Environmental Health Assessment: Respiratory Disease in relation to Air Pollution in Kanpur, Uttar Pradesh

India-Norwegian cooperation project (Project no. O-106082, Ref. nr. IND3025 05/51)

Alena Bartonova ¹⁾ and Hai-Ying Liu ¹⁾ (eds)

Report contributors:

Bartonova, Alena ¹⁾ Dikshit, Onkar ²⁾ Hansen, Jan Erik ¹⁾ Hermansen, Ove ¹⁾ Katiyar, S.K. ³⁾ Kumar, Naresh ²⁾ Liu, Hai-Ying ¹⁾ Pandey, Reenu ²⁾ Prashad, Neha ²⁾ Schindler, Martin ⁵⁾ Timkova, Jana ⁵⁾ Shaha, Dipankar ⁴⁾ Sharma, Mukesh ²⁾ Toennesen, Dag ¹⁾ Willoch, Harald ¹⁾

¹⁾ NILU – Norwegian Institute for Air Research, Kjeller, Norway
 ²⁾ IITK - Indian Institute of Technology Kanpur, India
 ³⁾ GSVM Medical College Kanpur, India
 ⁴⁾ Central Pollution Control Board, Delhi, India
 ⁵⁾ Charles University, Prague, Czech Republic

Environmental Health Assessment: Respiratory Disease in relation to Air Pollution in Kanpur, Uttar Pradesh

India-Norwegian cooperation project (Project no. O-106082, Ref. nr. IND3025 05/51)

Alena Bartonova ¹⁾ and Hai-Ying Liu ¹⁾ (eds)

Report contributors:

Bartonova, Alena ¹⁾ Dikshit, Onkar ²⁾ Hansen, Jan Erik ¹⁾ Hermansen, Ove ¹⁾ Katiyar, S.K. ³⁾ Kumar, Naresh ²⁾ Liu, Hai-Ying ¹⁾ Pandey, Reenu ²⁾ Prashad, Neha ²⁾ Schindler, Martin ⁵⁾ Timkova, Jana ⁵⁾ Shaha, Dipankar ⁴⁾ Sharma, Mukesh ²⁾ Toennesen, Dag ¹⁾ Willoch, Harald ¹⁾

¹⁾ NILU – Norwegian Institute for Air Research, Kjeller, Norway ²⁾ IITK - Indian Institute of Technology Kanpur, India ³⁾ GSVM Medical College Kanpur, India ⁴⁾ Central Pollution Control Board, Delhi, India ⁵⁾ Charles University, Prague, Czech Republic

Preface

This report is a summary of a project 'Environmental Health Assessment: Respiratory Disease in relation to Air Pollution in Kanpur, Uttar Pradesh'. The project was funded under Royal Norwegian Embassy New Delhi, Project no. O-106082, Ref. nr. IND3025 05/51. The aim of this project is to build up a methodology for environmental health impact assessment. The specific aims are:

- To assess population-wide health effect of air pollution in the city of Kanpur;
- To lay further basis for environmental health and air quality monitoring at Kanpur and Agra;
- To disseminate the findings and sampling procedures for adoption at other sampling locations in India.

The project contains seven partners:

- Norwegian Institute for Air Research (NILU)
- Indian Institute of Technology Kanpur (IITK)
- GSVM Medical College in Kanpur
- Central Pollution Control Board (CPCB) in Agra
- State Pollution Control Board in Kanpur

The project was structured into the following tasks:

- Task 1: Verification of measurement methods in relationship to the European CEN/EN12341 standard on PM10 monitoring in Kanpur and Agra.
- Task 2: Health effect assessment attributable to air pollution in the city of Kanpur.
- Task 3. Dissemination (workshops) and administration.

This report summarizes the main results from this project, first, to verify the measurement methods in relationship to the European CEN/EN12341 standard on PM10 monitoring in Kanpur; second, to examines the associations between respiratory disease and outdoor air pollution in Kanpur. The results showed that (i) the monitoring equipment for PM10, often used in the Indian monitoring network, provide 20% lower results than both high volume sampling equipment and the European reference method. (ii) the variable PM is most strongly correlated with SO₂ and NO_X; (iii) the degree of air pollution is significantly relevant to the landscape patterns; and (iv) there are strong association between respiratory disease as measured by the total number of patients and outdoor air pollution.

For more information, please contact the project coordinator Dr. Alena Bartonova, E-mail: aba@nilu.no.

India-Norwegian cooperation project (Project no. O-106082, Ref. nr. IND3025 05/51)

Environmental Health Assessment: Respiratory Disease in relation to Air Pollution in Kanpur, Uttar Pradesh

Alena Bartonova & Hai-Ying Liu (eds)

Norwegian Institute for Air Research, Kjeller, Norway

Report contributors:

Bartonova, Alena, NILU Dikshit, Onkar, IITK - Indian Institute of Technology Kanpur Hansen, Jan Erik, NILU Hermansen, Ove, NILU Katiyar, S.K., EX Principal, GSVM Medical College Kanpur Kumar, Naresh, Project Assistant, IITK - Indian Institute of Technology Kanpur Liu, Hai-Ying, NILU Pandey, Reenu, Project Assistant, IITK - Indian Institute of Technology Kanpur Prashad, Neha, Undergraduate Student, IITK - Indian Institute of Technology Kanpur Schindler, Martin, Charles University, Prague Timkova, Jana, Charles University, Prague Shaha, Dipankar, Central Pollution Control Board, Delhi Sharma, Mukesh, IITK - Indian Institute of Technology Kanpur Toennesen, Dag, NILU

1. Executive Summary	4
2. Introduction	5
3. Objectives and Scope of the Cooperation Project	5
4. Activities taken up and completed	6
 4.1 TASK 1 VERIFICATION OF MEASUREMENT METHODS	7 8 10 15 15
4.2.2 Health parameter selection and data extraction	17 17
4.2.4 Statistical analysis	20
 5. Degree of achievement of the goals and objectives of the project 	. 50
6. Sustainability of the coordination between the participating institutions	. JU 20
7. A representation institutionalization of honofits	. JU 21
 Arrangement for institutionalisation of benefits	. 51
8. Mutuality of benefits derived by individual institutions	. 32
9. Assessment of technology/knowledge transfer exchanged between institutions	. 32
10. Strategy for dissemination	. 33
11. Assessment of any commercial spin-offs or prospects for commercial benefits as a shoot of the project	off . 33
12. Experience of the co-operating institutions regarding funding arrangements	. 33
13. Conclusions	. 35
 13.1 Comparison of monitoring equipment	35 35 35 36
14. References	. 36
Appendix 1 Time plan and milestone list	. 37
Appendix 1.1 Revised time plan Appendix 1.2 Provisional milestone list	37 38
Appendix 2 Emission inventory	. 40
Appendix 2.1 Emission of SO $_2$ from various sources (kg/day)	40
Appendix 3 Health data-total number of patient	. 48

1. Executive Summary

This report summarizes all activities of the whole period for the project.

The project is a collaboration between Indian Institute of Technology Kanpur (IITK), GSVM Medical College in Kanpur, Central Pollution Control Board (CPCB) in Agra, State Pollution Control Board in Kanpur, and Norwegian Institute for Air Research (NILU), Kjeller.

Project activities were somewhat delayed, and started for full first in August 2006. The first task, *Verification of measurement methods*, deployed the European reference instrumentation. The Indian staffs prepared standard operating procedures and were trained in sampling and gravimetric methods with emphasize on quality control and quality assurance methods. Parallel sampling was done for the European reference sampler Kleinfiltergeraet, the Indian make standard PM sampler RDS, and a high-volume sampler Packwill. The concentrations measured by Packwill and the Kleinfiltergeraet did not significantly differ. The concentrations measured by RDS were 22% lower than concentrations measured by the Kleinfiltergeraet. There was no significant difference in weighing between NILU and the Indian institutions.

The second task, *Health assessment*, had three parts: 1) establishment of an emission database, 2) assessment of health effects, and 3) statistical analysis. A comprehensive emission database for Kanpur was established, covering particulate matter (PM_{10}), SO₂ and NOx. In the Kanpur area, point sources, area sources and line sources were all considered and investigated by a combination of methods (direct inspections, statistical data collection, satellite data collection). In a 2x2 kilometre grid, areas of the city were classified into four categories (1 – least emissions, 4 – highest emissions), and coupled with population and with patient register of the participating hospital. Respiratory symptoms and illnesses showed clear positive association with emission intensities, demonstrating that deteriorated air quality due to high emissions is a clear precursor for higher risk for respiratory disease.

In the Task 3, *Dissemination*, the project team held an inception workshop, but did not manage to hold a final workshop. At the present time, publications detailing the results from the project are being prepared, and ways how to hold the final workshop are being investigated.

During the project period, the tasks were carried out mostly as planned (except dissemination), but there were lapse on reporting. Therefore, the project was extended until 31. August 2008.

2. Introduction

The project is building upon results and achievements of a previous project "Indoor and Ambient Air Exposure of PAHs and Fine Particulate to Women and Children: Health Impacts in terms of Morbidity", performed by the collaborating partners during the period February 2002 to July 2005, which concluded that there are observable health effects that can be attributed to air pollution.

In addition to those important findings, it put the infrastructure necessary for such investigations in place; it enabled the IITK to run efficiently a high-quality air pollution monitoring, and to perform the required chemical analyses, with the help of a quality assurance/quality control system, and established a relation with the GSVM Medical College in Kanpur, enabling GSVM to collect and supervise collection of high-quality data on respiratory health outside their usual clinical practice.

Within the previous project, information was disseminated to the public through two workshops, attended by professionals and other stakeholders. The final workshop in its recommendations pointed out that the established collaboration of the three institutions can further build on the project achievements, both in terms of more accurate assessments of health damages and in terms of contributions towards improvements of air quality, using elements of integrated air quality management system.

3. Objectives and Scope of the Cooperation Project

The purpose of the project is to further develop expertise of all the participating institutions, and at the same time, provide necessary quantitative pollution-health linkage, for use by the health and environment authorities in India and to the scientific community elsewhere. In line with scientific and regulatory advancements, it is also the view of the current team that information on environmental health is one of the most important inputs to air quality management.

Specifically, four issues are addressed that underpin the main objective:

- Further work on enabling the IITK laboratory to serve as a quality control and quality assurance expertise centre in support of monitoring;
- Putting in place procedures in support of air quality management, especially related to emission inventories and assessment of population exposures;
- Further developing information on relation between respiratory health to air pollution, in support to air quality management;
- Dissemination of information and knowledge relevant to air quality management.

The main aim of the project is build up a methodology for environmental health impact assessment. The specific aims are:

- To assess population-wide health effect of air pollution in the city of Kanpur;
- To lay further basis for environmental health and air quality monitoring at Kanpur and Agra;
- To disseminate the findings and sampling procedures for adoption at other sampling locations in India.

4. Activities taken up and completed

The project was structured into the following tasks:

- Task 1: Verification of measurement methods in relationship to the European CEN/EN12341 standard on PM10 monitoring in Kanpur and Agra.
- Task 2: Health effect assessment attributable to air pollution in the city of Kanpur.
- Task 3. Dissemination (workshops) and administration.

The implementation of these tasks was done through separate work of the Indian and Norwegian teams, many electronic and several telephone communications, technical visit and an inception workshop.

4.1 Task 1 Verification of measurement methods

The Indian team started preparations for this task by identifying project staff at the IITK and by selecting and preparing the monitoring sites. This included several technical preparations. In order to secure power supply at the Kanpur sites, backup power systems were deployed and on-site installations were performed. The Norwegian team supervised deployment of the equipment and provided training during the first technical visit on the operation of the samplers, and on quality assurance and control procedures for the samplers, for filter handling and weighing.

Parallel monitoring was done according to a plan, with three instruments in Kanpur and two instruments in Agra. The output of sampling consists of weight of filters before they were exposed and after. Furthermore, the total volume of air blown through the filter was known and used for evaluating the average concentration of dust in air in samplers' surrounding. In most cases, the 16-hour average was available although there were few observations where sampling was shorter or were not carried out due to e.g. damage of filter.

The main task was to assess the difference in outputs from Indian samplers compared to reference Leckel sampler. As the tool for providing this, the evaluated concentration and the relative difference in concentration were used.

A concern regarding the equality of outputs coming from various samplers was raised, although it was already shown that the procedure of filter weighing in India laboratories usually meets with the systematic positive error. To overcome this obstacle, the assessment of the accuracy of Leckel' filters weighing procedure in India was done. First, the filters were weighed in NILU and sent to India to exposition. In India, the laboratory staff reweighed the unexposed filters before the very sampling started. After the sampling was done the filters were weighed in India, sent back to Norway and reweighed again. The resulting differences between weighing in India and NILU showed significant difference in exposed filter weight in about 0.16mg and furthermore the evaluated concentration differed in mean in 3.9μ g/m³.

Nevertheless, assuming that the weighing of filters exposed using all three filters was done in the same condition in Indian laboratories, we still are able to compare the results coming from these three samplers. Here the question arises, if the different filters used in all three samplers tend to behave in same matter with regards to the unknown potentially influencing effects as is the level of humidity in laboratory etc.

4.1.1 Statistical analysis

The difference Δc in concentration c from the reference of Leckel was calculated as follows:

$$\Delta c (Leckel, RDS) = c (Leckel) - c (RDS)$$
⁽¹⁾

$$\Delta c(Leckel, Packwill) = c(Leckel) - c(Packwill)$$
⁽²⁾

Furthermore, the relative difference Δc_r in concentration was obtained as follows:

$$\Delta c_r (Leckel, RDS) = \frac{c(Leckel) - c(RDS)}{c(Leckel)}$$
(3)

$$\Delta c_r (Leckel, Pckwill) = \frac{c(Leckel) - c(Packwill)}{c(Leckel)}$$
(4)

To assess the differences between outputs of reference sampler and other two samplers, the two-tailed parametric paired two-sample t-test and also non-parametric Wilcoxon signed-rank test were used. The testing was provided on the 0.05 significance level.

4.1.2 Results

The sampling was provided within September 9th 2006 and May 1st 2007 in Kanpur, Uttar Pradesh. The total number of observations was 339 from which 112 derived from Leckel, 118 from Packwill and 109 from RDS. There were a few days in which various arrangements of machines were provided and as a consequence, the observations were not performed with all three samplers. Furthermore, as mentioned earlier, several failures caused by filter damage appeared. The final number of valid observations to compare the two investigated samplers to the reference sampler was 217, from which 115 and 102 were from Packwill and RDS respectively.

In the following tables the basic descriptive statistics are displayed. The differences between reference sampler and remaining Indian samplers Packwill and RDS were in mean $5.44\mu g/m^3$ and $-105.93\mu g/m^3$, respectively. Especially the RDS sampler strongly underestimated the concentration of dust in air, if assuming that the measurements by reference sampler Leckel were done properly. Furthermore, the differences between the samplers vary from hundreds of $\mu g/m^3$ below and above zero, which indicate huge errors.

The basic descriptive statistics of relative difference in concentration may be seen in Table 3. As it may be expected, the mean relative difference from Packwill sampler is with the value 0.02 close to zero; however the variability represented by the values 0.32 of standard deviation is enormous. The RDS sampler results pose in addition to huge variability also huge negative bias with the mean value of -0.22.

Table 1 Descriptive statistics of the evaluated concentrations on the basis of measurements obtained by two Indian samplers (Packwill, RDS) and reference sampler Leckel.

Sampler\Concentration [µg/m ³]	Min	Mean	Max	Standard deviation
Leckel	68.94	300.03	838.77	166.49
Packwill	65.14	297.43	786.97	168.78
RDS	48.14	201.02	529.32	80.73

Table 2 Descriptive statistics of the differences in evaluated concentrations between two Indian samplers (Packwill, RDS) and reference sampler Leckel.

Sampler\Differences in concentration	Min	Mean	Max	Standard deviation
Packwill	-321.01	5.44	261.16	84.28
RDS	-548.45	-105.93	196.16	133.82

Table 3 Descriptive statistics of the relative differences in evaluated concentrations

 between two Indian samplers (Packwill, RDS) and reference sampler Leckel.

Sampler\Relative differences in concentration	Min	Mean	Max	Standard deviation
Packwill	-0.71	0.02	1.54	0.32
RDS	-0.71	-0.22	2.00	0.43

The calculated differences between Packwill or RDS machine and reference Leckel sampler are also displayed on the Figure 1 and Figure 2. The differences for Packwill are mostly uniformly spread around the zero except 13 observations from 22th to 28th of April 2007. These last cases were mentioned as being done with the Packwill substrate for PM_{10} sampling. Further, please notice the serious variation of values which exceeds the ±100ug/m³ imaginary horizontal lines.

The second plot represents the results from RDS sampler. As it may be seen the levels of concentration of dust in air obtained from RDS outputs are considerably lower as the resulting differences with reference sampler are far below zero. Again the variability of data is particularly huge. Figure 3 and Figure 4 show the evaluated relative differences in concentration between Indian samplers and Leckel. The patterns of points mostly copy the behavior seen in absolute differences in concentration.

4.1.3 Summary of findings

Packwill:

- There is <u>non-significant</u> difference between concentration level obtained by Packwill and reference Leckel sampler equal 5.44ug/m³. The two-tailed significance level is 0.49 from paired two-sample *t*-test and 0.11 from Wilcoxon test.
- There is <u>non-significant</u> difference in relative concentration obtained by Packwill and reference Leckel sampler equal 2%. The two-tailed significance level is 0.51 from paired two-sample *t*-test and 0.04 from Wilcoxon test.

RDS:

- There is <u>significant_difference between concentration level</u> obtained by RDS and reference Leckel sampler equal -105.93ug/m³. The two-tailed significance level is < 0.001 from both paired two-sample t-test and Wilcoxon test.
- There is <u>significant</u> difference in concentration level obtained by RDS and reference Leckel sampler equal -0.22. The two-tailed significance level is < 0,001 from both paired two sample t-test and Wilcoxon test.

Figure 1 The differences between the concentration of dust in air obtained by Packwill and Leckel are displayed. The smoothed line mirroring the mean tendency is drawn in solid blue line. The dashed black line represent the desired zero level.

Difference in Concentration

Figure 2 The differences between the concentration of dust in air obtained by RDS and Leckel are displayed. The smoothed line mirroring the mean tendency is drawn in solid blue line. The dashed black line represent the desired zero level.

Relative Difference in Concentration Sampler: Packwill

Figure 3 The relative differences in concentration of dust in air obtained by Packwill and Leckel are displayed. The smoothed line mirroring the mean tendency is drawn in solid blue line. The dashed black line represent the desired zero level.

Relative Difference in Concentration Sampler: RDS

Figure 4 The relative differences in concentration of dust in air obtained by RDS and Leckel are displayed. The smoothed line mirroring the mean tendency is drawn in solid blue line. The dashed black line represent the desired zero level.

Difference in concentration

Figure 5 Difference in concentration from Packwill and RDS compared to Leckel: Plots assessing the belonging to normal distribution (Q-Q plot: sample quantiles vs. theoretical, histogram with normal distribution density curve in red line).

Figure 6 Relative Difference in concentration from Packwill and RDS compared to Leckel: Plots assessing the belonging to normal distribution (Q-Q plot: sample quantiles vs. theoretical, histogram with normal distribution density curve in red line).

4.2.1 Emission inventory

4.2.1.1 Sampling centres

There are 7 centres in the city where the sampling was done (Figure 7). At each of the centres, the coordinates of the centre point were plotted with the help of GIS. The coordinates recorded by the GPS were in UTM (WGS 84). This database file including the point number, name of station, landscape pattern and its coordinates is shown in Table 4.

ID	Station name	Latitude	Longitude	Landscape pattern
1	Sidbi	26.51	80.23	Institutional
2	Vikas Nagar	26.49	80.29	Residential
3	Dadanagar	26.47	80.34	Commercial
4	Colonel Ganj	26.47	80.34	Commercial
5	Pared	26.45	80.29	Industrial
6	Ramadevi	26.44	80.32	Residential
7	Juhilal Colony	26.41	80.39	Residential

4.2.1.2 Sampling grids

The data collected was in an area of $2 \text{ km} \times 2 \text{ km}$ square grid around the sampling centres mentioned in above section. Thus, 7 square grids were created which represented the area of sampling in the city as shown in Figure 7. The whole city was divided into 154 grids of $2 \text{ km} \times 2 \text{ km}$ (Figure 7). The environmental and health data were collected and analyzed grid-wise.

4.2.1.3 Point source

There are a total of 20 point source which were surveyed. A detail of 20 point source industries with stack height above 25 m is shown in Figure 7 and Table 5.

	2001	K002	K003	K004	K005	K006	K007	K008	K009	K010	K011	K012	K013	K014
•	1015 Si	dbik016	K017	K018	K019	K020	K021	K022	K023	K024	K025	K026	K027	K028
,	-0	K030	K031	К032	K033	K034	K035	К036	K037	K038	K039	K040	K041	K042
1	ind	K044	K045	K046	Vika K047	s Nagar K048	K049	K050 Dadanaga	K051	K052	K053	K054	K055	K056
5	4057	K058	K059	K060	K06113 10129 7	K062	K063 Kanpur	Color K064	nel Gan) косз	K066	K067	K068	K069	K070
,	2071	К07	K073	K074	30 4	K076	K077 17	K078	K079	к080	K081	K082	K083	K084
,	2085	K086	K087	KOSS	K089	Ra ко90	made v115 K091	K092	K093	K094	K095	K096	K097	K098
,	099	K100	K101	K102	K103	K104	K105	K106	Juhilal C K107	colony19 x as 20	K109	K110	well	K112
,	(113	K114	K115	K116	К117	K118	K119	K120	K121	K122	К123	K124	K125	KIZ
•	127	K128	K129	K130	K131	K132	A133	K134	K135	K136	K137	K138	K139	K140
,	(141	K142	K143	K144	K145	K146	K147	K148	K149	K150	К151	K152	KISY	К154
ampli	ng cent	res	city bound	dary						1		1	~	

Figure 7 Sampling centers, sampling grids and point source locations in Kanpur.

Source No.	Grid No.	Industry	Capacity	Fuel Consumption	Stack Height (m)	Latitude (N)	Longitude (E)
$\frac{1}{2}$	K033 K045	Rice Mill Thermal	48 T/d 2×110	640 Kg/d coal 2030 T/d coal	30 m 120 m	26 ° 29'40.18" 26°28'31.08"	80° 7'11.45" 80°14'25.878"
3	K075	Iron and Steel	31.59 T/d	2.2 T/d coal	30 m	26°26'30.26"	80°17'10.073"
4	K075	Industry Textile Industry	7 T/d	700 L/d diesel	60 m	26°26'40.24"	80°17'13.043"
5 6	K075 K075	Rice Mill Iron and Steel	150 T/d 20 T/d	2 T/d coal 20 L/d diesel & 18 T/d coal	35 m 25 m	26°26'48.34" 26°27'10.66"	80°17'15.035" 80°17'20.076"
7	K075	Iron and Steel	50 T/d	4.5 T/d coal	30 m	26°27'11.628"	80°17'20.016"
8	K061- K075	Industry Iron and Steel	28 T/d	3 T/d Coal	25 m	26°27'18.762"	80°17'9.732"
9	K061- K075	Oil Industry	2 T/d	2 T/d coal	25 m	26°27'12.56"	80°17'07.662"
10	K075 K075	Textile	5 T/d	1 T/d coal	55 m	26°27'17.95"	80°17'1.87"
11 12	K075 K061	Rice Mill Textile	25 T/d 5.5 T/d	375 kg/d coal 1 T/d coal	30 m 60 m	26°27'16.44" 26°27'38.632"	80°17'20.35" 80°17'19.481"
13	K061	Leather	5 T/d	960 L/d diesel	35 m	26°27'42.745"	80°17'21.312"
14	K061	Iron and Steel	11 T/d	10 L/d diesel & 1 T/d coal	25 m	26°28'12.745"	80°17'42.131"
15	K077-	Oil Industry	7.5 T/d	750 L/d diesel	30 m	26°26'15.542"	80°19'42.236"
16 17	K071 K077 K077	Rice Mill Leather Industry	36 T/d 5 T/d	480 kg/d coal 5 T/d Coal	35 m 35 m	26°26'24.356" 26°26'31.256"	80°19'52.423" 80°19'54.581"
18	K077- K091	Rubber	10 T/d	2 T/d coal	30 m	26°26'14.334"	80°19'27.184"
19	K108	Textile	12 T/d	1.2 T/d coal	80 m	26°24'43.152"	80°23'14.361"
20	K108	Rice Mill	35 T/d	425 kg/d coal	35 m	26°24'21.285"	80°23'11.186"

Table 5 Information for point source industries in Kanpur.

4.2.1.4 Environmental data

Emission inventory includes emission of SO_2 , PM, NO_X and CO from various sources, e.g. vehicles domestic, garbage burning, restaurant, medical-waste incinerator, funeral burning, etc. The detail databases are shown in Appendix 2.1-2.4, respectively.

4.2.2 Health parameter selection and data extraction

The two teams identified the relevant health parameters and extracted data from the medical records. Several types of data were recorded in the unit of 2 km \times 2 km grid from the period 10 January 2006 to 25 May 2007.

The sources in priority order for manual entry are:

- Outdoor patient
- Indoor patient
- Respirator patients (Intensive Care Unit–ICU or those on non-invasive respirator)
- Lung patients

The description of the health parameter and database is shown in Table 6. The total number of patients for outdoor, indoor, ICU and lung are shown in Appendix 3.

Type of patients	Record period	Record item	Patients number
Outdoor	10.1-29.12.2006	Age, sex, smoking, occupation, address, symptom	8557
Indoor	28.3-25.5.2007	Age, sex, smoking, occupation, address, symptom, diagnosis	2273
ICU	3.4-21.5.2007	Age, sex, smoking, occupation, address, symptom, diagnosis	77
Lung	14.7-21.8.2007	Age, sex, smoking, occupation, address, symptom, diagnosis, FVC (forced vital capacity), FEV (forced expiratory volume), FEV/FVC	718

Table 6 The description of health parameter and database in Kanpur, India.

4.2.3 Outdoor pollution assessment

4.2.3.1 Correlation between SO₂, NO_X and PM

The variables SO_2 , NO_X and PM are highly correlated. The variable PM is the one most correlated with the remaining pollutants variables, SO_2 and NO_X (Table 7).

Variable	NO _X	PM	SO ₂
NO _X	1.0000000	0.9002302	0.8427640
PM	0.9002302	1.0000000	0.9561169
SO ₂	0.8427640	0.9561169	1.0000000

Table 7 Correlation between variables SO₂, NOX and PM.

One-way anova analysis (Kirk 1995) of variance between groups or Kruskal-Wallis test (Kruskal and Wallis 1952) showed that the degree of emissions was significantly dependent upon the factor 'land use types' (Table 8 and Figure 8).

Table 8 Kruskal-Wallis test for dependence of variables SO₂, NOX and PM on factor 'land use types'.

Variable\test	Kruskal-Wallis chi-squared	Degrees of freedom	P-value
NOx	30.1228	4	4.621e-06
PM	39.8352	4	4.682e-08
SO_2	54.0952	4	5.027e-11

Figure 8 Correlation between NOX and SO₂ based upon six land use types.

From Figure 8, we can see that the values of SO_2 and NO_X are much higher in the industrial region than in the institutional regions.

4.2.3.2 Clusters of emissions

Four levels of emissions of SO_2 , NO_X and PM, based upon all the emission sources excluding stacks higher than 25 m, were divided by using cluster analysis on the three-dimensional data (Figures 9-10).

The representation of emissions from each variables SO_2 , PM and NO_X in each cluster is shown in Table 9. The division of the 78 grid-cells into four distinct groups is shown in Figure 10.

Cluster	SO ₂ (kg/day)	PM (kg/day)	NO _X (kg/day)
1	36.08	44.57	39.00
2	46.57	75.72	104.23
3	62.19	134.76	194.15
4	120.16	259.34	434.97

Table 9 Emissions of SO2, PM and NOX in each cluster.

Figure 9 SO₂ and NO_X of the clusters based upon all the sources excluding stacks higher than 25 m.

4.2.4 Statistical analysis

For all data analysis, the R freeware, version 2.7.1 (Anonymous 2004a, 2004b), packages '*cluster*' and '*rgl*' (Oksanen 2007, Oksanen et al. 2007), were used. For clustering *R*-functions '*kmeans*' and '*pam*' from package '*cluster*' were used.

ArcGIS 9.0 (ESRI, <u>http://www.esri.com</u>) was used for all the illustration maps.

4.2.4.1 Analysis of hospital visits

The total population of all grids was incorporated into this analysis of hospital visits. Pearson's chi-square test for independence in the contingency table of number of people coming and not coming to the pulmonary clinic classified by the clusters, showed that the morbidity is much high in the higher polluted regions (clusters 3 and 4, see Table 10 and Figure 11).

Table 10 Number of inhabitants coming and not coming to the clinic in each cluster.

Furthermore, we considered a logistic regression model where we modeled an occurrence of a person in the pulmonary clinic in dependence on the cluster (level of pollution) of the home grid. People not coming to the clinic played the role as the control group.

Independent of the cluster variable type (e.g. nominal, ordinal or quantitative), the conclusion was that the level of pollution significantly influence the morbidity on any reasonable level.

The computation of the 95% simultaneous confidence interval for the difference of effect of all the pairs of levels of factor cluster, indicated that the morbidity significantly differs for every pair except between the clusters 3 and 4 (Figure 12), where no difference was found.

95% family-wise confidence level

Table 11 shows the estimated coefficients for the differences of the effects of the levels of emission (factor cluster), 95% confidence interval (CI), odds ratios (the value by which the relative risk of having pulmonary problems is multiplied when we moved from one cluster to another), and the 95% confidence interval of the odds ratios. The latter two indicators are just the exponentials of the estimates and the confidence intervals.

Similarly, we got the same results by analysing the twelve classified symptoms individually, not simultaneously. In fact, cluster 1 and 3 differed significantly for all the symptoms and cluster 3 and 4 were not different for any of the twelve symptoms' classes (Figure 13).

Table 11 Comparison of the effects of the factor cluster (emission level) with simultaneous confidence intervals and the odds ratios with their simultaneous confidence intervals.

Contrasts	Estimate	95% CI of estimate	Odds ratio	95% CI for odds ratio
2 - 1	0.50	(0.36, 0.63)	1.64	(1.43, 1.89)
3 – 1	1.20	(1.07, 1.34)	3.33	(2.91, 3.81)
4 – 1	1.18	(1.03, 1.33)	3.25	(2.80, 3.78)
3 – 2	0.71	(0.61, 0.80)	2.03	(1.84, 2.24)
4 - 2	0.68	(0.57, 0.80)	1.98	(1.76, 2.22)
4 – 3	-0.02	(-0.14, 0.09)	0.98	(0.87, 1.09)

Figure 13 Effects of clusters for symptoms common cold, cough, fever and hemoptysis.

4.2.4.2 Time Analysis

The aim of time analysis is to assess an effect of time on the distribution of the morbidity in the four clusters and on the hospital visits.

First, we looked at the total number of patients for each cluster in each of the twelve months of the year 2006. Table 12 shows absolute values of the patients and the 3D-barplots on Figure 14 shows the relative morbidity in each cluster and month.

Cluster	1	2	3	4
Month				
1	30	95	129	57
2	44	99	128	71
3	45	111	161	66
4	44	106	139	55
5	45	98	121	73
6	36	107	131	71
7	32	106	133	75
8	47	126	127	69
9	29	119	131	77
10	28	71	109	62
11	48	113	117	52
12	19	70	88	38

Table 12 Number of patients in the four clusters and twelve months.

Figure 14 Relative morbidities as a function of cluster and month.

To study the influence of the time (months) on the distribution of hospital visits in the clusters or the effect of the clusters (level of pollution) on the distribution of the morbidity during the year, we performed the Pearson's chi-squared test for independence in the contingency. *P*-value of this test was, however 0.29, so we did not reject on the 5% level of significance the hypothesis that there is no relationship between the variables month and cluster. The evidence strong was not enough to

claim that the distribution of the morbidity in the clusters depends on the time of the year or that the distribution of the morbidity during the year depends on the variable cluster.

Another question we can ask is: Does the morbidity vary during the year regardless of the variable cluster? We collapsed Table 12 to get the marginal sums for the months. Adding the patients without the information about the grid we get the following Table 13.

Month 5 7 9 1 2 3 4 6 8 10 11 12 Number of patients 555 684 738 680 747 784 772 837 768 581 732 462

 Table 13 Number of patients coming to the clinic in each month.

Dividing the twelve months into two samples, we employed a two-sample test for difference in location. The first sample consisted of the summer months (April to September) and the second sample of the remaining winter months. The Wilcoxon two-sample test resulted in a rejection (on 5% level) of the hypothesis of no difference (*P*-value 0.015) and hence we concluded that there is a difference in the hospital visits for summer and winter months.

4.2.4.3 Analysis of occurrence of an symptom

This part of analysis will only take into account the patients who came to the clinic with pulmonary problems. We took symptoms one by one. For each symptom we assigned to the patient "1" if he or she suffered from the symptom or "0" if he or she did not. Thus, here, the control group consisted of the patients who did not suffer the specific symptom, but suffered at least one other possibly worse symptoms.

We considered a logistic regression model with the occurrence of the symptom as the response and the variables cluster, sex, smoke and age (in years) and possibly their interactions as the regressors. We found out that only the symptoms 4, 5, 6 and 7 were significantly influenced by the ordered factor "cluster". The less serious symptoms, e.g. common cold and cough were less frequent in the higher polluted clusters, whereas the more serious symptoms, e.g. fever and hemoptysis, were more likely to occur in the higher polluted clusters of the grids.

Next, we took a closer look at the four symptoms. First we found the best model for each of the symptoms for the set of all patients (e.g. setting cluster equal to zero for the patients without any grid number, where most of these patients came from outside the city), then for the patients with grid information. We gave the estimated coefficients of the best models and their interpretation including their confidence interval. We used a stepwise backward selection procedure (Kleinbaum 1994) to find the best model.

4.2.4.3.1 Common cold

For the set of all patients the factor cluster was not significant when the other variables were included. We gave the set of the explanatory variables from the final model we found. We presented the estimates of the corresponding coefficient, its 95% confidence interval, its effect (e.g. odds ratio) and the 95% confidence interval of the odds ratio.

Common cold – all patients	Smoke (Yes)	Age	Sex (Male)
Estimate	-0.40	-0.016	0.42
95% CI of estimate	(-0.71, -0.10)	(-0.022, -0.0096)	(0.20, 0.65)
Odds ratio	0.67	0.9845	1.5
95% CI of odds ratio	(0.49, 0.90)	(0.9785, 0.9904)	(1.2, 1.9)

Table 14 Significant explanatory variables for the occurrence of common cold, for allthe patients.

Further, we analyzed only the patients with the grid information. For cluster being an ordered factor (i.e. with the orthogonal polynomial contrasts), the linear trend was significant with a negative estimate of the coefficient, although the overall effect of cluster was not significant on the 5% level. To better interpret the effect of cluster, we treated cluster as a numeric (quantitative) variable.

Table 15 Significant explanatory variables for the occurrence of common cold, for the patients with a known grid.

Common cold – known grid	ommon cold – Cluster nown grid		Sex (Male)
Estimate	-0.15	-0.015	0.34 (0.026, 0.66)
95% CI of estimate	(-0.31, 0.018)	(-0.024, -0.0068)	
odds ratio	0.86	0.9848	1.4
95% CI of odds ratio	(0.73, 1.0)	(0.9764, 0.9932)	(1.0, 1.9)

4.2.4.3.2 Cough

The strucplot display in Figure 16 shows the histograms for sex, smoke, cluster and cough on the diagonal and the empirical distribution for all of the pairs. We can see

that, as expected, relatively few female smokers, which in turn can cause estimation problems.

Figure 16 Matrix of strucplots for cough.

For the symptom cough, both best models we found included variable I (cluster = 4) which equals to "1" if the cluster is 4 and "0" otherwise. Both models also included interaction term I (cluster = 4): sex, which made it more difficult to assess the effects of these two regressors. In the model, for all patients the interaction term had a coefficient estimate 0.71, and in the smaller model, 0.73.

Cough–all patients	I(cluster=4)	Smoke (Yes)	Age	Sex (Male)
Estimate 95% CI of estimate	-0.56 (-0.81, -0.31)	0.17 (0.021, 0.32)	0.0053 (0.0024, 0.0082)	0.21 (0.095, 0.33)
Odds ratio	0.57 (sex=F) 1.2 (sex=M)	1.2	1.005	1.2 (cluster<4) 2.5 (cluster=4)
95% CI of odds ratio	(0.45, 0.74) (sex=F) (0.90, 1.5) (sex=M)	(1.0, 1.38)	(1.002, 1.008)	(1.1, 1.4) (cluster<4) (1.8, 3.5) (cluster=4)

Table 16 Significant explanatory variables for the occurrence of cough, all the patients.

If cluster is an ordered factor (in a model containing only the patient with a known grid), its linear trend is significant. However, we found a better model containing only the term I (cluster = 4).

Cough-known grid	I(cluster=4)	Age	Sex (Male)
Estimate	-0.63	0.0021	0.24
95% CI of estimate	(-0.90, -0.37)	(0.0022, 0.010)	(0.065, 0.40)
odds ratio	0.53 (sex=F)	1.006	1.3 (cluster<4)
	1.1 (sex=M)		2.6 (cluster=4)
95% CI of odds	(0.41, 0.69)	(1.002, 1.010)	(1.1, 1.5) (cluster<4)
ratio	(sex=F)		
	(0.84, 1.4)		(1.9, 3.7) (cluster=4)
	(sex=M)		

Table 17 Significant explanatory variables for the occurrence of cough, for thepatients with a known grid.

4.2.4.3.3 Fever

Similarly, the strucplot display for fever is shown in Figure 17. Although the interaction terms smoke: age, and age: sex were slightly significant, we excluded it from the final model to keep it simple for both sets of patients.

Figure 17 Matrix of strucplots for fever.

Fever-all patients	I(cluster=1)	Age	Sex (Male)
Estimate	-0.28	-0.011	-0.36
95% CI of estimate	(-0.48, -0.082)	(-0.013, -0.0082)	(-0.46, -0.27)
Odds ratio	0.76	0.9895	0.70
95% CI of odds ratio	(0.62, 0.92)	(0.9871, 0.9918)	(0.63, 0.76)

Table 18 Significant explanatory variables for the occurrence of fever, for all patients.

Table 19 Significant explanatory variables for the occurrence of fever, for the patients with a known grid.

Fever–known grid	I(cluster=1)	Smoke	Age	Sex (Male)
Estimate 95% CI of estimate	-0.31 (-0.51, -0.10)	0.21 (0.023, 0.39)	-0.012 (-0.016, -0.0089)	-0.46 (-0.61, -0.32)
Odds ratio 95% CI of odds ratio	0.74 (0.60, 0.90)	1.2 (1.0, 1.5)	0.9876 (0.9841, 0.9911)	0.63 (0.55, 0.72)

4.2.4.4 Hemoptysis and similar

There was a weak linear trend of ordered factor cluster with a positive estimate of the

coefficient on the occurrence of the hemoptysis, but the final models did not include it.

Table 20 Significant explanatory variables for the occurrence of hemoptysis, for all patients.

Hemoptysis – all patients	Age	Sex (Male)
Estimate	-0.0064	0.22
95% CI of estimate	(-0.010, -0.0025)	(0.064, 0.37)
Odds ratio	0.9936	1.24
95% CI of odds ratio	(0.9897, 0.9975)	(1.1, 1.45)

Table 21 Significant explanatory variables for the occurrence of hemoptysis, for the patients with a known grid.

Hemoptysis – known grid	Age
Estimate	-0.0012
95% CI of estimate	(-0.016, -0.0089)
Odds ratio	0.9936
95% CI of odds ratio	(0.9880, 0.9992)

4.3 Task 3 Dissemination and management

Due to the course of the academic year, the activities in India could not be started before August 2006. Activities of the Norwegian partner (preparation of instruments for shipping, detailed planning for the measurement campaigns, planning of the health impact assessment including air quality assessment) progressed only with minor delays. As a consequence, a re-scheduling of several tasks was necessary, and the teams agreed upon a revised time plan.

Minor difficulties were encountered with regards to custom duty on the instrumentation. The Indian partner tried to recover the paid duty by invoking the agreements in place for IITK in relation to scientific equipment. To date, the instrumentation has not been returned to NILU, and is incurring additional costs to the Norwegian partner.

Due to staff changes and changes in project portfolio of the Norwegian partner, significant delays in reporting have occurred.

Regarding dissemination, a seminar was held on issues of air quality management for students and staff at IITK. Furthermore, an article on the project was published in Times of India (Kanpur local edition). Other dissemination work was restricted in order to prepare results for publishing scientific papers. An article on 'verification of measurement methods in relation to CEN standard EN12341 on PM10 monitoring in Kanpur, India' has been submitted to 'Environmental Monitoring and Assessment'. Another article on 'respiratory disease in relation to outdoor air pollution in Kanpur, Uttar Pradesh, India' has been finalized and will be submitted to 'Achieves of Environmental Health'. In addition, possibilities for a scientific workshop will be investigated.

5. Degree of achievement of the goals and objectives of the project

The goals of activity 1 and 2 were achieved fully. The goals of Activity 3 were achieved to a low degree, as the final workshop took place in March 2010.

6. Sustainability of the cooperation between the participating institutions

IIT Kanpur, GSVM Medical College and NILU have been collaborating since 2003, while the CPCB Agra only joined the project team in 2006. For the current project,

the three Indian institutions have been collaborating for a long time. The collaboration was efficient. A number of visits were executed, for technical and scientific purposes:

- Inception workshop and technical visit in Kanpur and Agra
- Technical visits by NILU staff in Kanpur and Agra
- Scientific visit by the Indian team to Norway.

These visits were essential for the functioning of the project, and to achieve the same understanding of the project and implementation issues by the teams.

Future collaboration of the teams is dependent on being able to find suitable sustainable financing. Such sources include the Framework Programs for Research and development of the European Commission (FRP), the national funding agencies and authorities in India (including the State and Central Pollution Control Board), and other national and international funding agencies. Common applications for funds to the 7th FRP have already been sent, but have not been successful. The teams are complementary in their skills and have similar professional interests. For these reasons we believe that future collaboration is very likely.

7. Arrangement for institutionalisation of benefits

At NILU, the project is among important reference projects. It contributes to the institutional knowledge on environmental health impact assessment. On the technical side, the project is relatively routine, but with high demands on the quality control and quality assurance systems and technical knowledge, and requiring substantial communication skills.

At the Indian side, the IITK has been able to further pursue the collaboration with the State Pollution Control Board and with the Central Pollution Control Board. These activities were very important to show the difference in monitoring, and to demonstrate the necessity to use reference methods to make sure that monitoring results are correct. The results will furthermore be pursued.

The relation between health and environmental quality, while known from literature, has not been demonstrated previously in Kanpur, one of the most polluted urban areas in India. The project has demonstrated that health benefits of reducing pollution can be substantial, at a time where the state authorities are implementing many measures for improvement. Thus the project lays a basis for documenting the benefits of such measures, using locally collected data instead of theoretical information from other places, which are not always directly applicable.

For IIT, as a teaching institution, the project has value in allowing a practical demonstration of the field skills, the importance of quality assurance and quality control, showing the basics of health impact assessment, and not least, providing the authorities with data on emissions, air quality and health effects that were not available before, and that should, by their nature, make a large impact.

8. Mutuality of benefits derived by individual institutions

The institutions participating in this project have each gained important experience. The Indian institutions obtained technical knowledge. All institutions generated new data that were not available before, and carried out environmental health impact assessment based on quality assured measurements, models and surveillance. Such data are not common in India, and contribute thus significantly to international knowledge basis. All institutions have also extended their contacts and improved their collaboration with State Pollution Control Board in Uttar Pradesh and Central Pollution Control Board.

9. Assessment of technology/knowledge transfer exchanged between institutions

There are four aspects of the technology and knowledge transfer: quality assurance and control, monitoring of particulate matter, emission inventories for criteria pollutants, and methods for air pollution/environmental health impact assessment.

Quality assurance and quality control methods and Standard Operating Procedures established at IIT laboratory, were demonstrated for the State Control Pollution Board sites in Kanpur, and were checked at the CPCB laboratory in Agra.

Monitoring of particulate matter done routinely in the monitoring network in India was compared to European standard method, and was found to provide significantly lower (20%) results than the European standard method. This has grave implications for the Indian monitoring network operation.

Emission inventories using a standardized reporting system were carried out using a combination of techniques. The emission inventories were done for the first time in Kanpur. IITK gained further insight into the methodologies used in Europe, and NILU gained access to a reference emission dataset that can further be used for air quality modelling and assessments.

Health data, collected using standardized and quality assured methods, are not very common, and are invariably very valuable both to the researchers, and to the authorities. They form a basis for being able to provide environmental health impact assessment. Such data set was collected by the GSVM medical college, and can be used for further investigations. First results showed that the dataset, when coupled with the environmental data generated in the project, demonstrates an association between deteriorated environmental quality and deteriorated respiratory health. Such results cannot be obtained without the other activities of the project, and is fairly unique and highly valued by the research teams.

10. Strategy for dissemination

Dissemination strategy was based on two workshops in India (Inception and Final), and on scientific publishing. For reasons connected to temporarily lower capacity of the participating institutions, the final workshop has yet to be performed, but it is quite essential to ensure transfer of the numerous results of the project to the national and state authorities. The study team wishes to find further possibility to convene this workshop at a later stage.

11. Assessment of any commercial spin-offs or prospects for commercial benefits as a off shoot of the project

This project does not have direct commercial spin-offs or prospects for commercial benefits. However, the project is commercially important for the manufacturer of the RDS sampler (an Indian company) that would have to bring their instrumentation in line with the standards used elsewhere. Further, the project has implications for the CPCB laboratory in Agra which has confirmed high quality of their operations.

12. Experience of the co-operating institutions regarding funding arrangements

The collaborating institutions value the flexibility of the funding arrangements, and have no comments to those.

	Approved (latest provision)	Disbursement previous period	Funds received during the reporting period	Cumulative disbursement	Expenditure previous periods	Expenditure during the reporting period	Cumulative expenditure	Total budget	Total requirement
Task 1 Verification of measure	ement						782,749	678,240	
methods									
Personnel		208,614	0	208,614	385,438	100,074	485,512	345,840	275,760
Travel expenses		94,200	0	94,200	109,371	26,815	136,186	188,400	173,000
Other direct expenses		29,756	0	29,756	94,117	66,934	161,051	144,000	4,000
instrument rent					12,690	30,456	43,146	50,000	0
Other direct expenses					81,427	36,478	117,905	94,000	4,000
Task 2 Assessment of populati	ion burden of	disease due to a	air pollution	n			359,719	438,200	
Personnel		39,640	0	39,640	112,838	214014	326,852	406,800	406,800
Travel expenses		31,400	0	31,400	23,843	0	23,843	31,400	31,400
Other direct expenses					9,024	0	9,024	0	0
Task 3 Dissemination and man	nagement				205,694		306,074	451,040	
Personnel		108,480	0	108,480	180,616	100,380	280,996	325,440	325,440
Travel expenses		35,000	0	35,000	23,927	0	23,927	125,600	125,600
Other direct expenses					1,151	0	1,151	0	0
Total	570,910	547,090	570,910	1,118,000	940,325	508,217	1,448,542	1,567,480	1,342,000

 Table 22 Audited statement of accounts for the approved grant

13. Conclusions

13.1 Comparison of monitoring equipment

The results show that the monitoring equipment for particulate matter, often used in the Indian monitoring network, provides 20% lower results than both high volume sampling equipment and the European reference method.

13.2 Emission inventories for criteria pollutants

Emission inventory for particulate matter, sulphur dioxide and nitrogen oxides were created for the area of the city of Kanpur, including point, area and line sources for the year 2006.

13.3 Association between the relative number of hospital visits and the extent of air pollution

There was a difference in the hospital visits between the areas with less pollution (cluster 1) and with more pollution (clusters 2, 3 and 4). For instance, comparing cluster 1 and 3, in the grids where the average pollution of SO_2 increased from 36.08 to 62.19, PM from 44.57 to 134.76 and NO_X from 39.00 to 194.15 kg per day, the relative risk of pulmonary problems of the inhabitants is higher by 3.33 (with 95% CI of (2.91, 3.81)), which is a very high increase. In other word, the morbidity with pulmonary disease is much greater in the higher polluted regions in Kanpur. This is consistent with the results from the study by Petroeschevsky et al. 2001, that the levels of air pollution make a significant contribution to the variation in daily hospital administration for asthma and respiratory disease in Brisbane, Australia.

There was no difference in the hospital visits between the areas of high pollution (cluster 3) and very high pollution (cluster 4). Apparently, both regions within clusters 3 and 4 are highly polluted. The relative morbidity with pulmonary disease in these two areas was higher than 0.003.

There was no any association between the time and the distribution of hospital visits in the areas with different levels of pollution. However, regardless of the variable level of pollution, a difference in the hospital visits between summer and winter months was present. In general, number of patients with pulmonary disease who came to the clinic was much higher during summer than the number during winter.

There was no difference in the occurrence of each pulmonary disease symptom (e.g. common cold, cough, fever and hemoptysis) between the areas of high pollution (cluster 3) and very high pollution (cluster 4). However, there was a difference in the occurrence of each pulmonary disease symptom between the areas of less pollution (cluster 1) and pollution (clusters 2, 3 and 4). This indicates that in more polluted areas, pulmonary disease patients show more serious symptoms.

13.4 Effect of the air pollution on the distribution of the symptoms among the patients of the clinic

Within the 12 pulmonary disease symptoms, only the symptoms 4 (common cold), 5 (cough), 6 (fever) and 7 (hemoptysis) were significantly influenced by the factor cluster. For the relatively more serious symptom, e.g. fever and hemoptysis, the relative risk increased in the highly polluted areas, e.g. in the highest polluted areas (cluster 4), the relative risk of having fever increased by approximately 25%. In the opposite, the less serious symptoms, e.g. common cold and cough were less frequent in the higher polluted areas.

14. References

- Anonymous. 2004a. R Version 2.7.1 for Windows. URL: http://cran.r-project.org [The R foundation for statistical computing].
- Anonymous. 2004b. R: a language and environment for statistical computing. URL: http://cran.r-project.org. [The R development core team, The R foundation for statistical computing].
- Kirk, R.E. 1995. Experimental Design: Procedures For The Behavioral Sciences, Third Edition, Pacific Grove, CA, USA: Brooks/Cole.
- Kruskal, W. H., Wallis, W.A. 1952. Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association 47 (260): 583–621.
- Petroeschevsky, A., Simpson, RW., Thalib, L., Rutherford, S. 2001. Association between outdoor air pollution and hospital administrations in Brisbane, Australia. Arch Environ Health 56 (1): 37-52.

Appendix 1 Time plan and milestone list

Appendix 1.1 Revised time plan

		2006								200	7									
	Month	Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Ap	r May	Jun	Jul	Aug	Sep	Oct N	lov Dec
Task 1	Deployment of instrumentation				Х	Х														
	Calibration procedures, reference																			
	samplers				Х	Х			х			Х			Х					
	Control of balance for filter weighing					Х			х			Х			Х					
	Reference sampler assessment								х	х		Х	х		Х	х				
	Network samplers assessment								х	х		Х	х		Х	х				
	Technical visits of NILU personnel					Х			х			Х			Х					
	Training in Norway													х						
	Reporting													х	х	х	Х	Х		
	Health parameter selection and data	1																		
Task 2	extraction					Х	х	х	х	х	Х	Х								
	Emission inventory						х	х	х	х	Х	Х								
	Outdoor pollution assessment										Х	х	х	Х	х	х				
	Cooking habits: emissions and exposure																			
	patterns						Х	Х	Х	х	Х	Х								
	Exposure assessment and statistical	l																		
	analysis													Х	Х	х	Х	Х	X X	
	Visit to India																		Х	
	Visit to Norway													Х						
	Reporting																	Х	x x	Х
Task 3	Detailed project planning	х х	Х	х	Х	Х														
	Inception workshop and first expert	t																		
	workshop						Х													
	Final workshop																		Х	
	Administration and reporting	X X	x	х	Х	х	х	X	x	х	х	х	х	X	х	х	х	х	x x	X

Appendix 1.2 Provisional milestone list

Date	Subtask	Action	Institution
	No.		
October 15	2.1	Provide Urban Air reports to IITK. Provide a draft plan for sampling (in all, project budget is based on 180 filters for each location). Provide information on how to assess background particulate matter from satellite images (article)	NILU
October 15	11	Finish Standard Operating Procedures	CPCB/IITK
October 20	2.2	Finalization of at least two entry sheets for data entry from medical records	NILU/
Ostahan 20	2.2	Decourse motoorals signal most and sensors. The conjunction die A and is Dritich Issuesticate MetOra	GS V MIMC
October 20	2.3	Procure meteorological mast and sensors. The equipment used in Agra is British Investigate MetOne.	
October 20 October 21	1.2	Change instruments between sites in Kanpur	
October 51	1.5	Send additional litters to india A service services for emission inventory. Compile short report on these services what data are evoluble in them	NILU
November 10	2.4	and how these can be used in the emission inventory sheets (indicate what item will be relevant to what sheet, and if any re-calculation is necessary)	IIIK
November	2.5	1. Make a short report on availability of census data and procedure for gridding.	IITK
30		 Provide a map of Kanpur with an overview of wards, all available air quality and meteorology monitoring stations, main road network, and grid. Include all main point sources. Provide a map of a larger area (ca 30 km around Kanpur) that would cover the whole area covered by the medical bus. 	
November	2.6	Send all electronically entered medical data to NILU (including the quality control/check files).	GSVMMC
30			
November 30	1.4	Transfer sampling results to NILU	IITK, CPCB
December 31	2.7	Provide feedback on medical records	NILU
December	1.5	Technical visit.	NILU
31		Transfer of reference sampler in Kanpur. Installation of back-up power supply. Installation of meteorological	IITK
-		mast and equipment at one Kanpur site.	NILU/IITK
		Transfer of exposed filters from CPCB and IITK to NILU.	NILU/IITK NILU
December	1.6	Transfer files with sampling results to NILU	

Date	Subtask	Action	Institution
	No.		
31 December 31	2.8	Transfer the emission files completed to date	IITK
December 31	2.9	Transfer the gridded census data to NILU.	IITK
December 31	2.10	Transfer the completed electronic medical records to NILU.	GSVMMC
January 31 January 31	1.7 2.11	Change sampler between sites in Kanpur Feedback on emissions, feedback on medical data coding	IITK NILU
January 31	2.12	Transfer all entered emission files to NILU	IITK
January 31 January 31 February 28	1.8 1.9 1.10	NILU completes weighing of filters, draft results to the Indian partners. Transfer of sampling results to NILU Change sampler between sites in Kanpur	NILU IITK/GSVM IITK
February 28	2.12	Feedback on emissions, feedback on medical data coding	NILU
February 28	2.13	Transfer all entered emission files to NILU	IITK
February 28	1.11	NILU completes weighing of filters, draft results to the Indian partners.	NILU
February 28	1.12	Transfer of sampling results to NILU	IITK/GSVM
March 31	1.13	Change sampler between sites in Kanpur	IITK
March 31	2.13	Feedback on emissions, feedback on medical data coding	NILU
March 31	2.14	Transfer all entered emission files to NILU	IITK
March 31 March 31	1.14 1.15	NILU completes weighing of filters, draft results to the Indian partners. Transfer of sampling results to NILU	NILU IITK/GSVM

Appendix 2 Emission inventory
Appendix 2.1 Emission of SO ₂ from various sources (kg/day)

Series	Grid	Landscape	Vehicles	Domestic	Garbage	Restaurant &	DG	Medical-waste	Funeral	Industries (area source,	Industries (Point
No.	Id	Pattern			Burning	Halwai	Sets	Incinerator	Burning	H<25 m)	source, H>25 m)
1	K003	Institutional	0.19	10.33	0.11	3.20	0.30				
2	K004	Institutional	0.16	10.34	0.11	3.20	0.32	0.24525			
3	K016	Institutional	0.66	12.12	0.14	3.20	0.82				
4	K017	Institutional	5.22	19.76	0.26	3.20	0.49				
5	K018	Agricultural	4.57	23.05	0.20						
6	K029	Institutional	0.15	13.50	0.18		0.57				
7	K030	Institutional	0.84	15.45	0.15		0.55				
8	K031	Institutional	6.90	18.06	0.17	3.20	0.55				
9	K032	Institutional	4.96	19.00	0.19	3.20	0.73				
10	K033	Agricultural	4.38	25.70	0.19						
11	K034	Institutional	1.42	24.47	0.26	3.20	0.80		0.17		
12	K035	Residential	2.65	48.42	0.59	4.92	0.34		0.2		
13	K045	Agricultural	6.65	33.45	0.29						
14	K046	Residential	1.05	55.10	0.65	4.92	0.30				
15	K047	Agricultural	5.26	41.35	0.31						
16	K048	Residential	9.68	56.30	0.70	4.92	0.28	0.33572		30.91126	8.512
17	K049	Institutional	7.72	51.96	0.51	3.20	0.80		0.29		
18	K050	Residential	5.76	62.50	0.65	4.92	0.31		0.26		
19	K051	Residential	2.66	59.92	0.65	4.92	0.29		0.53		
20	K057	Agricultural	3.90	39.05	0.30						
21	K058	Agricultural	17.52	37.14	0.28						
22	K059	Residential	12.24	46.73	0.53	4.92	0.33	0.51884		36.39439	26600
23	K060	Residential	8.42	53.96	0.60	4.92	0.35				
24	K061	Residential	8.76	57.68	0.83	4.92	0.28				
25	K062	Residential	14.38	64.26	0.94	4.92	0.28				
26	K063	Residential	25.00	89.00	0.97	4.92	0.28				
27	K064	Residential	18.15	120.80	1.33	6.57	3.89		.	0.3	
28	K065	Commercial	14.62	67.81	1.26	6.93	6.46		0.17	0.2	
29	K066	Commercial	0.25	67.93	1.15	6.93	6.47		0.51		
30	K072	Agricultural	2.30	38.68	0.30						
31	K073	Agricultural	7.71	40.11	0.33	4.00	0.00				
32	K074	Residential	7.86	56.92	0.73	4.92	0.30			1 10 100 55	
33	K075	Industrial	29.05	41.36	0.51	3.21	6.36			143.12965	58.359
34	K076	Industrial	8.11	35.34	0.58	3.21	5.18			99.71192	384.1089
35	K077	Industrial	10.83	29.50	0.48	3.21	6.99			20.16901	16.9272
36	K078	Industrial	13.33	29.27	0.47	3.21	6.39			51.58035	13.3357
51	KU79 12000	Residential	6.00	03.35	0.76	4.92	0.27				
58 20	K080	Residential	2.24	0/.05	0.75	4.92	0.28				
39 10	KSU81	Residential	2.69	06.44	0.75	4.92	0.29				
40	K082	Kesidential	0.78	36.64	0.34	4.92	0.30				
41	K088	Industrial	0.30	34.40	0.47	3.21	5.66				

Series	Grid	Landscape	Vehicles	Domestic	Garbage	Restaurant &	DG	Medical-waste	Funeral	Industries (area source,	Industries (Point
No.	Id	Pattern			Burning	Halwai	Sets	Incinerator	Burning	H<25 m)	source, H>25 m)
42	K089	Residential	6.56	45.26	0.59	4.92	0.24				
43	K090	Residential	9.78	65.24	0.84	4.92	0.24				
44	K091	Residential	10.77	38.97	0.89	3.89	0.18			0.914	
45	K092	Residential	2.28	47.53	0.74	4.92	0.18				
46	K093	Residential	8.06	53.37	0.71	4.92	0.14				
47	K094	Agricultural	4.11	38.72	0.36						
48	K095	Residential	8.25	48.28	0.60	4.92	0.15				
49	K096	Industrial	0.39	33.46	0.62	3.21	6.66			31.30892	102.1615
50	K104	Agricultural	5.19	32.55	0.31	0.00					
51	K105	Residential	6.94	45.61	0.60	4.92	0.19				
52	K106	Residential	6.15	35.75	0.52	4.92	0.21				
53	K107	Protected									
54	K108	Residential	11.14	44.91	0.54	5.71	7.27			14.77585	21.6125
55	K109	Residential	1.04	49.13	0.55	4.92	0.21				
56	K110	Residential	1.63	48.53	0.56	4.92	0.16				
57	K111	Protected									
58	K118	Residential	4.26	38.18	0.46	4.92	0.18				
59	K119	Residential	0.92	50.18	0.59	4.92	0.19				
60	K120	Residential	0.97	48.25	0.57	4.92	0.13				
61	K121	Agricultural	0.78	34.54	0.26						
62	K122	Agricultural	0.92	35.42	0.27						
63	K123	Agricultural	7.40	36.06	0.28						
64	K124	Protected									
65	K125	Agricultural	2.80	38.90	0.29						
66	K126	Agricultural	0.20	37.59	0.28						
67	K132	Agricultural	5.25	41.01	0.31						
68	K133	Agricultural	0.28	36.47	0.28						
69	K135	Agricultural	0.51	38.79	0.30						
70	K136	Agricultural	2.53	41.27	0.31						
71	K137	Agricultural	2.57	39.59	0.28						
72	K138	Agricultural	5.94	39.55	0.31						
73	K139	Agricultural	0.16	38.19	0.29						
74	K146	Agricultural	0.90	34.90	0.28						
75	K150	Agricultural	0.23	33.29	0.26						
76	K151	Agricultural	0.84	33.81	0.24						
77	K152	Agricultural	0.67	31.21	0.23						
78	K153	Agricultural	0.03	30.51	0.24						
	Total		405.77	3169.83	35.72	207.57	74.17	1.10	2.13	429.40	27205.02

Appendix 2.2 Emission of PM from various sources (kg/day)

Series	Grid	Landscape	Vehicles	Soil-Road	Domestic	Garbage	Restaurant &	DG	Medical-waste	Funeral	Construction &
No.	Id	Pattern		Dust		Burning	Halwai	Sets	Incinerator	Burning	Demolition
1	K003	Institutional	0.62	1.51	10.33	1.82	5.73	0.33			0.0235
2	K004	Institutional	0.60	0.73	10.34	1.84	5.73	0.34	0.52425		0.0135
3	K016	Institutional	2.47	2.65	12.12	2.23	5.73	0.88			0.0135
4	K017	Institutional	16.97	25.99	19.76	4.21	5.73	0.53			0.0235
5	K018	Agricultural	14.92	24.98	23.05	3.17					0.0235
6	K029	Institutional	0.58	0.63	13.50	2.82		0.61			0.0235
7	K030	Institutional	3.16	3.60	15.45	2.39		0.59			0.0235
8	K031	Institutional	26.45	40.48	18.06	2.65	5.73	0.59			0.0235
9	K032	Institutional	15.81	23.42	19.00	3.09	5.73	0.78			0.0235
10	K033	Agricultural	15.02	21.55	25.70	3.02					0.0235
11	K034	Institutional	5.35	5.20	24.47	4.12	5.73	0.86		13.04	0.0235
12	K035	Residential	10.05	9.26	48.42	9.40	9.25	0.37		15.61	0.0235
13	K045	Agricultural	21.39	20.04	33.45	4.58					0.0235
14	K046	Residential	3.96	3.76	55.10	10.40	9.25	0.33			0.0235
15	K047	Agricultural	17.72	15.88	41.35	5.00					0.0235
16	K048	Residential	37.60	36.00	56.30	11.12	9.25	0.30	0.71764		0.007
17	K049	Institutional	28.93	25.57	51.96	8.11	5.73	0.86		22.28	0.007
18	K050	Residential	21.22	21.61	62.50	10.45	9.25	0.33		20.01	0.007
19	K051	Residential	8.84	7.70	59.92	10.42	9.25	0.32		40.45	0.007
20	K057	Agricultural	12.54	8.80	39.05	4.84					0.007
21	K058	Agricultural	55.07	45.30	37.14	4.40					0.007
22	K059	Residential	40.35	37.13	46.73	8.51	9.25	0.35	1.10908		0.007
23	K060	Residential	27.69	23.34	53.96	9.55	9.25	0.38			0.007
24	K061	Residential	28.20	22.13	57.68	13.35	9.25	0.30			0.007
25	K062	Residential	47.44	37.26	64.26	14.98	9.25	0.30			0.007
26	K063	Residential	81.87	63.34	89.00	15.58	9.25	0.30			0.007
27	K064	Residential	68.20	8.49	120.80	21.35	12.01	4.17			0.003
28	K065	Commercial	58.60	6.16	67.81	20.21	12.62	6.92		13.34	0.0035
29	K066	Commercial	0.92	0.36	67.93	18.40	12.62	6.94		39.29	0.0035
30	K072	Agricultural	7.04	2.48	38.68	4.81					0.0035
31	K073	Agricultural	24.35	11.83	40.11	5.20					0.0035
32	K074	Residential	25.54	15.97	56.92	11.66	9.25	0.32			0.0035
33	K075	Industrial	91.29	72.83	41.36	8.16	5.86	6.82			0.0035
34	K076	Industrial	34.60	16.05	35.34	9.23	5.86	5.56			0.082
35	K077	Industrial	36.03	32.85	29.50	7.69	5.86	7.49			0.082
36	K078	Industrial	44.69	45.00	29.27	7.52	5.86	6.86			0.082
37	K079	Residential	22.45	19.38	63.35	12.09	9.25	0.29			0.082
38	K080	Residential	8.43	3.80	67.65	11.70	9.25	0.30			0.082
39	K081	Residential	8.62	4.89	66.44	12.08	9.25	0.31			0.082
40	K082	Residential	2.51	1.38	36.64	5.42	9.25	0.32			0.082
41	K088	Industrial	0.99	0.62	34.40	7.55	5.86	6.08			0.082

Series	Grid	Landscape	Vehicles	Soil-Road	Domestic	Garbage	Restaurant &	DG	Medical-waste	Funeral	Construction &
No.	Id	Pattern		Dust		Burning	Halwai	Sets	Incinerator	Burning	Demolition
42	K089	Residential	21.07	11.44	45.26	9.43	9.25	0.26			0.082
43	K090	Residential	33.84	30.59	65.24	13.36	9.25	0.26			0.082
44	K091	Residential	42.17	32.43	38.97	14.25	7.05	0.19			0.057
45	K092	Residential	8.83	5.80	47.53	11.78	9.25	0.20			0.057
46	K093	Residential	27.16	40.02	53.37	11.41	9.25	0.15			0.057
47	K094	Agricultural	14.90	19.76	38.72	5.70					0.057
48	K095	Residential	28.77	38.70	48.28	9.53	9.25	0.16			0.057
49	K096	Industrial	1.56	2.13	33.46	9.99	5.86	7.14			0.057
50	K104	Agricultural	17.15	19.58	32.55	4.98	0.00				0.057
51	K105	Residential	24.72	36.34	45.61	9.65	9.25	0.20			0.057
52	K106	Residential	20.93	28.73	35.75	8.25	9.25	0.22			0.057
53	K107	Protected									
54	K108	Residential	42.62	62.16	44.91	8.62	10.36	7.80			0.076
55	K109	Residential	3.49	5.34	49.13	8.81	9.25	0.22			0.076
56	K110	Residential	6.20	6.55	48.53	8.95	9.25	0.17			0.076
57	K111	Protected									
58	K118	Residential	13.91	17.56	38.18	7.40	9.25	0.20			0.076
59	K119	Residential	3.52	3.83	50.18	9.36	9.25	0.20			0.076
60	K120	Residential	3.73	3.61	48.25	9.15	9.25	0.14			0.076
61	K121	Agricultural	3.00	3.13	34.54	4.22					
62	K122	Agricultural	3.55	3.82	35.42	4.36					
63	K123	Agricultural	24.00	28.50	36.06	4.54					
64	K124	Protected									
65	K125	Agricultural	10.54	7.55	38.90	4.69					
66	K126	Agricultural	0.77	0.57	37.59	4.45					
67	K132	Agricultural	16.92	12.85	41.01	4.94					
68	K133	Agricultural	1.12	0.90	36.47	4.50					
69	K135	Agricultural	2.00	1.48	38.79	4.84					
70	K136	Agricultural	8.92	6.11	41.27	5.02					
71	K137	Agricultural	9.65	6.42	39.59	4.55					
72	K138	Agricultural	19.84	18.45	39.55	4.93					
73	K139	Agricultural	0.64	0.55	38.19	4.58					
74	K146	Agricultural	2.87	2.26	34.90	4.55					
75	K150	Agricultural	0.88	0.72	33.29	4.22					
76	K151	Agricultural	3.40	3.49	33.81	3.88					
77	K152	Agricultural	2.25	2.52	31.21	3.68					
78	K153	Agricultural	0.08	0.08	30.51	3.78					
	Total		1404.01	1233.91	3169.83	571.48	385.51	79.55	2.35	164.02	2.22

Series Grid Landscape Vehicles Domestic Restaurant & DG Garbage Medical-waste Funeral Industries (area source, **Industries** (Point No. Id Pattern Burning Halwai Sets Incinerator Burning H<25 m) source, H>25 m) 1 89.31 9.54 K003 6.53 9.19 0.99 Institutional 2 K004 Institutional 10.34 89.92 9.64 9.19 1.04 0.66375 3 41.44 106.41 11.70 9.19 2.67 K016 Institutional Institutional K017 193.47 175.81 22.09 9.19 1.62 4 170.89 198.66 5 K018 Agricultural 16.65 K029 Institutional 9.62 121.11 14.83 1.86 6 K030 Institutional 51.78 134.31 12.53 1.80 7 K031 Institutional 392.88 162.31 13.89 9.19 1.81 8 9 K032 Institutional 166.54 163.98 16.21 9.19 2.39 10 217.35 K033 Agricultural 196.32 15.86 89.09 211.88 21.61 9.19 2.62 98.32 11 K034 Institutional 12 421.76 49.36 16.10 1.13 117.71 K035 Residential 177.26 13 K045 288.28 Agricultural 245.14 24.05 14 67.08 474.80 16.10 0.99 K046 Residential 54.61 15 K047 Agricultural 237.16 350.20 26.24 456.81 58.39 0.91 0.9086 45.6002 15.9488 16 K048 Residential 606.66 16.10 17 K049 Institutional 500.85 420.96 42.58 9.19 2.63 168.02 18 K050 Residential 347.33 508.99 54.88 16.10 1.01 150.94 19 0.96 305.11 K051 Residential 113.15 491.03 54.69 16.10 20 K057 Agricultural 149.60 315.35 25.42 21 299.84 23.12 K058 Agricultural 598.27 22 507.67 382.56 44.70 16.10 1.07 1.4042 105.2113 49840 K059 Residential 23 K060 Residential 446.86 50.13 16.10 1.16 356.08 24 488.64 70.08 0.93 K061 Residential 340.93 16.10 25 Residential 624.92 533.68 78.64 0.92 K062 16.10 26 1053.04 0.91 4.65 K063 Residential 719.60 81.77 16.10 27 Residential 3.1 K064 1196.72 712.88 112.08 19.74 12.74 28 Commercial 1259.40 583.17 106.11 19.92 21.14 100.63 K065 29 K066 Commercial 17.64 549.00 96.63 19.92 21.19 296.35 30 306.96 K072 Agricultural 78.25 25.26 31 K073 Agricultural 295.24 320.08 27.32 32 K074 16.10 0.99 Residential 325.66 466.06 61.21 33 998.93 326.91 20.81 287.5273 113.274 K075 Industrial 42.83 9.51 34 329.95 48.44 1050.525184 719.811 K076 Industrial 665.60 9.51 16.96 35 466.59 277.42 40.36 9.51 22.87 51.7263 39.828 K077 Industrial 36 580.82 273.96 39.48 9.51 20.93 174.0605 25.043 K078 Industrial 37 K079 394.88 527.08 63.45 16.10 0.89 Residential 38 K080 Residential 160.27 555.78 61.42 16.10 0.92 39 K081 Residential 102.70 551.17 63.40 16.10 0.95 40 K082 Residential 28.94 292.86 28.47 16.10 0.97 K088 277.05 41 Industrial 11.46 39.66 9.51 18.55

Appendix 2.3 Emission of CO from various sources (kg/day)

Series	Grid	Landscape	Vehicles	Domestic	Garbage	Restaurant &	DG	Medical-waste	Funeral	Industries (area source,	Industries (Point
No.	Id	Pattern			Burning	Halwai	Sets	Incinerator	Burning	H<25 m)	source, H>25 m)
42	K089	Residential	261.33	377.11	49.51	16.10	0.80				
43	K090	Residential	484.14	536.92	70.15	16.10	0.79				
44	K091	Residential	696.33	379.25	74.83	11.69	0.59			5.56	
45	K092	Residential	172.35	458.27	61.85	16.10	0.60				
46	K093	Residential	324.57	501.75	59.89	16.10	0.47				
47	K094	Agricultural	221.56	356.17	29.90						
48	K095	Residential	390.33	445.25	50.06	16.10	0.48				
49	K096	Industrial	27.82	320.21	52.47	9.51	21.79			63.22024	195.6266
50	K104	Agricultural	203.64	304.28	26.13	0.00					
51	K105	Residential	344.20	427.62	50.65	16.10	0.62				
52	K106	Residential	260.07	342.13	43.31	16.10	0.68				
53	K107	Protected									
54	K108	Residential	617.36	371.27	45.27	16.83	23.81			23.3135	40.495
55	K109	Residential	41.57	401.59	46.23	16.10	0.68				
56	K110	Residential	102.11	402.68	47.00	16.10	0.51				
57	K111	Protected									
58	K118	Residential	155.37	416.21	38.84	16.10	0.60				
59	K119	Residential	59.97	528.53	49.16	16.10	0.63				
60	K120	Residential	65.90	515.58	48.06	16.10	0.44				
61	K121	Agricultural	52.17	344.47	22.17						
62	K122	Agricultural	61.87	354.91	22.87						
63	K123	Agricultural	278.04	364.17	23.85						
64	K124	Protected									
65	K125	Agricultural	198.53	394.64	24.64						
66	K126	Agricultural	15.68	384.99	23.38						
67	K132	Agricultural	205.38	419.40	25.93						
68	K133	Agricultural	23.23	374.60	23.63						
69	K135	Agricultural	42.48	401.26	25.39						
70	K136	Agricultural	147.75	423.91	26.38						
71	K137	Agricultural	190.23	393.04	23.89						
72	K138	Agricultural	254.28	406.89	25.89						
73	K139	Agricultural	12.99	380.88	24.06						
74	K146	Agricultural	32.85	361.00	23.89						
75	K150	Agricultural	16.71	341.89	22.16						
76	K151	Agricultural	68.81	342.99	20.37						
77	K152	Agricultural	25.97	319.68	19.32						
78	K153	Agricultural	1.01	311.95	19.83						
	Total		19893.77	28026.21	3000.27	653.41	242.83	2.98	1237.08	1814.49	50990.03

Appendix 2.4 Emission of NO_X from various sources (kg/day)

Series	Grid	Landscane	Vehicles	Domestic	Garhage	Restaurant &	DG	Medical-waste	Funeral	Industries (area source)	Industries (Point
No.	Id	Pattern	venicies	Domestic	Burning	Halwai	Sets	Incinerator	Burning	H<25 m)	source. H>25 m)
1	K003	Institutional	3.03	7.03	0.68	1.45	4.61			. ,	
2	K004	Institutional	3.79	6.88	0.69	1.45	4.81	0.4005			
3	K016	Institutional	14.91	8.26	0.84	1.45	12.37				
4	K017	Institutional	79.96	13.95	1.58	1.45	7.48				
5	K018	Agricultural	72.00	15.16	1.19						
6	K029	Institutional	3.48	9.58	1.06		8.61				
7	K030	Institutional	19.04	10.24	0.90		8.33				
8	K031	Institutional	118.34	13.35	0.99	1.45	8.38				
9	K032	Institutional	67.93	12.67	1.16	1.45	11.07				
10	K033	Agricultural	78.75	16.41	1.13						
11	K034	Institutional	31.09	16.39	1.54	1.45	12.13		1.19		
12	K035	Residential	60.21	32.39	3.53	2.39	5.23		1.43		
13	K045	Agricultural	90.48	22.00	1.72						
14	K046	Residential	23.16	36.24	3.90	2.39	4.61				
15	K047	Agricultural	84.45	26.27	1.87						
16	K048	Residential	166.46	35.66	4.17	2.39	4.21	0.54824		15.3746	2.5536
17	K049	Institutional	169.56	32.98	3.04	1.45	12.18		2.04		
18	K050	Residential	123.05	39.20	3.92	2.39	4.68		1.83		
19	K051	Residential	40.34	37.94	3.91	2.39	4.46		3.7		
20	K057	Agricultural	51.51	24.53	1.82						
21	K058	Agricultural	217.22	23.10	1.65						
22	K059	Residential	184.12	29.77	3.19	2.39	4.96	0.84728		40.1889	7980
23	K060	Residential	126.83	34.29	3.58	2.39	5.36				
24	K061	Residential	120.09	38.18	5.01	2.39	4.31				
25	K062	Residential	217.63	41.84	5.62	2.39	4.25				
26	K063	Residential	366.92	55.61	5.84	2.39	4.21			0.4077	
27	K064	Residential	212.40	62.94	8.01	3.10	59.01			0.18/5	
28	K065	Commercial	124.79	46.30	7.58	3.35	97.88		1.22	0.125	
29	K066	Commercial	4.84	44.13	6.90	3.35	98.10		3.59		
30	KU/2 12072	Agricultural	24.11	23.66	1.80						
31	KU/3 12074	Agricultural	94.55	24.70	1.95	2.20	4 57				
32	KU/4 12075	Industrial	261.65	25 70	4.57	2.39	4.37			222 81515	56 659
33 34	K076	Industrial	101.05	23.70	3.00	1.52	79 55			252.61515	116 25125
34	K070 K077	Industrial	168 10	24.71	2.40	1.52	105.02			106 4008	58 835
35	K078	Industrial	213.83	20.37	2.00	1.52	06.03			303 2005	4 56
30	K070	Posidontial	132.35	20.23	2.02 1.53	2 39	90.95 4 10			393.2003	4.50
38	K080	Residential	44.83	43.01	4 39	2.39	4.10				
30	K081	Residential	34.11	42.94	4 53	2.39	4 42				
40	K082	Residential	974	22.24	2.03	2.39	4 47				
40	K088	Industrial	3.95	21.58	2.03	1.52	85.88				
71	12000	maustriat	5.75	21.30	2.05	1.34	05.00				

Series	Grid	Landscape	Vehicles	Domestic	Garbage	Restaurant &	DG	Medical-waste	Funeral	Industries (area source,	Industries (Point
No.	Id	Pattern			Burning	Halwai	Sets	Incinerator	Burning	H<25 m)	source, H>25 m)
42	K089	Residential	85.14	30.07	3.54	2.39	3.68				
43	K090	Residential	170.63	43.14	5.01	2.39	3.65				
44	K091	Residential	181.65	29.93	5.34	1.76	2.74			11.525	
45	K092	Residential	52.15	35.07	4.42	2.39	2.78				
46	K093	Residential	134.57	37.45	4.28	2.39	2.18				
47	K094	Agricultural	84.67	26.42	2.14						
48	K095	Residential	153.04	32.91	3.58	2.39	2.24				
49	K096	Industrial	10.34	23.89	3.75	1.52	100.92			105.70943	72.5952
50	K104	Agricultural	78.90	22.40	1.87	0.00					
51	K105	Residential	136.96	32.04	3.62	2.39	2.88				
52	K106	Residential	104.12	25.53	3.09	2.39	3.16				
53	K107	Protected									
54	K108	Residential	182.87	29.24	3.23	2.65	110.27			80.836	6.48375
55	K109	Residential	17.03	31.45	3.30	2.39	3.16				
56	K110	Residential	36.41	31.38	3.36	2.39	2.37				
57	K111	Protected									
58	K118	Residential	61.56	28.86	2.77	2.39	2.80				
59	K119	Residential	21.40	37.04	3.51	2.39	2.90				
60	K120	Residential	22.64	35.91	3.43	2.39	2.03				
61	K121	Agricultural	18.37	24.26	1.58						
62	K122	Agricultural	21.89	24.90	1.63						
63	K123	Agricultural	108.06	25.50	1.70						
64	K124	Protected									
65	K125	Agricultural	62.54	27.47	1.76						
66	K126	Agricultural	4.87	26.81	1.67						
67	K132	Agricultural	73.00	29.38	1.85						
68	K133	Agricultural	7.33	26.14	1.69						
69	K135	Agricultural	13.12	27.97	1.81						
70	K136	Agricultural	47.63	29.59	1.88						
71	K137	Agricultural	58.53	27.62	1.71						
72	K138	Agricultural	93.29	28.47	1.85						
73	K139	Agricultural	4.21	26.88	1.72						
74	K146	Agricultural	12.13	25.16	1.71						
75	K150	Agricultural	5.42	23.86	1.58						
76	K151	Agricultural	23.22	23.87	1.45						
77	K152	Agricultural	10.36	22.26	1.38						
78	K153	Agricultural	0.39	21.85	1.42						
	Total		6361.85	2115.17	214.30	99.35	1124.44	1.80	15.00	1214.11	8298.04

<u> </u>		Total num	ber of patient	
Grid no.	Outdoor patient	ICU patient	Lungs patients	Indoor patient
K017	76	1	6	9
K018 K021	0	0	0	
K032	21	02	12	0 49
K033	11	õ	$\tilde{0}$	6
K034	28	0	0	4
K035	96	0	6	29
K044 K045	1	0	0	0
K045 K046	0	0	0	0
K047	55	ŏ	$\frac{3}{2}$	7
K048	114	0	11	18
K049	66	0	3	10
KU5U K051	159	4	8	45
K051 K058	193	0	16	18
K059	175	ŏ	0	2
K060	4	0	0	2
K061	380	5	26	4
K062 K063	110	2	6 12	4
K005 K064	103	1	15	4 76
K065	76	1	9	21
K066	4	Ō	Ó	$\overline{2}^{-}$
K073	0	0	0	0
K074	25	25	1	3
K075 K076	/ 107	/	0	0
K070	16	1	$\overset{22}{0}$	11
K078	206	2	4	71
K079	61	2	4	49
K080	0	2	0	0
KU81 K088	96 62	3	$\frac{11}{2}$	31 20
K089	2	0	$\frac{2}{0}$	0
K090	<u>9</u> 9	$\overset{\circ}{2}$	14	10
K091	118	2	11	29
K092	98	1	5	44
K095 K004	70 30	0	8 3	3/ 2
K095	1	0	0	$\frac{2}{2}$
K096	1	Ŏ	Ŏ	1
K104	0	0	2	3
K105	0	1	5	14
K100 K107	2/6	8	15	43
K107 K108	Ő	0	0	8
K109	Ŏ	Ŏ	7	19
K110	0	0	0	0
K111 V119	20	0	0	18
K118 K110	0	$\frac{0}{2}$	07	0
K120	69	1	10	13
K121	247	5	26	36
K122	34	1	5	1
K123	0	0	0	0
K124 K125	0	0	0	0
K125 K126	0	ŏ	Ő	Ő
K134	ž	Ŏ	ŏ	ŏ
K135	29	0	7	1
K136	14	0	2	5
K157 K139	25	0	2	/
K150 K152	0	0	0	0
K153	ŏ	ŏ	ŏ	ž

Appendix 3 Health data-total number of patient

Norwegian Institute for Air Research P.O. Box 100, N-2027 Kjeller, Norway Associated with CIENS and the Environmental Research Alliance of Norway ISO certified according to NS-EN ISO 9001

REPORT SERIES	REPORT NO. OR 57/2009	ISBN: 978-82-425-2 978-82-425-2	2217-7 (print) 2218-4 (electronic)
SCIENTIFIC REPORT	0	ISSN: 0807-7207	
DATE 29/11/2011	SIGN.	NO. OF PAGES	PRICE
TITLE	Nº H	PROJECT LEADER	NON 1991
Environmental Health Assessment: R in Kanpur, Uttar Pradesh	espiratory Disease in relation to Air Pollution	Alena Ba	artonova
India-Norwegian cooperation projec (Project no. O-106082, Ref. nr. IND30	25 05/51)	NILU PROJECT NO. 0-10	06082
AUTHOR(S)		CLASSIFICATION *	
Alena Bartonova and Hai-Ying Liu (ed	s)		A
Report contributors: Bartonova, Aler Hermansen, Ove ¹⁾ , Katiyar, S.K. ³ , Ku Pandey, Reenu ²⁾ , Prashad, Neha ²⁾ , S Dipankar ⁴⁾ , Sharma, Mukesh ²⁾ , Toer	a ¹⁾ , Dikshit, Onkar ²⁾ , Hansen, Jan Erik ¹⁾ , Imar, Naresh ²⁾ , Liu, Hai-Ying ¹⁾ , chindler, Martin ⁵⁾ , Timkova, Jana ⁵⁾ , Shaha, nesen, Dag ¹⁾ , Willoch, Harald ¹⁾		
¹⁾ NILU – Norwegian Institute for Air ²⁾ IITK - Indian Institute of Technolog ³⁾ GSVM Medical College Kanpur, Ind ⁴⁾ Central Pollution Control Board, De ⁵⁾ Charles University, Prague, Czech F	Research, Kjeller, Norway / Kanpur, India ia Ihi, India epublic		
		CONTRACT REF.	
		CONTRACT REF.	25 05/51
REPORT PREPARED FOR Indian Institute of Technology (IITK) Dr. Mukesh Sharma Professor, Department of Civil Engine IIT Kanpur, Kanpur India	Kanpur, India Pering	CONTRACT REF.	25 05/51
REPORT PREPARED FOR Indian Institute of Technology (IITK) Dr. Mukesh Sharma Professor, Department of Civil Engine IIT Kanpur, Kanpur India Tel. +91-512-597759, Fax: +91-512-5	Kanpur, India Pering 97395	CONTRACT REF.	25 05/51
REPORT PREPARED FOR Indian Institute of Technology (IITK) Dr. Mukesh Sharma Professor, Department of Civil Engine IIT Kanpur, Kanpur India Tel. +91-512-597759, Fax: +91-512-5 KEYWORDS	Kanpur, India Pering 97395	CONTRACT REF.	25 05/51
REPORT PREPARED FOR Indian Institute of Technology (IITK) Dr. Mukesh Sharma Professor, Department of Civil Engine IIT Kanpur, Kanpur India Tel. +91-512-597759, Fax: +91-512-5 KEYWORDS Air pollution, European reference sampler	Kanpur, India eering 97395 e India PM10 RDS, NOX, Packwill	CONTRACT REF. IND302 PM10, PM10 moni diseas	itoring, Respiratory se, SO2
REPORT PREPARED FOR Indian Institute of Technology (IITK) Dr. Mukesh Sharma Professor, Department of Civil Engine IIT Kanpur, Kanpur India Tel. +91-512-597759, Fax: +91-512-5 KEYWORDS Air pollution, European reference sampler ABSTRACT The aim of this report is to summariz Environmental Health Assessment: R verification of measurement method and Agra; (2) health effect assessme and administration.	Kanpur, India eering 97395 e India PM10 RDS, NOX, Packwill e all activities of the whole period for the India- espiratory Disease in relation to Air Pollution in s in relationship to the European CEN/EN12341 ht attributable to air pollution in the city of Kanp	CONTRACT REF. IND302 PM10, PM10 moni diseas Norwegian cooperatic Kanpur, Uttar Pradesh standard on PM10 mo our; and (3) disseminat	itoring, Respiratory se, SO2 on project: n. It includes: (1) onitoring in Kanpur tion (workshops)

 REFERENCE:
 O-106082

 DATE:
 NOVEMBER 2011

 ISBN:
 978-82-425-2217-7 (print)

 978-82-425-2218-4 (electronic)

NILU is an independent, nonprofit institution established in 1969. Through its research NILU increases the understanding of climate change, of the composition of the atmosphere, of air quality and of hazardous substances. Based on its research, NILU markets integrated services and products within analyzing, monitoring and consulting. NILU is concerned with increasing public awareness about climate change and environmental pollution.

 REFERENCE:
 O-106082

 DATE:
 NOVEMBER 2011

 ISBN:
 978-82-425-2217-7 (print)

 978-82-425-2218-4 (electronic)

NILU is an independent, nonprofit institution established in 1969. Through its research NILU increases the understanding of climate change, of the composition of the atmosphere, of air quality and of hazardous substances. Based on its research, NILU markets integrated services and products within analyzing, monitoring and consulting. NILU is concerned with increasing public awareness about climate change and environmental pollution.

