NILU OR : 48/89 REFERENCE: O-8861 DATE : SEPTEMBER 1989 ISBN : 82-425-0057-6

EMISSIONS OF MAJOR AIR POLLUTANTS EMITTED IN EASTERN EUROPE

J.M. Pacyna

SUMMARY

The report presents estimates of the 1982 emissions of SO_2 , NOx, VOC, NH_3 , CH_4 , CO and N_2 O from sources in Eastern Europe. The estimates will be used to test the EURAD model in the EUMAC project of EUROTRAC. The SO_2 emission data were accepted from Eliassen et al. (1988), and the NH_3 emissions from Buijsman et al. (1987). The results of estimates are presented below.

Anthropogenic	emissions	of	major	gases	in	Eastern	Europe	in	1982
$(in 10^3 t).$									

Country	SO 1 2 as S	NOx as NO 2	VOC (non-methane)	NH ₃ ²	CH 4	со	N_0 2
Albania	25	28.0	32.8	21.0	0.5	121.7	7.1
Bulgaria	570	278.3	167.2	126.0	3.3	627.5	59.4
Czechoslovakia	1 575	556.9	258.7	170.0	18.7	765.9	112.1
GDR	2 500	857.1	353.6	207.0	26.0	1 020.7	250.0
Hungary	774	268.5	165.6	127.0	6.0	527.9	39.7
Poland	2 150	1 276.1	493.8	405.0	37.5	1 447.6	216.0
Romania	100	737.8	385.7	301.0	17.6	1 176.1	117.5
USSR (Europe)	6 100	7 969.0	5 822.7	1 256.0	322.5	24 009.2	1 788.3
Yugoslavia	657	440.4	290.7	198.0	9.4	929.6	91.4
Total	14 451	12 412.1	7 970.8	2 812.0	441.5	30 626.2	2 681.5

1 from Eliassen et al. (1988). 2 from Buijsman et al. (1987).

CONTENTS

	SUMMARY	1
1	INTRODUCTION	5
2	EMISSIONS OF SO2	5
3	EMISSIONS OF NOx	8
4	EMISSIONS OF VOCs	18
5	EMISSIONS OF NH3	36
6	EMISSIONS OF N_2^0	39
7	EMISSIONS OF CO	42
8	EMISSIONS OF CH_{4}	47
9	FINAL REMARKS	50
10	ACKNOWLEDGEMENT	51
11	REFERENCES	52

3

Page

EMISSIONS OF MAJOR AIR POLLUTANTS EMITTED IN EASTERN EUROPE

1 INTRODUCTION

The purpose of this work is to: (1) present the emission estimates for SO_2 , NOx, VOC, NH₃, N₂O, CO, and CH₄, (2) relate these emissions to statistical data on the consumption of fossil fuels and the production of various industrial goods, (3) discuss the VOC profiles for various source categories, and (4) present the spatial distributions of emissions of the above constituents within the EMEP grid of 150 km x 150 km. The results of this work form a basis for a European scale transport, transformation and deposition model for atmospheric constituents (EUMAC) programme of EUROTRAC. The estimates will be used to test the EUMAC model, called EURAD, during the pollution episodes in 1982.

The project has been supported by a research grant from the University of Cologne, Federal Republic of Germany.

2 EMISSIONS OF SO

Information on the SO_2 emissions from Eastern Europe has been collected mostly within the UN ECE Co-operative Programme for Monitoring and Evaluation of the Long-Range Transmission of Air Pollutants in Europe (EMEP). The SO_2 emissions are provided by national authorities to the EMEP Meteorological Synthesizing Centres West (MSC-W) and East (MSC-E), and are used there in modelling the transport of SO_2 over Europe.

Emissions of SO_2 in Europe in 1980 and 1983 are reported by Dovland and Saltbones (1986). They present these emissions on the country-bycountry basis, as well as their spatial distribution within the EMEP grid of 150 km x 150 km. As the EURAD model of EUMAC will be tested for episodes in 1982, the SO₂ emissions for 1982 shall be interpolated on the basis of the EMEP emission data for 1981. This interpolation has been prepared and reported by Eliassen et al. (1988). They estimated 3% decrease of SO₂ emissions in Europe between 1981 and 1982 and further 4% decrease between 1982 and 1983.

The 1982 emission data for SO $_2$ from sources in Eastern Europe are presented in Table 1, and their spatial distribution within the EMEP grid of 150 km x 150 km in Figure 1.

Table	1:	SO	emissions	from	anthropogenic	sources	in	Eastern	Europe	in
		1982	$2 (in 10^{3})$	$(5)^{*1}$.						

Country	Emission
Albania	25
Czechoslovakia	1 575
GDR	2 500
Hungary	774
Poland	2 1 5 0
Romania	100
European USSR	6 100
Yugoslavia	657
Total	14 451

*1 from Eliassen et al. (1988).

Figure 1: Spatial distribution of SO emissions in Eastern Europe in 1982 within the EMEP grid of $^2150 \times 150 \text{ km}$. The unit used: 10^3 t .

3 EMISSIONS OF NOX

Recently Pacyna (1988) and Larssen (1989) presented emission surveys for NOx from stationary and mobile sources. Eastern Europe was given special attention.

The following source categories were considered by Pacyna (1988) when calculating the NOx emissions from stationary sources:

- production of electricity in power stations, burning hard (bituminous and subbituminous) coals, brown coals including lignites, residual (heavy) oil and natural gas,
- 2) metallurgical coke production,
- 3) cement production in dry and wet kilns,
- 4) gas works,
- 5) steel and iron production,
- 6) coal combustion in central (district) heating and small residential units, and
- 7) oil and gas combustion in industrial and residential boilers.

The NOx emission factors for combustion of fossil fuels in electric power plants in Eastern Europe are presented in Table 2. These factors were then used together with the statistics on the production of electricity to estimate the NOx emissions from fossil-fuel combustion in electric power plants. The results are shown in Table 3.

Table 2: NOx emission factors for combustion of fossil fuels in electric power plants in Eastern Europe (in g NO_2/GJ_{+b}).

	Fuel							
Country	Hard coal	Brown coal (incl. lignite)	Oil	Gas				
Albania		253						
Bulgaria		296	240					
Czechoslovakia	319	256	240	110				
GDR		285						
Hungary	385	336	240	110				
Poland	385	285						
Romania		256	240	110				
European USSR	385	285	240	110				
Yugoslavia		253						

Table 3: NOx emissions from fossil-fuel combustion in electric power plants in Eastern Europe in 1982.

	Product	ion of elect	ricity (G	Wh)	N	Ox emission ((t NO) 2	
Country	Hard coal- fired power plant	Brown coal- fired power plant	Oil- fired power plant	Gas- fired power plant	Hard coal- fired power plant	Brown coal- fired power plant	Oil- fired power plant	Gas- fired power plant
Albania		550				900		
Bulgaria		17 340	9 330			53 600	24 600	
Czechoslovakia	11 940	42 200	5 730	4 680	42 000	112 600	15 000	2 000
GDR		90 300				269 400		
Hungary	870	7 260	3 540	550	3 600	25 500	9 300	2 100
Poland	92 000	23 000			389 400	54 800		
Romania		18 940	6 730	31 380		50 600	24 800	13 300
USSR (Europe)	312 000	130 000	446 000	475 000	1 323 400	269 400	1 171 800	203 000
Yugoslavia		34 720				91 700		
TOTAL	416 810	364 310	471 330	511 610	1 758 400	928 500	1 245 500	220 400

The statistical data used in this work were collected from the national statistical yearbooks, and from the UN international statistics (UN, 1986). The national statistical yearbooks are the following:

- Statisticzeskij godisznik na narodna republika Bulgaria -1982, Komitet za socialna informacja pri ministerskija swet, Sofia, 1983.
- Statisticka rocenka Ceskoslovenske Socialisticke Republiku -1982, Federalni Statisticky Urad, Cesky Statisticky Urad, Slovensky Statisticky Urad, Praha, 1983.
- 3. Statistisches Jahrbuch 1982 der Deutschen Demokratischen Republik, Staatlichen Zentralverwaltung für Statistik, Berlin, 1982.
- 4. Statistical Pocket Book of Hungary -1982, Hungarian Central Statistical Office, Budapest, 1983.
- 5. Rocznik Statystyczny -1982. Glowny Urzad Statystyczny, Warszawa, 1983.

- Anuarul Statistic al Republicii Socialiste Romania -1982, Directia Cèntrala de Statistica, Buchuresti, 1982.
- 7. Narodnoje Hozjaistwo CCCP w 1982 gode, Statisticzeskij ezegodnik, Centralnoje Statisticzeskoje Uprawlenije CCCP, Moskwa, 1983.
- Statisticki godisnjak Jugoslavije -1982, Socijalisticka Federativna Republika Jugoslavija, Savezni Zawod za Statistiku, Beograd, 1983.

Heat in Eastern Europe is produced mostly by combusting coal of varying quality. The NOx factors for this source category are listed in Table 4. It was difficult to differentiate between small residential burners and larger ones in district heating plants. Thus, the same factors were used for both types of burners resulting in some, difficult to assess, inaccuracies of emission calculations. The NOx emissions are then presented in Table 5.

Table	4:	NOx	emissi	lon fa	ctors	; for	comb	oustion	of	coal	to	produce	heat
		in 1	Eastern	Europe	(in	kg N	D_{1}/t	coal).					

	Central (district) heating					
Country	Hard coal	Brown coal (incl. lignite)				
Albania	-	-				
Bulgaria		4.0				
Czechoslovakia		3.0				
GDR		4.5				
Hungary		4.9				
Poland	12.0	3.0				
Romania		10.5				
European USSR	12.1	3.0				
Yugoslavia		3.2				

1) A factor of 1.25 g NO /kg coal was used for small residential units.

Country	Production of heat (in 10 GJ)	NOx emission (in t NO ₂)
Albania	n.d.	
Bulgaria	5 7	28 150
Czechoslovakia	447	114 300
GDR	653	313 000
Hungary	220	71 740
Poland	806	481 200
Romania	667	304 010
USSR (Europe)	5 130	1 378 000
Yugoslavia	153	60 340
TOTAL	8 143	2 750 740

Table 5: NOx emissions from coal combustion to produce heat in Eastern Europe in 1982.

n.d. = no data available

Unfortunately, no data were available to calculate the NOx emission factors for heat production in Albania.

The emissions of NOx during combustion of oil and gas in industrial and residential boilers are considered in Table 6 (emission factors) and Table 7 (emission amounts).

Table 6: NOx emission factors for combustion of oil and gas in industrial and residential boilers in kg NO₂/TJ unless otherwise indicated.

Fu	el	Emission factors
1.	Residual fuel oil	5 *
2.	LPG	50
з.	Coke oven gas	125
4.	Blast furnace gas	125
5.	Refinery gas	120
6.	"City" gas	60
6.	"City" gas	6 0

* in kg NO₂/t residual oil

Table 7: NOx emissions from combustion of oil and gas in industrial and residential boilers in Eastern Europe in 1982.

			Cons	umption of fuel				
Country	Fuel oil (10 ³ t)	LPG (TJ)	Coke oven gas (TJ)	Blast furnace gas (TJ)	Refinery gas (TJ)	"City gas" (TJ)		
Albania*	550							
Bulgaria	3 025	3 188	4 000	13 500				
Czechoslovakia	4 840	6 604	68 946	59 966	11 961			
GDR	9 000	12 570	7 400	23 384	22 277	143 300		
Hungary	1 090	13 663	6 005	17 838	5 089			
Poland	2 434	8 517	109 641	77 181	9 840	100 000		
Romania		11 386	24 000	56 000	43 000			
USSR (Europe)	33 500	433 351	605 000	805 000	573 900			
Yugoslavia	6 000	12 980	19 638	19 078	14 057			
Total	60 439	502 259	844 630	1 071 947	680 124	243 300		
	NOx emission (t NO)							
Country	Fuel oil	LPG	Coke oven gas	Blast furnace gas	Refinery gas	"City gas"		
Albania	2 800							
Bulgaria	15 100	200	500	1 700				
Czechoslovakia	24 200	300	8 600	7 500	1 400			
GDR	45 000	600	900	2 900	2 700	8 600		
Hungary	5 500	700	800	2 200	600			
Poland	12 200	400	13 700	9 600	1 200	6 000		
Romania		600	3 100	7 000	5 200			
USSR (Europe)	167 500	21 700	75 600	100 600	68 900			
Yugoslavia	30 000	600	2 500	2 400	1 700			
Total	302 300	25 100	105 700	133 900	81 700	14 600		

*Total consumption of various gases in Albania was 16 500 TJ and the NOx emission of 820 t, assuming an emission factor of 50 g NO_2/GJ .

Major industrial processes resulting in NOx emissions are within the production of coke, cement, and iron and steel. It is important to take into account the technology of iron and steel production, as seen from Table 8, where the NOx emission factors are presented. These factors were then used to calculate the NOx emissions, presented in Table 9.

Table 8: NOx emission factors for fossil fuel combustion in industrial processes.

Process	Unit	Emission factor
 Coke production Cement production Iron and steel manufacturing 	kg NO /t coal charged kg NO $_2^2$ /t cement kg NO $_2^2$ /t steel	0.015 1.3
- electric arc furnace - open heart furnace		0.100 0.005

Table 9: NOx emissions from industrial processes in Eastern Europe in 1982.

A		Iron and stee	1 manufacturi	ng	Coke production			Compation another to a		
Country	Electric	arc furnace	Open hea:	rth furnace	Coke prod	uction	Gas works	Cement	production	
	Production (10 ³ t)	NOx emission (t)	Production (10 ³ t)	NOx emission (t)	Coal consumption (10 ³ t)	NOx emission (t)	NOx emission (t)	Production (10 ³ t)	NOx emission (t)	
Albania					15	v.1.		1 088	1 400	
Bulgaria	871	90	293	v.1.	1 274	20		5 614	7 300	
Czechoslovakia	2 998	300	5 997	30	10 606	160	10 970	10 325	13 420	
GDR	2 244	220	3 785	20	1 226	20	24 000	11 721	15 240	
Hungary	437	40	1 988	10	947	10	1 600	4 369	5 680	
Poland	2 175	220	6 317	30	17 728	270	1 600	16 035	20 850	
Romania	2 702	270	3 969	20	3 513	50		13 931	18 110	
USSR (Europe)	16 481	1 650	83 877	420	86 000	1 290	2 400	123 681	160 790	
Yugoslavia	1 044	100	1 306	10	3 440	50	440	9 315	12 110	
Total	28 952	2 890	107 532	540	124 749	1 870	41 010	196 079	254 900	

.1. · very low

The NOx emissions from stationary sources considered in this work are summarized in Table 10. The production of electricity is by far the major stationary source of NOx emissions in Eastern Europe, followed by coal combustion for heating.

Larssen (1989) calculated the NOx emission factors for mobile sources with special emphasis on the following source categories: 1) road traffic, 2) rail traffic, 3) internal navigation and 4) agriculture. Emission factors were given separately for passenger cars, light duty trucks, heavy duty trucks, buses, motorcycles and mopeds. These factors are shown in Table 11. In addition, the following factors were used: 20 kg NO_2/t fuel for passenger and freight trains, 70 kg NO_2/t fuel for internal navigation, and 50 kg NO_2/t fuel for agriculture.

Table 10: NOx emissions from stationary sources in Eastern Europe in 1982 (in $10^3 t NO_2$).

Country	Production of electricity	Industrial processes	Coal combustion for heating	Oil and gas combustion in industrial and residential boilers	Total
Albania	0.9	1.4		3.6	5.9
Bulgaria	78.2	7.4	28.2	17.5	131.3
Czechoslovakia	171.6	24.9	114.3	42.0	352.8
GDR	269.4	39.4	313.0	60.7	682.5
Hungary	40.5	7.4	71.7	9.8	129.4
Poland	444.2	23.0	481.2	42.3	990.7
Romania	88.7	18.4	304.0	15.9	427.0
USSR (Europe)	2 967.6	166.6	1 378.0	434.3	4 946.5
Yugoslavia	91.7	12.7	60.3	37.2	201.9
Totalt	4 152.8	301.2	2 750.7	663.3	7 868.0

Table 11: NOx emission factors for road vehicles (after Larssen, 1989) (in g/kg).

Driving mode Average speed, km/h	Urban 10-50	Rural 50-80	Highway, 80	/motorway 100	120
<u>Passenger cars</u> Gasoline - 4 stroke - 2 stroke Diesel	23 7 15	41 (gross (gross	44 average) average)	5 5	62
Light duty trucks (<u>GVW* <3.5 t)</u> Gasoline Diesel	4 2 1 5	2 (gross 5 (gross	average) average)		
Heavy duty vehicles (GVW* >3.5 t) Diesl trucks Buses Gasoline trucks Motorcycles and mopeds, gasoline	50 50 20	55 60 (gross 5.5 (gros	60 70 average) ss average	(averago (averago e)	e) e)

The NOx factors were then used to calculate NOx emissions, presented in Table 12.

C	Road tr	affic	Rail traffic	Internal	Agriculture	Total
Country	Gasoline	Diesel		navigation		
Albania	9.2	4.6			8.3*	22.1
Bulgaria	66.0	50.0	4.0	2.0	25.0	147.0
Czechoslovakia	60.4	81.9	19.1	3.4	39.3	204.1
GDR	82.6	43.0	14.0	2.0	33.0	174.6
Hungary	35.9	50.0	6.6	7.8	38.8	139.1
Poland	99.0	108.8	9.8	1.8	66.0	285.4
Romania	96.0	110.5	21.1	2.5	80.7	310.8
USSR (Europe)	1 767.0	350.3	106.7**	-	738.5	3 022.5
Yugoslavia	84.7	97.1	5.7	3.8	47.2	238.5
Totalt	2 300.8	896.2	247.0	23.3	1 076.8	4 544.1

Table 12: NOx emissions from combustion of gasoline and diesel oil in mobile sources in Eastern Europe in 1982 (in $10^3 ext{ t NO}_2$).

* Includes emissions of NOx from agricultural tractors, rail and navigation in Albania.

** Includes emissions of NOx from rail traffic and internal navigation in the European USSR.

The total NOx emissions from anthropogenic sources in Eastern Europe in 1982 are summarized in Table 13. Stationary sources contributed about 63% of NOx emissions, which is quite different from Western Europe, where 60% of NOx is produced by mobile sources (Pacyna et al., 1989).

Country	Stationary sources	Mobile sources	Total
Albania	5.9	22.1	28.0
Bulgaria	131.3	147.0	278.3
Czechoslovakia	352.8	204.1	556.9
GDR	682.5	174.6	857.1
Hungary	129.4	139.1	268.5
Poland	990.7	285.4	1 276.1
Romania	427.0	310.8	737.8
USSR (Europe)	4.946.5	3 022.5	7 969.0
Yugoslavia	201.9	238.5	440.4
Total	7 868.0	4 544.1	12 412.1

Table 13: NOx emissions from stationary and mobile sources in Eastern Europe in 1982 (in $10^3 t NO_2$).

The total NOx emissions were then spatially distributed within the EMEP grid, and the results are presented in Figure 2. The spatial distribution for 1982 has been assumed to be the same as the one estimated for 1985 (Pacyna et al, 1989).

		2			_		-				-					_			5				
1		Y	1	1	5	5	5	15	18	17	8	21	39	20	8	8	1	1	1	1	2	Э	Е
~		5M	1	1	S	5	5	11	11	53	9	55	28	31	10	1	1	1	5	5	5	5	5
	5	29	1	1	2	2	2	9	13	23	48	28	15	13	12	2	2	2	S	S	5	2	S
		A	A	1	5	5	5	5	27	13	28	32	29	17	8	З	5	es	1	2	5	5	1
		6	A	1	з	з	8	10	12	24	86	43	76	18	4	2	З	5		4	-rel		
	2	З	12	17	з	з	5	8	15	27	39	28	23	14	11	2	2	24	1	4			64
16	4	4	1	2	з	з	6	8	18	94	32	40	42	54	17	8	7	6	F	5~	14	23	39
13	4	1	3	R	3	4	7.	19	84	51	35	29	28	15	13	48	з	Э	13	41	25	35	48
12			-	-	Ē	3	de la	2	20	205	74	47	20	27	47	45		4.0	26	47	40	00	27
-	1	1	3	3	11	13	9	21	32	205	74	47	39	21	1/	15	22	18	20	4/	40	63	3/
· ` `	4	<u>h</u> _	0	1	E	35	15	17	55	309	83	46	66	36	38	45	18	22	44	29	48	AA	A2
	5	\square			YE	M8 5	10	14	16	21	34	43	57	54	146	109	28	47	33	35	24		
					1	122	17	16	16	27	48	38	51	97	54	107	12	61	20				
1		{		ar	17	27	50	23	44	40	46	55	42	60	122	29	17	-			5		
~		1			5	1	63	34	76	39	28	95	42	47	71	25	48			~	-		
2				3		23	39	56	37	35	42	53	47	40	834	271	18		1	P			
		-	2	5	0		63	26	59	42	56	72	82	82	49	0			1				
x		4-ie	7		4	17/	62	51	109	57	100	80	74	70	62	di	0		t				
w		\int	~	5	50	33	68	96	92	85	'en	71	46	55	81	39	R13		1.				
~	~	1	2	E	684	67	71	89	210	105	-7	4	51	46	109	146	27	1	4		-		1
		7	5		T	161	1	00	104	74	107	1	47	26	=	50	-7	- 2				5	
			~	Y	24	101	113		91		1	301	4/	11	22	25	301	N.	A	7.0	A	n	
			1	Ç	6	505	194	124	36	43	50	78	61	33	33	63	Í Į		-		VYV	D	
			P	57		66.	17	211	4	12	-34	33	31	24	46	17	C	2	×				
	2	h	Ŀ	-1/2				1	mi	23	29	17	28	11	43	14		1	15		~	7	
7		12	K.	!.	52	1		in		E	14	10	1			EX	-	R	5	2	y	ſ	

Figure 2: Spatial distribution of NOx emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

4 EMISSIONS OF VOCs

There is only very limited information available on the VOC emissions from Eastern Europe. Most work on inventorying VOC emissions has been done in Western Europe, particularly within the OECD project on Control of Major Air Pollutants (MAP) (e.g. OECD, 1983; Lübkert and Tilly, 1987), and the German-Dutch project PHOXA calculating the distribution of photochemical oxidants in parts of Europe during episodes of air pollution of a few days length (van Ham and Builtjes, 1985). The EEC carries out the CORINAIR project (e.g. Bouscaren et al., 1986) with the aim to set up a uniformly structured communitywide gridded emission survey including VOC.

Extensive work has been carried out in USA and Canada (e.g. U.S. EPA, 1988) to prepare VOC emission inventories. The US survey provides information on the acid precursor emissions from more than 130 000 individual point sources and for more than 100 area source categories in each of the 3 100 US counties.

Four major source categories were taken into account here: 1) combustion processes in stationary sources, 2) non-combustion processes in industry, 3) solvent use, and 4) mobile sources.

The Western European, US and Canadian emission surveys were considered when preparing a set of emission factors for this work. Differences in the fuel type, combustion conditions, solvent types, etc. between Eastern and Western Europe were taken into account.

The VOC emission factors for combustion processes in electric power plants are presented in Table 14. Solid and liquid fuels generate some amounts of VOC, while the emissions from natural gas combustion are insignificant (Table 15).

Combustion of oil and gas in industrial and residential boilers in Eastern Europe results in VOC emissions twice as high as those owing to the combustion of fossil fuels in electric power plants. Emission factors and emission amounts for oil and gas combustion in industrial and residential boilers are given in Table 16.

Table 14: VOC emission factors for combustion of fuels in electric power plants in Eastern Europe (in g/GJth).

Fuel	Electric utility	Industrial boilers	Commercial and residential boilers
Coal	5	20	50
0i1	6	10	10
Natural gas	0.5	1.5	

Table 15: VOC emissions from fossil-fuel combustion in electric power plants in Eastern Europe in 1982 (in t)*.

Country	Hard coal-fired power plant	Brown coal-fired power plant	Oil-fired power plant	Gas-fired power plant	Total
Albania		v.1.			v.1.
Bulgaria		910	620		1 530
Czechoslovakia	660	2 200	380	10	3 250
GDR		4 730			4 730
Hungary	50	380	230	10	670
Poland	5 060	960			6 020
Romania		990	620	60	1 670
USSR (Europe)	17 190	4 730	29 300	920	52 140
Yugoslavia		1 810		1.0	1 810
Total	22 960	16 710	31 150	1 000	71 820

* Data on production of electricity are given in Table 3. v.l. = very low.

Table 16: VOC emissions from combustion of oil and gas in industrial and residential boilers in Eastern Europe in 1982 (in t)¹.

Country	Fuel-oil	boilers ²	Gas b	oilers ³	Tot	tal
Albania		230				230
Bulgaria	1	270		830	2	100
Czechoslovakia	2	030	5	900	7	930
GDR	3	770	8	360	12	130
Hungary		460	1	700	2	160
Poland	1	020	12	210	13	230
Romania			5	380	5	380
USSR (Europe)	14	040	96	690	110	730
Yugoslavia	2	510	2	630	5	140
Total	2 5	330	133	700	159	030

1 Statistical data are given in Table 7. 2 An emission factor of 10 g/GJ was used, and the heat value of oil was assumed to be 41.9 GJ/t.

3 An emission factor of 40 g/GJ was used for all gases specified in Table 7.

Even higher VOC emissions were calculated for combustion of paraffin and wood in commercial and residential boilers in Eastern Europe in 1982. They are presented in Table 17.

Table 17: VOC emissions from combustion of paraffin and wood in commercial and residential boilers in Eastern Europe in 1982 (in t).

Country	Paraffin ¹				Wo		Tota	al		
	Consum (TJ	ption)	VOC em:	ission	Consum (TJ	ption)	VOC em	ission	voc em	ISSION
Albania	3	416		200	16	240	1	620	1	820
Bulgaria	9	394		560	17	545	1	750	2	310
Czechoslovakia	14	603		880	17	790	1	780	2	660
GDR		683		40	7	556		760		800
Hungary	9	138	ł	550	29	182	2	920	3	470
Poland	9	607		580	27	030	2	700	3	280
Romania	38	430	2	310	46	110	4	610	6	920
USSR (Europe	1 436	855	86	210	841	413	84	140	170	350
Yugoslavia	4	099		160	39	960	4	000	4	160
Total	1 526	225	91	490	1 042	826	104	280	195	770

1 An emission factor of 60 g/GJ was used.

2 An emission factor of 100 g/GJ was used, and the wood density was assumed 546 kg/m and heat value 18.5 GJ/t.

The largest amounts of VOCs from combustion processes in Eastern Europe were calculated for the production of heat from coal combustion, as shown in Table 18.

Three major industries are considered as sources of VOC: 1) petroleum industry, 2) petrochemical and chemical industry, and 3) iron and steel manufacturing. In addition, gasoline marketing is also considered. The emission factors, statistical data and emission quantities for the above sources are presented in Table 19. Gasoline marketing and petroleum industry emit the largest amounts of VOCs when compared with other industries.

Table 18: VOC emissions from coal combustion to produce heat in Eastern Europe in 1982¹.

Country	Production of heat (10 GJ)	VOC emission (in t)
Albania	n.d.	-
Bulgaria	57	5 700
Czechoslovakia	447	44 700
GDR	653	65 300
Hungary	220	22 000
Poland	806	80 600
Romania	677	67 700
USSR (Europe)	5 130	513 000
Yugoslavia	153	15 300
Total	8 143	814 300

n.d. = no data available.

An emission factor of 100 g/GJ was used. 1

Table 19: VOC emissions from industrial processes and gasoline marketing in Eastern Europe in 1982.

		Petroleum :	industry		Petroc	nemical and	chemical indu	ustry	Iron and sintering ⁵		
	Process em	issions ¹	Storage ;	products ²	Ethe	70 ³	Polyprop	/lene ⁴	1		
Country	Production (10 ³ t)	Emission (t)	Storage (10 ³ t)	Emission (t)	Production (10 ³ t)	Emission (t)	Production (10 ³ t)	Emission (t)	Production (10 ³ t)	Emission (t)	
Albania	3 500	1 400	2 655	530	n.d.		n.d.		n.d.		
Bulgaria	12 800	5 120	12 070	2 410	200	400	121	730	n.d.		
Czechoslovakia	15 908	6 760	14 820	2 960	533	1 0/0	240	1 480	n.d.	1	
GDR	8 681	3 470	8 880	1 780	256	510	133	800	n.d.		
Poland	13 464	5 390	11 857	2 370	175	350	117	700	8 523	850	
Romania	22 666	9 070	23 882	4 780	288	580	196	1 180	n.d.		
USSR (Europe)	500 351	200 140	450 700	90 140	2 132	4 260	981	5 890	n.d.		
Yugoslavia	12 830	5 130	13 990	2 800	168	340	71	430	n.d.		
Total	613 002	245 200	559 168	111 830	3 752	7 510	1 865	11 210	8 523	850	

		Steel manu	ifacturing		Gasoline	marketing			Total	
	Coke o	ven ⁶	Foundry emission ⁷		Storage,	transfer ⁸	Refueling	of cars ⁹	t t	
Country	Production (10 ³ t)	Emission (t)	Production (10 ³ t)	Emission (t)	Storage (10 ³ t)	Emission (t)	Handling (10 ³ t)	Emission (t)		
Albania Bulgaria Czechoslovakia GDR Hungary Poland Romania USSR (Europe) Yugoslavia	15 1 274 10 606 1 266 947 17 728 3 513 86 000 • 3 440	10 700 5 830 700 9 750 9 750 1 930 47 300 1 890	n.d. 4 456 401 116 802 656 n.d. 248	10 1 320 1 160 340 2 330 1 900 720	250 1 800 1 706 3 156 1 252 2 974 2 725 68 500 2 426	430 3 060 2 900 5 370 2 130 5 060 4 630 116 450 4 120	250 1 800 1 706 3 156 1 252 2 974 2 725 68 500 2 426	700 5 040 4 780 8 840 3 510 8 330 7 630 191 800 6 790	3 070 17 470 27 100 28 850 13 060 35 130 31 700 655 980 22 220	
Total	124 789	68 630	2683	7 780	84 789	144 150	84 789	237 420	834 580	

According to the data from OECD (1987), solvent usage operations contribute approximately 40% of all anthropogenic VOC emissions in OECD-Europe. It is thus important to identify the types of processes which utilize solvents and emission factors which are applicable to these processes. There are two major categories of solvent use operations: industrial solvent use and non-industrial solvent use.

The first category includes many industrial operations in which solvents are used, the major ones being: 1) metal surface coating, 2) degreasing, 3) printing and fabric coating and 4) flatwood paneling. According to the information reported from the FRG and Swedish authorities to OECD (1987), the total amount of solvents used in the industry is evaporated.

It is difficult to estimate the emission factors for VOC from nonindustrial solvent use. According to OECD (1987) the following factors can be assumed: 0.25 kg capita/year for dry cleaning, 2.6 for domestic painting and 3.8 for other domestic use. This gives a total emission factor of 6.65 kg/capita/year.

The VOC emission estimates for the solvent use in Eastern Europe in 1982 are given in Table 20.

Mobile sources seem to produce the largest amounts of VOC in Europe. Most of the information has been collected during various OECD-programmes (e.g. OECD, 1983). In addition, some data are available from the Norwegian authorities (SFT, 1987). The above data bases were used to select the VOC emission factors which can be applied to calculate the VOC emissions from mobile sources in Eastern Europe. The selected factors are shown in Table 21. The estimates of the VOC emissions from gasoline-, and diesel-powered engines in Eastern Europe in 1982 are presented in Tables 22 and 23, respectively. No differentiation has been made between the VOC emission factors for two-stroke and fourstroke engines due to a lack of relevant information.

Country	Population 10 persons	Non-idustri use	al Industrial use	Total VOC emission
Albania	3.0	9 900	4 950	14 580
Bulgaria	9.2	30 400	15 200	45 600
Czechoslovakia	15.6	51 480	25 740	77 220
GDR	16.7	55 110	27 560	82 670
Hungary	10.8	35 640	17 820	53 460
Poland	37.1	122 430	61 220	183 650
Romania	24.3	80 190	40 100	120 290
USSR (Europe)	190.3	627 990	314 000	941 990
Yugoslavia	23.0	75 900	37 950	113 850
Total	330.0	1 089 040	544 540	1 633 580

Table 20: VOC emissions from the use of solvents in Eastern Europe in 1982 (in t).

1 An emission factor for non-industrial use of solvents in the OECD countries is 6.65 kg/capita/year (OECD, 1987). The solvent production per capita in the OECD countries is ca. twice as high as in the Eastern European countries. Thus, it was assumed that a factor of 3.3 kg/capita/year can be used in this work.

2 Based on the solvent production it was assumed that the industrial use of solvent is only a half of the non-industrial use.

Table 21: VOC emission factors for mobile sources in Eastern Europe (in kg/t fuel used unless indicated).

Source	Emission factor
1) Road traffic	
a) automobiles	
- gasoline-powered	37.0
- diesel-oil-powered	11.0
b) heavy-duty vehicles	
- gasoline-powered	40.0
- diesel-oil-powered	4.5
c) motorcycles	170.0
d) tractors (agriculture)	10.0
2) Inland shipping	5.0
3) Seagoing shipping,	
harbours	5.0
4) Rail	5.0

	Passenge	cars	Heavy-duty	vehicles	Motorcy	cles	T -4-1
Country	Consumption (10 ³ t)	Emission (t)	Consumption (10 ³ t)	Emission (t)	Consumption (10 t)	Emission (t)	emission (t)
Albania	237	8 770			13	2 210	10 980
Bulgaria	810	29 970	900	36 000	90	15 300	81 270
Czechoslovakia	1 620	59 940			86	14 620	74 560
GDR	1 678	62 090	1 294	51 760	184	31 280	145 130
Hungary	1 060	39 220	125	5 000	67	11 390	55 610
Poland	1 606	59 420	1 130	45 200	238	40 460	145 080
Romania	2 589	95 790			136	23 120	118 910
USSR (Europe)	14 385	532 250	50 690	2 027 600	3 425	582 250	3 142 100
Yugoslavia	2 086	77 180	218	8 720	122	20 740	106 640
Total	26 071	964 630	54 357	2 174 280	4 301	741 370	3 880 280

Table 22: VOC emissions from gasoline-powered vehicles in Eastern Europe in 1982.

1 Including consumption of gasoline by Heavy-duty-trucks.

Table 23: VOC emissions from diesel-powered engines in Eastern Europe in 1982.

Country	Passenger cars		Heavy duty vehicles		Rail		Shipping		Agricul	(Tota)	
	Consumption (10 ³ t)	Emission (t)	Consumption (10 ³ t)	Emission (t)	Consumption (10 ³ t)	Emission (t)	Consumption (10 ³ t)	Emission (t)	Consumption (10 ³ t)	Emission (t)	VOC emission (t)
Albania Bulgaria Czechoslovakia GDR Hungary Poland Romania USSR (Europe) Yugoslavia	13 50 0 71 186 135 2 491 155	140 550 1 100 780 2 050 1 490 27 400 1 710	96 983 1 617 858 988 2 010 2 233 6 042 1 952	430 4 420 7 280 3 850 4 450 9 060 10 050 27 190 8 780	217 962 705 311 486 1 058 6 678 ² 295	1 090 4 810 3 530 1 560 2 430 5 290 33 390 1 480	30 52 22 105 28 38 47	150 260 110 530 140 190 240	130 ¹ 500 784 650 780 1 314 1 612 14 840 940	1 300 5 000 7 840 6 500 7 800 13 140 16 120 148 400 9 400	1 870 11 210 21 290 13 990 15 120 26 820 33 140 236 380 21 610
Total	3 201	35 220	16 779	75 510	10 712	53 580	322	1 620	21 550	215 500	381 430

1 Including rail • agriculture • shipping. 2 Including rail • shipping.

Table 24 summarizes the estimates of VOC emissions from anthropogenic sources in Eastern Europe. In 1982, the emissions from mobile sources contributed about 53% to the total VOC emissions, followed by the emissions during solvent use - 20%.

Country	Statio combus	nary tion	Indus proce	strial esses	S	over use	nt	M	lobil	e ces		Tota	11
Albania	2	050	3	070		14	850		12	850		32	820
Bulgaria	11	640	17	470		45	600		92	480		167	190
Czechoslovakia	58	540	27	100		77	220		95	850		258	710
GDR	82	960	28	850		82	670		159	120		353	600
Hungary	28	300	13	060		53	460		70	730		165	550
Poland	103	130	35	130		183	650		171	900		493	810
Romania	81	670	31	700		120	290		152	050		385	710
USSR (Europe)	846	220	655	980		941	990	3	378	480	5	822	670
Yugoslavia	26	410	22	220		113	850		128	850		290	730
Total	1 240	920	834	580	1	633	580	4	261	710	7	970	790

Table 24: VOC emissions from anthropogenic sources in Eastern Europe in 1982 (in t).

The total VOC emissions from anthropogenic sources in Eastern Europe were then spatially distributed within the EMEP grid of 150 km x 150 km (Figure 3). As more than 73% of the total emissions were calculated for mobile sources and solvent use, population data were applied to obtain the spatial distribution. This assumption inevitably results in some inaccuracies in the spatial distribution of the VOC emissions. However, it is believed that these inaccuracies are not significant.

The EURAD model requires chemical speciation of VOCs. The following groups and species are considered in this work: 1) alkanes, including ethane, propane, and buthane, 2) alkenes, including ethene and propene, 3) aromatics, including toluene, benzene and xylene, 4) formal-dehyde, and 5) higher aldehydes and ketones. The VOC profiles for emissions from various anthropogenic sources were obtained on the basis of literature reviews by Veldt et al. (1988) and CONCAWE (1986) and were discussed with the experts from Eastern Europe. The final version of the profiles is presented in Table 25. The VOC species in Table 25 are the major species for a given source category. However, for many source categories there are also species which are not indicated in Table 25. Thus, for these categories, a sum of percentage contributions (horisontal lines) is below 100%, e.g. 80% for statio-nary coal combustion.

So	urce	2 Alkanes	3 Alkenes	4 Aromatics	Formalde- hyde	Ketones & higher aldehydes
1.	Stationary combustion					
	a) coal	36	24	20		
	b) oil	69	13	6	6	
	c) natural gas	48	28		16	
	d) paraffin	69	13	6	6	
	e) wood	4	32	35	8	
2.	Industrial processes					
	a) petroleum industry	86.5	6	7.5		
	b) ethene & polypropylene					
	production		100	1		
	c) steel & iron production					
	- sintering and foundries	9	81			
	- coke oven	27	62	11		
	d) gasoline marketing	89	7	4		
3.	Solvent use	24		20		22
4.	Mobile sources					
	a) gasoline	13	18	55		
	b) diesel-oil	44	2	54		

Table 25: VOC profiles for emissions from various sources¹ (in %).

1 only non-methane hydrocarbons are considered.

2 Include: ethane, propane, buthane.

3 Include: ethene, propene.

4 Include: benzene, toluene and xylene.

Then the emissions of alkanes, alkenes, aromatics, formaldehyde, and higher aldehydes and ketones were calculated on the basis of the VOC profiles in Table 25 and the VOC emissions estimated for anthropogenic sources. These calculations are presented in Tables 26 to 30 for alkanes, alkenes, aromatics, formaldehyde, and ketones and higher aldehydes, respectively. The total emissions of the above species were then spatially distributed within the EMEP grid of 150 km x 150 km using the population data. The spatial distributions of emissions are shown in Figures 4 to 8 for alkanes, alkenes, aromatics, formaldehyde and ketones and higher aldehydes, respectively.

Table 26: Emission of alkanes from anthropogenic sources i Eastern Europe in 1982 (in t).

Country		Stationary combustion					Iron & steel production		on Gasoline marketing	Solvent	Mobile sources		Total
	Coal	011	Natural gas	Paraffin	Wood	Industry	Sintering	Coke oven	and the start of t	030	Gasoline	Diesel	
Albania Bulgaria Czechoslovakia GDR Hungary Poland Romania USSR (Europe) Yugoslavia	v.1, 2 380 17 120 25 210 8 070 31 180 24 730 192 570 6 160	160 1 500 1 660 2 600 480 700 430 29 900 1 730	400 2 840 4 010 820 5 860 2 610 46 850 1 260	140 390 610 30 380 400 1 590 59 480 110	60 70 30 120 110 180 3 370 160	1 670 6 510 8 410 11 050 4 540 6 710 11 980 251 090 6 860	80	v.1. 190 1 930 230 3 260 1 030 12 770 700	1 000 7 210 6 840 12 650 5 020 11 920 10 910 274 340 9 710	3 560 10 940 18 530 19 840 12 830 44 080 28 870 226 080 27 320	1 430 10 570 9 690 18 870 7 230 18 860 15 460 408 470 13 860	820 4 930 9 370 6 160 6 650 11 800 14 580 104 010 9 510	8 840 45 090 77 070 46 370 134 960 112 370 1 608 930 77 380
Total	307 420	39 160	64 650	63 130	4 170	308 820	80	20 610	339 600	392 050	504 440	167 830	2 211 960

v.l. = very low.

Table 27: Emission of alkenes from anthropogenic sources in Eastern Europe in 1982 (in t).

Country		Sta	tionary combust	tion		Petroleum Pe	Petrochemical and chemical	Iron & steel	1 production	Gagoline	Mobile sources		Total
	Coal	011	Natural gas	Paraffin	Wood	THOUSTLY	industry	Sintering	Coke oven	marketing	Gasoline	Diesel	
Albania Bulgaria Czechoslovakia GDR Hungary Poland Romania USSR (Europe) Yugoslavia	v.1. 1 590 11 410 16 810 5 380 20 790 16 490 128 380 4 110	30 250 310 490 90 130 80 5 630 330	230 1 650 2 340 480 3 420 1 520 27 330 740	30 70 110 10 70 80 300 11 210 20	520 560 570 240 930 860 1 480 26 920 1 280	120 450 580 770 320 470 830 17 420 480	1 130 2 550 1 310 1 050 1 760 10 150 770	760	10 440 4 430 1 150 530 7 490 2 370 29 330 1 620	80 570 540 990 390 940 860 21 580 760	1 980 14 630 13 420 26 120 10 010 26 110 21 400 565 580 19 200	40 220 430 280 540 660 4 730 430	2 810 20 140 36 000 49 200 62 640 47 750 848 260 29 740
Total	204 960	7 340	37 710	11 900	33 360	21 440	18 720	760	47 370	26 710	698 450	7 630	1 116 350

v.l. . very low.

Table 28: Emission of aromatics from anthropogenic sources in Eastern Europe in 1982 (in t).

Country	St	tationary	combustion		Petroleum	Coke oven emissions	n Gasoline marketing	Solvent	Mobile so	ources	Total
	Coal Oil Paraffin Wood		Industry	201351013	allissions marketing		Gasoline	Diesel			
Albania	v.1.	10	10	570	140	v.1.	50	2 970	6 040	1 010	10 800
Bulgaria	1 320	110	30	610	560	80	320	9 120	44 700	6 050	62 900
Czechoslovakia	9 510	140	50	620	730	790	310	15 440	41:010	11 500	80 100
GDR	14 010	230	v.1.	270	960	200	570	16 530	79 820	7 550	120 140
Hungary	4 490	40	30	1 020	390	90	230	10 690	30 590	8 160	55 730
Poland	17 320	60	30	950	580	1 330	540	36 730	79 790	14 480	151 810
Romania	13 740	40	140	1 610	1 040	420	490	24 060	65 400	17 900	124 840
USSR (Europe)	106 980	2 600	5 170	29 450	21 780	5 200	12 330	188 400	1 728 160	127 650	2 227 720
Yugoslavia	3 420	150	10	1 400	590	290	440	22 770	58 650	11 670	99 390
Total	170 790	3 380	5 470	36 500	26 770	8 400	15 280	326 710	2 134 160	205 970	2 933 430

v.l. * very low.

Table 29: Emissions of formaldehyde from combustion sources in Eastern Europe in 1982 (in t).

Country	011	Natural gas	Paraffin	Wood	Total
Albania	10		10	130	150
Bulgaria	110	130	30	140	310
Czechoslovakia	140	950	50	140	1 280
GDR	230	1 340	v.1.	60	1 630
Hungary	40	270	30	230	570
Poland	60	1 950	30	220	2 260
Romania	40	870	140	370	1 4 2 0
USSR (Europe)	2 600	15 620	5 170	6 7 3 0	30 120
Yugoslavia	150	420	10	320	900
Total	3 380	21 550	5 470	8 3 4 0	38 740

v.l. = very low.

Country	Emission
Albania	3 270
Bulgaria	10 030
Czechoslovakia	16 990
GDR	18 190
Hungary	11 760
Poland	40 400
Romania	26 460
USSR (Europe)	207 240
Yugoslavia	25 050
Total	359 390

Table 30: Emissions of ketones and higher aldehydes from solvent use in Eastern Europe in 1982 (in t).

It is difficult to discuss the importance of natural emissions of VOC compared with the VOC emissions from anthropogenic sources because only limited data exist in the literature. Two sources are considered in this work: the releases of terpens from coniferous trees and the release of isoprene from deciduous forest. The following factors are suggested: 1.6 kg terpens/km² h for coniferous forest and 0.25 kg isoprene/km² h for deciduous forest.

The emission estimates are presented in Table 31.

Table	31:	VOC	emissions	from	natural	sources	in	Eastern	Europe	in
		1982.								

Country	Forest an	rea, 10 ³ ha	Emissi	.on, t	Total
	Coniferous	Broad-leaved	1 Isoprene ¹	2 Terpens	t emission
Albania	n.d.	n.d.			26 000 3
Bulgaria	1 200	2 100	45 990	168 190	214 180
Czechoslovakia	2 942	1 636	35 830	412 350	448 180
GDR	2 275	680	14 890	318 860	333 750
Hungary	227	1 410	30 880	31 820	62 700
Poland	6 895	1 759	38 520	966 400	1 004 920
Romania	1 710	4 830	105 780	239 670	345 450
USSR (Europe)	96 000	55 600	1 217 640	13 455 360	14 673 000
Yugoslavia	1 210	7 915	173 340	169 600	342 940
Total	112 459	75 930	1 662 870	15 762 250	17 451 120

n.d = no data. 1 An emission factor of 1.6 kg terpens/km² h for conifereous forest 2 An emission factor of 0.25 kg isoprene/km² h for broad-leaved forest 3 From Saltbones and Lien (1987).

Figure 3: Spatial distribution of VOC emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

Figure 4: Spatial distribution of alkanes emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

	1				1		Ţ			T	1	1	<u>,</u>	1	1		1			_			
		8	0	0	0	0	1	5	5	2	1	5	4	5	1	1	0	0	0	0	-6	0	0
~		19	0	0	0	1	0	1	1	6	1	6	з	з	1	0	0	0	0	0	0	0	0
	C	pd	0	0	0	0	0	1	1	2	5	з	2	1	1	0	0	0	0	0	ο	0	0
		A	P	0	0	0	1	1	з	1	з	з	з	5	1	0	0	5	0	0	0	0	5
		6	P	0	0	0	1	1	1	з	9	5	8	5	0	0	0	6		40,	Lo		
	e	0	Ja	2	0	0	1	1	2	з	4	з	2	2	1	0	0	з	0	4			71
a	0	0	10)	71	0	0	1	1	2	10	з	4	4	6	2	1	1	1	2	2	2	2	4
10	0	6	2	7	0	0	1.	2	9	5	4	з	з	2	1	5	0	0	1	4	з	4	5
-	à-	~0.	0	0	东	2	1	Z	з	22	8	5	4	з	2	2	2	2	з	5	4	9	4
			~	0	0	~	2	2	6	33	q	5	7	4	4	5	2	2	5	З	5		14
	7	7			12	3	-	1	2	2		5	6	6	16	12-	-	5	1			/ .	
	2	+			7	5-	•	-	-	-				0	10		L	5	-		7		
		$\left \right\rangle$			15	6	2	2	2	3	0	4	-	10	0		3	لمحمر	e		4		
1		Ł		-05	E.	A	2	2	5	4	5	6	5	6	13	E	10				5		
5		1		•	a	e	7	4	8	4	З	10	5	5	8	Ă	5			5			
	1-			2	A	P	4	6	4	4	4	6	5	4	97	1	5		-/				
		1	2	3	V t		2	1	21,	4	6	8	9	9	5	0							
X		T'	X		X	1	13	З	5	Э	10	8	16	5	-51	E	0		5				
5			2	Z	20	>	З	5	5	4	- 24	7,'	3	4	5	2	21		4				
		ę	1	23	P	64	З	4	11	a'	A	H.	Э	з	7	;э	2;	\Box	2			4	
			~	S.	4	9	6	-8-	6	5	18	З	з	3	A	4	зі	X	-			~	
				A	0	12	14	8	2'	1.14	4	3	4	2	à	5	5		8	2n	N	04	
			5	è		14-	1	-17	0	1,4	-2-	2	2	2	з	11	C		~				
~	>		L					1		1,2	5	1	5	1	~2	- 4		5	R		~	2	
2	4	2	E.	1	12	-1		1		6	20	1	0			14	-	R	-	>	2		
<u> </u>		- /										1		1	-		L		-	Ľ			

Figure 5: Spatial distribution of alkenes emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

34

Figure 6: Spatial distribution of aromatics emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

7.00-6 0.00.00 60.00.00.00.00.00.00.00.00.00.40.10.20.20.20.00.00.00.00.00.00. 0.00.00 0.00.00.00.00.00.00.00.00.10.80.30.20.10.10.00.00.00.10.20.20.3 0.00.00.00.00.00.00.21.20.30.20.30.10.10.20.00.00.20.10.20.20.00.00 0,09.7000.00.00.00.10.20.20.20.60.40.10.20.1000 0,00.00.00.00.10.20.10.20.40.20.40.00.20.0 (00.10.00.00.20.10.20.20.20.20.50.10.4 00.00.20.10.30.10.10.30.20.20.30 20.2 0.00.10.20.10.10.20.20.20.20.20.00.0 20.00.20.20.20.30.30.30.30.a0.0 0.20.10.00.20.10.40.30.20.20.20.00.0 ◇ 0) 00.10.20.20.20,20,20.00.10.20,00.0 P10. 10. 10. 20. 40. 20, 10, 10. 10. 00. 20. 00. 10.30.20.20.20.20.20.00.00.00.00.00.00.00 N 0.00.40.40.30.00.10.10.10.00.10.00.00.0 0.00.00.00.00.00.00.00 .00.00.0

Figure 7: Spatial distribution of formaldehyde emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

Figure 8: Spatial distribution of ketones and higher aldehydes emissions in Eastern Europe in 1982 within the EMEP grid of 150 x 150 km. The unit used: 10^3 t.

5 EMISSIONS OF NH

There are three major source categories of anthropogenic emissions of NH_3 : animal wastes, use of fertilizers, and some industrial activities to produce nitric acid, synthetic ammonia, urea and during chemical wood pulping. The NH_3 emissions from these sources in Europe in the early 1980s were estimated by Buijsman et al. (1987). The authors have also included an extended information on the NH_3 emission factors. The NH_3 emission values calculated by Buijsman et al. (1987) can be used to test the EURAD model. The estimates for Eastern Europe are shown in Table 32. To the author's knowledge there is no other emission survey of NH_3 for Eastern Europe.

Table	32:	Anthrop	poge	enic	emiss	sions ,	of	NH	from	sourc	ces	in	Eastern
		Europe	in	the	early	1980s ¹	(a	fter	Buijsma	n et	al	(198	37)).

Country	Livestock wastes	Fertilizers	Industrial sources	Total
Albania	16	4	1	21
Bulgaria	91	31	4	126
Czechoslovakia	127	39	4	170
GDR	159	4 2	6	207
Hungary	83	4 2	4	127
Poland	317	80	7	405
Romania	237	53	11	301
USSR (Europe)	1 046	210		1 256
Yugoslavia	167	2 9	2	198
Total	2 243	530	39	2 812

1 All data are in 10^3 t NH₂/y.

2 Industrial sources include: ammonia fertilizer and related plants.

According to Buijsman et al. (1987), more than 95% of total anthropogenic emissions of NH_3 are agricultural emissions with the major contribution from animal wastes. The NH_3 emissions from this source were estimated on the basis of livestock statistics and nitrogen production by animals during housing and at grass.

Various parameters were taken into account when estimating the NH_3 emission from fertilizers. They include different emission factors for various kinds of N-fertilizers, soil conditions affecting the NH_3

losses, and drying conditions (temperature, wind speed, humidity). The NH_3 emission factor for Eastern Europe was 5.0% of the N-content consumed in fertilizers.

Fertilizer and NH_3 production plants are the main industrial sources of atmospheric NH_3 . Buijsman et al. (1987) used the NH_3 emission factor of 0.8 kg NH_3/t NH_3 produced for NH_3 plants and an average factor of 5.0 kg NH_3/t N-fertilizer produced for fertilizer plants.

The spatial distribution of the NH_3 emissions in Eastern Europe within the EMEP grid of 150 km x 150 km is shown in Figure 9 (after Buijsman et al., 1987).

	-		_	-					_						_	_		_	-		_		
		5	0	0	0	0	1	2	з	з	1	з	6	з	1	1	0	0	0	0	-0	0	0
~		A	0	0	0	1	0	5	5	8	1	9	4	5	5	0	0	0	0	0	0	0	0
	C	20	0	0	0	0	0	1	2	4	8	4	2	5	5	0	0	0	0	0	0	0	0
		A	p	0	0	0	1	1	4	2	4	5	5	з	1	0	0	5	0	0	0	0	J
		0	A	0	0	0	1	2	2	4	14	7	12	з	1	0	0	6		Lp,	Jo.		
	0	1	1a	з	0	0	1	1	5	4	6	4	4	5	2	0	0	4	0	V			197
1	1	1		21	0	0	1	1	з	15	5	6	7	8	з	1	1	1	2	1	2	A	6
20	4	1	n n	2	0	1	1_	а	13	8	6	4	4	2	2	8	1	0	2	5	4	5	8
N.	2-		0	4	È	3	1 and the second	2	-	22	12	7	6		2		-	2	-	7	6	43	-
-	0	u,	~~~		20	2		3	5	32	12	-	0	4	3		4	3	4.	-	0	13	
	4	7	0	0	E.	3	2	3	9	49	13		10	6	6	/	5	4		5	8		31
	1	$\left \right\rangle$			ig-	29	9	5	3	Э	5	7	9	8	53	17	4	7	5	1	4		
					14	B	3	З	з	4	8	6	8	15	8	17	3	10	3		1		
1		1		ar	E	4	З	4	7	6	7	9	7	9	19	5	2Ó				2		
Ń		1			80	2	10	5	12	6	4	14	7	7	11	R	8			~			
P `	1-			}	Λ	6	6	9	6	6	7	8	7	6	13	11	З		1				
		1	2	1	0		2	18	12	7	9	11	13	13	8	0							
X		1×	X		A	5	eo	16	35	17	16	13	22	26	79	é	0		5				
25			2	X	50	4	55	30	29	27	12	15	19	22	33	14	6		1				
		Ę	2	<u></u>	18	4.9	22	28	66	зś	24	23	21	19	45	21	19	1	3			1	
			7	5	15	.39	29	-06	128	22	147	16	19	15	aź	24	16	·X					
				à	1	49	49	38	115	17	23	18	27	15	15	29	-1		\$	In	N	n	
			1	2.		15	5	-67	1	51		15	14	11	20	5	2	-		-		0	_
			P	~						1	43		43			4	5	-	3			2	
	7	3	1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	K,	1-1			me	2	13	e de	13		2			1	1		te		
		22	1		.>~	i	1	-7		E	2	5	1			00			2		V		

Figure 9: Spatial distribution of NH emissions in Eastern Europe in 1982 within the EMEP grid of 150×150 km. The unit used: 10^3 t.

6 EMISSIONS OF N₀

The major anthropogenic sources of N_2^{0} include coal combustion and nitrogen fertilizer application. The measurements of the N_2^{0/CO_2} ratios in stack gases from large oil- and coal-fired power plants were used to calculate the N_2^{0} emission factor by Weiss and Craigh (1976) and Pierotti and Rasmussen (1976). A factor of ca. 1.8 kg $N_2^{0/t}$ can be suggested on the basis of these measurements. It should be mentioned, however, that the N_2^{0} emission factors for oil- and coal combustion have attracted several discussions (e.g. Lyon et al., 1989). It has been suggested that these factors may be lower than reported here. This suggestion stems from the discovery of an artifact in common sampling procedure for N_2^{0} . There is an urgent need for accurate measurements of N_2^{0} emissions from stationary combustion systems.

The emission of N_2^{0} from soil after application of fertilizers is often considered as a natural source. The following N_2^{0} emission factors can be suggested on the basis of the handbook of emission factors from the Dutch Ministry of Health and Environmental Protection (1980):

- a) for unfertilized soil: 0.1 g $N_2 O/ha^{\cdot}h$
- b) for soil fertilized with artificial fertilizer additioned 0.2 g $N_{\rm y}\,O/{\rm ha^{\cdot}\,h}$
- c) for soil fertilized with organic fertilizer additioned 0.16 g ${\rm N_2}_2{\rm O/ha^{\circ}h}$
- d) for freshly fertilized soil: 0.1+0.2+0.16 $\stackrel{\leq}{=}$ 0.5 g N₂O/ha[·]h.

The N_2 O emissions from coal and oil combustion in electric- and heatpower plants are presented in Table 33. Combustion of fossil fuels seems to emit slightly more N_2 O than the application of nitrogen fertilizers.

The total N_2^{0} emissions from Table 33 were then spatially distributed within the EMEP grid of 150 km x 150 km. Since combustion processes emit more N_2^{0} than application of fertilizers, it was assumed here, that the spatial distribution of NOx emissions from stationary sources in Europe presented by Pacyna (1988) can be used as a basis for the spatial distribution of N_2^{0} emissions. The above assumption was necessary due to a lack of information on the spatial distribution of fertilized soils in Eastern Europe. The spatial distribution of N₂O emissions is presented in Figure 10.

Country	Coal and bustion i tric- an plan	oil com- n elec- d heat ts	Nitrogen zer appl	fertili- ication	Total emission
	Coal	Oil	Area, 6 10 ha	Emission	
Albania	510		1.5	6 570	7 080
Bulgaria	36 790	4 240	4.2	18 400	59 430
Czechoslovakia	91 010	2 670	4.2	18 400	112 080
GDR	232 960		3.9	17 080	250 040
Hungary	20 670	1 900	3.9	17 080	39 650
Poland	163 470		12.0	52 560	216 030
Romania	60 790	18 130	8.8	38 540	117 460
USSR (Europe)	563 500	310 690	208.7	914 110	1 788 300
Yugoslavia	51 580		9.1	39 860	91 440
Total	1 221 280	337 630	256.3	1 122 600	2 681 510

Table 33: Emissions of N O from major anthropogenic sources in Eastern Europe in 1982² (in t).

1 An emission factor of 1.8 kg N 0/t was used. 2 An emission factor of 0.5 g N $_2^{0/ha}$ h was used.

Figure 10: Spatial distribution of N O emissions in Eastern Europe in 1982 within the EMEP $grid^2 of 150 \times 150 \text{ km}$. The unit used: 10^3 t .

7 EMISSIONS OF CO

CO is a product of incomplete combustion in stationary and mobile sources. It is assumed that complete combustion of fuels takes place in large utility boilers and industrial power plants, resulting in no emission of CO. There is, however, CO emission from smaller industrial and residential boilers. To obtain the information on the CO emissions from these boilers, an extended literature review has been performed using the following data basis: SFT (1987), Bakkum and Veldt (1986), CBS (1984), OECD (1984), KHM (1983) and Gram (1984). As a result, the CO emission factors were selected and used together with the statistical data to calculate CO emissions from combustion of various fuels in industrial and residential boilers in Eastern Europe in 1982. The estimates are shown in Table 34.

Table 34: CO emissions from combustion of various fuels in industrial and residential boilers in Eastern Europe in 1982 (in t)¹.

Country	Fuel boi	2 L oil Llers	Parai boil	fin ³ Lers	Fu	lel v	wood ⁴	Тс	otal	
Albania		230		330		46	980		47	540
Bulgaria	1	270		940		50	750		52	960
Czechoslovakia	2	030	1	470		51	620		55	880
GDR	3	770		70		22	040		25	880
Hungary		460		920		84	680		86	060
Poland	1	020		970		78	300		80	290
Romania			3	860		133	690		137	550
USSR (Europe)	14	040	143	970	2	440	060	2	598	070
Yugoslavia	2	510		270		116	000		118	780
Total	2 5	330	152	800	3	024	120	3	202	250

1 Statistical data are given in Tables 7 and 17.

2 An emission factor of 10 g/GJ was used and the heat value of oil was assumed to be 41.9 GJ/t.

3 An emission factor of 100 g/GJ was used as an average value of the industrial boiler factor of 50 g/GJ and the residential boiler factor of 150 g/GJ.

4 An emission factor of 2 900 g/GJ was used as an average value of the industrial boiler factor of 500 g/GJ and the residential boiler factor of 5 300 g/GJ.

CO is also emitted during the production of iron and steel. On the basis of the OECD (1983) emission survey, a set of emission factors

can be suggested for Eastern Europe. These factors are presented in Table 35. Using these factors and statistical data, the CO emissions were calculated (Table 36).

Table	35:	CO	emission	factors	for	iron	and	steel	production	in	Eastern
		Eur	cope.								

Process	Unit	Emission factor
1. Sintering	kg/t sinter	30
2. Coke oven	kg/t coke	1
3. Iron production	kg/t pig iron	10
4. Foudry emissions		
- cupola	kg/t metal	90
- electric arc furnace	kg/t metal	5

Table 36: CO emissions from iron and steel production in Eastern Europe in 1982 (in t).

Country	Sintering		Coke prod	luction	Pig :	Iron	Cup	ola	Electric a	rc furnace	Total
	Production 10 ³ t	Emission	Production 10 ³ t	Emission	Production 10 ³ t	Emission	Production 10 ³ t	Emission	Production 10 ³ t	Emission	
Albania Bulgaria Czechoslovakia GDR Hungary Poland Romania USSR (Europe) Yugoslavia	n.d. n.d. n.d. n.d. 8 523 n.d. n.d. n.d.	255 690	15 1 274 10 606 1 226 947 17 728 3 513 86 000 3 440	20 1 270 10 610 1 230 950 17 730 3 510 86 000 3 440	n.d. 1 562 9 525 2 149 2 201 5 523 8 637 106 700 2 702	15 620 95 250 21 490 22 010 55 230 86 370 1 067 000 27 020	4 456 401 116 802 656 n.d. 248	360 41 040 36 090 10 440 72 180 59 040 22 320	871 2 998 2 244 437 2 175 2 702 16 481 1 044	4 360 14 990 11 220 2 190 10 880 13 510 82 410 5 220	20 21 610 161 890 70 030 35 590 411 710 162 430 1 235 410 58 000
Total	8 523	255 690	124 789	124 760	138 999	1 389 990	2 683	241 470	28 952	144 780	2 156 690

n.d. - no data evailable.

Based on the OECD project (OECD, 1983) it can be concluded that mobile sources emit the largest amounts of CO in Western Europe. Based on the available literature (e.g. OECD, 1983; SFT, 1987) a set of emission factors was selected and the factors are given in Table 37.

Source	Emission factor
 Road traffic a) automobiles gasoline-powered diagol oil-powered 	250
 b) heavy-duty vehicles gasoline-powered diesel oil powered 	280
c) motorcyclesd) tractors	380 48
2. Inland shipping	15.0
3. Trail	15.0

Table 37: CO emission factors for mobile sources in Eastern Europe (in kg/t fuel used unless indicated).

In the next step, statistics on the use of gasoline and diesel-oil in various types of vehicles were used together with the factors from Table 37 to calculate CO emissions. The estimates of the CO emissions from gasoline-powered vehicles are shown in Table 38, and the CO emissions from diesel-oil-powered vehicles are in Table 39. The CO emissions from gasoline vehicles outweight far the CO emissions from diesel vehicles, which is not surprising when considering the chemical composition of both fuels and then their behaviour during combustion in the engines.

Table 38: CO emissions from gasoline-powered vehicles in Eastern Europe in 1982^1 (in t).

Country	Passenger cars	Heavy duty vehicles	Motorcycles	Total
Albania	59 250	2	4 940	64 190
Bulgaria	202 500	252 000	34 200	488 700
Czechoslovakia	403 000		32 680	435 680
GDR	419 500	362 320	69 920	851 740
Hungary	265 000	35 000	25 460	325 460
Poland	401 500	316 400	90 440	808 340
Romania	647 250	2	51 680	698 930
USSR (Europe)	3 596 250	14 193 200	1 301 500	19 090 950
Yugoslavia	521 500	61 040	46 360	628 900
Total	6 515 750	15 219 960	1 657 180	23 392 890

1 Statistic data presented in Table 22.

2 Including emissions from heavy duty vehicles using gasoline.

Table 39: CO emissions from diesel-powered engines in Eastern Europe in 1982¹ (in t).

Country	Passenger car	Heavy duty vehicle	Rail	Shipping	Agriculture	Total
Albania	290	3 460			6 240	9 990
Bulgaria	1 100	35 400	3 260	450	24 000	64 210
Czechoslovakia	2 200	58 210	14 430	780	37 630	113 250
GDR	0	30 890	10 580	330	31 200	73 000
Hungary	1 560	35 570	4 670	1 580	37 440	80 820
Poland	4 090	72 360	7 290	420	63 070	147 230
Romania	2 970	80 390	15 870	570	77 380	177 180
USSR (Europe)	54 800	217 510	100 1703		712 320	1 084 800
Yugoslavia	3 410	70 270	4 430	710	45 120	123 940
Total	70 420	604 060	160 700	4 840	1 034 400	1 874 420

1 Statistical data presented in Table 23.

2 Including rail + agriculture + shipping.

3 Including rail + shipping.

Table 40 summarizes the estimates of CO emissions from major anthropogenic sources in Eastern Europe in 1982. As much as 82% of the estimated total emissions come from mobile sources. Thus, in order to spatially distribute the CO emissions from anthropogenic sources in Eastern Europe, population data were used. This distribution within the EMEP grid of 150 x 150 km is given in Figure 11.

Table	40:	CO	emissions	from	anthropogenic	sources	in	Europe	in	1982
		(in	t).							

Country	St	ation mbus	onary stion	pı	Iron stee rodue	n & el ction	s	dobi: ource	le s		[ota]	L
Albania		47	540			20	1	74	180		121	740
Bulgaria		52	960		21	610		552	910		627	480
Czechoslovakia		55	120		161	890		548	930		765	940
GDR		25	880		70	030		924	740	1	020	650
Hungary		86	060	1	35	590		406	280		527	930
Poland		80	290		411	710		955	570	1	447	570
Romania		137	550		162	430		876	110	1	176	090
USSR (Europe)	2	598	070	1	235	410	20	175	750	24	009	230
Yugoslavia		118	780		58	000		752	840		929	620
Total	3	202	250	2	156	690	25	267	310	30	626	250

Figure 11: Spatial distribution of CO emissions in Eastern Europe in 1982 within the EMEP grid of 150 km x 150 km. The unit used: 10³t.

40

8 EMISSIONS OF CH

Only very limited information is available to calculate the CH_4 emissions in Eastern Europe. Reviewing the VOC profiles for combustion processes, it was concluded that the following assumption can be made for CH_4 :

- a) For natural gas combustion, the CH_4 emissions are 3 times higher than the non-methane VOC emissions.
- b) For liquid fuel combustion, the CH_4 emissions are 5 times lower than the non-methane VOC emissions.
- c) For wood combustion, the CH_4 emissions are 4 times lower than the non-methane VOC emissions.

Considering the above assumptions, the CH_4 emissions were calculated for combustion of natural gas, liquid fuels and wood. The estimates are given in Table 41.

Table	41:	CH	emissi	ions	from	combustion	n proce	sses	in	Eastern	Europe	in
		1982	' (in	t).								

Country	Natur	al gas	Liquid	d fuels	W	bod	Tota	a 1
Albania				50		410		460
Bulgaria	2	490		380		440	3	310
Czechoslovakia	17	730		480		450	18	660
GDR	25	080		750		190	26	020
Hungary	5	130		140		730	6	000
Poland	36	630		200		680	37	510
Romania	16	320		120	1	150	17	590
USSR (Europe)	292	830	8	670	21	040	322	540
Yugoslavia	7	890		500	1	000	9	390
Total	404	100	11	290	26	090	441	480

1 This is only a very rough estimate, based on the VOC emissions from combustion procesess. It was assumed, that the CH emissions are 3 times as high as the non-methane VOC emissions for natural gas combustion. For liquid fuels and wood, the CH emissions are lower than the non-methane VOCs by a factor of 5 and 4, respectively.

The other sources of CH_4 include: incineration processes, open burning in open drums or baskets and in large-scale open dumps or pits, and

asphalt roofing manufacturing. There is no reliable information available to present the CH_4 emission factors for these sources. However, it is believed that the CH_4 emissions from the above sources in Eastern Europe are not significant.

 CH_4 is also emitted from mobile sources but in low quantities. For example, the weight percentage content of CH_4 in gasoline-, diesel-, and LPG-exhausts is 4.5, 2 and 3, respectively, thus insignificant.

 CH_4 is also formed as a result of fermentation taking place in the rumenreticulum of ruminants in the amount of 1 to 9 g CH_4 /ruminant/h. Finally, there are natural CH_4 emissions from various types of vegetation. Very often they are at the level of 3 to 15 g/ha⁻h with an average of 8 g/ha⁻h.

A lack of statistics for the last two source categories made it impossible to assess the CH_4 emissions from fermentation and from natural sources. This certainly influence the quality of CH_4 emission survey in this work.

In order to distribute spatially the CH_4 emissions calculated in Table 41, the distribution of NOx from stationary sources in Eastern Europe by Pacyna (1988) was used. The results are presented in Figure 12.

Figure 12: Spatial distribution of CH emissions in Eastern Europe in 1982 within the EMEP grid of 150 km x 150 km. The unit used: 10^3 t.

9 FINAL REMARKS

Anthropogenic emissions of compounds considered in this work are summarized in Table 42. The largest emissions were calculated for CO and then SO₂, NOx, and VOC. Two major source categories generating the majority of the compounds considered here were: combustion of fossil fuels and mobile sources. In most of the Eastern European countries electricity and heat is produced from combustion of coal and oil, known as polluting sources of energy. The consumption of diesel-oil was ca. 50% higher than the consumption of gasoline.

Table 42: Anthropogenic emissions of major gases in Eastern Europe in 1982 (in 10^3 t).

Country	SO 2 as S	NOx as NO 2	VOC (non-methane)	NH ₃ ²	CH 4	co	N_0 2
Albania	25	28.0	32.8	21.0	0.5	121.7	7.1
Bulgaria	570	278.3	167.2	126.0	3.3	627.5	59.4
Czechoslovakia	1 575	556.9	258.7	170.0	18.7	765.9	112.1
GDR	2 500	857.1	353.6	207.0	26.0	1 020.7	250.0
Hungary	774	268.5	165.6	127.0	6.0	527.9	39.7
Poland	2 150	1.276.1	493.8	405.0	37.5	1 447.6	216.0
Romania	100	737.8	385.7	301.0	17.6	1 176.1	117.5
USSR (Europe	6 100	7 969.0	5 822.7	1 256.0	322.5	24 009.2	1 788.3
Yugoslavia	657	440.4	290.7	198.0	9.4	929.6	91.4
Total	14 451	12 412.1	7 970.8	2 812.0	441.5	30 626.2	2 681.5

1 after Eliassen et al. (1988). 2 after Buijsman et al (1987).

Concerning the accuracy of the above survey, the emission estimates for combustion of fossil fuels to produce electricity and heat, and for mobile sources are considered by the author as the most reliable due to broad information available on the technology used in the East European power plants, car park, and the statistical data for these source categories. The information on the emissions from solvent use and natural sources is less precised, mostly due to lack of statistical data.

Among the compounds, the emissions of SO_2 and NOx are estimated most accurately. Then the accuracy decreases in the following order: VOC>

 $NH_3 > CO>N_2 O>CH_4$. The estimates for CH_4 should be considered with caution. The VOC profiles were selected as to the best knowledge of the author.

It should be noted, that in some cases emission factors used in this work, were based on the data from Western Europe. This may have some influence on the quality of the emission estimates for Eastern Europe, but it is difficult to assess to what extent they are inaccurate.

Finally, this set of emission data has been prepared for testing the EURAD model. An extensive work should be done to prepare a final version of emission estimates for model calculations in the second phase of EUMAC, as suggested by the Working Group 4 of EUMAC on Emissions.

The spatial distributions of emissions have been prepared in the EMEP grid of 150 km x 150 km. The testing of EURAD may require the grid of 50 km x 50 km. For this part of work within EUMAC (test phase) it is suggested here to divide an emission estimate for a given grid of 150 km x 150 km, into 9 equal 50 km x 50 km grids. For the final calculations, however, it is suggested to the Working Group 4 of EUMAC, to consider population data in the 50 km x 50 km grid, as a basis to distribute the area source emissions.

It will also be necessary to consider temporal variations of emissions. This work provides information on a yearly basis only.

10 ACKNOWLEDGEMENT

This work was supported by a research grant from the University of Cologne, Federal Republic of Germany.

The author thanks Prof. Adolf Ebel, the EUMAC Co-ordinator, and Director Harald Dovland of NILU for help and comments when preparing this survey.

The author thanks Mr. A. Kibsgaard for producing the emission maps.

11 REFERENCES

- Bakkum, A., and Veldt, C. (1986) Emission factors for combustion processes. In: OECD Workshop on Comparison of Emission Inventory Data, Schauinsland, Black Forest, FRG, October 22-24, 1986.
- Bouscaren, R., Veldt, C., and Zierock, K.-H. (1986) CORINE: Emission inventory feasibility study. Final Report. CITEPA, Paris, France.
- Buijsman, E., Maas, H.F.M., and Asman, W. (1987) Anthropogenic NH emissions in Europe. Atmos. Environ., 21, 1009-1022.
- CBS (1984) Luchtverontreiniging. Emissies door verbranding van fossiele brandstoffen in ovens. 1975-1981. Centraal Bureau de statistiek, the Netherlands (in Dutch).
- CONCAWE (1986) Volatile organic compound emissions: an inventory for Western Europe. CONCAWE Rept. 2/86 Den Haag, the Netherlands.
- Dovland, H., and Saltbones, J. (1986) Emissions of sulphur dioxide in Europe in 1980 and 1983. EMEP/CCC-Rept. No. 1/86. Norwegian Institute for Air Research, Lillestrøm, Norway.
- Dutch Ministry of Health and Environmental Protection (1980) Handbook of emission factors. Part 1. Non-industrial sources. Den Haag, the Netherlands.
- Eliassen, A., Hov, Ø., Iversen, T., Saltbones, J., and Simpson, D. (1988) Estimates of airborne transboundary transport of sulphur and nitrogen over Europe. EMEP/MSC-W Report 1/88. Norwegian Meteoro-logical Institute, Oslo, Norway.
- Gram, F. (1984) Utslippsoversikter for luftforurensninger. (NILU OR 9/84) Norwegian Institute for Air Research, Lillestrøm, Norway (in Norwegian).
- KHM (1983) Kolets hälso- och miljöeffekter. Sluttrapport. Vällingby, Sverige (in Swedish).
- Larssen, S. (1989) NOx emissions from gasoline and diesel oil combustion in mobile sources in Europe. Norwegian Institute for Air Research, Lillestrøm, Norway.

- Lübkert, B., and de Tilly, S. (1987) The OECD-MAP emission inventory for SO₂, NOx and VOC's in Western Europe. In: Proc. EUROSAP Workshop on Methodologies for Air Pollutant Emission Inventories, Paris, France, June 29-July 2, 1987.
- Lyon, R.K., Kramlich, J.C., and Cole, J.A. (1989) Nitrous oxide: sources, sampling, and science policy. <u>Environ. Sci. Technol.</u>, <u>23</u>, 392-393.
- OECD (1983) Workshop on Emission Inventory Requirements and the Use of Standard Emission Factors in OECD-Europe. ENV.AIR.83.7. Organization for Economic Co-operation and Development, Environment Directorate, Paris, France.
- OECD (1984) Summary record of Workshop on Emission Inventories. Apeldoorn, 27.-28.9.1984. ENV/AIR/M 84.10, Organization for Economic Co-operation and Development, Environment Directorate, Paris, France.
- OECD (1987) Interim Report on VOC's from Sovlent Usage Operations. ENV/AIR/87.4. Organization for Economic Co-operation and Development, Paris, France.
- Pacyna, J.M. (1988) NOx emissions from stationary sources in Eastern Europe. (NILU OR 78/88) Norwegian Institute for Air Research, Lillestrøm, Norway
- Pacyna, J.M., Larssen, S., and Semb, A. (1989) European survey for NOx with emphasis on Eastern Europe (NILU OR 26/89) Norwegian Institute for Air Research, Lillestrøm, Norway.
- Pierotti, D., and Rasmussen, R.A. (1976) Combustion as a source of nitrous oxide in the atmosphere. Geophys. Res. Letters, 3, 265-267.
- Saltbones, J., and Lien, T. (1987) Report on VOC-emissions. The Norwegian Meteorological Institute, Oslo, Norway.
- SFT (1987) Utslippskoeffisienter. Oversikt over koeffisienter for utslipp til luft og metoder for å beregne disse. Statens forurensingstilsyn, Oslo, Norway (in Norwegian).
- UN (1986) Statistical Yearbook. United Nations, Department of International Economic and Social Affairs, Statistical Office. New York, USA.

- US EPA (1988) Anthropogenic Emissions Data for the 1985 NAPAP Inventory. EPA/600/7-88-022. U.S. Environmental Protection Agency, Research Triangle Park, N.C.
- van Ham, J., and Builtjes, P.J.H. (1985) Study on photochemical oxidants and precursors. Phase IV. Long-range transport phenomena. Draft final report, part II. TNO, Apeldoorn, the Netherlands.
- Veldt, C. (1988) Emission factors. TNO Document No. 88-355/R.22/CAP, Apeldoorn, the Netherlands.
- Weiss, R.F., and Craigh, H. (1976) Production of atmospheric nitrous oxide by combustion. Geophys. Res. Letters, 3, 751-753.

NORSK INSTITUTT FOR LUFTFORSKNING (NILU) NORWEGIAN INSTITUTE FOR AIR RESEARCH NILU POSTBOKS 64, N-2001 LILLESTRØM

RAPPORTTYPE OPPDRAGSRAPPORT	RAPPORTNR. OR 48/89	ISBN-82-425-0057-6
DATO SEPTEMBER 1989	ANSV. SIGN. Altorlau	ANT. SIDER PRIS 54 NOK 90,-
TITTEL Emissions of major air	pollutants emitted in	PROSJEKTLEDER J.M. Pacyna
Lastern Europe		NILU PROSJEKT NR. 0-8861
FORFATTER(E) J.M. Pacyna	TILGJENGELIGHET A	
		OPPDRAGSGIVERS REF.
OPPDRAGSGIVER (NAVN OG A University of Cologne, Salierring 48, D-5000 Cologne 1, Fed.	DRESSE) Project EURAD, Rep. of Germany	
3 STIKKORD (à maks. 20 a Emission	nslag) Air pollutant	EUMAC
REFERAT (maks. 300 ansla	g, 7 linjer)	
TITLE Emissions of maj	or air pollutants emitted in	Eastern Europe
ABSTRACT (max. 300 chara The report presents the NH , CH , CO and N O fr used to test the EURAD emission data were acce sions from Buijsman et	cters, 7 lines) e estimates of the 1982 emiss com sources in Eastern Europe model in the EUMAC project o epted from Eliassen et al. (1 al. (1987).	ions of SO , NOx, VOC, . The estimates will be f EUROTRAC. The SO 988) and the NH emis- 3
* Kategorier: Åpen - kan Må bestill	bestilles fra NILU A es giennom oppdragsgiver B	

Kan ikke utleveres

С