Pollutants					Rema rk
		SPM		NO ₂	SO2		
	PM10	Particle	TOTAL				
12/12/93 13/12/93 14/12/93 15/12/93 18/12/93 19/12/93	104 122 95 94 131 169	186 107 64 74 104 625	290 229 159 168 235 794	19 21 19 18 24 78	79 59 38 48 67 101	20 8 20 20 20 8	

Table 13 Ambient Air Quality Monitoring in Bhaktapur Industrial Areas

I. Range:

TSP	:	159	-	290	(20 h)
	:	229	-	794	(8 h)
PM10	:	94	-	131	(20 h)
	:	122	-	169	(8 h)
NO ₂	:	18	-	24	(20 h)
	:	21	-	78	(8 h)
SO2	:	38	-	79	(20 h)
-	:	59	-	101	(8 h)

II. Average:

TSP	:	213	(20	h),	512	(8)	h)
PM10	:	137	(20	h),	146	(8)	h)
NO ₂	:	20	(20	h),	50	(8)	h)
SO2	:	58	(20	h),	80	(8)	h)

Date			Pollutants			Sampling hour	Remark
-			16-18-	ug/m³			
		SPM		NO2	SO2	 	41 - E
	PM10	Particle	TOTAL				- 94
15/12/93 16/12/93 17/12/93 18/12/93 19/12/93	157 147 127 215 194	373 158 1093 329 230	560 305 1220 544 424	38 17 131 54 58	45 61 238 120 65	24 24 3 8 24	

2

Table 14 Ambient Air Quality Monitoring in Around Himal Cement Factory

I. Range:

TSP	:	305 - 56	0 (24 h)
PM10	:	147 - 19	4 (24 h)
NO ₂	:	17 - 5	8 (24 h)
SO2	:	45 - 6	5 (24 h)

II. Average:

TSP	:	430	(24	h)	
PM10	:	166	(24	h)	
NO ₂	:	38	(24	h)	
SO,	:	57	(24	h)	

Table 15

15	Ambient Air Quality Monitoring in Regional Background control site -	
	Tribhuvan University, Kirtipur.	

Date			Sampling hour	Remark			
				ug/m ³			
		SPM		NO ₂	SO2		
	PM10	Particle	TOTAL			:	
18/11/93 21/11/93 22/11/93 23/11/93 24/11/93 25/11/93 26/11/93 27/11/93 01/12/93 02/12/93 06/12/93 07/12/93	75 39 35 41 64 19 59 83 64 29 57 58 69	17 38 23 39 53 55 19 18 13 16 03 22 46 12	92 77 68 80 117 74 78 103 77 45 60 97 104 81	14 23 50 26 16 17 19 9 11 10 20 20 38 82	13 21 35 35 20 26 63 13 35 77 40 32 76 70	24 8 8 8 8 5 8 24 24 8 24 8 24 8 8	Holiday
08/12/93 09/12/93 12/12/93 14/12/93 16/12/93 19/12/93	52 73 81 113 136	31 24 74 169 96	83 97 155 282 232	45 35 20 90 83	80 39 33 260 285	8 24 24 3 3	

I. Range:

TSP	:	45	-	155	(24 h)
Ŷ	:	68	-	117	(8 h)
PM ₁₀	:	64	-	81	(24 h)
	:	19	-	83	(8 h)
NO ₂	:	10		35	(24 h)
	:	9		82	(8 h).
SO,	:	13	-	77	(24 h)
	:	13	-	80	(8 h)

II. Average:

TSP	:	94	(24	h),	84	(8)	n)
PM10	:	66	(24	h),	52	(8)	n)
NOz	:	18	(24	h),	33	(8)	n)
SO2	:	38	(24	h),	42	(8)	n)

NILU OR 55/95 App.

Appendix 2

Air Quality Guidelines

Nepalese air quality guidelines/standards have not yet been established. WHO Air Quality Guidelines and Standards

WHO air quality guidelines and standards are listed in Table 1.

Table 1:	WHO Air Quality Guidelines/Standards	(WHO, 1977a, 1977b, 1978,
	1979, 1987)	

Parame	eter	10	15	30	1	8	24	1	Year of
		minutes	minutes	minutes	hour	hours	hours	year	standard
SO2	μg/m ³	500		1222-1297	350		125 ^a	50 ^a	1987
SO2	μg/m ³						100- 150	40-60	1979
BSb	µg/m ³			H			125 ^a	50 ^a	1987
BS ^b	μg/m ³						100- 150	40-60	1979
TSP	μg/m ³						120 ^a		1987
TSP	μg/m ³						150- 230	60-90	1979
PM ₁₀	μg/m ³						70 ^a		1987
Lead	µg/m ³							0.5-1	1987, 1977b
СО	mg/m ³		100	60	30	10			1987
NO ₂	µg/m ³				400		150		1987
NO ₂	μg/m ³				190- 320 ^C				1977 ^b
03	μg/m ³				150-200	100-120			1987
03	μg/m ³				100-200				1978

Notes (WHO/UNEP 1992)

a Guideline values for combined exposure to sulphur dioxide and suspended particulate matter (they may not apply to situations where only one of the components is present).

b Application of the black smoke value is recommended only in areas where coal smoke from domestic fires is the dominant component of the particulates. It does not necessarily apply where diesel smoke is an important contributor.

c Not to be exceeded more than once per month.

Suspended particulate matter measurement methods (WHO/UNEP 1992)

BS = Black smoke; a concentration of a standard smoke with an equivalent reflectance reduction to that of the atmospheric particles as collected on a filter paper.

TSP = Total suspended particulate matter; the mass of collected particulate matter by gravimetric analysis divided by total volume sampled.

- PM_{10} = Particulate matter less than 10 µm in aerodynamic diameter; the mass of particulate matter collected by a sampler having an inlet with 50 per cent penetration at 10 µm aerodynamic diameter determined gravimetrically divided by the total volume sampled.
- TP = Thoracic particles (as PM_{10}).
- IP = Inhalable particles (as PM_{10}).

Appendix 3

Emission Inventory

Contents

1.	Introduction	Page 55
2.	Population distribution	57
3.	Fuel consumption	60
4.	Traffic activity and its spatial distribution	62
5.	Emission factors	67
6.	Emission from industry	71
	6.1 The brick industry	71
	6.2 The Himal Cement Factory	73
	6.3 Other industries	73
7.	Total emissions	75
8.	Spatial emission distribution	77
9	References	. 84

1. Introduction

Two fairly comprehensive emission inventories have been previously worked out for Kathmandu Valley, namely by Devkota (1992) and by Shrestha and Malla (1993).

Both investigations covered emissions from most of the main air pollution sources in the valley: road vehicles, brick and cement industry, households, other industries (e.g. potters), aircraft. Shrestha only considered the emissions from "energy use", and not industrial process emissions. None of them considered resuspension from roads and other open surface construction, or refuse burning. Both treated the compounds TSP, CO, SO₂, NO_x, VOC and CO₂. Devkota attempted also to estimate emissions of benzene specifically, and of PAH from road traffic.

The following comprehensive emission survey is based on the works of Devkota (1992) and Shrestha and Malla (1993). The JICA Study on Kathmandu Valley Urban Road Development (JICA, 1992) gave valuable data on the distribution of traffic on the road network of the valley. RONAST, through the URBAIR contract on data collection, also provided data on traffic, fuels, production etc. used in the following.

In addition, the following investigations of the industry and its emissions have been used:

- Bhattarai (1993): Paper on Industrial Contribution to Air Quality, presented at the URBAIR Workshop in December, 1993.
- Thapa, Shrestha and Karki (1993): A Survey of Brick Industries in the Kathmandu Valley.
- NESS Ltd. (1995): Assessment of the Applicability of Indian Cleaner Process Technology for Small Scale Brick Kiln Industries of Kathmandu Valley.

Gridded emission fields (emissions distributed in a km² grid net) were produced using the supporting software programs for the KILDER dispersion modelling program system, developed by NILU (Gram and Bøhler, 1992).

The km² distribution of area source emissions was based on traffic distribution and population distribution data.

The area selected for air pollution modelling, and thus for emission inventorying, is shown in Figure 1. It consists of 27x21 km² grid squares, covering the full area of the valley.

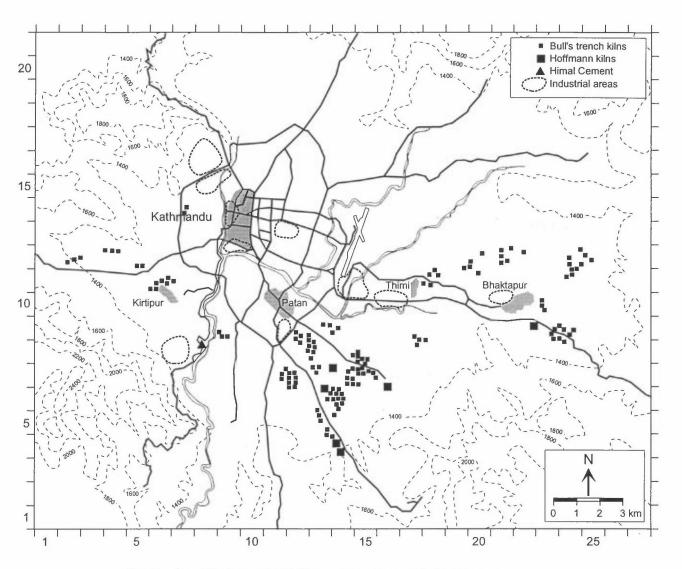


Figure 1: Kathmandu Valley air quality modelling area.

2. Population distribution

The spatial distribution of the population within the grid system is important information when the fuel consumption, especially domestic fuel consumption, is to be distributed within the grid system.

The total population of the URBAIR modelling area for Kathmandu Valley is 1.063.000 inhabitants for the year 1991.

This is the number used by JICA in the transportation study. The basis for distributing the population into km² grids is given by Table 1 and Figure 2, with reference to the JICA transportation study. The further distribution into km² grids was done subjectively, based on the distribution of villages within each km².

The resulting distribution of the total population is given in Figure 3.

The distribution between urban/rural populations is 62/38% for Kathmandu district, 53/47% for Lalitpur district, and 35/65% for Bakthapur.

Zone No.	1991	Zone No.	1991	
101	6.691	301	16.099	
102	8.288	302	9.794	
103	29.749	303	18.752	
104	8.592	304	16.477	
105	37.380			
106	24.831	401	10.985	
107	41.213	402	15.015	
108	9.983	403	26.878	
109	20.329	404	29.291	
110	30.074	405	36.807	
111	19.491	406	25.886	
112	20.281	407	24.868	
113	28.813	408	31.633	
114	45.330	409	33.674	
115	19.190	410	19.304	
116	19.208			
117	12.753	501	21.273	
118	32.068	502	32.270	
		503	21.148	
201	25.925	504	29.626	
202	11.757			
203	15.300	601	31.919	
204	28.019	602	29.991	
205	15.856	603	24.282	-
206	20.346	604	25.783	
		SUM	1.063.222	

Table 1: Population of "traffic zones", as given in Figure 2. (Ref.: JICA 1992).

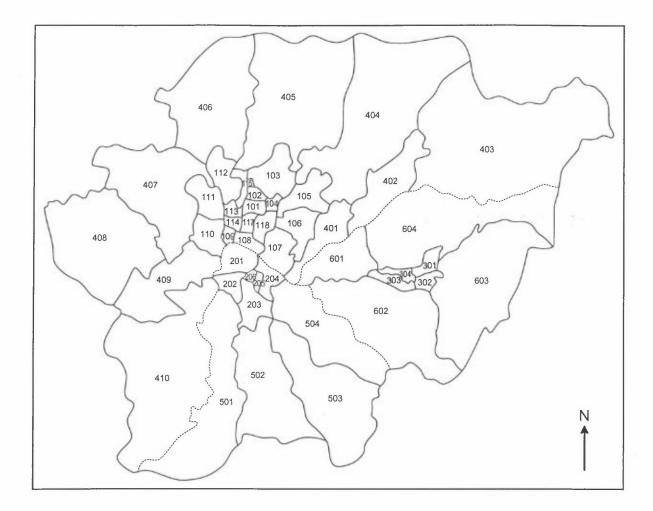


Figure 2: "Traffic zones" of Kathmandu Valley. (Ref.: JICA, 1992).

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
J=21							68.	118.	186.	169.	169.	105.,	105.	174.	140.	105.	70.	52.	106.			71.	71.		158.		
J=20		18.		·	•		34.	85.	102.	135.	135.	174.	209.	209.	174.	174.	105.	35.	71.	106.	141.	79.	108.	79.	79.	79.	
J=19		35.	18.	18.	18.	18.	35.	85.	51.	85.	220.	174.	105.	315.	157.	123.	141.	71.	106.	71.	156.	102.	88.	158.	79.	158.	•
J=18		35.	53.	35.	35.	35.	35.	35.	272.	406.	278.	271.	464.	446.	158.	814.	438.	177.	247.	114.	102.	117.	158.	158.	158.	237.	
J=17		18.	88.	88.	71.	88.	88.	35.	433.	406.	779.	490.	446.	446.	220.	673.	332.	141.	106.	117.	117.	117.	97.	167.	158.	316.	79.
J=16		ю ч.	71.	71.	53.	71.	106.	71.	292.	893.	1049.	913.	769.	560.	561.	112.	141.	177.	129.	117.	138.	63.	54.	18.	18.	97.	97.
J=15		62.	124.	80.	66.	124.	141.	106.	98.	2716.	4546.	415.	1231.	585.	522.	298.	526.	156.	117.	120.	72.	72.	81.	63.	45.	63.	72.
J=14	.	155.	155.	124.	186.	133.	141.	371.	902.	3164.	2671.	1329.	1008.	710.	497.	369.	142.	154.	197.	236.	126.	81.	72.	72.	90.	89.	102.
J=13		124.	155.	155.	248.	239.	176.	276.	902.	1219.	559.	930.	989.	824.	785.	106.	146.	316.	373.	290.	144.	90.	90.	358.	134.	83.	125.
J=12		155.	186.	248.	248.	191.	456.	162.	162.	694.	519.	648.	758.	1385.	302.	110.	261.	448.	299.	251.	419.	319.	277.	693.	186.	78.	93.
J=11		62.	186.	193.	197.	216.	323.	216.	296.	732.	944.	2477.	1121.	256.	125.	144.	272.	267.	229.	479.	864.3	1233.	976.	498.	55.	62.	109.
J=10		31.	112.	108.	216.	269.	132.	201.	148.	428.	506.	1004.	841.	228.	228.	182.	171.	171.	149.	256.	128.	273.	64.	86.	62.	93.	125.
J= 9			54.	54.	162.	81.	25.	98.	94.	219.	287.	383.	383.	171.	285.	228.	185.	214.	171.	171.	85.	53.	85.	43.	93.	125.	93.
J= 8			12.	39.	39.	52.	37.	49.	73.	67.	179.	27.	203.	155.	86.	157.	342.	86.	121.	64.	64.	43.	53.	32.	31.	31.	16.
J= 7			12.	12.	25.	49.	25.	37.	73.	90.	170.	161.	323.	434.	123.	189.	86.	114.	96.	21.	32.	32.	43.	21.	8.	23.	8.
J= 6			25.	25.	37.	31.	37.	49.	74.	22.	202.	188.	269.	135.	289.	101.	57.	57.	142.	53.	21.	21.	21.	21.	19.	16.	
J= 5				12.	49.	25.	49.	49.	49.		121.	242.	161.	99.	230.	109.	54.	72.	61.	29.			11.	11.	11.		•
J= 4				25.	37.	37.	37.	25.	37.		69.	215.	94.	108.	63.	72.	72.	109.	54.	·	·	·			•	•	
J= 3				б.	25.	12.	25.	31.	37.	·	67.	188.	161.	81.	54.	36.	36.	36.	•		•	•	·		•		•
J= 2				12.	18.	37.	12.	36.	17.	·	11.	161.	81.	54.	81.	18.					•						
J= 1				б.	25.	25.	18.	18.	22.				13.	27.	27.											•	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Figure 3: Distribution of the Kathmandu Valley population within the km² grids of the modelling area, 1990/91. (In tens of inhabitants.)

NILU OR 55/95 App.

59

3. Fuel consumption

The fuel sale and consumption data for Kathmandu Valley in the available references are given in Tables 2 and 3.

	Gasoline (MS)	Sector	HSD	Sector	LDO	Sector	SKO	Sector
Shrestha and Malla (1993)	28.015	Т	22.955	Т	359	Т	35.000	Н
Estimated			564	1			315	I.
Consumption, 1992/93							702	С
Total	28.015		23.519		359		36.045	
Devkota (1992)	20.093	т	70.317	?			60.826	?
"Consumption"			("Dies	el")				
NOC, 1990/91								
Gautam et al. (1994)	11.098	т	21.825	T?	1.320		38.600	
NOC sales, 1992/93					("Fuel oi	il")		
KVVECP final report	14.250	т	27.000	T?				
1990			("Diesel")					
I Traffic H I Industrial C	Household Commercial	HSE LDC	9	peed dies liesel oil	el Si	KO Kerc	sene	

Table 2: Fuel sale and consumption data (Liquid fuels) , kl, for KathmanduValley.

There are wide discrepancies between the various reported numbers.

Gasoline (MS) is considered to be used almost exclusively for road traffic. The amount varies between about 11.000 and 28.000 kl/a. It appears that Shrestha arrived at his number by asking a number of vehicle operators about how much gasoline they use annually, and using the average number thus arrived at for the entire operating vehicle fleet (Table 6). He arrived at the operating vehicle fleet by assuming that a certain fraction of the registered vehicles in each category is actually in normal operation (see Table 6). On the basis of fuel efficiency figures, he also arrived at average vehicle km's travelled annually (and daily) per vehicle (see Table 7), which seems reasonable.

We decided to use Shrestha's gasoline consumption data in the following analysis.

Motor diesel (HSD) may be used for other purposes than for road vehicles. Three of the references give figures which agree fairly closely with HSD consumption for traffic.

Devkota's much higher total number may reflect, if correct, that HSD is used to a large extent also for other purposes, e.g. industrial/commercial. Shrestha does not report much use of HSD in industry.

As for HSD for road traffic, Shrestha's estimation is selected here for use in the emission survey of this study. We leave the question open that there also may be a substantial use of HSD for other purposes.

Diesel oil (LDO) is reported to be used only to a small extent, in industry. Only Shrestha is reporting this, based on CBS (1993). Cottage industries with less than 10 employees are, however, not included in that survey.

The consumption of kerosene seems to be around 37.000-39.000 kl annually, as reported by Shrestha and Gautam. Devkota's much larger SKO number is not taken into account in the following analysis.

Data reported on consumption of solid fuels is given in Table 3 (cement and brick industry excluded, which is shown in Table 5).

	Shrestha and Malla (1993)	Devkota (1992)
	1992/93	1990/91
Fuel wood	122.0 H	
	17.2 I	
	0.5 C	
Coal	4.8 I	
Charcoal	0.5 H	
	0.6 C	
Agricultural residue	45.4 H	35-60 I
Animal waste	3.0 H	

Table 3: Fuel consumption data (solid fuels), Kathmandu Valley (10³ t/a).Commercial, industrial (excl. brick and cement) and household.

Regarding fuel consumption in households, the estimate of per capita consumption for rural and urban populations as estimated by Shrestha and Malla (1993) is given in Table 4.

Table 4: Estimated Annual Per Capita Consumption of Fuels in Urban and
Rural Areas of Kathmandu Valley in 1992/93.
(Ref.: Shrestha and Malla, 1993).

Area	Fuelwood	Kerosene	Agricultural Residues	Animal Waste	Charcoal	LPG
	(kg)	(I)	(kg)	(kg)	(kg)	(kg)
Urban ¹	93.5	34.5	7.5	0.0	0.8	6.3
Rural ²	115.0	23.7	75.74	5.7	0.0	0.0

1 Source: Malla (1993)

2 Source: Shrestha (1993)

Devkota (1992) has given somewhat higher domestic fuel consumption data, based on investigation of the fuel use in 10 families living near Thankot: 175 kg of fuelwood per capita and 157 kg of agricultural residue per capita.

		Cement					
	Bull's ti	rench (NESS,	1995)	Chinese ²	Himal		
	aver. per kiln	no. of kilns	Total	(Shresta, 1993)	(Shrestha, 1993)		
	1994			1992/93	1992/93		
Coal	318.8	130	41.444	4.093 ¹	17.096		
Lignite	4.5		585				
Fuel wood	43.9		5.707				
Saw dust	20.5		2.665				
Rice husk	101.0		13.130				
Tire scrap	0.3		39				

Table 5:	Fuel consumption in the cement and brick industry (tons/year)
	Kathmandu Valley.

1 Consumption in HHBF and BBF brick factories.

2 Devkota reports 1 ton of coal per 8000 bricks.

Shrestha (1993) is used in this study as the main source of information on solid fuel consumption. One figure from Devkota (1992) is added, which concerns the estimated amount of fuel used by local potters (12-15 tons per potter per year, 3 000-4 000 units).

For fuel consumption in the Bull's Trench brick kiln industry, NESS (1995) is used as the primary source, while for the Chinese kilns and Himal cement, Shrestha has reported consumption figures. For the Chinese kilns, the reported number from Shrestha concerns two of the 6 factories. Devkota reports the use of 1 ton of coal per production of 8 000 bricks, based on data from the Harisidhhi factory.

4. Traffic activity and its spatial distribution

The total traffic activity of Kathmandu Valley has been calculated here, based upon the data reported by Shrestha (1993) on average fuel consumption and average km's travelled annually per vehicle class, and the number of operating vehicles in the valley.

Traffic data reported by the JICA Urban Road Development Study (JICA, 1992) and by RONAST (1994) have been used here to distribute the traffic activity spatially, in the km² grid net.

The various data reported on the total number of registered vehicles in the valley are given in Table 6. Shrestha's estimate of the fraction of vehicles actually operating is also given.

	Gasoline/	Shre	stha and Malla	a 92/93	RONAST	JICA	Devkota
	Diesel	Reg. number	Operating fraction	Operating vehicles	Reg. april 93	Reg. 90/91	(year?) "No. of vehicles"
Car	G	16.522	0.61	10.105	20.273	18.000	19.535
Jeep	G	5.522	0.61	3.368		+883(CD/UN)	
Minibus	D	1.322	?	372	1.333		
Bus	D	715	?	110	773	7.069	7.397
Truck	D	3.114	0.44	693	3.231		
Tractor	D	1.917	0.50	959	1.587	1.729	1.864
3 wheeler	G	3.175	0.50	1.588	3.844	2.414	2.991
3 wheeler	D	669	0.50	335			
2 wheeler	G	35.002	0.80	28.000	36.129	24.211	26.121

Table 6: Registered vehicle population, Bagmati.

Considering that the data represent different years, there is fair agreement between the sources. One notable discrepancy is that Shrestha and RONAST give a substantially lower number of registered buses and trucks than JICA and Devkota. The former are the most recent data.

Table 7 gives Shrestha's data on average fuel consumption, fuel efficiency and resulting average km's travelled per vehicle class.

Table 7: Estimated Annual Average Fuel Consumption and Average Number of
Kilometres Travelled Per Vehicle in Transport Sector by Vehicle Types
in 1992/93.
Ref.: Shrestha and Malla, 1993.

Vehicle Type	Fuel Type	Sample Size	Mean of Average Fuel Consumption	Fuel Efficiency		Average km travelled per vehicle	
			(I)	(km/l)	(l/10 km)	Annually	Daily
Truck	Diesel	15	8,704	4.5	2.2	39,168	107
Bus	Diesel	10	8,418	3.0	3.3	25,254	69
Minibus	Diesel	17	7,373	4.5	2.2	33,178	91
Jeep	Diesel	20	2,315	8.0	1.25	18,520	51
Tractor	Diesel	4	4,785	4.4	2.3	21,054	58
Car	Gasoline	61	1,595	10.6	0.94	16,907	46
3-Wheeler	Diesel	9	2,592	12.5	0.8	32,400	89
3-Wheeler	Gasoline	16	1,479	11.0	0.9	16,269	45
2-Wheeler	Gasoline	42	341	45.5	0.22	15,515	43

Gasoline	Mill. veh. km/a	
Cars, taxis	170.8	
3-wheelers (TC)	25.8	
2-wheelers (MC)	434.4	631.0
Diesel		
Jeeps	62.4	
Minibuses	12.3	
Buses	2.8	
Trucks	27.1	
Tractors	20.2	
3-wheelers (TC)	10.9	135.7
Total		766.7

Shrestha's figures give the following traffic activity data for the year 1992/93:

This total traffic activity corresponds to the total consumption of gasoline and motor diesel in traffic as given in Table 2, ref. Shrestha and Malla (1993).

The average vehicle composition of the traffic has also been reported by others (Table 8). There may be some discrepancy between the various authors regarding the classification of vehicles. The main discrepancy in the results of Table 7 is that Shrestha has a very high relative number for MC activity, at the expense of Tempo (3-wheelers) activity. His sum for Tempo and MC is, however, in fair agreement with other sources. The problem seems to be that Shrestha has based himself on a too low average driving distance for the Tempos and too long distance for the MC's.

The data give basis for the following estimate of average vehicle composition of Kathmandu Valley traffic:

Car/taxi	25%
Jeep/minibus/tractor	15%
Bus	2%
Truck	5%
Tempo (TC)	25%
Motorcycle (MC)	28%

The vehicle composition in the traffic varies substantially between roads. Streets in the centre have very high tempo/MC percentage, while the proportion of trucks is high on the Ring Road (10-15%).

In this study, account is not taken of this variation. The average composition is used as a basis for calculating composite vehicle emission factors for gasoline and diesel separately.

		JICA (1992) Daily	Giri (1993) Rush-hour	Devkota (1992) Rush-hour	Shrestha (1993) Daily
PC/taxi	G	G 32.5 20.4 (20.0+12.5)		25	22.3
Jeep (Picku	ip) D			7	8.1
Minibus/trol	ley D	8.1	14.6	8	2.0
Trucks/tract	tors D	4.9	2.3 (incl. bus)	4	6.2
Tempo	G/D	21.8	62.6	22	4.8
MC	G	30.0		22	56.6

Table 8:	Composition	of vehicle	categories	in	Kathmandu traffic.
1000000	Composition	of renever	curryorico	010	I COULDING COULD OF COULDC.

JICA : Based upon 29 counting locations, 1992.

Giri : Based upon 33 counting locations, 1993.

Devkota : Based upon 22 counting locations, 1992.

Shrestha : Based upon an analysis of total traffic activity based on fuel consumption, annual average driving distance and number of operating vehicles.

The traffic data has been used to distribute the traffic on the main road system as shown in Figure 4, which gives the estimated annual average daily traffic (AADT) numbers on some of the main roads.

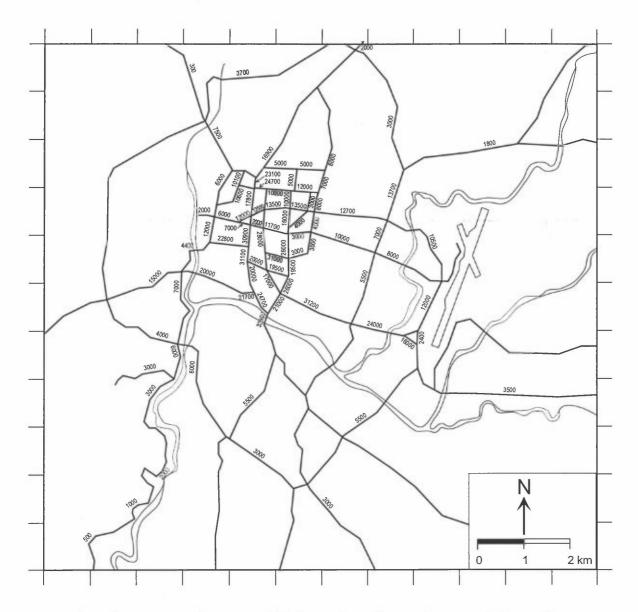


Figure 4: The main road system of Kathmandu Valley with some of the traffic data used in this study.

5. Emission factors

The selection of the emission factors used in this URBAIR calculation for fuel combustion and road vehicles in Kathmandu Valley was based on the following data sources:

- US EPA emission factors of AP42 publication.
- Emission factors of the WHO publication: "Assessment of Sources of Air, Water and Land Pollution", Part I: Rapid inventory techniques in Environmental Pollution (Geneva, 1993).
- Particle emission factors described in Appendix 5.
- Particle emission factors for road vehicles, as deduced from smoke meter measurements in the KVVECP study (see page 69).

The selected emission factors for fuel combustion, road vehicles and industry are shown in Tables 8 and 9.

		TSP	PM ₁₀ TSP	SO ₂	NO _x	%S max.
Fuel com	bustion (kg/t)					
Residual o	il (FO) ind./comm.	1.25S+0.381)	0.85	20S	7	4
Distillate oi	il ind./comm.	0.28	0.5	20S	2.84	HSD: 1 ⁴⁾
(HSD, LDC	D) residential	$0.36 \to 1.6^{2})$	0.5	20S	2.6	LDO: 1.8 ⁵⁾
LPG	ind./dom.	0.06	1.0	0.007	2.9	0.02
Kerosene	dom.	0.06	1.0	17S	2.5	0.25
Natural gas	s utility	0.061	1.0	20S	11.3 · f	
	ind./dom.	0.061		20S	2.5	
Wood	dom.	15	0.5	0.2	1.4	
Fuelwood	ind.	3.6	0.5			
Coal	dom./comm.	10	0.5			1.86)
Charcoal	dom/comm.	20	0.5			
Agri.residu	e	10	0.5			
Anim. wast	te	10	0.5			
Refuse bur	ming, open	37	1	0.5	3	52
Road veh	nicles (g/km)	A B				
Gasoline	Cars	0.2	1		2.7	83 Octane (RON) 0.25 ³⁾
	MC/TC	0.5	1		0.07	93 Octane (RON) 0.20
Diesel	Cars, jeeps, tractors	0.6 0.9	1		1.4	14)
	Minibuses, tempos	0.9 1.5	1		13	
	Buses, trucks	2.0 3.0			13	

Table 8:	Emission factors used for URBAIR, Kathmandu Valley. Fuel
	combustion, refuse burning and road vehicles.

1) S sulphur content, in %

2) Well \rightarrow poorly maintained furnaces

3) Actual S content in 87 RON gasoline, according to IOC Ltd quality certificate: 0.009%

4) Actual S content, according to IOC Ltd quality certificate: 0.20%

5) Actual S content, according to IOC Ltd quality certificate: <1%

6) NESS (1995)

A Used for Manila, Jakarta, Bombay

B Proposed and used for Kathmandu Valley.

	TSP	$\frac{PM_{10}}{TSP}$	SO ₂	NOx	СО	%S	F	Pb
Brick industries								
Bull's trench								
per ton of bricks per ton of fuel - coal (bituminous) - wood and bark - lignite	9.42	0.25	6.06S	1.18	1.19	1. C	0.5	
Chinese (Hoffman Bhatta)								
Portland Cement								
Dry process, uncontrolled								
Dry process, kiln	128	0.42	5.4 ¹ +3.6S ²	1.4				0.06
Clinker cooler	4.6	0.09						
Dryers, grinders, etc.	48							

Table 9:Emission factors (kg/ton) for brick and cement industries (US EPA
AP42).

1. From mineral source. 2. From coal.

The emission factors for Nepal/Kathmandu conditions may differ substantially from those given in the tables.

For road vehicles, observations of vehicle exhaust in the valley indicate that a substantial part of the fleet has very high emissions. There are indications that this is partly due to fuel adulteration. Steadman et al. (1993) have made exhaust measurements with a remote sampling technique on Kathmandu vehicles, also finding large emission factors. It should be mentioned that the measurement site was on a slightly uphill road. The fraction of "grass polluters" was 16% and 25% for HC and CO respectively. Also, their measurements showed high opacity readings, i.e. particle emissions. Very high opacity readings have also been measured for the Kathmandu vehicle fleet as part of the KVVECP study. These measurements cannot be used to calculate exhaust particle emission factors. They indicate, however, that the real particle emission factors for Kathmandu vehicles may be substantially higher than those given in Table 7.

Also, the particle emission factors for the various uses of solid fuels in Kathmandu, such as fuelwood, coal, charcoal, agricultural residue and animal refuse are not well determined.

Particle emissions from Kathmandu diesel vehicles

The particle emission factors for diesel vehicles used in the URBAIR study for Manila, Bombay and Jakarta, are, as described in Appendix 5, based upon available literature, especially the measurements made on diesel vehicles in Manila. The emission factor for trucks, 2 g/km, was based upon some 20% of the trucks being "smoke belchers", with an emission factor up to 8 g/km.

Observations in the Kathmandu traffic and the smoke testing results from the KVVECP study (Table 10) indicate that more than 75% of the vehicles in each class have smoke emissions of more than 75 HSU, and some 55% have emissions over 85 HSU. The test is done for free acceleration of the engine and does not represent the smoke emissions during driving. However, there is a correlation between smoke emissions during free acceleration and during normal driving.

Vehicle type	ype Distribution (%) of tested vehicles in smoke (HSU) level rar					
	<65	66-75	76-85	86-95	96-100	
Tempo	2	14	16	55	13	
Car	19	6	6	62	6	
Jeeps/st.wgn.	2	7	25	59	6	
Mini buses	4	5	28	56	7	
Mini trucks	13	14	24	44	4	
Buses	4	13	44	39	0	
Trucks	4	8	40	44	4	
Average	7	10	26	51	6	

Table 10: Summary of diesel vehicle smoke test results (Ref.: KVVECP study).

HSU: Hartridge Smoke Units.

In Table 11, emissions in g/km are estimated from HSU units, based on certain conditions. These g/km figures represent estimates of emissions during "smoking conditions".

Hartridge Smoke Units	Particle emissions						
	g/m ³	g/km ¹)	g/km²)				
		40 l engine 2000 rpm 40 km/h	Light truck 0.2 l/km	Heavy truck 0.4 l/km			
30	0.13	1.6	0.8	1.6			
65	0.42	5.0	2.5	5.0			
75	0.55	6.6	3.3	6.6			
85	0.72	8.6	4.3	8.6			
95	1.0	12	6	12			

 Table 11: Particle emission factor (g/km) for diesel trucks, estimated from HSU data.

1) Based upon 12 m³ air/km (4 l engine, 2000 rpm, 40 km/h).

2) Based upon 0.03 g fuel/g air.

For loaded buses and trucks in the Kathmandu topography, it may be a valid estimate that smoking conditions for the vehicle occur more than 50% of the time of operation.

Combining data from Tables 10 and 11, the average particle emission during "smoking conditions" for Kathmandu trucks is 4.3 g/km for light truck (0.21 fuel/km) and 8.6 g/km for a heavy truck (0.4 l fuel/km).

Assuming that the average specific fuel consumption by trucks and buses in Kathmandu Valley is 0.3 l/km, that "smoking conditions" for the total traffic activity of the valley occur for 25-50% of the time, and that the emission factor for the rest of the time is 1 g/km, the average truck/bus emission factor for Kathmandu is calculated to 2.5-3.7 g/km.

This figure is supported by the emission factor presented by Dr. Mathur of IIT New Delhi in the KVVECP Summary Report, namely 11 kg particles/1000 litres of diesel, corresponding to 3.7 g/km for a fuel consumption of 0.22 l/km.

Table 10 shows that the HSU distribution is nearly the same for all diesel vehicle types, showing that all the vehicle types are dominated by smoking vehicles. The reason for this condition in the Kathmandu Valley is probably two-fold: i) old, poorly maintained vehicles, and ii) poor fuel quality.

The above considerations are a basis for increasing the emission factors for particles from diesel vehicles in Kathmandu Valley, relative to those used for Manila, Jakarta and Bombay. Both factors are shown in Table 8.

6. Emission from industry

The locations of the Bull's Trench kilns, the Chinese kilns and Himal Cement factory are shown in Figure 1.

6.1 The brick industry

The brick production data used in this study are as follows:

Area	No. of units	Total production mill. bricks		Stack height/	
		1993	1994	diam(m)	
				typical	
Bull's Trench (Tha	pa et al. 1993; NE	<u>SS, 1995)</u>			
Kathmandu	15	24.75			
Lalitpur	74	209.5		10/0.5	
Bhaktapur	41	127.0			
Total	130	361.0	450		
Chinese (Thapa et a	al., 1993)				
Lahtpur	5	53		65/1.65	
Bhaktapur	1	20			
Total	6	73			

Bull's Trench kilns

The emissions from these kilns have been estimated most recently by the NESS study (1995). The emissions originate mainly from the combustion of the fuel used, the most important of which are coal, fuelwood and rice husk. Handling of the bricks gives rise to particle emissions (resuspension). All fuels give substantial particle emissions, due to the inefficient combustion conditions in the kiln. The coal also gives rise to emissions of sulphur and other trace elements.

Coal analysis results from 1994 gave an average ash and sulphur content of 18% and 1.77% respectively (Table 12).

	Moisture	Volatile Ash	Fixed carbon	Sulphur	Calorific value	
	%	%	%	%	%	(kcal/kg)
Range (n=6)	0.3-6.2	7.3-37	1.9-73	20-60	0.3-4.4	5750-7460
Average	4.15	27.12	18.02	50.72	1.77	6708

Table 12: Coal analysis results, 1994 (NESS, 1995).

The emissions were calculated by 3 methods:

- Based on brick production, using US EPA AP42 emission factors (the weight of a brick is approx. 2 kg).
- Based on fuel consumption, using US EPA AP42 emission factors.
- Based on emission measurements from Bull's Trench kilns in India.

The AP42 emission factors are given in Table 9.

The emission results (Table 13) show wide discrepancies between the methods:

Table 13: Total emissions from Bull's Trench kilns in Kathmandu Valley 1994
(tons/a) (NESS, 1995).

Method	Particles	SO ₂	СО	VOC	NOx	F
	(SP)					
A Based on brick production	15862	6435	1442	405	631	451
B Based on fuel combustion	5144	1536	2547	524	119	
C Based on emission measurements, India	4438	4.8	16384	2373	0.8	

- Particles : Methods B and C agrees fairly well while method A gives very large emissions. Incidentally, using the AP42 factor for method A (9.42 kg/ton, 450 mill bricks and 2 kg/brick) gives 8,478 tons of particles, while 15,876 tons is reported by the NESS study.
- SO₂ : The methods disagree basically. Method C results indicate that the sulphur released from the coal is absorbed on the brick surfaces.
- NO_x : The methods disagree basically. Method C results (together with high CO emissions) indicate poor combustion conditions.

Based on this, we use an estimate of 5000 tons of particles emitted annually from Bull's trench kilns. The emissions of SO_2 cannot be estimated with confidence, due to the available data.

Chinese (Hoffmann Bhatta) kilns

No specific information is available on the emissions from these kilns in Kathmandu Valley. Also, total fuel and other input consumption data are not available. Shrestha (1993) has reported coal consumption for two of the factories, namely HHBF and BBF (4,093 tons in 1992/93).

Devkota (1992) reports that 1000 kg of coal is required to produce 8000 bricks (data from the HHBF factory). In addition, 15 tons of fuelwood is used annually for firing, which is negligible. Using the 1000 kg/8000 bricks figure, it is calculated that the Chinese kilns use a total of some 9100 tons of coal annually.

6.2 The Himal Cement Factory

The factory has a production capacity of 360 tons per day (Bhattarai, 1993), by 2 vertical shaft kilns.

Stack data are as follows	(Bhattarai, 1993):
No. of stacks:	2
Height	33.5 m
Flue gas velocity	5.7 m/s
Flue gas temperature	120°C
Stack diameter	? m

The production has normally been some 45.000-50.000 tons annually in the period 1986-91 (Devkota, 1992), with a coal consumption of some 6.000-8.000 tons annually. In the most recent years, production has increased, and Shrestha (1993) reports a coal consumption of some 17.000 tons for 1992/93.

According to Bhattarai (1993) the Himal Cement Co estimated that prior to the planned installation of effective particle emission control equipment in 1994, there was an average particle emission of 2.85 tons daily from the stack, and around 10 tons from lime stone handling at the quarry. In addition, there were substantial dust emissions from material handling and transport within the factory area.

The pollution control equipment, which includes bag filters and wet scrubbers, was planned to be in operation as of December 1994.

6.3 Other industries

There is a total of 2174 industrial establishments in Kathmandu Valley, presumably with more than 10 employees.

Devkota (1992) has described the level of industrialization in the valley.

There are 3 designated "industrial districts" in the valley: Balaju (0.35 km²) (the oldest one), Patan (0.14 km²) and Bhaktapur (0.04 km²). Besides these districts, the emergence of new industries along the "Ribbon zones", i.e. Kathmandu-Thankot and Kathmandu-Bhaktapur transportation corridors, and also in the southern part of Lalitpur district, is a matter of concern (see Figure 1 for location).

Industrial districts:	Balaju	:	71 units			
	Patan	:	103 units			
	Bhaktapur		27 units	-		
"Cottage industries"	(at mid-91)	K	athmandu	Lalitp	ur	Bhaktapur
Plastic and rub	ber		79	5		4
Metal crafting			409	97		7
Al, brass, Cu			32	9		-

Devkota reports the following numbers of industrial establishments:

Another major cottage industry in terms of number is backyard pottery, of which there may be several thousand in operation during the dry season.

Bhattarai (1993) describes briefly the dying industry (carpet and textile) in terms of air pollution emissions. They use boilers to generate steam. Previously, rice husk was mainly used as feed stock for the boilers, but now there is a transition towards the use of diesel oil (HSD). A recent survey of 19 industries gave that 12 of them used diesel.

Boilers are also used in other industries such as flour mills and leather mills. Presumably, there is a transition towards diesel also in such industries.

Devkota estimated the amount of rice husk used by potters in up-draft kilns. The annual demand per potter may be 12000-15000 kg of biomass.

These "other" industries definitely represent air pollution problems localized to the areas immediately adjacent. In addition, they represent a total emission from combustion of diesel and rice husk, and to some extent of process emission, which should be taken into account in the total emission survey for the valley. Their contribution to the background pollution of the valley, and thus their effect on visibility, should be considered.

RONAST (1994) reports a total diesel consumption of 7.83 mill litres by these smaller industries in the valley in 1992. Dairy products, textile processing and carpet/rugs were the largest industrial users.

With reference to the HMG/Ministry of Industry, RONAST (1994) reports the following TSP emissions from distributed industries:

Type of industry	No. of units	TSP in tons/a
Beverages/distilleries	3	5
Textile processing	85	8
Knitting mills	25	5
Carpet and rugs	1109	144
Paper and products	3	0.3
Animal feed	13	65
Plastic products	38	8
Soap and detergents	4	5
Marbles	1	67
Dry battery	1	880

7. Total emissions

Table 14 gives the estimated emissions of TSP, PM_{10} , SO_2 and NO_x associated with the various source categories, fuels, vehicle types and industries.

In the previous text, the quality of the data sources and the emission numbers have been briefly discussed. It is clear that the estimated emission figures given in Table 14 have a limited accuracy. For instance, brick industry emissions are not well determined. However, they are believed to be useful to give the first estimate of the importance of the various source categories, as contributors to the various air pollution problems of the Kathmandu Valley, such as:

- roadside pollution by suspended particles and PM₁₀ (respirable particles),
- general air pollution exposure of the population,
- reduced visibility.

Dispersion modelling will clarify which sources contribute most to these problems. One important point in this respect is the fact that the brick industry is in operation only during the October to March period, i.e. half the year, while the other sources are in operation during the whole year. For the reduced visibility problem, this means that the brick industry is even more important, may be twice as important relatively, than indicated by the emission figures of Table 14.

		TSP	PM ₁₀	SO ₂
Vehicles				
Gasoline	Cars/taxis	38.4	-	
	TC	67.5	-	4.2-105 ¹
	MC	107.5	-	
Diesel	Jeeps	68.4	-	
	Minibuses	22.5	-	
	Buses	45.0		78-390 ¹
	Trucks	114	-	
	Tractors	21.6		
	ТС	85.8	-	
Sum vehicle exhaus	t	570	570	82-495 ¹
Resuspension from	roads	1530	~400	0
-uel combustion				
Industrial/commercia	ıl			
(excl. brick/cement)	Fuelwood	61.9	31	
	Coal	48	24	172
	Charcoal	20	10	
	HSD	1.8	2	
	LDO/FO?			
	Kerosene/LPG	0.1		
	Agri.residue	450	225	
Sum industrial/comn	nercial	582	292	
Domestic	Fuelwood	1832	916	
	Agri.residue	454	227	
	Anim.waste	30	15	
	Kerosene/LPG	2.3	2.3	
	Charcoal	10	5	
Sum domestic		2328	1165	
Brick industry				
Bull's Trench		5000	1250	4.8-4465 ²
Chinese		180	45	
Sum brick		5180	1295	
Himal Cement	Stack	~2000	~400	615
	Diffuse dust	~4000	~400	
Miscellaneous				
Refuse burning		385	190	
Construction		?		
Sum value: Based on	max. allowable S co	16565	4712	

Table 14: Estimated emissions from air pollution sources in Kathmandu Valley, 1992/93 (tons/a).

¹ High value: Based on max. allowable S content

Based on actual S content, according to IOC Ltd. certificate Low value:

² NESS (1995): Estimates based on different methods.

	TSP	PM ₁₀
Roadside pollution	Resuspension	Gasoline exhaust
		Diesel exhaust
		Resuspension
General population	Domestic fuel combustion	Domestic fuel combustion
exposure	Brick industry (mainly Bull	Brick industry (mainly
	Trench)	Bull's trench)
	Resuspension	Vehicle exhaust
		Resuspension
Reduced visibility	Bull's trenc	h brick kilns
	Domestic fu	el combustion
	Vehicle exh	aust

The emission inventory of Table 14 itself, together with observations in the valley, indicate the following sources as being the most important:

8. Spatial emission distribution

The total emissions from each source category have been distributed within the km² grid net based on:

- the actual location of point sources (e.g. Himal Cement Factory, brick kilns and industrial areas; see Figure 1)
- the population distribution
- the cooking practices of the urban and rural population
- the traffic activity distribution.

The traffic activity was distributed as follows:

- The traffic activity (veh.km/a) on the roads with known traffic count was calculated (vehicles x road length), and distributed in the grid system according to the actual location of the road sections.
- This traffic activity accounted for about 50% of the total traffic activity, as calculated from the fuel consumption (Shrestha and Malla, 1993).
- The difference was distributed within the grid net, proportional to the population distribution, with an additional weight put on the highly populated city centre areas.
- The emissions from the total traffic activity in each grid square were calculated by first calculating composite emission factors for gasoline and diesel vehicles respectively, by combining the emission factors of Table 8 and the average vehicle composition as given on page 64.

Those composite emission factors were calculated to be:

* gasoline : 0,39 g/km * diesel : 1,65 g/km

The emissions from the <u>Bull's trench kilns</u> were distributed in the grid net according to their actual location. An average emission figure for each kiln was calculated, and the emissions from each grid square calculated by multiplying this average emission figure by the number of kilns in the square.

Figures 5-9 give the resulting **TSP** emission distributions from each of the areadistributed source categories, as kg/h (averaged over the winter half-year, October-March, 1992/93.

The following ratios are used for PM_{10}/TSP :

Vehicle exhaust	:	1.0
Resuspension from roads	:	0.25
Fuel/refuse combustion	:	0.5
Brick industry	:	0.25
Himal Cement, stack	:	0.2
Himal Cement, diffuse	:	0.1

78

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
J=21						12.	14.	17.	27.	24.	24.	15.	15.	28.	93.	15.	10.	7.	15.			10.	10.		23.		
J=20		3.				10.	5.	12	15.	19.	19.	25.	30.	104.	25.	25.	15.	5.	10.	15.	20.	11.	15.	11.	11.	11.	
J=19		5.	3.	3.	3.	13.	14.	12.	7.	12.	32.	25.	40.	94.	23.	18.	20.	10.	15.	10.	22.	15.	13.	23.	11.	23.	
J=18		5.	8.	5.	5.	5.	9.	19.	41.	58.	40.	123.	140.	64.	23.	116.	63.	25.	35.	16.	15.	17.	23.	23.	23.	34.	
J=17		3.	13.	13.	10.	13.	13.	5.	122.	176.	252.	217.	253.	64.	31.	96.	48.	20.	15.	17.	17.	17.	14.	24.	23.	45.	11.
J=16	ί.		10.	10.	8.	10.	15.	10.	325.	135.	1344.	1013.	845.	80.	80.	16.	20.	25.	18.	17.	20.	9.	8.	3.	3.	14.	14.
J=15		9.	18.	11.	9.	18.	193.	187.	15.	1236.	4978.	641,	1401.	275.	166.	100.	110.	22.	17.	17.	10.	10.	12.	9.	6.	9.	10.
J=14		22.	22.	18.	27.	19.	164.	167.	220.	5381.	4385.	1956.	1827.	306.	71.	53.	20.	22.	28.	34.	18.	12.	10.	10.	13.	13.	15.
J=13		18.	22.	22.	36.	34.	169.	80.	1020.	3383.	2936.	1226.	651.	548.	352.	15.	21.	45.	53.	42.	21.	13.	13.	51.	42.	12.	18.
J=12	82.	125.	114.	36.	55.	111.	488.	525.	690.	1237.	2031.	1187.	564.	1072.	97.	16.	37.	64.	43.	36.	60.	46.	40.	122.	27.	11.	13.
J≈11		9.	42.	130.	149.	118.	46.	196.	559.	399.	1107.	2363.	1490.	743.	68.	89.	103.	74.	66.	69.	124.	1176.	954.	71.	8.	9.	16.
J≖10		4.	16.	15.	31.	39.	39.	138.	216.	340.	974.	195.	349.	283.	160.	153.	148.	137.	153.	179.	98.	146.	9.	12.	9.	13.	18.
J= 9			8.	8.	23.	12.	4.	128.	13.	306.	335.	360.	55.	24.	41.	33.	26.	31.	24.	52.	76.	58.	66.	33.	13.	18.	13.
J= 8	•	·	2.	6.	6.	7.	5.	79.	10.	10.	227.	215.	29.	22.	12.	22.	49.	12.	17.	9.	9.	6.	8.	39.	29.	4.	2.
J= 7		·	2.	2.	4.	7.	41.	7.	10.	13.	24.	92.	128.	62.	18.	27.	12.	16.	14.	3.	5.	5.	6.	3.	31.	37.	14.
J≈ 6			4.	4.	5.	4.	21.	7.	11.	3.	29.	27.	147.	19.	41.	14.	8.	8.	20.	8.	3.	3.	3.	3.	3.	2.	19.
J≃ 5			1	2.	7.	4.	19.	19.	7.		17.	35.	34.	112.	33.	16.	8.	10.	9.	4.			2.	2.	2.	•	
J= 4				4.	5.	34.	29.	4.	5.		10.	31.	13.	117.	16.	10.	10.	16.	8.			ļ					
J= 3				1.	4.	18.	4.	4.	5.		10.	27.	23.	12.	101.	5.	5.	5.									
J= 2				2.	3.	12.	2.	5.	2.		2.	23.	12.	8.	35.	63.	12.	5.				•					-
J= 1				1.	4.	4.	3.	3.	3.				2.	4.	4.	18.	25.				·			·			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Figure 5: Suspended particle ("TSP") emissions from road vehicle exhaust, Kathmandu Valley.
Winter half year emissions, 1992/93. Constant emissions, calculated as kg/hour.
Unit: 10-3 kg/hour per km² grid.

79

c)	1	٦	í.
С	>	ł	J	

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
J=21	•					3.	4.	4.	7.	6.	6.	4.	4.	7.	24.	4.	3.	2.	4.			3.	3.		6.	÷	
J=20		1.			•	3.	1.	3.	4.	5.	5.	7.	8.	27.	7.	7.	4.	1.	3.	4.	5.	3.	4.	3.	3.	3.	
J=19		1.	1.	1.	1.	4.	4.	3.	2.	3.	8.	7.	10.	25.	6.	5.	5.	3.	4.	3.	6.	4.	3.	6.	3.	6.	
J=18		1.	2.	1.	1.	1.	2.	5.	11.	15.	10.	32.	37.	17.	6.	31.	16.	7.	9.	4.	4.	4.	6.	6.	6.	9.	
J=17		1.	3.	3.	3.	3.	3.	1.	32.	46.	66.	57.	66.	17.	8.	25.	12.	5.	4.	4.	4.	4.	4.	6.	6.	12.	3.
J=16			3.	3.	2.	3.	4.	3.	85.	35.	352.	265.	221.	21.	21.	4.	5.	7.	5.	4.	5.	2.	2.	1.	1.	4.	4.
J=15		2.	5.	3.	2.	5.	50.	49.	4.	324.	1304.	168.	367.	72.	44.	26.	29.	6.	4.	4.	3.	3.	3.	2.	2.	2.	3.
J=14		6.	6.	5.	7.	5.	43.	44.	58.	1410.	1149.	513.	479.	80.	19.	14.	5.	6.	7.	9.	.5.	3.	3.	3.	3.	3.	4.
J=13		5.	6.	6.	9.	9.	44.	21.	267.	886.	769.	321.	171.	143.	92.	4.	5.	12.	14.	11.	5.	3.	3.	13.	11.	3.	5.
J=12	21.	33.	30.	9.	14.	29.	128.	138.	181.	324.	532.	311.	148.	281.	25.	4.	10.	17.	11.	9.	16.	12.	10.	32.	7.	3.	4.
J=11		2.	11.	34.	39.	31.	12.	51.	147.	105.	290.	619.	390.	195.	18.	23.	27.	19.	17.	18.	32.	308.	250.	19.	2.	2.	4.
J=10		1.	4.	4.	8.	10.	10.	36.	57.	89.	255.	51.	91.	74.	42.	40.	39.	36.	40.	47.	26.	38.	2.	3.	2.	4.	5.
J= 9			2.	2.	6.	3.	1.	33.	4.	80.	88.	94.	14.	6.	11.	9.	7.	8.	6.	14.	20.	15.	17.	9.	4.	5.	4.
J= 8	•	·	•	1.	1.	2.	1.	21.	3.	3.	59.	56.	8.	6.	3.	6.	13.	3.	5.	2.	2.	2.	2.	10.	7.	1.	1.
J= 7		•	•	•	1.	2.	11.	2.	3.	3.	б.	24.	33.	16.	5.	7.	3.	4.	4.	1.	1.	1.	2.	1.	8.	10.	4.
J= 6	•	·	1.	1.	1.	1.	6.	2.	3.	1.	8.	7.	39.	5.	11.	4.	2.	2.	5.	2.	1.	1.	1.	1.	1.	1.	5.
J= 5	•	•			2.	1.	5.	5.	2.		5.	9.	9.	29.	9.	4.	2.	3.	2.	1.		·	÷	·	·	·	•
J= 4		•		1.	1.	9.	8.	1.	1.		3.	8.	4.	31.	4.	3.	3.	4.	2.			·	•	•		ŕ	•
J= 3			•		1.	5.	1.	1.	1.		3.	7.	6.	3.	27.	1.	1.	1.				•				·	
J= 2					1.	3.		1.	1.	•		6.	3.	2.	9.	16.	3.	1.	•								·
J= 1					1.	1.	1.	1.	1.				1.	1.	1.	5.	7.										•
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

Figure 6: Suspended particle ("TSP") emissions from resuspension from roads, Kathmandu Valley.
Winter half year emissions, 1992/93. Constant emissions, calculated as kg/hour. Unit: 10-2 kg/hour per km² grid.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27
J=21							. 302	. 529.	831	755	. 755.	. 467	467.	779.	623	467	312	. 233	473			315.	315.		706.		
J=20		79.					. 151	. 378.	453.	604.	604.	. 779	. 934.	934.	779.	779	467	. 156	315.	473.	630	. 353.	483.	353.	353.	353.	
J=19		158.	79.	. 79.	79.	. 79.	. 154.	. 381.	227	378.	984.	779	. 467.	1406.	703.	550	629	. 315.	473.	315.	696.	455.	391.	706.	353.	706.	
J=18		158.	236.	158.	158.	158.	. 158.	158.	1214	1811.	1242.	1209	. 2070.	1992.	704.	1817.	1956	. 788.	1103	510.	455.	521.	706.	706.	706.	1059.	į.,
J=17		79.	394.	394.	315.	394.	. 394.	. 158.	1933.	1811.	3478.	2186	.1992.	1992.	983.	3004.	1483	630.	473.	521.	521.	521.	433.	746.	706.	1412.	353.
J=16			315.	315.	236.	315.	472.	. 315.	1305.	1993.	2341.	2038	.3431.	2500.	2503.	500.	630	. 789.	575.	521.	616.	281.	241.	80.	80.	433.	433.
J=15		277.	554.	355.	296.	551.	630.	472.	435.	2693.	4510.	1854	. 2748.	2612.	2332.	1330.	2346.	698.	521.	536.	321.	321.	361.	281.	200.	281.	321.
J=14		692.	692.	554.	831.	592.	630.	1657.	2014.	3138.	2649.	2966.	. 2249 .	3170.	2217.	1647.	633.	688.	877.	1052.	562.	361.	321.	321.	401.	396.	457.
J=13		554.	692.	692.	1108.	1067.	788.	1231.	2014.	2721.	2495.	2076.	. 2207.	1840.	3503.	475.	650.	1413.	1667.	1296.	642.	401.	401.	1598.	600.	369.	556.
J=12		692.	831.	1108.	1108.	854.	2036.	721.	721.	3096.	2315.	2893.	.3385.	3091.	1346.	492.	1167.	2000.	1333.	1121.	1872.	1425.	1238.	3094.	829.	347.	417.
J=11		277.	831.	860.	878.	962.	1443.	962.	1322.	3269.	2108.	5530.	2502.	1142.	558.	643.	1215.	1191.	1024.	2137.	1928.	2752.	2179.	2221.	243.	278.	487.
J=10		138.	499.	481.	962.	1203.	591.	899.	658.	1912.	2258.	2240.	.1876.	1017.	1017.	811.	763.	763.	667.	1144.	572.	1218.	286.	383.	278.	417.	556.
J= 9			241.	241.	721.	361.	110.	439.	420.	978.	1283.	1708.	1708.	763.	1272.	1017.	826.	953.	763.	763.	381.	238.	381.	191.	417.	556.	417.
J= 8			55.	175.	175.	230.	165.	220.	327.	300.	800.	120.	907.	692.	382.	700.	1526.	382.	540.	286.	286.	191.	238.	143.	139.	139.	70.
J= 7			55.	55.	110.	220.	110.	165.	327.	400.	760.	721.	1441.	1937.	548.	844.	382.	508.	429.	95.	143.	143.	191.	95.	35.	104.	35.
J= 6			110.	110.	165.	137.	165.	220.	329.	100.	900.	840.	1200.	604.	1291.	450.	254.	254.	636.	238.	95.	95.	95.	95.	83.	70.	
J= 5				55.	220.	110.	220.	220.	220.		540.	1080.	721.	441.	1028.	484.	242.	323.	271.	127.			48.	48.	48.		
J= 4				110.	165.	165.	165.	110.	165.		310.	960.	420.	480.	282.	323.	323.	484.	242.				٠				
J= 3				27.	110.	55.	110.	137.	165.		300.	840.	721.	360.	240.	162.	162.	162.		*							
J= 2				55.	82.	165.	55.	160.	77.		50.	721.	360.	240.	360.	81.											
J= 1				27.	110.	110.	82.	82.	100.				60.	120.	120.												
							_									_											

Figure 7: Suspended particle ("TSP") emissions from domestic and industrial fuels, (excl. brick and cement industry), Kathmandu Valley.
Winter half year emissions, 1992/93. Constant emissions, calculated as kg/hour.
Unit: 10-3 kg/hour per km² grid.

82

ŕ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	2	2	23	24	25	26	27
				•																		•	•					
	·		·				·					•	•		•					1								
	·	•	·	•	-		•			8	1	i		Ċ		·	·	•					•	•	•	·	٠	
	٠	٠	÷	•		•	٠	•	·		•		·	·	1	·		·	3	5		•	·	• •	•		٠	
				•	·	·			·	·	·		٠	·			、•	·		9.13		•		·	·	•	•	
	·	·		·	·					•			•	·		·	•					•	·		·	·	ŕ	
							٠						•	·														
						.1	740.		٠	•		*		·	•			•		0.56		•			•		·	
													٠							6.3						•		
	.26	10.	.261	0.17	40.															2610	4350	. 87	0.	. 34	80.1	740.		
	·			·	. 52	20.	870.										. 4	350.	870.	870	1740	•	•	.34	80.		•	
		·			·		·	·	٠			·		·	·	·						. 1	.26	10.				
						•		. 20	610.			4350.1	740.17	40.	·	. 1	740.	870.				·	. 34	80.17	740.			
												2610.3	480. 8	70.5	220.		870.	٠					·	.17	740.	·		
		÷.			•					. 2	610.	6960.2	610.52	20.6	960.	٠						•						
												. 2	610.87	00.														
												. 2	610. 8	870.														
								•					870. E	370.														
																						•				•		
				•					•			·												۰.	-	•		

Figure 8: Suspended particle ("TSP") emissions from **Bull's trench brick kilns**, Kathmandu Valley. Winter half year emissions, 1992/93. Constant emissions, calculated as kg/hour. Unit: 10-2 kg/hour per km² grid.

											-																
11								·												•	•		,	•			
0																		1									
9			Χ.																						÷.		
в		٠																									
7													1														
								•	·	•					·	·											
6	1	•	·	•			·	•		•	•		•	•	•	٠	•	•		-	•	•		·	•		
5		•	·	•	·	•	·	·	•	·	·	÷	·	·	•	٠	•	·	·	•	•	•		•	•	·	
4		•		·			•	•	•	e			•	•			•				•	·	·	•		•	
3	.	•			•						•	•	•				•			•							
2						•																					
1																											
0																											
9																						595.	•				
8																٠							•				
7														595.	.1	190.			٠								
5													595.														
5																											
									÷																		
4		•						•		•	•	•	.1	190.		•	•		•		•		•			•	
3		٠																		٠							
2		٠					•	٠			•		·	·	•					•		•				•	
1																											

Figure 9: Suspended particle ("TSP") emissions from Chinese (Hoffman Bhatta) brick kilns, Kathmandu Valley.
Winter half year emissions, 1992/93. Constant emissions, calculated as kg/hour.
Unit: 10-2 kg/hour per km² grid.

9. References

- Bhattarai, M.D. (1993) Urban air quality workshop (URBAIR). Paper on industrial contribution to air quality. Kathmandu, Ministry of Industry.
- Devkota, S.R. (1992) Energy utilization and air pollution in Kathmandu Valley, Nepal. Bangkok, Asian Institute of Technology. (Thesis EV-9209).
- Gautam and associates (1994) Study report on automobile fuels, its import, supply, distribution and quality assurance in Nepal. Kathmandu, Gautam and associates, Consulting Engineers.
- Gram, F. and Bøhler, T. (1992) User's Guide for the "Kilder" supporting programmes. Lillestrøm (NILU TR 6/92).
- JICA Japanese International Cooperation Agency (1992) The study on Kathmandu valley urban road development. His Majesty's Government of Nepal. Kathmandu, Ministry of Works and Transport.
- NESS Nepal Environmental and Scientific Services (P) Ltd. (1995) Assessment of the applicability of Indian cleaner process technology for small scale brick kiln industries of Kathmandu Valley. Thapathali Kathmandu, NESS.
- RONAST (1994) Reports from the data collection for the URBAIR Kathmandu project. Available from RONAST (Royal Nepal Academy of Science and Technology), Kathmandu, and from NILU, Kjeller.
- Shrestha, R.M. and Malla, S. (1993) Energy use and emission of air pollutants: Case of Kathmandu Valley. Bangkok, Asian Institute of Technology.
- Thapa, S., Shrestha, S.S. and Karki, D. (1993) A survey of brick industries in the Kathmandu Valley. Prepared for ENPHO (Environment and Public Health Organization).

Appendix 4

Emission Factors, Particles

Contents

1.	Introduction	Page 87
2.	Motor vehicles	87
3.	Fuel consumption	90
4.	References	91

Emission Factors, Particles

1. Introduction

Emission factors (emitted amount of pollutant per quantity of combusted fuel, or per km driven, or per produced unit of product) are important input data to emission inventories, which again are essential input to dispersion modelling.

The knowledge of emission factors representative for the present technology level of Asian cities is limited. For the purpose of selecting emission factors for the URBAIR study, references on emission factors were collected from the open literature and from studies and reports from cities in Asia.

This appendix gives a brief background for the selection of emission factors for particles used in the air quality assessment part of URBAIR.

2. Motor vehicles

The selection of emission factors for motor vehicles for use in the URBAIR project to produce emission inventories for South-East Asian cities, was based on the following references:

- WHO (1993)
- US EPA (EPA AP42 report series) (1985)
- Vehicles Emission Control Project (VECP), Manila (Baker, 1993)
- Indonesia (Bosch, 1991)
- Williams et al. (1989)
- Motorcycle emission standard and emission control technology (Weaver and Chan, 1993)

Table 1 gives a summary of emission factors from these references for various vehicle classes. From these, the emission factors given in Table 2 were selected, for use as a basis for URBAIR cities.

Taking into account the typical vehicle/traffic activity composition, the following vehicle classes give the largest contributions to the total exhaust particle emissions from traffic:

- Heavy duty diesel trucks
- Diesel buses
- Utility trucks, diesel
- 2-stroke 2- and 3-wheelers.

Thus, the emission factors for these vehicle classes are the most important ones.

Table 1: Emission factors (g/km) for particle emissions from motor vehicles, relevant as a basis for selection of factors to be used in South-East Asian cities.

Fuel and Vehicle	Particles g/km	Reference		
Gasoline				
Passenger cars	0.33	USEPA/WHO		
9	0.10	VECP, Manila		
	0.16	Indonesia (Bosch)		
	0.07	Williams		
	0.07	VVIIIGITIS		
Trucko utility	0.12	VECD Manila		
Trucks, utility		VECP, Manila		
	0.33	USEPA		
	1.124	USEPA		
Trucke heavy duty	0.00			
Trucks, heavy duty	0.33	USEPA		
3-wheelers, 2 stroke	0.21	USEPA/WHO		
3-wheelers, 2 stroke	0.21	03EFAWINO		
MC 2/4 stroke	0.21/	USEPA/WHO		
NO 2/4 Stroke	2.00/	VECP, Manila		
		Indonesia VWS		
	0.21/0.029			
	0.28/0.08	Weaver and Chan		
Diesel				
Car, taxi	0.6	VECP, Manila		
Odi, taxi	0.45	USEPA/WHO		
	0.43	Williams		
	0.37	vvmarns		
Trucks, utility	0.9	VECP, Manila		
rideks, utility	0.93	EPA		
	0.95	LFA		
Trucks, heavy/bus	0.75	who		
	1.5	VECP, Manila		
	0.93	USEPA		
	1.2	Bosch		
	2.1	Williams		

Table 2: Selected emission factors (g/km) for particles from road vehicles usedin URBAIR.

Vehicles class	Gasoline	Diesel
Passenger cars/taxies	0.2	0.6
Utility vehicles/light trucks	0.33	0.9
Motorcycles/tricycles	0.5	
Trucks/buses		2.0

Comments

It is clear that there is not a very solid basis in actual measurements on which to estimate particle emission factors for vehicles in South-East Asian cities. The given references represent the best available basis. Comments are given below for each of the vehicle classes.

- Passenger cars: Fairly new, normally well maintained cars, engine size less than 2.5 l, without 3-way catalyst, running on leaded gasoline (0.2-0.3 g Pb/l), have an emission factor of the order of 0.1 g/km. Older, poorly maintained vehicles may have much larger emissions. The US EPA/WHO factor of 0.33 g/km can be used as an estimate for such vehicles.
- Utility trucks: Although the VECP study (Manila) uses 0.12 g/km, the EPA factor of 0.33 g/km was selected for such vehicles, taking into account generally poor maintenance in South-East Asian cities.
- Heavy duty trucks: Only the USEPA has given an estimate for such vehicles, 0.33 g/km, the same as for passenger cars and utility trucks.
- 3-wheelers, 2 stroke: The USEPA and WHO suggest 0.2 g/km for such vehicles.
- Motorcycles, 2 stroke: The Weaver report supports the 0.21 g/km emission factor suggested by USEPA/WHO. In the VECP Manila study a factor of 2 g/km is suggested. This is the same factor as for heavy duty diesel trucks, which seems much too high.

Visible smoke emissions from 2-stroke 2- and 3wheelers is normal in South-East Asian cities. Lowquality oil as well as worn and poorly maintained engines probably both contribute to the large emissions. The data base for selecting a representative emission factor is small. In the data of Weaver and Chan (1993), the highest emission factor is about 0.55 g/km.

For URBAIR, we choose a factor of 0.5 g/km. Realizing that this is considerably higher than the factor suggested by US EPA, we also take into consideration the factor 2 g/km used in the VECP study in Manila, which indicates evidence for very large emissions from such vehicles.

Motorcycles, 4-stroke: The emission factor is much less than for 2-stroke engines. The Weaver report gives 0.08 g/km, while 0.029 g/km is given by the VWS study in Indonesia (Bosch, 1991).

90

Passenger cars, taxis:	The factor of 0,6 g/km given by the VECP Manila is chosen, since it is based on measurements of smoke emission from vehicles in traffic in Manila. The 0,45 g/km of USEPA/WHO was taken to represent typically maintained vehicles in Western Europe and USA, as also measured by Larssen and Heintzenberg (1983) on Norwegian vehicles. This is supported by Williams' factor of 0,37 g/km for Australian vehicles.
Utility trucks:	The USEPA and the VECP Manila study give similar emission factors, about 0,9 g/km.
Heavy duty trucks/ buses:	The factors in the table range from 0,75 g/km to 2,1 g/km.
	It is clear that "smoking" diesel trucks and buses may have emission factors even much larger than 2 g/km. In the COPERT emission data base of the European Union factors as large as 3-5 g/km are used for "dirty" city buses. Likewise, based on relationships between smoke meter reading (e.g. Hartridge smoke units, HSU) and mass emissions, it can be estimated that a diesel truck with a smoke meter reading of 85 HSU, as measured typically on Kathmandu trucks and buses (Rajbahak and Joshi, 1993), corresponds to an emission factor of roughly 8 g/km!
	As opposed to this, well maintained heavy duty diesel trucks and buses have an emission factor of 0,7-1 g/km.
	As a basis for emission calculations for South-East Asian cities we choose an emission factor of 2 g/km. This corresponds to some 20% of the diesel trucks and buses being "smoke belchers". A larger fraction of "smoke belchers", such as in Kathmandu, will result in a larger emission factor.

3. Fuel combustion

Oil

The particle emission factors suggested by USEPA (AP 42) are taken as a basis for calculating emissions from combustion of oil in South-East Asian cities. The factors are given in Table 3.

	Emission factor		
	Uncontrolled	Controlled	
Utility boilers			
Residual oila)			
Grade 6	1.25(S)+0.38	×0.008 (ESP)	
Grade 5	1.25	×0.06 (scrubber)	
Grade 4	0,88	×0.2 (multicyclone)	
Industrial/commercial boilers			
Residual oil	(as above)	×0.2 (multicyclone)	
Distillate oil	0.24		
Residential furnaces			
Distillate oil	0.3		

Table 3: Emission factors for oil combustion (Ref.: US EPA, AP 42). (kg/m³)

S: Sulphur content in % by weight

a): Another algorithm for calculating the emission factors is as follows: 7,3xA kg/m³, where A is the ash content of the oil.

4. References

- Baker, J., Santiage, R., Villareal, T. and Walsh, M. (1993) Vehicular emission control in Metro Manila. Draft final report. Asian Development Bank (PPTA 1723).
- Bosch, J. (1991) Air quality assessment in Medan. Extract from Medan urban transportation study. Final Report. Washington D.C., World Bank.
- Larssen, S. and Heintzenberg, J. (1983) Measurements of particle and soot (black smoke) emission factors from light duty gasoline and diesel engine powered vehicles. Lillestrøm (NILU OR 50/83). (In Norwegian.)
- Rajbahak, H.L. and Joshi, K.M. (1993) Kathmandu Valley vehicular transportation and emission problems. *Metropolitan Environment Improvement Program. Urban Air Quality Management Workshop (URBAIR)*, December 2, 1993.
- U.S. Environmental Protection Agency (1985) Compilation of air pollutant emission factors, 4th ed. Supplement A. Research Triangle Park, NC, EPA (Environmental Protection Agency; AP-42).
- Weaver, C.S. and Chan, L.-M. (1993) Motorcycle emission standards and emission control technology. Draft report. Sacramento, CA., Engine, Fuel, and Emissions Engineering, Inc.
- WHO (1993) Assessment of sources of air, water, and land pollution. A guide to rapid source inventory techniques and their use in formulating environmental control strategies. Part One: Rapid inventory techniques in environmental pollution. By A.P. Economopoulos. Geneva (WHO/PEP/GETNET/93.1-A).

- Williams, D.J., Milne, J.W., Roberts, D.B. and Kimberlee, M.C. (1989)
 Particulate emissions from 'in-use' motor vehicles I. Spark ignition vehicles. *Atmos. Environ.*, 23, 2639-2645.
- Williams, D.J., Milne, Quigley, S.M., J.W., Roberts, D.B. and Kimberlee, M.C. (1989) Particulate emissions from 'in-use' motor vehicles - II. Diesel vehicles. *Atmos. Environ.*, 23, 2647-2662.

Appendix 5

Spreadsheet for Calculating Effects of Control Measures on Emissions

1 Emissions spreadsheet

The spreadsheet is shown in Figure 1. (Example: TSP emissions, Kathmandu Valley, Base Case Scenario, 1993.) Figure 2 shows emission contributions in absolute and relative terms.

The purpose of the spreadsheet is to calculate modified emission contributions, due to control measures, such as:

- new vehicle technology
- improved emission characteristics, through measures on existing technology
- reduced traffic activity/fuel consumption
- other.

The emissions are calculated separately for large point sources (with tall stacks) and for area sources and smaller distributed point sources. The reason is that air pollution concentrations and population exposures are calculated differently for these two types of source categories.

The columns and rows of the worksheet are as follows:

Columns

a)	q	Emission factor, g/km for vehicles, kg/m ³ or kg/ton for fuel combustion and process emissions.
		For vehicles, emission factors are given for "existing" and "new" technology.
b)	F,T	Amount of "activity" T (vehicle km) for traffic activity F (m ³ or ton) for fuel consumption in industrial production.
c)	qT,qF	Base case emissions, tons, calculated as product of columns a) and b).
d)	fq, fF, fT, f-	Control measures. Relative reduction of emission factor (fq), amount (fF, fT) or other (f-) resulting from control measures.

Emissions spreadsheet, Kathmandu Valley TSP, Base case, 1993

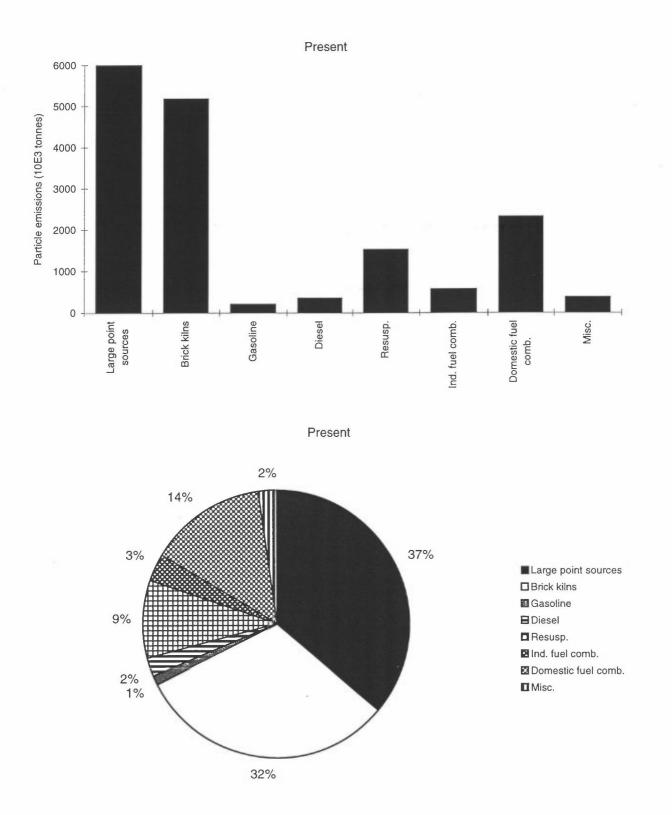

	T	Amount	Base- case	Control r		'es	Modified emissions	Relative emissions	Relative emissions
	1	DOIN	Emissions	50				per category	total
			T SOURC	1					
	P	F	qF	fq	fF	f-	qF fq fF f	(dqF fq fFf)	(dqF fq fFf)tot
Himal Cement Dry kiln	(kg/t)	(10E3 t/a)	(tonnes)	1.00	1.00	1.00	(10E3 tonnes)	(percent)	(percent)
Himal Cement Dry kiln Clinker Cooler			2000	1.00	1.00	1.00	2000		33.
Dryers, grinders, etc.			4000	1.00	1.00	1.00	4000		66.
Quarry			000		1.00	1.00	4000		0.
Quality			0		1.00	1.00	0		0.
			0	1.00	1.00	1.00	0		0.
Sum large point sources			6000	1.00	1.00	1.00	6000		100.
Modified emissions/emissions, point sourc.			0000				1		100.
	n	SCRETE	AREA SC		FC			1	
		SCHETE	ANEA SU	JUNC	LO			1	
Local Brick	{	140.0	1.00	1.00	4.00	1 00	0.00		
Chinese kiins	00.00	146.0	100.00		1.00	1.00	0.00		0.
Coal	20.00	9.1	182.00	1.00	1.00	1.00	182.00	3.5	1.
Bull Trench kiins			5000.00	1.00	1.00	1.00	5000.00	96.5	47.
Coal		42.0		1.00	1.00	1.00	0.00	0.0	0.
Fuel wood		5.7		1.00	1.00	1.00	0.00	0.0	0.
Other (mainly rice husk)		15.8	F100	1.00	1.00	1.00	0.00	0.0	0.
Sum discrete area sources			5182.00				5182	100.0	49.
Modified emissions/emissions, discr. area sourc.			DADEL	00115	050		1	1	
	DIS		DAREA	SOUR					
Vehicles	Q	т	TSP	fq	fT	f-	qT fq fTf	(dqT fq fTf)	(dqT fq fTf)
	(g/km)	(10E6 vehkm/a)	(1/a)			_	(10E3 tonnes)	(percent)	(percent)
Gasoline exhaust									
Cars, taxis	0.20	192	38.4	1	1	1	38.4	6.7	0.
3-wheelers (TC)	0.50	135	67.5	1	1	1	67.5	11.8	0.
2-wheelers (MC)	0.50	215	107.5	1	1	1	107.5	18.8	1.
Sum gasoline		542	213.4				213.4		2.
Modified emissions/emissions, gasoline							1.0		
Diesel exhaust									
Jeeps	0.9	76	68.4	1	1	1	68.4	12.0	0.
Minibuses	1.5	15	22.5	1	1	1	22.5	3.9	Ο.
Buses	3.0	15	45.0	1	1	1	45.0	7.9	0.
Trucks	3.0	38	114.0	1	1	1	114.0	20.0	1.
Tractors	0.9	24	21.6	1	1	1	21.6	3.8	0.:
3-wheelers (TC)	1.5	57	85.5	1	1	1	85.5	15.0	0.8
Sum diesel		225	357.0				357.0		3.4
Modified emissions/emissions, diesel							1.0		
Sum total vehicle exhaust		767	570.4				570.4	100.0	5.4
Modified emissions/emissions, total vehicle exhaust							1.00		
Resuspension from roads	2.0	767	1534.0	1	1	1	1534.0		14.
Sum total vehicles (exh.+resusp.)			2104.4				2104.4		19.9
Modified emissions/emissions, total vehicles (exh	. + resusp.)						1.00		
Fuel combustion	í i i i	F	qF	fq	fF	f-	qF fq fF f	(dgF fg fFf)fuel	(dgF fg fFf)tot
Fuercombustion	P			μ	11-	1-			
	(kg/l)	(10E3 Va)	(lonnes)				(10E3 l/a)	(percent)	(percent)
lindustrial/commercial	0.00		0.00	4.00		4.00	0.00		
Diesel HSD	0.28		0.00		1.00	1.00	0.00	0.0	0.0
Fuel oil LDO	40.00		0.00	1.00	1.00	1.00	0.00	0.0	0.0
Coal	10.00	4.8	48.00	1.00	1.00	1.00	48.00	1.7	0.
Charcoal	20.00	1.0	20.00	1.00	1.00	1.00	20.00	0.7	0.3
Fuelwood	3.60	17.2	61.92		1.00	1.00	61.92	2.1	0.
Agri. residue	10.00	45.0	450.00		1.00	1.00	450.00	15.5	4.:
Kerosene/LPG	0.06	1.0	0.06	1.00	1.00	1.00	0.06	0.0	0.0
Sum industrial			579.98				579.98		5.5
Modified emissions/emissions, industrial							1.00		
Domestic	45.00	100 1	1001 50	1.00	1.00	1.00	1004 50	00.0	
Fuel wood	15.00	122.1	1831.50			1.00	1831.50		17.
Agri, residue	10.00	45.4	454.00	1.00	1.00	1.00	454.00	15.6	4.
Anim, waste	10.00	3.0	30.00		1.00	1.00	30.00	1.0	0.
Kerosene	0.06	35.0	2.10	1.00	1.00	1.00	2.10	0.1	0.1
LPG	0.06	4.0	0.24	1.00	1.00	1.00	0.24	0.0	0.
Charcoal Sum demostia	20.00	0.5	10.00	1.00	1.00	1.00	10.00	0.3	0.
Sum domestic			2327.84				2327.84		22.
Modified emissions/emissions, domestic			0007.00				1.00	400.0	
Sum fuel combustion			2907.82				2907.82	100.0	27.
Modified emissions/emissions, fuel Miscellaneous		M	a14	10	614		1.00	Idal to \$10-in-	(dat 1 = 4 10) - 4
MARCHISTOPOLIS	q	м	qM	ſq	fM	f-	qM fq fM f	(dqM fq fMf)misc (percent)	(dqM fq fMf)tot (percent)
in scenarious		10.4	384.8	1	1	1	384.8	100.0	3.
Refuse burning Construction	37	10.1							
Refuse burning Construction	37								
Refuse burning Construction Resuspension, open surfaces Sum miscellaneous	37		384.8	1	1	1	384.80		3.
Refuse burning Construction Resuspension, open surfaces	37		384.8	1	1	1	384.80 1.00 10579.02		3.

Figure 1: URBAIR spreadsheet for emissions calculations.

- e) qFfqfFf- Modified emissions, due to control measures.
- f) d(qFfqfFf-) Relative emission contributions from each source, per source category:
 - vehicles
 - fuel combustion
 - industrial processes
 - miscellaneous
- g) d(qFfqfFf) Relative emissions contributions, all categories summed.

Rows

- a) Separate rows for each source type and category, "existing" and "new" technology.
- b) Modified emission/emissions : Ratio between modified and base case emissions.

Appendix 6

Project Descriptions, Local Consultants

Contents

	Page
Project Description regarding Air Quality	
Assessment	101
Project Description regarding Damage	
Assessment and Economic Valuation	105

Project Description regarding Air Quality Assessment

18 May 1993

ANNEX 2

Project Description

Information shall be collected regarding the items described below. The information to be collected <u>shall go beyond</u> the information contained in the material referenced in the Draft Report from NILU and Institute of Environmental Studies (IES) of the Free University of Amsterdam prepared for the Workshop, and summarized in that report.

Available information shall be collected regarding the following items, and other items of interest for Air Quality Management Strategy Development in Kathmandu Valley:

- Meteorological measurements in and near the city
- Activities/population data for Kathmandu Valley:

Fuel consumption data:	 Total fuel consumption per type (high/low sulphur oil, coal, gas, firewood and other biomass fuels, other) per sector (industry, commercial, domestic)
Industrial plants:	- Location (on map), type/process, emissions, stack data (height, diameter, effluent velocity and temp.)
Vehicle statistics:	 No. of vehicles in each class (passenger cars, trucks (small, med., large), buses, MC (2 and 3-wheels, 2 and 4 stroke Age distribution Average annual driving distance per vehicle class
Traffic data:	Definition of the main road network marked on map. Traffic data for the main roads: - annual average daily traffic (vehicles/day) - traffic speed (average, and in rush hours) - vehicle composition (pass.cars, MCs, trucks/buses)
Population data:	Per city district (as small districts as possible) - total population - age distribution

- Air pollution emissions Emission inventory data (annual emissions)
 per compound (SO₂, NO_x, particles (in size fractions: <2 μm,
 - 2-10 μm, >10 μm), (VOC, lead)
 - emissions per sector (industry, transport, domestic, etc.)
- Air pollution data: concentration statistics per monitoring station: annual average, 98-percentile, maximum concentrations (24 hr, 1 hr)
 - trend information
 - methods description, and quality control information on methods
- Dispersion modelling: Reports describing studies and results
- Air pollution laws and regulations:

Summary of existing laws and regulations

- Institutions: Description of existing institutions working in, and with responsibilities within, the air pollution sector, regarding:
 - monitoring
 - emission inventories
 - law making
 - enforcement

The information shall include:

- the responsibilities and tasks of the institutions
- authority
- manpower
- expertise
- equipment (monitoring, analysis, data hard/software)
- funds

It is important that the gathering of information is <u>as complete as possible</u> regarding each of the items, so that we have a basis of data which is as updated and complete as possible. Remember that this updated completed information data base is to form the basis for an action plan regarding Air Quality Management in Kathmandu Valley. Such an action plan will also include the need to collect more data. In that respect, it is very important that the gathering of existing data is <u>complete</u>.

Project Description regarding Damage Assessment and Economic Valuation

Project Description

This Project Description describes the work to be carried out under the Contract of 19 May 1993 between Norwegian Institute for Air Research (NILU) and

URBAIR

Topics for research

A. Physical Impacts

- 1. Describe available studies on relations between air pollution and health.
- 2. Decide on the acceptability of dose effect relationships from USA (tables 5.7 5.9).
 - a. Mortality: 10 µg/m³ TSP leads to 0.682 (range: 0.48-0.89) percentage change in mortality.
 - b. Work loss days (WLD): 1 µg/m³ TSP leads to 0.00145 percentage change in WLD.
 - c. Restricted activity days (RAD): 1 µg/m³ TSP leads to 0.0028 percentage change in RAD per year.
 - d. Respiratory hospital diseases (RHD): 1 µg TSP leads to 5.59 (range: 3.44-7.71) cases of RHD per 100,000 persons per year.
 - e. Emergency room visits (ERV): 1 µg/m³ TSP leads to 12.95 (range: 7.1-18.8) cases of ERV per 100,000 persons per year.
 - f. Bronchitis (children): 1 µg/m³ TSP leads to 0.00086 (range: 0.00043-0.00129) change in bronchitis.
 - g. Asthma attacks: 1 µg/m³ TSP leads to 0.0053 (range: 0.0027-0.0079) change in daily asthma attacks per asthmatic person.
 - h. Respiratory symptoms days (RSD): 1 µg/m³ TSP leads to 1.13 (range: 0.90-1.41) RSD per person per year.
 - i. Diastolic blood pressure (DBP): change in DBP = 2.74 ([Pb in blood]_{ace} [Pb in blood]_{ace} [Pb in blood] is blood lead level (µg/d]).
 - j. Coronary heart disease (CHD): change in probability of a CHD event in the following ten years is [1 + exp { 4.996 + 0.030365(DBP₁)]]¹_

 $[1 + exp - [-4.996 + 0.0030365 (DBP_2)]^{1}$

k. Decrement IQ points: IQ decrement = 0.975* change in air lead (µg/m³).

Calculation example.

Let population be 10 million people.

Let threshold value of TSP be 75 µg/m¹ (the WHO standard).

Let the concentration TSP be 317 µg/m³.

- -> Concentration threshold = $317 75 = 242 = 24.2 = 10 \text{ pg/m}^3$.
- -> Change in mortality = 24.2 * 0.682 = 16.5%.

Let crude mortality be 1% per year.

- -> Crude mortality = 100,000 people per year.
- -> Change in mortality due to TSP = 16.5% of 100,000 people = 16,500 people per year.
- 3. For those close -effect relationships that are acceptable, base value must be gathered, e.g.:
 - a. crude mortality
 - b. present work days lost

etc.

- B. Valuation
- 1. Mortality.
 - a. Willingness to pay.

In USA research has been carried out on the relation between risks of jobs and wages. It appeared that 1 promille of change in risk of mortality leads to a wage difference of ca. \$1000. If this figure is applicable to all persons of a large population (say 10 million), the whole population values 1 promille change in risk of mortality at \$1000 * $10 * 10^6 = 10 billion. An increase in risk of 1 promille will lead to ca. 10,000 death cases, so per death case the valuation is \$1 million. It should be decided if in other countries, c.q. cities, this valuation should be corrected for wage differences (e.g. if the average wage is 40 times lower than in USA, the valuation of 1 death case is \$25,000). If this approach is acceptable, the only information needed is average wage.

b. Production loss.

If the approach of willingness to pay is not acceptable, the alternative is valuing human life through production loss, i.e. foregone income of the deceased. Again, the information needed is average wage. Moreover, information is needed on the average number of years that people have a job. However, those without a job should also be assigned a value. An estimate of the income from informal activities can be an indication. Otherwise a value derived from the wages (e.g. half the average wage) can be a (somewhat arbitrary) estimation.

2. Morbidity.

Estimates are needed, for all cases of morbidity, of the duration of the illness, so as to derive an estimation of foregone production due to illness. Just as in the case of mortality (B, 1.b.) wages can be used for valuation of a lost working day. Moreover, the hospital costs and other medical costs are to be estimated. These costs still do not yet include the subjective costs of illness, which can be estimated using the willingness to pay to prevent a day of illness.

3. Willingness to pay to prevent a day of illness.

Valuation in USA, based on surveys among respondents, indicate that the willingness to pay to prevent a day of illness is ca. \$15. This amount could, just like the amount of willingness to pay for risk to human health, be corrected for wage differences. The acceptability of such a procedure is, perhaps, somewhat lower.

4. IQ points.

Loss of IQ of children may lead to a lower earning capacity. A USA estimate is ca. \$4600 per child, per IQ point, summed over the child's lifetime. If this is acceptable, the figure could be corrected for wage differences between USA and the city.

C. Other impacts

1. Buildings.

An estimate by Jackson et al, (see URBAIR report table 5.18) is that prevented cleaning costs per household per year are \$42 for a reduction in TSP concentration: from 235 μ g/m³ to 115 μ g/m³. This would imply a benefit of \$0.35 per household per μ g/m³ reduction. This figure could be corrected for wage differences between USA and the city. If that is acceptable, the information needed is the number of households in the city.

2. Monuments.

It is difficult to say which value is attached to monuments, as they are often unique and their value is of a subjective character. Nevertheless, the restoration and cleaning costs of monuments could be an indication of the order of magnitude of damage to monuments. Revenue of tourism might also give a certain indication of the valuation of future damage to monuments.

D. Remark

In most cases, the valuation of damage is not very precise, and certainly not more than an indication of the order of magnitude.

E. Technological Reduction Options

To give a reliable estimate of the costs of technological reduction options, one needs a reliable emission inventory in which is included the currently used technologies and the age and replacement period of the installed equipment. In the absence of this, the study by the city team might wish to concentrate on a case study (e.g. traffic, fertilizer industry, large combustion sources).

The first step is to identify options. Cooperation with IES is possible, once a case study is identified.

The second step is to estimate the costs, i.e. investment costs and O&M (operation and maintenance) costs. Based on the economic lifetime of the invested equipment, the investment costs can be transformed to annual costs, using writing-off procedures. Costs will often depend to a large extent on local conditions. Corrections of the costs are described in chapter 6 of the URBAIR report.

The third step is to estimate the emission reductions of the various reduction options.

The fourth step is to rank the options according to cost-effectiveness. For this purpose the various types of pollution have to be brought under a common denominator. A suggestion could be to calculate a weighed sum of the pollutants, using as weights the amount by which ambient standards are exceeded on average.

Norsk institutt for luftforskning (NILU) P.O. Box 100, N-2007 Kjeller - Norway

REPORT SERIES OPPDRAGSRAPPORT	ISBN-82-425-0716-3			
DATE 24/9-94	SIGN. P.K	NO. OF PAGES	PRICE NOK 165,-	
TITLE		PROJECT LEADE		
URBAIR Urban Air Quality Management Strate	gy in Asia	NILU PROJECT N	IQ.	
KATHMANDU VALLEY		O-9	2117	
Appendices				
AUTHOR(S)		CLASSIFICATION	4 *	
Prepared by			A	
Steinar Larssen, Frederick Gram and I Norwegian Institute for Air Research (
Huib Jansen and Xander Olsthoorn Instituut voor Milieuvraagstukken (IV) Amsterdam, the Netherlands	M) Vrije Universiteit,			
Anil S. Giri, Royal Nepal Academy of Kathmandu, Nepal		CONTRACT REF. Mr. Jitendra Shah		
Madan L. Shrestha, Dpt. of Hydrology Min. of Water Resources, Kathmandu,				
REPORT PREPARED FOR:	International Bank for Reconstruction and Asian Techn. Dept., 1818 NW, Wash. D.C		d Bank)	
assessment of emissions and air quality assessment of costs related to the dama	nent of an action plan for air quality impro- v in the metropolitan area, population expos ge and to a number of proposed abatement	ure and health effects (da measures, and a cost-ben	mage), the efit analysis.	
This report contains appendices on air	quality measurements, emission factors and	l inventory, exposure calc	culations, etc.	
NORWEGIAN TITLE				
KEYWORDS				
Air Pollution	Management	Kathman	idu Valley	
ABSTRACT (in Norwegian)				
B Rest	lassified (can be ordered from NILU) cricted distribution ssified (not to be distributed)			