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Preface 

This report was written as part of the urban data assimilation systems (UDAS) project funded by NILU. 
The report was commissioned as part of work package 4 (“Development of DA algorithm in a simplistic 
model”). The specific overriding objective was to justify the selection of a suitable data assimilation 
algorithm for use with the EPISODE air quality model. To this end, the report carries out a literature 
review of existing data assimilation methods and then evaluates each one for suitability for 
implementation in the EPISODE air quality model. 
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Summary 

This report presents a review of data assimilation methods applicable to air quality. In the introduction, 
we first describe a brief history of data assimilation method development in the context of numerical 
weather prediction, and then we highlight key differences when applying data assimilation methods 
to air quality prediction. Based on these differences, we outline a set of key requirements for data 
assimilation when applied to air quality. Following this, we review the available data assimilation 
algorithms. Within the review, we provide a list of the advantages and disadvantages of each 
algorithm. All of this information is then summarised in a selection process to identify which algorithm 
should be used within the later stages of the UDAS (urban data assimilation systems) project. This 
review and its findings form the basis of the developments to be carried out in the Urban Data 
Assimilation Systems project. The algorithms that we identify for further inspection and development 
are the optimal interpolation method, the 4D-variational method, and the 4D-Ensemble Kalman Filter. 
 



NILU report 25/2020 

5 

Appropriate Assimilation Methods for Air Quality Prediction 
and Pollutant Emission Inversion 

An Urban Data Assimilation Systems Report 

1 Air Quality Modelling and Data Assimilation – Statement of the Problem 

Air quality models consist of a set of discrete non-linear equations that describe the evolution 
of the simulated three-dimensional field of pollutant concentration state variables, c, forwards 
in time. In addition to the current model state, ct, future model states, ct+n, depend on 
pollutant emissions, qt, the background concentrations external to the model domain, bt, and 
the three-dimensional fields of meteorology, mt. Since these model input variables are 
discretized in time and space, they are abstractions and approximations of the actual true 
state of each variable. We can define these variables as the control variables on the future 
simulated state, 𝒙𝒙t, such that  

𝒙𝒙𝑡𝑡 = (𝒄𝒄𝑡𝑡 ,𝒒𝒒𝑡𝑡 ,𝒃𝒃𝑡𝑡 ,𝒎𝒎𝑡𝑡)   (1) 

It is then possible to represent an idealized case of the temporal evolution of the model 
concentrations as  

𝒄𝒄𝑡𝑡+1 = 𝑭𝑭𝑡𝑡
𝐴𝐴𝐴𝐴(𝒙𝒙𝑡𝑡), 𝑡𝑡 = 0, … ,𝑁𝑁 − 1, 𝒙𝒙𝑡𝑡 = (𝒄𝒄𝑡𝑡 ,𝒒𝒒𝑡𝑡 ,𝒃𝒃𝑡𝑡 ,𝒎𝒎𝑡𝑡)   (2) 

where ct+1 represents the model state in the next time step. Here, 𝐅𝐅𝑡𝑡
𝐴𝐴𝐴𝐴  is a function 

representing the discrete non-linear equations that evolve the current model state, ct, 
according to the control variables, 𝒙𝒙t, in that time step. Errors in the estimation of the current 
and future model states are driven by errors in the control variables, i.e., the current state, 
emissions, meteorology, and background concentrations. Note that this idealized case ignores 
errors resulting from fundamental aspects of the model formulation and its 
parameterizations; although not considered here yet we term these errors, 𝜺𝜺𝑡𝑡.  

We would like to consider here the application of data assimilation as a means to improve the 
estimation of both the current and future model states, ct and 𝒄𝒄𝑡𝑡+𝑛𝑛 and model parameters of 
key interest and importance, e.g., the emissions, qt.  

Many of the data assimilation algorithms in existence today have been developed specifically 
to improve numerical weather prediction forecasting (Evensen, 1994; Griffith & Nichols, 2000; 
Lorenc, 1986; Lorenc et al., 2015; Trémolet, 2007), which has important implications for our 
considered application in air quality. We should therefore begin by providing a clear 
description of data assimilation and its applications in meteorology to fully understand the 
potential and the limitations of existing data assimilation algorithms. We begin with a simple 
mathematical description of an idealized meteorological model (i.e., one with no model error). 
We can formulate the temporal evolution within such an idealized model case as,  

𝒙𝒙𝑡𝑡+1 = 𝑭𝑭𝑡𝑡𝑀𝑀(𝒙𝒙𝑡𝑡), 𝑡𝑡 = 0, … ,𝑁𝑁 − 1, 𝒙𝒙𝑡𝑡 = 𝒎𝒎𝑡𝑡  (3) 
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where we can reuse the parameters from equations (1) and (2), but in this case, 𝒙𝒙𝑡𝑡 represents 
the current meteorological atmospheric state, 𝒎𝒎𝑡𝑡. 𝐅𝐅𝑡𝑡𝑀𝑀 represents the model equations 
responsible for evolving the meteorological state forwards from one time-step to the next.  

Thus, we can see a clear difference in the mathematical formulation of the temporal evolution 
in air quality and meteorological models, i.e., the future state in meteorological models is 
assumed to vary only as a function of the current meteorological state, 𝒎𝒎𝑡𝑡. In this idealized 
case, innate model errors are ignored completely, and the current state is assumed to be the 
only control variable relevant for the future state. Further to this, it is assumed forecast errors 
into the future arising within the meteorological model are primarily driven by initial condition 
errors. In fact, these statements are true to a first-order approximation, and meteorological 
forecast errors have historically been limited by the error in the estimation of the initial state.  

Data assimilation algorithm development in meteorology was therefore done specifically to 
solve the problem of uncertainties in initial conditions. For example, the 3D-Var algorithm 
(Lorenc, 1986) can be used to improve estimates of the current state to create better initial 
conditions for improved future model state estimation. In another example, it is a better 
strategy to attempt to solve for some past model state or initial condition using strong 
constraint 4D-Var (Klinker et al., 2000; Mahfouf & Rabier, 2000; Rabier et al., 2000), e.g., x0. 
The latter example allows the use of observations of the present to update and correct initial 
conditions in the past, and thus achieve better prediction of both the current and near-future 
states.  

Significant effort and advances have been made to improve NWP forecasting by focusing on 
improvements in DA algorithms that reduce errors in the estimation of the initial state 
(Evensen, 1994; Griffith & Nichols, 2000; Lorenc, 1986; Lorenc et al., 2015; Trémolet, 2007). 
Algorithms and other NWP improvements are so advanced now to the extent that errors in 
the estimation of the initial state no longer dominate errors in the forecast (Griffith & Nichols, 
2000; Trémolet, 2007). It has become recognized that model errors, e.g., model resolution and 
discretization errors indeed play a role in limiting the ability to make accurate NWP forecasts 
(Talagrand, 1998; Trémolet, 2007). Solving only for initial conditions in the presence of model 
error will lead to imperfect estimates of the initial state, and to forecast errors. Efforts have 
now turned towards trying to solve the initial condition problem in the presence of an 
imperfect model. For example, the 4DEnVar (Desroziers et al., 2016; Lorenc et al., 2015) and 
weak constraint 4D-Var (Griffith & Nichols, 2000; Trémolet, 2007) were both specifically 
formulated to account for systematic model error in their solutions; we will discuss the details 
of these and other algorithms in Sect. 2. For example, the weak constraint 4D-Var 
reformulates equation (3) to include model error, and the algorithm is adapted to account for 
this more realistic situation.  

𝒙𝒙𝑡𝑡+1 = 𝑭𝑭𝑡𝑡𝑀𝑀(𝒙𝒙𝑡𝑡) +  𝜺𝜺𝑡𝑡 , 𝑡𝑡 = 0, … ,𝑁𝑁 − 1, 𝒙𝒙𝑡𝑡 = 𝒎𝒎𝑡𝑡  (4) 

In the weak constraint 4D-Var, 𝛆𝛆𝑡𝑡, is assumed to represent systematic errors that are either 
constant or evolve or in time, and the algorithm is set up to solve for both 𝒙𝒙𝑡𝑡 and 𝛆𝛆𝑡𝑡.  

These latest evolutionary steps in data assimilation algorithms are of critical importance for 
data assimilation in the context of air quality and for atmospheric chemistry models. 
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Atmospheric pollutants have a limited lifetime in the atmosphere, and this can vary from 
minutes for NOx to several days for longer lived particulate matter. This characteristic of the 
state variable of interest creates a problem for assimilation methods based only on the direct 
estimation of pollutant concentrations (e.g., 3D-Var) because the data assimilation 
corrections, termed increments, decay over time as the pollutants are removed from the 
atmosphere. Thus, in a case where the emissions are underestimated, the increments will 
decay over time and the model will relax back to the background model state estimate (Emili 
personal communication). This, therefore, creates the necessity to set the pollutant emissions 
as an assimilation control variable to correctly estimate the concentrations of short-lived 
pollutants both present and future. Achieving this will help to remove biases in concentrations 
(biases are the primary form of error arising in air quality models (Marécal et al., 2015)) arising 
from systematic emission errors. Aside from this approach being advantageous for 
concentration state estimation, it also provides the benefit that emissions are themselves an 
interesting variable to estimate. Emission estimates of pollutants give important information 
about economic sectors that contribute to pollution and allows the formulation of effective 
pollution control strategies.  

Given the need to consider pollutant emissions as a control variable, this alters the 
requirements for data assimilation compared to the traditional NWP type problem shown in 
Eq. (3). As we can see in Eq. (2), the future model state depends on the control variables, xt, 
which consist of the current state, 𝒄𝒄𝑡𝑡, and the input variables from that timestep consisting of 
the emissions, qt, the meteorology, mt, and the background concentrations, 𝒃𝒃𝑡𝑡. If we make 
our control variables the pollutant emissions only, this creates a situation where we 
potentially ignore other sources of error that influence the prediction of the future pollution 
concentration state, e.g., those arising from errors in the input meteorology and other types 
of innate model error. Furthermore, this can also lead to an imperfect solution to the 
emissions estimate whereby the algorithm overcorrects the emissions by trying to solve for 
other sources of observation minus model error biases. Lastly, errors in emission estimates 
are typically more systematic with a bias relative to the true emissions, which can potentially 
create problems for some data assimilation algorithms which assume errors to be more 
random and unbiased with a Gaussian distribution. 

In practice, while meteorological data are used as an input in air quality models, 
meteorological models are often run by dedicated teams external to the air quality modelling 
community. As a result, errors in the meteorological input data are often ignored or 
overlooked; even if errors in meteorological input data are identified, air quality model users 
lack the means to take rectifying action and the data themselves are considered immutable. 
Within this paradigm of thought, and for the purposes of this report, errors on the 
meteorological input are errors innate to the air quality modelling system.  

The latest developments in data assimilation offer the possibility to account for systematic 
errors arising in air quality models (Marécal et al., 2015) resulting from errors in the input 
meteorology, model equations, model spatial resolution, and temporal discretization. Thus, 
instead of trying to formulate air quality model forecast problems as in equation (2), it should 
also be possible to reformulate the air quality problem as  

𝒙𝒙𝑡𝑡+1 = 𝑭𝑭𝑡𝑡
𝐴𝐴𝐴𝐴(𝒙𝒙𝑡𝑡) +  𝜺𝜺𝑡𝑡 , 𝑡𝑡 = 0, … ,𝑁𝑁 − 1, 𝒙𝒙𝑡𝑡 = 𝒒𝒒𝑡𝑡  (5) 
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such that an error term is now included. Having defined the problem we wish to address, we 
will now begin a review of the data assimilation methods that are currently available. We will 
then try to quickly summarise the advantages and disadvantages of each method concerning 
the application under consideration. 

 
2 Review of Existing Data Assimilation Methods 
 
2.1 Optimal Interpolation 

2.1.1 Technical Description 

Optimal Interpolation (OI) is one of the earliest assimilation techniques and has seen 
widespread adoption and use in numerical weather prediction for several decades. First 
proposed by Gandin (1963), OI allows for combining an a priori field (typically from a model) 
with observations to produce an analysis field that merges the two datasets using objective 
weights according to the corresponding uncertainties.  

OI and geostatistical. techniques such as universal kriging or kriging with external drift (Chiles 
& Delfiner, 2009; Goovaerts & others, 1997) are very closely linked. While the former 
originated from the meteorological and atmospheric community (Gandin, 1963; Shiryayev 
A.N., 1992), the latter was developed within the mining and natural resources community 
(Matheron, 1963). OI and geostatistics use somewhat different mathematical frameworks but 
they produce equivalent results given the same inputs (Cressie, 1990; Knudsen & Lefohn, 
1988).  

OI is equivalent to 3D-Var (Kalnay, 2003), although both use entirely different mathematical 
techniques.  

OI can only be considered “optimal” when the error characteristics are known perfectly, which 
is typically not the case. For this reason, OI is often also referred to as objective analysis or 
Statistical Interpolation (SI). Given the wide use of the term OI in the literature and to avoid 
confusion with statistical interpolation in geostatistics, we continue to use the term OI in this 
document for clarity.  

Following the nomenclature used in Kalnay (2003), OI calculates the analysis vector 𝒙𝒙𝒂𝒂 as  

𝒙𝒙𝑎𝑎 = 𝒙𝒙𝑏𝑏 + 𝑾𝑾[𝒚𝒚0 − 𝐻𝐻(𝒙𝒙𝑏𝑏)]  (6) 

where 𝒙𝒙𝒃𝒃 is the background field vector from a model, 𝑾𝑾 is a matrix of weights, 𝒚𝒚0 is the set 
of observations, and 𝐻𝐻 is the observation operator that translates the background values into 
observation space (often using simple bilinear interpolation if the units of the background field 
and observations are the same). The weight matrix 𝑾𝑾 is calculated as  

𝑾𝑾 = 𝑩𝑩𝑯𝑯𝑻𝑻�𝑹𝑹 + 𝑯𝑯𝑩𝑩𝑯𝑯𝑻𝑻�−1  (7) 
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where 𝑩𝑩 is the background error covariance matrix, the matrix 𝑯𝑯 is the linear tangent 
perturbation of 𝐻𝐻, and 𝑹𝑹 is the matrix of observation error covariances (which is diagonal if 
the observations errors at different locations are assumed to be uncorrelated).  

The analysis error covariance 𝑷𝑷𝑎𝑎 can then be calculated as  

𝑷𝑷𝑎𝑎 = (𝑰𝑰 −𝑾𝑾𝑯𝑯)𝑩𝑩  (8) 

where 𝑰𝑰 is the identity matrix.  

2.1.2 Advantages 

• Relatively straightforward and quick to implement for small cases (no requirement to 
derive adjoints or implement cost functions)  

• Grounded in many decades of research and application  
• Strong ties or even equivalency to similar methods such as geostatistical interpolation 

and 3D-Var  
• Background error covariance matrix can be specified manually in detail (as opposed to 

kriging-based techniques which typically only use a distance-based covariance 
function). 

• Model-independent (can be run offline). 

2.1.3 Disadvantages  

• Background error covariance matrix must be specified, and it is often based on crude 
assumptions.  

• Less computationally efficient to implement for large-scale problems compared with 
e.g. variational methods.  

2.1.4 Algorithm Availability 

The algorithm has already undergone preliminary testing with the EPISODE model in the 
context of other projects.  

2.2 Extended Kalman Filter 

2.2.1 Technical Description  

Kalman filter (KF) methods represent a large class of different techniques for performing data 
assimilation and the equations of the various variants of the Kalman filter are essentially the 
same as for the OI method as described above. The original Kalman filter (Kalman, 1960) was 
proposed for a purely linear system of evolution. Later it was extended to non-linear models 
and is then known as the Extended Kalman filter (EKF).  

One of the foremost properties of these methods is that they automatically estimate and 
update the model error covariance matrix 𝑩𝑩 from one time-step to the next, using the model 
operator (the dispersion model) itself. The Kalman filter in its original form, however, whether 
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linear or extended, has too large a computational complexity to be implemented in practice 
for large model state spaces, so simplifications of the original filter are necessary.  

The assumptions behind the different KF methods are essentially the same as the assumptions 
behind OI and the various variational methods below, namely that the model and observation 
errors should have a Gaussian probability distribution.  

 

2.2.2 Advantages 

• The most important advantage of the Kalman and extended Kalman filters is the 
automatic estimation and updating of the model error covariance matrix 𝑩𝑩 from one 
timestep to the next using the model operator (the dispersion model) itself.  

• Another advantage of the extended Kalman filter is that the state transition and 
observation models do not need to be linear functions of the state vector, but rather 
only non-linear differentiable functions. 

2.2.3 Disadvantages 

• Too large complexity to be implemented in practice for large model state spaces, so 
some simplification of the original filter is necessary.  

• If the initial state estimate is wrong, or if the process is modelled incorrectly, the filter 
may quickly diverge, owing to its linearization.  

• The estimated covariance matrix tends to underestimate the true covariance matrix 
and therefore might become statistically inconsistent without the addition of some 
extra stabilizing noise.  

• Unlike its linear counterpart, the extended Kalman filter is generally not an optimal 
estimator unless the measurement and state transition models are linear.  

2.2.4 Algorithm Availability 

This algorithm has not been implemented at NILU and nor do we have ready access to a 
working version of this algorithm.  

2.3 Ensemble Kalman Filter 

2.3.1 Technical Description 

The ensemble Kalman filter (EnKF) was originally proposed in Evensen (1994). The idea behind 
the method is to apply an ensemble of 𝑁𝑁 model states 𝒙𝒙𝒊𝒊 for 𝑖𝑖=1,...,𝑁𝑁, to represent and 
estimate the model error covariance matrix 𝑩𝑩. The method thus avoids completely the large 
computational expense involved in updating this matrix. Instead, the dispersion model is run 
𝑁𝑁 times to propagate the ensemble of model states to the next time step, using Monte Carlo 
random draw procedures to simulate model errors.  
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The solution converges towards the exact solution of the Extended Kalman filter as 𝑁𝑁 
increases. The ensemble size 𝑁𝑁 needed in practical applications depends on the problem to 
be solved but typically ranges between 25 and 100, and in some cases up to of the order of 
1000.  

The EnKF-method has been used in numerous realistic applications for both ocean and 
atmosphere (Evensen, 2003; 2006), and it is able to handle strongly non-linear dynamics and 
large state spaces. This makes the method clearly applicable on urban and regional scales, 
where non-linearities in the form of photochemistry and/or aerosol chemistry might occur.  

2.3.2 Advantages  

• Much simpler update of the model error covariance matrix from one timestep to the 
next than in the extended Kalman filter.  

• Grants flow dependency in the error covariance matrix.  
• Correct setup of the ensemble perturbations allows estimation of the background 

error covariance matrix.  
• Can handle non-linear state transition and observation models  

2.3.3 Disadvantages 

• Need to run the dispersion model 𝑁𝑁 times rather than one, representing a 
considerable increased computational burden.  

• The accuracy of the estimated model error covariance matrix depends on the 
representativeness of the simulated model errors  

• Underlying assumptions are invalidated if the model errors are non-random or non-
Gaussian.  

2.3.4 Algorithm Availability 

Core numerical aspects of the algorithm have been developed at NILU. However, the 
additional code for perturbing, launching, and updating the analysis and ensembles has not 
been implemented.  

2.4 3D-Variational Data Assimilation  

2.4.1 Technical Description 

We can represent an air quality model using the following formulation  

𝒄𝒄𝑡𝑡+1 = 𝑭𝑭𝑡𝑡
𝐴𝐴𝐴𝐴(𝒙𝒙𝑡𝑡), 𝑡𝑡 = 0, … ,𝑁𝑁 − 1,𝒙𝒙t = 𝒒𝒒𝑡𝑡  (9) 

for the specific simplified case where the control variables, 𝒙𝒙𝑡𝑡, only consist of the emission 
variables, 𝒒𝒒𝑡𝑡. Note that in theory the control variables could be set to other input/model 
variables, but for reasons outlined above, we choose to simplify the problem to this specific 
case.  
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In the formulation of the 3D-Var algorithm (Lorenc, 1986) for an air quality model (Emili et al., 
2016), the assimilated model state is calculated as 𝑭𝑭(𝒙𝒙) that minimizes the following cost 
function:  

𝐽𝐽(𝒙𝒙𝒕𝒕) = 1
2
�𝑭𝑭(𝒙𝒙𝑡𝑡) - 𝑭𝑭(𝒙𝒙𝑎𝑎,𝑡𝑡�

𝑇𝑇𝑩𝑩-1�𝑭𝑭(𝒙𝒙𝑡𝑡) - 𝑭𝑭(𝒙𝒙𝑎𝑎,𝑡𝑡)� + 1
2

(𝒚𝒚 − 𝐹𝐹(𝒙𝒙𝑡𝑡))𝑇𝑇𝑹𝑹-1(𝒚𝒚 − 𝐹𝐹(𝒙𝒙𝑡𝑡))  (10) 

with 𝑭𝑭(𝒙𝒙𝑎𝑎) being the background estimate of 𝑭𝑭(𝒙𝒙) and 𝒚𝒚 the observation vector. In practice, 
𝒙𝒙𝑎𝑎 is the a priori estimate of the pollutant concentration field given either by climatology or 
from a model simulation from the previous days. Pay special note to the fact that both the 
control variables and the model are evaluated at the same time step, t.  

In 3D-Var, the objective function 𝐽𝐽(𝒙𝒙) is typically minimized using standard numerical methods 
such as Conjugate Gradient methods, Quasi-Newton methods, etc. A minimum value always 
exists since the objective function is strictly convex due to the matrices 𝑩𝑩 and 𝑹𝑹 being 
covariance matrices and thus positive definite.  

The main difficulty in implementing the 3D-Var-method (as for the OI method) is to specify or 
estimate the model and observation error covariance matrices 𝑩𝑩 and 𝑹𝑹. These matrices 
determine how much weight will be put on the model forecasted state and observations, 
respectively. It is therefore important that these are defined as accurately as possible. The B 
matrix is usually defined using spatial correlation or covariance functions. The 𝑹𝑹 matrix is 
usually defined as a diagonal matrix with the observation + representativeness error variances 
along the diagonal (assuming that these errors are independent), and where the 
representativeness errors are usually the most difficult to quantify appropriately.  

2.4.2 Advantages  

• Can operate easily with a non-linear observation operator, i.e. do not need any 
linearization of the observation model.  

2.4.3 Disadvantages  

• Difficult to specify or estimate the model error covariance matrix.  
• Cannot be used to carry out emission inversion and therefore is unsuitable for short-

lived atmospheric pollutants.  

2.4.4 Algorithm Availability  

The algorithm has not been tested at NILU and nor do we have ready access to an existing 
implementation.  

 
2.5 Strong Constraint 4D-Variational Data Assimilation  

2.5.1 Technical Description  

The strong constraint 4D-Var algorithm (Klinker et al., 2000; Mahfouf & Rabier, 2000; Rabier 
et al., 2000) combines four components:  
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1. The forward model, in this case, an air quality model, which we can represent as in Eq. 9.  

2. The adjoint of this air quality model, which defines the sensitivity of the current model state 
to changes in the control parameters. These adjoint sensitivities are used to construct the 
adjoint of the cost function.  

3. A cost function that evaluates the observation minus model differences at time window, t, 
while considering the relative observation and model covariances. Note that the cost function 
evaluates the present model state using control variables from the model past, 𝐱𝐱t−n. Similarly 
to the 3D-var algorithm, in practice we need an additional operator, H, the observation 
operator must act upon F(𝐱𝐱) to transform the model state into observation space (not included 
in the notation here). Here we give an example as used in an air quality model context (Hamer 
et al., 2015)  

𝐽𝐽(𝒙𝒙𝒕𝒕) =  1
2
��𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑡𝑡)��

𝑇𝑇
𝑺𝑺𝑛𝑛−1�𝒚𝒚 − 𝑭𝑭(𝒙𝒙𝑡𝑡)� + 1

2
�𝒙𝒙𝑡𝑡−𝑛𝑛 − 𝒙𝒙𝑎𝑎,𝑡𝑡−𝑛𝑛�

𝑇𝑇𝑺𝑺𝑎𝑎−1(𝒙𝒙𝑡𝑡−𝑛𝑛 − 𝒙𝒙𝑎𝑎,𝑡𝑡−𝑛𝑛) (11) 

4. An iterative gradient minimization algorithm setup to minimize cost function by optimizing 
𝒙𝒙 following  

𝒙𝒙� = 𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥   𝐽𝐽(𝒙𝒙) (12) 

In practice, we formulate the minimization problem so that the adjoint sensitivity of the cost 
function is computed and used to find the minimum of 𝐽𝐽(𝒙𝒙) and find �̂�𝒙  

𝛻𝛻𝒙𝒙 𝐽𝐽 =  𝑲𝑲𝑇𝑇𝑺𝑺𝑛𝑛−1�𝒚𝒚 − 𝑭𝑭(𝒙𝒙�)� − 𝑺𝑺𝑎𝑎−1(𝒙𝒙� − 𝒙𝒙𝑎𝑎) = 0  (13) 

where K is the Jacobian matrix describing the forward model sensitivity to perturbations in 
the emission parameters, or, stated another way, the sensitivity of 𝒄𝒄𝑡𝑡+1 to changes in x. The 
strong constraint 4D-Var is formulated with the implicit assumption that errors in the control 
variable, x, are the only source of errors in the estimation of the current and future states of 
c.  

 
2.5.2 Advantages  

• Capable of carrying out emission inversion.  
• Can solve non-linear problems via the iterative method.  
• The assimilation system can cope with bias in the control variable errors.  

 
 
2.5.3 Disadvantages  

• Requires the model adjoint.  
• Difficult to define the background errors and thus to create the background error 

covariance matrix.  
• Cannot separate model and emission errors.  
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2.5.4 Algorithm Availability  

A working example of the 4D-Var algorithm is available. This is the same algorithm that was 
used in (Hamer et al., 2015). 
 
2.6 Weak Constraint 4D-Variational Data Assimilation 

2.6.1 Technical Description 

The weak constraint 4D-Var algorithm (Griffith & Nichols, 2000; Trémolet, 2007) has been 
specifically developed to address a key weakness of the strong constraint 4D-Var, i.e., the 
inability of that algorithm to account simultaneously for both model errors and other error 
sources beyond the selected control variables. This is a critical weakness in cases where there 
are multiple competing sources of errors and/or model errors. In such cases, the model errors 
would impinge on the algorithm’s ability to provide accurate state estimation and parameter 
estimation.  
 
The temporal evolution of the model errors can be formulated as (Griffith & Nichols, 2000) 
  

𝒆𝒆𝑡𝑡+1 = 𝒈𝒈𝑡𝑡(𝒄𝒄𝑡𝑡 ,𝒆𝒆𝑡𝑡)   (14) 
 
where 𝒆𝒆 is the model error at any one point in time, e is a vector describing different 
components of the systematic model error, and 𝒈𝒈𝑡𝑡 is a function that evolves the error state 
forward in time. The model error can be represented in different ways, i.e., as a constant error, 
a temporally evolving error, or with a cyclic or spectral variability (Griffith & Nichols, 2000). 
The weak constraint 4D-Var accounts for the model error by redefining the model state 
equation following Eq. (4).  
 
Accordingly, it redefines the cost function of the strong constraint 4D-Var in Eq. (11) to include 
an error term both for the model versus observation evaluation and as an additional penalty 
term (Trémolet, 2007) 
  

𝐽𝐽(𝒙𝒙𝑡𝑡) = 1
2
�(𝒚𝒚 − (𝑭𝑭(𝒙𝒙𝑡𝑡) + 𝒆𝒆𝑡𝑡))�𝑇𝑇𝑺𝑺𝑛𝑛−1(𝑦𝑦 − (𝑭𝑭(𝒙𝒙𝑡𝑡) + 𝒆𝒆𝑡𝑡)) + 1

2
�𝒙𝒙𝑡𝑡−𝑛𝑛 − 𝒙𝒙𝑎𝑎,𝑡𝑡−𝑛𝑛�

𝑇𝑇𝑺𝑺𝑎𝑎−1�𝒙𝒙𝑡𝑡−𝑛𝑛 − 𝒙𝒙𝑎𝑎,𝑡𝑡−𝑛𝑛� +
1
2
�𝒆𝒆𝑡𝑡−𝑛𝑛 − 𝒆𝒆𝑎𝑎,𝑡𝑡−𝑛𝑛�

𝑇𝑇
𝑸𝑸−1(𝒆𝒆𝑡𝑡−𝑛𝑛 − 𝒆𝒆𝑎𝑎,𝑡𝑡−𝑛𝑛)  (15) 

where 𝑸𝑸 is the model error covariance matrix. In this case, the model error covariance matrix 
differs from the background error covariance matrix. The background error matrix specifically 
describes errors on the control variables of interest, i.e., emissions in this case.  
 
The model error covariance describes the errors arising from intrinsic model errors and must 
be based on the statistics of the model behavior independent of other control parameters. 
With the introduction of the model error terms into the cost function (Eq. 15), the formulation 
of the adjoint sensitivity in Eq. 13 concerning x and e becomes 
  

𝛻𝛻𝐱𝐱 𝐽𝐽 = 𝑲𝑲𝑇𝑇𝑺𝑺𝑛𝑛−1(𝒚𝒚 − (𝑭𝑭(𝒙𝒙�) + 𝒆𝒆)) − 𝑺𝑺𝑎𝑎−1(𝒙𝒙� − 𝒙𝒙𝑎𝑎)  (16) 
and 

𝛻𝛻𝑒𝑒  𝐽𝐽 = 𝑮𝑮𝑇𝑇𝑺𝑺𝑛𝑛−1(𝒚𝒚 − (𝑭𝑭(𝒙𝒙�) + 𝒆𝒆)) −  𝑸𝑸−1(𝒆𝒆 − 𝒆𝒆𝑡𝑡𝑎𝑎) = 0  (17) 
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where G is the Jacobian matrix relating the sensitivity of the cost function to changes in e. This 
means the optimization algorithm can now minimize the cost function either by adjusting x or 
e, and the emphasis of one over the other is done according to the relative weighting of the 
Sa and Q matrices concerning Sn. Note that in these formulations of the adjoint sensitivities, 
the model is represented in its error-augmented state following Eq. 5.  
 
The novel aspects of the weak constraint 4D-Var algorithm bring with it the requirement to 
calculate or pre-determine new parameters. Most notably, the dynamically varying model 
error, the a priori estimate of that error, and the covariance matrix, Q, describing the error 
between e and 𝒆𝒆𝑎𝑎. Thus, this requires a good characterization of both the expected errors and 
the expected deviations from those a priori model error estimates. The challenge facing this 
algorithm in the context of an atmospheric chemical model is how to distinguish model error 
from errors resulting from emission errors. 
 
2.6.2 Advantages  

• Capable of carrying out emission inversion, of solving non-linear problems, and can 
cope with bias.  

• Can account for model and emission errors separately in the assimilation solution. 
Model errors will therefore not propagate into the emission estimation solution 

 
 
2.6.3 Disadvantages  

• Requires the model adjoint.  
• Requires enough knowledge of the model errors to be able to mathematically describe 

them. This could potentially be difficult to achieve.  
 
2.6.4 Algorithm Availability  

No working version of this algorithm is currently available. It would require adaptation of the 
4D-Var algorithm employed in (Hamer et al., 2015). 
 
2.7 4D-Ensemble Variational Data Assimilation 

2.7.1 Technical Description  

The 4D-EnVar algorithm (Emili et al., 2016; Lorenc et al., 2015) shares many similarities with 
the 3D-Var and 4D-Var algorithms but was developed to address key weaknesses of both. The 
4D-EnVar algorithm builds upon the 3D-Var algorithm by expanding the dimensionality of the 
variables represented within the cost function from just the three spatial dimensions to also 
include the time dimension (Emili et al., 2016; Lorenc et al., 2015).  
 
A key difference concerning the 4D-Var algorithm, however, is that there is no need to 
compute either tangent linear model or adjoint models. Furthermore, the 4D-EnVar uses an 
ensemble of perturbed simulations to construct the background error covariance matrix (Emili 
et al., 2016; Lorenc et al., 2015). In both the 3D-Var and 4D-Var algorithms it is typically 
difficult to correctly estimate the background error covariance matrix.  
 
The 4D-EnVar cost function can be defined as 
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𝐽𝐽(𝒙𝒙𝒕𝒕) = 1

2
(𝑭𝑭(𝒙𝒙) - 𝑭𝑭(𝒙𝒙𝑎𝑎)𝑇𝑇𝑩𝑩𝑒𝑒-1(𝑭𝑭(𝒙𝒙) - 𝑭𝑭(𝒙𝒙𝑎𝑎)) + 1

2
(𝒚𝒚 − 𝐹𝐹(𝒙𝒙))𝑇𝑇𝑹𝑹-1(𝒚𝒚 − 𝐹𝐹(𝒙𝒙))  (18) 

where the 𝑩𝑩𝑒𝑒 matrix is the model error covariance matrix that is estimated from an ensemble 
of perturbed model trajectories. The construction of 𝑩𝑩𝑒𝑒 follows this general specification 
 

𝑩𝑩𝑒𝑒 = 1
𝐿𝐿−1

(𝑭𝑭(𝒙𝒙1′ ), … ,𝑭𝑭(𝒙𝒙𝐿𝐿′ ))(𝑭𝑭(𝒙𝒙1′ ), … ,𝑭𝑭(𝒙𝒙𝐿𝐿′ ))𝑇𝑇    (19) 
 
where L is the number of ensemble members. In practice, the solution to 𝐽𝐽(𝒙𝒙) is found via 
conjugate gradient or Quasi-Newton methods. 
 
2.7.2 Advantages 

• Can reconstruct the model error covariance matrix using the ensemble approach and 
therefore does not require specific knowledge of the model errors.  

• Does not require specific knowledge of model errors.  
• Can solve problems in the case where model and emission errors exist together.  
• Can reduce bias errors arising from systematic biases in model inputs, e.g., emissions.  
• No need to determine the adjoint or tangent linear models. 

 
2.7.3 Disadvantages  

• Complex algorithm.  
• The technical point relevant to NILU: the current libraries that exist from 

ECMWF/CERFACS are written in C++.  
• Cannot carry out emission inversion. 

 
2.7.4 Algorithm Availability  

A working version of this algorithm used in an atmospheric chemistry model is available as a 
library from ECMWF that we already have access to. This is the algorithm used in Emili et al., 
(2016). 
 
3 Discussion and Selection of Appropriate Data Assimilation Methods 
We must first define the criteria with which we will select the appropriate data assimilation 
algorithms for use in an in urban air quality modelling context. We can then evaluate each 
algorithm and arrive at recommendations for which algorithms to test and develop. The 
criteria are: 
  

• Can it achieve the objectives we have highlighted, i.e., the dual aims of improving the 
estimation of pollutant concentrations and of pollutant emissions?  

• Can the method cope with biases in either the model error or emissions inputs?  
• Is it an appropriate method for problems where model errors exist?  
• Can it account for model error?  
• Feasibility of implementation: this includes the availability of the algorithm code, the 

complexity of the code, experience of using the algorithm, etc. Is it feasible to use this 
algorithm? 
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To help identify the algorithms that achieve the most criteria, we present in Table 1 
summarising and ranking of each algorithm against each of the criteria laid out above. 
 

Algorithm Control Variable Objective  Are model 
biases 
problematic? 

Is model 
error 
problematic? 

Estimation and 
accounting for 
model error? 

Feasibility 
Concentrations 
of long-lived 
pollutants 

Emission 
estimation 

Optimal 
Interpolation 

Yes No Yes Yes No Very 
feasible 

EKF Yes No Yes Yes No Less 
feasible 

EnKF Yes Qualified 
Yes 

Yes Qualified Yes Qualified Yes Feasible 

3D-Var Yes No Yes Yes No Less 
feasible 

Strong 
constraint 
4D-Var 

Yes Yes No Yes No Feasible 

Weak 
constraint 
4D-Var 

Yes Yes No No Yes The most 
difficult 

4D-EnVar Yes Qualified 
No 

No No Yes Feasible 
but 
complex 

Table 1  Showing summarizing the capabilities, advantages, and disadvantages of each method. The 
objectives list the ability of each algorithm to assimilate with either long-lived pollutant 
concentrations or emissions as control variables. The assimilation of short-lived pollutant 
concentrations is ignored. The colour coding from dark green, to green, then, yellow, orange, 
red denote the algorithms’ decreasing suitability.  

We will quickly discuss the qualified responses for the EnKF algorithm. The EnKF can account 
for model errors and estimate emissions by using model parameter perturbations under 
specific conditions to estimate background error. These conditions are that the model errors 
or errors on the emissions have the properties of being random, with zero bias, and with a 
Gaussian distribution. In cases where the model and emissions errors have these properties, 
this algorithm can represent and resolve the model error and estimate emissions, respectively. 
However, emission estimates are typically biased high or low, and air quality model errors are 
typically then dominated by large persistent bias terms (Marécal et al., 2015). Thus, the EnKF 
becomes an invalid tool due to the common nature of the emission and model errors present. 
  
The 4D-EnVar algorithm receives a qualified no for being able to estimate emissions. While it 
cannot be used for emission parameter estimation, it can still estimate concentrations of 
short-lived compounds even when there are bias terms present in their emissions. This is 
because the algorithm can estimate and correct for bias terms from all types of model errors 
including errors in emissions.  
 
We will now outline the applicability of each algorithm for different use cases. We start with 
the relatively simple examples and then step up in complexity.  
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1. The control variables are the concentrations of long-lived pollutants where model and 
emission errors are random with no bias. In this special case, errors in emissions can 
be ignored because assimilation increments will have a long lifetime, and we avoid the 
situation where increments decay due to a pollutants’ loss. All algorithms can be used 
in this case and feasibility alone may be sufficient to select a suitable algorithm. 
  

2. The control variables are the emissions of short-lived pollutants where the emission 
errors are random with no bias and where other model errors can be ignored. Here, 
emission errors cannot be ignored since increments to the concentrations alone will 
decay rapidly. Thus, the algorithm must be able to update the emissions. Here the 
EnKF, strong and weak 4D-Var, and 4D-EnVar can all be used to optimize pollutant 
concentrations through estimation of pollutant emissions.  

 
3. The control variables are the emissions of short-lived pollutants where the emission 

errors are random or non-random but with bias and where other model errors can be 
ignored. In this case, the EnKF no longer becomes an appropriate tool since its 
fundamental assumptions rely on errors being random with a Gaussian distribution. 
The strong/weak constraint 4D-Var algorithms can be used in this case.  

 
4. The control variables are the emissions of short-lived pollutants where the emission 

errors are non-random with bias and where other model errors cannot be ignored. 
Systematic model errors arising from temporal and spatial discretization, errors in 
model parameterizations, and input meteorology compete with errors in emissions. 
Furthermore, such errors are probably correlated in time and thus will create bias 
terms that could appear as emission errors. In this case, the strong constraint 4D-Var 
algorithm will encounter problems and the weak constraint 4D-Var algorithm is the 
only algorithm fully suitable for this situation.  

 
5. The control variables are the concentrations of short-lived pollutants where the 

emission errors are non-random with bias and where other model errors cannot be 
ignored. In this case, the 4D-EnVar algorithm in its current form cannot explicitly 
estimate emissions, but it can be used to estimate the concentrations of short-lived 
species in the presence of both emission and model bias errors.  

 
It is worth mentioning a special case for the offline assimilation of short-lived pollutants in the 
presence of emission errors. Here ‘offline’ means assimilation carried out as a post-processing 
step after the model has been run as in (Schneider et al., 2017). Thus, in this case, there is no 
flow dependency of increments: increments are not evolved forward in time and therefore 
cannot decay. Thus, methods such as optimal interpolation, 3D-Var, and the EKF could be used 
in this way to avoid problems associated with being unable to estimate emissions. The 
disadvantage of this approach is that the lack of flow dependency prevents increments from 
being transported by model dynamics, which means that observations can only update the 
model field in their immediate spatial vicinity. For this offline assimilation, the feasibility 
should be the leading criteria, and therefore the optimal interpolation algorithm would be the 
favored choice.  
 



NILU report 25/2020 

19 

For the case of emission estimation, the most readily available tool that can cope with bias 
terms in the emissions is the strong constraint 4D-Var. After that, the weak constraint 4D-Var 
becomes the only tool that can estimate emissions in the presence of model error.  
 
For the estimation of short-lived pollutant concentrations in the presence of model error, the 
4D-EnVar is the most readily available and appropriate algorithm since we already have access 
to the ECMWF OOPS library. The weak constraint 4D-Var could be considered as a backup 
option to the 4D-EnVar for this case.  
 
A further general comment is that if we assimilate observations on the grid, we either need to 
carefully select urban background stations, or we need to adjust for representativity errors. 
Otherwise, assimilation on the model receptor points should be considered. 
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