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ABSTRACT 

The coupled, non-linear system of continuity equations describing an 

air pollution model with non-linear chemistry is solved numerically 

using finite differences, finite elements and pseudo-spectral methods. 

A smoothing procedure is proposed to avoid negative concentrations. 

Several tests are performed: single puff transported parallel and not 

parallel to the co-ordinate axis, two puffs along parallel lines, a 

rotating puff and a rotating plume. The accuracy of the results of 

advection+chemistry+smoothing calculations is evaluated through the 

comparison with the results of box model calculations. 

The concentration at the peak of the puff is compared and in the case 

with advection only, chemistry only and advection+chemistry after 24 

hours integration. The relative errors made in the case where advec­ 

tion+smoothing+chemistry is applied does not exceed 5%. These errors 

are of the same magnitude as the errors at the peak of the puff for 

the case where advection only is performed. 

For runs with discretization by second order finite differences, it is 

well known that the advection algorithms are neither able to preserve 

the shape of the puff nor to preserve the maximum concentrations in 

the puff. Our runs only confirmed this conclusion. 

For runs with the Smolarkiewicz algorithm, the results are slightly 

better than with the algorithm based on second order finite diffe­ 

rences. However, the improvement of the accuracy is negligible com­ 

pared with the increase of the computing time spent. 

The runs with the finite elements (CHAPEAU) advection algorithm shows 

that the accuracy of this advection algorithm is worse than that of 

the pseudospectral advection, but it is faster than the latter algo­ 

rithm with regard to computing time. 
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The second order finite differences algorithm is about 5 times faster 

than the pseudospectral algorithm when the advection time only is 

taken into account. In the same situation the Smolarkiewicz algorithm 

is only a little better than the pseudospectral algorithm, while the 

finite elements (æAPEAU) algorithm is about 2.5 times faster. The 

differences are less when advection+smoothing+chemistry is applied. 
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AIR POLLUTION MODELS WITH NON-LINEAR CHEMICAL REACTIONS 

1 INTRODUCTION 

The continuity equation is the mathematical basis for the modelling of 

pollutant transport, transformation and deposition: The equation is 

used on the following semiempirical form 

ac. au.c. a ac. 
Ati + [ 5 i= [ A (K. ~) + R. + s. , i= 1,2, •.• ,q 
u . X . . uX . J uX . i i 

J J J J J 
( 1.1) 

q being the number of species studied (9 in this model), c., R. and S. i i i 
being the concentration, the chemical reaction term and the source 

term for the i'th pollutant, respectively, u. and K. being the wind 
J J 

velocity and the diffusion coefficient along the j'th co-ordinate 

axis. In this case the model is two-dimensional (j=l,2). The reaction 

term R. also includes ground removal. 
i 

The continuity equations are coupled, forming in general a non-linear 

system through the chemical reaction terms. This system can be solved 

using finite differences, finite elements or pseudo-spectral or other 

numerical methods for the space discretization. 

In the PHOXA-project, where an Eulerian model for studying photo­ 

chemical reactions and transport of air pollutants in Northern and 

Central Europe is developed, the advection terms in (1.1) are treated 

numerically using the SHASTA method (Boris and Book, 1973). As an 

alternative the more accurate Zalesak algorithm (Zalesak, 1979), which 

is more expensive with regard to computing time, is used. 

In order to facilitate the computational process, splitting and frac­ 

tional time-steps are often used. For example, in the 3-dimensional 

Eulerian model for studying the regional transport of photochemical 

oxidants and their precursors developed by Carmichael et al. (1986), 

(1.1) is split into one dimensional sub-models that are semi-discre­ 

tized by finite elements and then Crank-Nicholson fractional time 

steps are successively performed. A linearization procedure is applied 

to the chemical part and the linearized chemical part is solved analy­ 

tically. 
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One of the schemes developed by Smolarkiewicz (Smolarkiewicz, 1983) 

has been adopted in the treatment of the advection part of the acid 

deposition model developed at NCAR (Chang et al., 1987). One of the 

schemes proposed by Smolarkiewicz (1985) is also used in the present 

(see Section 2). 

The numerical solution of the continuity equations should not contain 

negative components when non-linear chemical terms are involved in the 

model. At the same time the algorithm used in the treatment of the 

advection terms should not produce excessive numerical diffusion. It 

is difficult to satisfy these requirements simultaneously. The 

straightforward attempt to avoid negative concentrations by a low 

order finite difference scheme leads to a situation where the 

numerical diffusion is significant. This will be demonstrated in the 

following sections. 

The treatment of the continuity equation in presence of photochemical 

reactions by different space discretization algorithms; finite diffe­ 

rences, finite elements, a pseudospectral algorithm and one of 

Smolarkiewicz' algoritms are discussed here. 

2 TREATMENT OF NEGATIVE CONCENTRATIONS 

The matching of the advection part 

continuity equation is a difficult 

chemistry is non-linear. 

and the chemical part of the 

numerical problem when the 

A solution to the problem and numerical tests of its accuracy and 

efficiency are discussed in this section. 

2.1 MATCHING ADVECTION WITH CHEMISTRY 

The discretization of the advection part of the continuity equation 

usually leads to some negative concentrations except in the case where 

an artificial diffusion is introduced either directly or implicitly. A 

good numerical method suitable for the advection part and which does 
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not introduce artificial diffusion, will produce negative concentra­ 

tions that are small and remain small druing the whole integration 

process. If the numerical method produces negative concentrations that 

are small and remain small and if the chemical reactions are linear, 

the negative concentrations can be tolerated. This is not the case 

when non-linear chemical reactions are introduced. Then the negative 

concentrations will normally cause instability and, therefore, must be 

avoided. This can be achieved by the use of different kinds of smoo­ 

thing or by introducing articifial diffusion in some way. The first 

procedure is the most attractive one, because small negative concen­ 

trations appear only locally. Negative concentrations occur as a rule 

only in regions where the concentrations are small, or even equal to 

zero, and are due either to truncation errors, to rounding errors or 

both. It is therefore sufficient to perform smoothing only in regions 

where negative concentrations appear. On the other hand, if artificial 

diffusion is introduced, then very often this will also affect the 

regions with high concentrations, which may be undesirable. We have 

chosen the first approach and developed a simple procedure by which 

smoothing is carried out only in the regions with sma concentra­ 

tions, while the high concentrations remain untouched. 

The following smoothing is performed: 

Step 1 Calculate the quantity GMAX equal to the maximum concentration 

of the s'th compound obtained after the advection step. Set 

SFACT = 0.05* GMAX. 

Step 2 Denote by Cmean the set of all concentrations that are smaller 

than SFACT. Calculate the sum of the elements in set Cmean and 

denote it by GMEAN. Let the number of elements in set Cmean be 

IMEAN. Set the quantity GLAT equal to the maximum of 

GMEAN/IMEAN and 0.0l*SFACT. 

Step 3 Set all concentrations of the compound under consideration 

that are smaller than the quantity GLAT equal to GLAT. 

This smoothing is by no means perfect. It is not mass conservative, 

but it is simple. However, the advection method to which the smoothing 

algorithm is attached should be a good one, in the sense that when the 
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smoothing is not carried out, and when only chemical reactions are 

involved, the advection method produces small negative concentrations 

that remain small during the whole computation. The pseudospectral 

discretization of the space derivatives of first order is an example 

of such a method. A short description is given in the next paragraph 

of some numerical methods that are often used in the numerical treat­ 

ment of the advection part of models for long-range transport of air 

pollutants. 

2.2 NUMERICAL TREATMENT OF THE ADVECTION 

The smoothing described in the previous paragraph has been tested in 

connection with four numerical methods for handling the advection. The 

basic properties of these algorithms are outlined below. 

The pseudospectral algorithm. Approximation of the value of the first 

order space derivative at the grid points is obtained by trigonometric 

interpolation. Fast Fourier Transforms are used to accelerate the com­ 

putation. The algorithm was proposed by Kreiss and Oliger (1972), see 

also Orszag (1971) or Fornberg (1975), and has been used for air 

pollution studies by Prahm and Christensen (1977), Zlatev et al. 

(1983a,b,c) and Zlatev (1985). An advantage of the pseudospectral 

algorithm is the preservation of high concentrations during advection. 

There are two disadvantages; the non-physical requirement of periodi­ 

city of the concentrations on the boundaries of the space domain under 

consideration, and the computing time requirement. The algorithm is 

much more time consuming than most of the other algorithms. 

Second-order central finite differences. This is a classical algo­ 

rithm. Central differences are used in the discretization of the first 

order space derivatives at the grid points. To get an approximate 

value of the derivative under consideration at a given grid-point, the 

values of the concentration in two neighbour grid-points are applied. 

On the boundaries often one side first-order differences are used. The 

algorithm is cheapest with regard to computing time among the four 

algorithms considered here. Concentration peaks are strongly smoothed 

out when central differences are used, and the artificial smoothing 
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worsens with the integration time. More details about this algorithm 

can be found, for example, in Orszag (1971). 

Finite elements. The particular algorithm used by Chock and Dunker 

(1983), see also Pepper and Baker (1979), or Pepper et al., (1979), is 

used in the discretization of the first- order derivatives (but the 

time-integration algorithm used in the publications referenced above 

is for the present study replaced by the time-integration algorithm 

described by Zlatev (1984) and Zlatev et al. (1984)). The discretiza­ 

tion is based on piece-wise linear finite elements defined along the 

coordinate axes, which means that the two-dimensional advection 

operator is split into two one-dimensional operators. Boundary condi­ 

tions are easy to establish. The method is more time-consuming than 

the use of central differences, but is cheaper than the pseudospectral 

algorithm. Its accuracy is much better than the accuracy of the 

central differences, but it is not as good as that of the pseudospec­ 

tral algorithm. 

The Smolarkiewicz algorithm. This algorithm is proposed by 

Smolarkiewicz (1985). The first-order space derivatives are discre­ 

tized with central differences. The space domain is considered as 

two-dimensional (in the second algorithm splitting is applied in order 

to consider the derivatives on grid-lines parallel to the co-ordinate 

axes). The classical forward Euler time-integration algorithm is modi­ 

fied in order to achieve order two, by adding several correction terms 

containing approximations to the concentrations from one time level 

only, for the computation of the concentrations at the grid points of 

the next time level. Thus, this is a one level scheme, which is impor­ 

tant in the solution of non-linear problems but is not important when 

the numerical treatment of the advection part is separated from the 

numerical integration of non-linear chemical terms. The scheme is much 

more time consuming than the ordinary central differences. It is 

nearl~ as expensive as the pseudospectral algorithm. Its accuracy is 

not much better than the accuracy of the central differences. Also 

here the grid-points close to the boundaries have to be treated in a 

special way. 
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2.3 NUMERICAL TREATMENT OF THE æEMICAL PART 

The chemistry in the model is defined to be as simple as possible so 

that the number of equations (components) could be kept at a minimum 

at the same time as processes known to be the most difficult ones to 

handle numerically, were included. The chemistry is not claimed to be 

realistic in the sense that the computed concentrations should agree 

with atmospheric measurements. The chemical scheme is defined to be 

realistic for numerical testing. The scheme is given in Table 1. 

Table 1: Chemical scheme used in the model 

(1) HC + OH - 4RO + 2ALD 
2 

(2) ALD + hv - 2HO + CO 
2 

(3) RO + NO - NO + ALD 
2 2 

NO + hv - NO+ 
2 

NO+ 

0 
3 

- NO + 0 2 2 

- 0 + 0(1D) 
2 

+HO - 20H 
2 

( 9) NO + OH - HNO 
2 3 

(10) CO+ OH - CO + HO 
2 2 

(5) 

(6) 

(7) 

(8) 

0 
3 

0 + hv 
3 

0(1D) 

+ HO 
2 

k = 6 X 10-12 

1 
J = 7.8 x 10-5 exp (-0.87/cos e) 
2 

k = 8 X 10-12 
3 

-2 J = 1 x 10 exp (-0.39/cos e) 
5 

k = 1. 6 X 10- 14 
6 

J = 1.9 x 10-4 exp (-1.9/cos e) 
7 

-10 k = 2.3 x 10 
8 

k = 1 X 10-11 

9 
k = 2.9 X 10-13 

10 

e is the solar zenith angle. k's are in units cm3 /(molecule x s), 

J's in s-1• HC is a lumped hydrocarbon molecule, ALD formaldehyde. 

The same algorithm (discussed in Hesstvedt et al., 1978) is used in 

the treatment of the chemical part of the model in connection with all 

four advection algorithms. This is possible, because the chemical part 

is handled independently from the advection part. The continuity equa­ 

tion is split into several parts, and each part is integrated separa­ 

tely at each time step. The main principles that are applied in the 
integration of the chemical part are discussed in the following. 

Consider an arbitrary time step and assume that the advection part has 

been performed by any of the four methods discussed in the previous 

paragraph. The chemistry part of the continuity equation can be 

written in the form 
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dc/dt = -Qc + P (2.1) 

where Q and P vary in space and with time and depend on the concentra­ 

tions of the other species at the grid-point and the time under con­ 

sideration. This means that the equation (2.1) is in general non­ 

linear, although it looks linear. It is clear that in our case with 

ten species and 32 x 32 grid points, we have to solve 10 x 32 x 32 = 

10240 such equations at each time step. The solution is found by the 

use of three different algorithms. An attempt to choose automatically 

the optimal algorithm for each of the 10240 equations is carried out 

during the integration process by examining the stiffness of the equa­ 

tion system. This is done by checking the magnitude of Q. If Q is 

sufficiently small, then the equation (2.1) is solved by the classical 

forward Euler formula. If Q is not very small but not very large 

either, then (2.1) is assumed to be linear (its coefficients are con­ 

sidered as constants) and the exact solution of the linearized form of 

(2.1) is used as an approximation to its real solution. If Q is very 

large, then (2.1) is replaced by -Qx + P = O and an approximation to 

the solution is obtained by solving the latter equation. The criteria 

actually used are given in Hesstvedt et al. (1978). This algorithm is 

numerically very robust and provides good results. The disadvantage of 

the algorithm is that it uses too many IF statements in the FORTRAN 

code (at each chemical time step and for each of the 10240 equations 

the magnitude of Q must be checked to select the proper sub-algo­ 

rithm). Therefore the algorithm performs poorly on a vector computer. 

We are considering some ways to improve the algorithm for use in 

vector machines. 

2.4 TEST-EXAMPLES 

Several experiments are performed to evaluate how well the smoothing 

procedure works and how accurate the numerical solution is. '!'he tests 

are selected to give solutions by solving the equations analytically 

or by using physical arguments. 
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The following test-examples are used in the experiments: 

(1) Single puff advection parallel to one of the co-ordinate axes. 

(2) Single puff advection not parallel to any of the co-ordinate 

axes. 

(3) Advection of two puffs with parallel trajectories, not neces­ 

sarily parallel to one of the co-ordinate axes. 

(4) A rotating puff (proposed simultaneously by Molenkamp, 1968, 

and Crowley, 1968). 

(5) A rotating plume with a trajectory identical to that of the 

rotating puff (see (4)). 

If advection only is performed, then the solution of each of these 

test-examples is well-known. If both advection and chemistry are 

carried out, then a good approximation of the solution can be found by 

applying a "box-model" in which the initial concentrations are defined 

in an appropriate way. In a box-model the continuity equation is 

solved with chemical terms only. To illustrate how this works, let us 

consider test (3) with a constant wind velocity. Assume that the 

highest concentration at time tl is cl and is located at the grid­ 

point (xl,yl). At time t2 the same concentration cl is moved to the 

grid-point (x2,y2) if advection only is applied. If chemistry only is 

applied (the box-model), then at time t2 the concentration at grid­ 

point (xl,yl) is changed (due to the chemical reactions) from cl to 

c2. Now it is clear that if both advection and chemistry are carried 

out, then the solution at time t2 and at grid-point (x2,y2) should be 

c2. Moreover, it is also clear that if this is not so, then the only 

reason for the discrepancy is the smoothing algorithm. Thus, the tests 

can be applied to check the influence of the smoothing algorithm on 

the results of the global method. 

These arguments are valid for the first four test-examples only. But 

the behaviour of the plume in the fifth test-example can be predicted 

by using physical argum ents. Thus, also the fifth test-example gives 
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some information about the performance of the combination advection + 

smoothing+ chemistry. 

Some results obtained for the solution of the rotation test are pre­ 

sented in the next section. The rotation test is a representative 

test-example, which is commonly used in tests with advection algo­ 

rithms. This is probably the first application of this test-example in 

the verification of a combined advection-chemistry scheme. 

The initial distribution used in the rotation test-example for the 

concentration of nitrogen oxide is given in Fig. 1. It is seen that 

the center in the puff is located at the grid-point (8,16). Background 

concentrations (2.5% of the highest concentration; rounded to 2 in the 

figure) are assumed in the whole domain outside the area where the 

puff is located. The distance between two grid-points is 150 km along 

both co-ordinate axes. The wind-velocity field is defined so that a 

full rotation is performed in 24 hours. The size of the time step in 

the advection part was 150 sin most of the runs. This means that the 

rotation is completed in 576 advection steps. The chemical part was 

integrated with a step size of 30 s (five chemical steps are performed 

for each advection step). 

If advection only is performed, the accuracy is checked by comparing 

with the field in Fig. 1 for nitrogen oxide and the corresponding 

fields (not given here) for the other species. The box-model 

(chemistry only) was run for 24 hours with a step size of 30 sand the 

results were compared with the results of the combined advection­ 

chemistry scheme. Runs with different advection algorithms were 

performed both in the mode where advection only was performed and in 

the mode where advection + smoothing + chemistry was applied. The 

numerical results from these runs are given in the next section. 
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Figure 1: The initial field for nitrogen oxide in the rotation test 
11 3 ru:id scaled by 10 (molecules/cm). 
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3 NUMERICAL RESULTS 

3.1 RESULTS OBTAINED WITH THE PSEUDOSPECTRAL METHOD 

Most of the experiments carried out were performed applying the 

pseudospectral algorithm to the advection part. A good performance 

should be expected (with regard to the accuracy achieved) when the 

pseudospectral algorithm is used with a good smoothing device. There­ 

fore, the pseudospectral algorithm is a good test for the smoothing 

device introduced in the previous section. The results obtained in the 

rotation test will mainly be discussed here, but it should be empha­ 

sized that the conclusions made are based on results obtained in all 

five tests listed in the previous section. 

The results of the rotation test are presented in three-dimensional 

plots. The initial distribution for nitrogen oxide is given in Fig. 2. 

The result obtained when one rotation only is performed by using 

advection only is shown for nitrogen oxide in Fig. 3. One should study 

very carefully Fig. 2 and Fig. 3 in order to discover the discrepan­ 

cies between them. The results obtained for the box-model (run separa­ 

tely for each grid-point) are shown in Fig. 4. It is seen that the 

chemical reactions (i) change completely the shape of the pattern when 

nitrogen oxide is considered and (ii) change the magnitude of the con­ 

centration at the peak of the puff with several orders. Therefore, it 

should be expected that the numerical algorithms perform poorly in 

this case. It is seen, Fig. 5, that the results obtained by advection 

+ chemistry are not as good as the results obtained with chemistry 

only, Fig. 4. The smoothing procedure is satisfactory, however. The 

differences arise because of (i) and (ii) 

Also for nitrogen dioxide there is a change in shape when rotation+ 

chemistry is performed, and the peak concentration drops by several 

orders of magnitude. The changes are smaller than for nitrogen oxide. 

however, and the comparison between chemistry only for 24 h (Fig. 6) 

and rotation+ chemistry (Fig. 7) is much better than for NO. 

It should be mentioned that the initial distribution for nitrogen 

dioxide is quite similar to that of nitrogen oxide shown in Fig. 2. If 
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NITROGEN OXIDE 
all concenlrolLons ore dLvLded b~ the Largest 

concenlrolLon ond muLlLpLLed b~ 100: 

Figure 2: The initial distribution for nitrogen oxide, scaled by 1011 
(in molecules/cm3 

). 
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NITROGEN OXIDE 
oLL concenlrolLons ore dLvtded b~ the Lorgesl 

concent.rotLon ond multi.pli.ed h.Y 100 

the L ' l t· ' 1 •. 0000""1011
_ orges~ concen ro ~on ~s: ~ 

one rotolLon when odvecli.on onl~ Ls performed 

Figure 3: The solution for nitrogen oxide when advection only is 
carried out. The advection algorithm used is the pseudo­ 
spectral al¥orithm (concentrations scaled by 101 

, in 
molecules/cm ) . 
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NITROGEN OXIDE 
all concenlral~ons ore dLvLded bH the Largest 

concenlroLLon ond mullLpLLed b~ 100 

lhe Lorgesl concenlrolLon Ls: 1.0564*106 

one rotolLon when chemLslrH onL~ Ls performed 

Figure 4: The solution for nitrogen oxide when chemistry only is 
carried out. Concentrations in molecules/cm3• 
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NITROGEN OXIDE 
all corcenlralLons ore dLvLded b~ the Largest 

concenlralLon and multLpLLed b~ 100 
6 

lhe Largesl concenlrolLon Ls: 1.1927~10 

one rotalLon wLlh both advectLon and che~Lstr~ 

Fig Lll: e 5 . The sol a Lion £01 LI re ni tr agen oxide when advection+chernistry 
is carried out. The advection algorithm used is the pseudo­ 
spectral algorithm. Concentrations in molecules/cm3• 
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NITROGEN DI-OXIDE 
all concenlralLons are dLvLded b~ lhe Largesl 

concenlrolLon and muLlLpLLed b~ 

the Lorgesl concenlralLon Ls: 

one rololLon when chemLslr~ onL~ 

100 
e 3.8836~10 

Ls performed 

C 
Q c:::, 
-..) It:) 
.....) 
C) 
l.. 
..l c:::, t IC) 
Cb 
(.) 
te:::, a .... 
l.) 

~ 

~ 
~ 

~ 
I 

Figure 6: The solution for nitrogen dioxide when chemistry only is 
carried out. Concentrations in molecules/cm3• 
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NJiRiOGEN: -~DI =-;OX.IDE 
all ~~n6~n~~~~Lons ore;dL~L~ed b~ lh~: L~~ges~ 
ccnceot.nct.Lon.xmo m.u ~ t Lpl, Led b~ 100 i i : : · 

'. : 
1 i ' . ' I '. i e 

the :lor_gest. con_6erlt_r_olt~:~ ~ ~s-: 3 :9245 ~d 0 
one r-ot.ot.i.on wtth: bplhr_~d~eclL-on: ond-9h,en:,Lst'r ~ 

Figure 7: The solution for nitrogen dioxide when advection+chemist:ry 
is carried out. The advection algorithm used is the pseudo­ 
spectral algorithm. Concentrations in molecules/cm3• 
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the chemical reactions do not change the shape of the distribution or 

the magnitude of the highest concentration significantly, then the 

results for advection + chemistry are nearly as good as those obtained 

by advection only; see Fig. 8. The conclusion is that in general the 

smoothing procedure does allow us to get good results also for species 

with significant non-linear chemistry terms. 

It is interesting to compare the concentration at the peak of the puff 

initially and in the case where advection only, chemistry only and 

advection+chemistry are performed for 24 h. This comparison is made in 

Table 2. It is seen that the relative errors made in the case where 

advection+smoothing+chemistry is applied do not exceed 5%. These 

errors are of the same magnitude as the errors at the peak of the puff 

for the case where advection only is performed. 

Table 2: The values of the concentrations at the peak of the puff. The 
modifications (in percent) due to the advection and advec­ 
tion+smoothing are given in brackets. The advection algorithm 
used is the pseudospectral algorithm. All fields after the 
first four contain the same concentrations at all grid-points 
at the beginning, therefore advection only is performed 
without error. 

Initial Advection Chemistry Advection 
Pollutant value only only + chemistry 

NO 1.0x1011 0.95 x1011 (95%) 5 5 (103%) 1.16x10 1.19x10 
NO 1.0x1011 0.95 x1011 (95%) 8 8 (105%) 3.llxl0 3.25x10 

2 
1.0x1011 0.95 x1011 9 9 HC (95%) 1.97x10 2.0lxl0 (102%) 

HCHO 5.0x1011 0.475xl010 (95%) 2.47x1011 2.42x1011 (98%) 
0 5.0x1011 5.0 x1011 (100%) 1.60x1012 1.60x1012 (100%) 
3 

1.0xl010 xl010 2.10x1011 2.06x1011 HNO 1.0 (100%) (98%) 
3 6 x106 8. 77x1011 8.61x1011 HO 1.0xl0 1.0 (100%) (98%) 

2 6 x106 4.02xl010 3.90xl010 RO 1.0xl0 1.0 (100%) (96%) 
2 

1.0x105 x105 5 5 OH 1.0 (100%) 9.85x10 9.96x10 (100%) 
0(1D) -3 1.0 xl0-3 (100%) 4.42x10-4 4.43x10-4 (100%) 1.0xl0 
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. ALDEHYDE· 
all concentrolLons ore ~Lvtded b~ the L6rg~sl 

concenlralLon ond mult..LplLed b~ 100 · 
. h L t.. t..· • 2· • 4188""' 1011 
t 9 argest ~oncen ro ~on Ls: ~ 

one rotetton wtth bot..h odveclLon ond chemLstr~ 

Figure 8: '!'he solution for aldehyde when advection+chemistry is 
carried out. Concentrations in rnolecules/crn3• 
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3.2 RUNS WITH OTHER ADVECTION ALGORITHMS 

The tests listed at the end of Section 2 have also been run with the 

other advection schemes. The results of these run s are briefly dis­ 

cussed in this paragraph. 

(a) Runs with discretization by second order finite differences. It 

is well known that these advection algorithms are neither able to 

preserve the shape of the puff nor to preserve the maximum concentra­ 

tions in the puff. Our run s only confirmed this conclusion. Moreover, 

the puff is nearly completely distorted when both advection and 

chemistry are performed (compared with the corresponding pattern for 

the case where only chemistry is applied). 

(b) Runs with the Smolarkiewicz algorithm. The results become slightly 

better when the Smolarkiewicz algorithm is applied instead of the 

algorithm based on second order finite differences. However, the 

improvement of the accuracy is negligible compared with the increase 

of the computing time spent. Our conclusion is that the Smolarkiewicz 

(1985) algorithm should not be recommended for air pollution problems 

of the typ e considered in this paper. 

(c) Runs with the finite elements (CHAP EAU) advection algorithm. This 

algorithm deserves more attention. It is less accurate than the pseu­ 

dospectral algorithm, but this is by no means prohibitive. The results 

for nitrogen oxide in the cases where advection only and advection+ 

smoothing+chemistry are applied are given in Fig. 9 and Fig. 10, 

respectively (these results are to be compared with the results 

obtained by the pseudospectral algorithm; see Fig. 3 and Fig. 5). The 

values of concentrations in the peak are given in Table 3 (to be com­ 

pared with Table 2). While the accuracy of this advection algorithm is 

worse than that of the pseudospectral advection, it is faster than the 

latter algorithm with regard to computing time. The computing times 

will be compared in the next paragraph. 
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NITROGEN OXIDE 
oLL concenlrolLons ore dLvLded b~ the Largest 

concenlrolLon ond muLlLpLLed b~ 

lhe Largest concenlrolLon Ls: 

100 
1.0000~1011 

odveclLon onL~ b~ fLnLle dLfferences CHAPDlU 
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Figure 9: The solution for nitrogen oxide with advection only using 
the finite elements (CHAPEAU) algorithm. Concentrations in 

3 molecules/cm. 
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~~ I TROGEN OX IDE 
□LL concenlr□ll□ns ore dlvlded b~ the Largest 

concenlrallon ond muLllpLled b~ 100 
6 the Largest concentratlon ls: 1.6006~10 

adv+ chem b~ flnlle eLemenlsrCHAPEAU 
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Figure 10: The solution 
stry only is 
the Chapeau 

3 molecules/cm 

for nitrogen oxide when advection and chemi­ 
carried out. The advection algorithm used is 
finite elements algorithm. Concentrations in 
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Table 3: Concentrations at the peak of the puff. The modifications (in 
percent) due to the advection and advection+smoothing are 
given in brackets. For the advection the finite elements 
(CHAPEAU) algorithm is used. All fields after the first four 
contain the same concentrations at all grid-points at the 
beginning, therefore the advection is perfonned without 
error. 

Initial Advection Chemistry Advection 
Pollutant value only only + chemistry 

NO 1.0x1011 0.88x1011 (88%) 5 5 (124%) 1.16x10 1.44x10 
NO l.Oxl011 0.87x1011 (87%) 3. llx108 3.16xl08 (102%) 

2 
1.0x1011 0.87x1011 9 9 HC (87%) 1.97x10 1.99x10 (101%) 

HCHO 5.0x1010 0.87xl010 (87%) 2.47x1011 2.15x1011 (87%) 
0 5.0x1011 5.0 x1011 (100%) 1.60x1012 1.54x1012 (103%) 
3 

1.0xl010 xl010 2.10x1011 1.84x1011 HNO 1.0 (100%) (88%) 
3 6 x106 8.77x1011 7.74x1011 HO 1.0xlO 1.0 (100%) (88%) 

2 6 x106 4.08xl010 3.35x1010 RO 1.0xlO 1.0 (100%) (82%) 
2 5 x105 5 6 OH 1.0xlO 1.0 (100%) 9.95x10 1.0lxlO (102%) 

0(1D) -3 1.0 xl0-3 (100%) 4.42xl0-4 4.27x10-4 (97%) 1.0xlO 

Table 4: Computing times (with a constant stepsize) obtained with four 
different space discretization algorithms. Number of the 
advection steps: 576. Number for the chemical steps: 5 per 
advection step. The stepsize in the advection part: 150 
seconds. The stepsize in the chemical part: 30 seconds. The 
computer used in the runs: Univac 1110/82. 

Space Advection + 
discretization chemical Only chemical 
algorithm Only advection reactions reactions 

Finite 
differences 333 2933 2600 

Smolarkiewicz 1378 

Pseudospectral 1523 4169 2646 

-• - --- -- ---- ... ..,_,,..,_..,..., c.1.cu,c,, ... .., v-.,..., ..:> ..:>VO .GU.GJ 
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3.3 COMPARISON OF THE COMPUTING TIMES SPENT FOR THE DIFFERENT 

ALGORITHMS 

Eulerian models are rather expensive to run with complex chemistry, 

and a large computer is required. The storage requirements for the 

different algorithms are not large. The computer memory is normally 

sufficient and the inclusion of additional arrays does not cause 

difficulties. On the other hand, the computing time is a crucial 

factor when long runs are to be performed. 

The computing times for the four algorithms are given in Table 4. In 

all cases the time step size is 150 s for the advection part and 30 s 

for the chemical part. Thus, in all cases 576 advection time-steps are 

carried out, while 5 chemical steps are performed at each advection 

step. 

It is seen from Table 4 that computing times for the chemical part are 

nearly the same (in fact these should be precisely the same since the 

same work is carried out during the chemical part for each advection 

algorithm; the differences are caused by the uncertainties connected 

with the subroutine that calculates the computing time). The second 

order finite differences algorithm is about 5 times faster than the 

pseudospectral algorithm when the advection time only is taken into 

account. In the same situation the Smolarkiewicz algorithm is only a 

little better than the pseudospectral algorithm, while the finite ele­ 

ments (CHAPEAU) algorithm is about 2.5 times faster. The differences 

are less when advection+smoothing+chemistry is applied. 

The computing times shown in Table 4 indicate that only episodes can 

be treated numerically by the model at present, keeping in mind also 

that only a very simple chemical description is given. If more 

realistic runs are to be carried out (in order to calculate mean 

concentrations on monthly, seasonal and yearly bases), then these 

computing times must be reduced at least by a factor of 100. The 

question is: can we achieve such a great reduction? We are not 

prepared to give the answer to this question now. However, we shall 

discuss two ways in which such a reduction could be achieved as well 

as the results obtained when the computational performance of the 

code was attempted to be made more efficient. 
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The first way in which a reduction in computing time could be achieved 

is by improving the algorithms used and/or by running the algorithms 

with a longer time step. We have tried the latter approach. The chemi- 

cal part has been run with a step size of 150 s (one chemical step per 

one advection step). In this way the computing time for the chemical 

part is reduced by a factor of 5. It is clear that in this situation 

the importance of the choice of an advection algorithm is increased 

considerably. The accuracy of the results becomes poorer, but remains 

acceptable. More experiments are needed to decide the maximum step 

size that can be allowed. The photochemical reactions cause consi­ 

derable changes in the concentration field during sunrise and sunset 

(say from 6 to 10 am and from 6 to 10 pm). A small step size could be 

used in these periods, and a longer step size in the other periods. 

The second way involves the use of a fast vector processor. However, 

the present code is not vectorized. The chemical integration procedure 

contains many IF statements. Moreover, the chemical integration is 

performed in the traditional sequential manner (successively one grid­ 

point after another). Some transformations that are formally quite 

simple, are necessary. Many improvements are needed also in the advec­ 

tion part. Nevertheless, it is worthwhile to do these changes. The 

following examples illustrate that it is worthwhile to do modifica­ 

tions. The rotation test has also been run on AMDAHL VPl00. The compu­ 

ting time for the case where the pseudospectral algorithm is used 

(together with smoothing and chemistry) was about 215s. This is more 

than 19 times faster than the time for the corresponding run in Table 

4. For the finite elements (CHAPEAU) advection discretization the 

corresponding figure is 105 s (this is a reduction by a factor of 

about 30 compared with the computing time obtained by the same algo- 

rithm on UNIVAC 1100/82; see Table 4). Therefore the experiments indi- 

cate that the main aim stated in this paragraph, to reduce the compu- 

ting time by a factor at least equal to 100, is not unr ealistic, 
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3.4 FURTHER WORK 

The calculations reported her were not dependent on the conditions 

applied at the grid boundary. To be able to do model calculations of a 

realistic situation, the boundary conditions will become important for 

the results calculated in the interior of the grid. It is well known 

that the establishment of boundary conditions is particularly diffi­ 

cult for the pseudo-spectral method, where it has been necessary to 

introduce strong damping of the concentration on the boundary in 

linear chemistry models. The introduction of non-linear chemistry will 

necessitate a refinement of the boundaray conditions already in use in 

pseudo-spectral models. This work is now underway. 
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