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Abstract: Instead of a flag valid/non-valid usually proposed in the quality control (QC) processes
of air quality (AQ), we proposed a method that predicts the p-value of each observation as a value
between 0 and 1. We based our error predictions on three approaches: the one proposed by the
Working Group on Guidance for the Demonstration of Equivalence (European Commission (2010)),
the one proposed by Wager (Journal of MachineLearningResearch, 15, 1625–1651 (2014)) and the
one proposed by Lu (Journal of MachineLearningResearch, 22, 1–41 (2021)). Total Error framework
enables to differentiate the different errors: input, output, structural modeling and remnant. We
thus theoretically described a one-site AQ prediction based on a multi-site network using Random
Forest for regression in a Total Error framework. We demonstrated the methodology with a dataset
of hourly nitrogen dioxide measured by a network of monitoring stations located in Oslo, Norway
and implemented the error predictions for the three approaches. The results indicate that a simple
one-site AQ prediction based on a multi-site network using Random Forest for regression provides
moderate metrics for fixed stations. According to the diagnostic based on predictive qq-plot and
among the three approaches used in this study, the approach proposed by Lu provides better error
predictions. Furthermore, ensuring a high precision of the error prediction requires efforts on getting
accurate input, output and prediction model and limiting our lack of knowledge about the “true”
AQ phenomena. We put effort in quantifying each type of error involved in the error prediction to
assess the error prediction model and further improving it in terms of performance and precision.

Keywords: air quality; quality control; Random Forest; error prediction; total error framework

1. Introduction

Air quality (AQ) monitoring is of great importance for measuring air quality in urban
areas and establish air quality control strategies. To comply with environmental directives
from the European Commission, a network of highly accurate air quality stations is de-
ployed in cities. In addition to being used by policy makers, and people, AQ observations
are extensively used by scientists. For instance, researchers use AQ monitoring networks
to evaluate low-cost sensors [1], to correct low-cost sensors [2], to assess urban dispersion
models [3], to predict AQ Index [4], to produce data fusion [5,6], to implement data as-
similation and to validate it [7], among others. Assessment of ambient AQ monitoring
is regulated by the European Directive 2008/50/EC “on ambient air quality and cleaner
air for Europe” [8]. The directive requires the use of reference methods when measuring
air quality ([8], Annex VI). In addition, specific Data Quality Objectives (DQO) for the
quality of the reported data must be respected ([8], Annex I). In term of AQ monitoring,
Norwegian cities are responsible for:

(i) Buying fixed air quality monitoring stations that respect DQOs.
(ii) Field operation and quality control according to procedures following standards

developed by the European Committee for Standardization (CEN).
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The Norwegian Institute for Air Research (NILU), acting as the National reference
laboratory for air, is responsible for:

(i) Acquiring the measurements from the data logger into an environmental database
hosted on its servers.

(ii) Helping cities respecting protocols for the maintenance and the data quality control.
(iii) Checking the entire Norwegian AQ observation and sending quarterly reports to the

Norwegian Environmental Agency as part of preparing for the national AQ reporting
to the European Commission.

Not interested in AQI, the Air Quality Index (AQI) is one of the most commonly used
indexes at present. This index considers the concentration of six pollutants (CO, NO2, O3,
SO2, PM10 and PM2.5).

1.1. Outliers and Their Detection Methods

As a result of instrument malfunctions, specific weather events, harsh environments
or human mistakes, AQ measurements can be contaminated by outliers. Outliers do not
have a formal definition, but many authors define them as measurements not consistent
with most of the dataset. Their presence has a masking effect if the outliers are considered
as normal measurements and thus are not removed from the dataset. On the other hand, if
a measurement is wrongly labeled as an outlier, then it represents a swamping effect.

Patterns of common outliers visible in univariate timeseries are well known [9]:
(i) spikes are short-duration (often single samples) positive or negative peaks in data,
(ii) a noise anomaly manifests itself as a sudden, unexpected, increase in measurement
variance, (iii) low variance in the signal, (iv) no change in the signal shows a constant
anomaly, (v) drift, expressed by an offset between the measured values and the original
signal. Unfortunately, these patterns are hidden into complex physical phenomena. In-
deed, pollutants show particularly rich patterns of variations in space and time on multiple
scales. These variations are driven by complex processes of chemical reactions, atmospheric
transport, emissions, and depositions. Outlier detection has been extensively studied and
applied in many fields such as meteorology, chemical engineering, environmental mon-
itoring, and smart buildings energy consumption, among others. The amount of outlier
detection methods and their diversity is wide. They are based either on uni-variate or multi-
variate timeseries, and cover unsupervised classification of observations [10,11], supervised
classification of observation with label [12], unsupervised regression with threshold [13],
supervised regression with threshold [14,15].

1.2. Importance of Weighting the Quality of an Observation

AQ experts responsible for quality control (QC) use their knowledge expertise in
metrology, chemistry, meteorology, empirical knowledge about each AQ station, its neigh-
borhood environment and the everyday event information (traffic jam, traffic accident,
road works, etc.) in order to label AQ observations as valid or as non-valid. However,
QC experts might have difficulties affirming a value is 100% valid or 100% non-valid.
Moreover, a value that is not completely correct might bring some relevant information.
Scientists are used to working with weighted data into their scientific pipeline, for instance
to evaluate the importance of observations for a data fusion purpose [5].

In this paper, the weight characterizing an observation corresponds to the p-value of
its value given an ensemble of quantiles determined by an empiric or a theoretic expression.
In this case, we do not aim at providing the best deterministic prediction, but the best
predictive distribution .

1.3. AQ Prediction and Its Predictive Uncertainty

For the purpose of quality control, AQ prediction with proper uncertainty quantifica-
tion is crucial. Indeed, its outcome will be used for weighting the quality of observations.
Our study does not aim at providing the best deterministic prediction, but instead at
providing the best predictive uncertainty or in other words, estimating the error prediction.
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Deep neural networks (DNN) have achieved high performance in multi-timeseries
AQ prediction. Among others, one can cite methods based on auto-encoder [16], on
LSTM [17], on LSTM-FC [18], on CNN-LSTM [19] and on graph-CNN-LSTM [20]. Further-
more, methods such as Bayesian DNNs [21–24] and deep ensemble [25] enable quantifying
predictive uncertainty. Having in mind the adaptation of AQ quality control onto edge
solution with embedded sensor nodes, it is worth to consider, in addition to accuracy, the
cost of computation hardware, and its energy consumption for training and inferring pre-
diction models, and estimating their predictive uncertainty. Approaches such as distributed
DNN, across edge-fog-cloud [26] are clearly an advantage for future sensors deployment.
Nonetheless, thanks to their low-technology requirement, machine learning methods not
related to the deep-learning family are still of interest.

Random Forest (RF). In this context, multi-timeseries AQ prediction, based on RF
for regression (RFreg) [27], provides non-negligible results [28] that get close to the ones
from DNN methods and outperform Multi-Layer Perceptron (MLP), Decision Tree, and
Support Vector Machine (SVM) [19]. Methods for estimating the error prediction have
been developed in the field of RF. For instance, Ref [29] (later written Wager 2014) focused
on the estimation of conditional mean and variance error prediction. This work has been
implemented in [30] and is widely used. Recently, Ref [31] (later written Lu 2019), inspired
by [32], developed a more general and non-parametric approach that estimates conditional
error prediction. As a result of their low computation requirement and their performance,
both Wager 2014 and Lu 2019 are used in our study.

AQ measurement assessment. Scientists working with AQ sensors use methods such
as [33] (later written Eaamm 2010) to assess sensors. This official approach determines
whether a sensor respects DQO related to measurement error. For instance, it is used
to assess low-cost sensors against robust sensors with higher accuracy and lower uncer-
tainty, such as fixed AQ monitoring stations [2]. Instead of assessing low-cost sensors
measurements, this approach can be adapted as a predictive uncertainty estimator to
mutli-timeseries AQ prediction, and thus is included in our study.

1.4. Total Error Framework

Assessing the quality of error prediction is challenging. First, the ‘ground truth’ is
usually not available. Second, scientists are aware of the effect of the error in the input while
building-up prediction models [34] and try to limit their effects [35]. Third, scientists are
aware of the non-perfection of their prediction models; it is now common to develop error
models to be added to the prediction output [36]. Finally, prediction models represents a
limited representation of a phenomenon due to our imperfect knowledge about it.

The entanglement between input, output (’ground truth’), conceptual model (e.g.,
regression model, Random Forest, DNN) and the different respective errors are highlighted
by [37] and is adapted in Figure 1. It highlights the different errors that take part in the
error prediction and how they connect to the prediction pipeline: input and output errors,
structural modeling error (error of the model) and remnant errors [38,39] (i.e., error due to
our imperfect knowledge of a phenomenon).

Assessing error prediction requires awareness about the different error models in-
volved in the prediction pipeline. The Total Error framework consists of explicitly deter-
mining the model of each of these errors presented in Figure 1.

1.5. Objectives and Contributions

The main objectives of this paper were: (i) to introduce the field of AQ QC into the
Total Error framework, (ii) to interpret each one of the three approaches (Eaamm 2010,
Wager 2014 and Lu 2019) using RFreg in the Total Error framework, (iii) to identify and
formulate information about each type of errors (input, output, structural modeling and
remnant), (iv) to evaluate and examine the results.
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Figure 1. Pipeline in between input, output, a conceptual model and its prediction. Dashed arrow
corresponds to the need of output for the training of the model.

1.6. Outline of the Paper

Section 2 describes materials and methods used in this study: Section 2.1 describes the
air quality dataset from monitoring stations in Oslo, Norway used in our study, Section 2.2
describes air quality prediction using RFreg in a Total Error framework, Section 2.3 de-
scribes a diagnostic tool of the p-value and Section 2.4 describes the experimentation plan.
Section 3 presents the results: Section 3.1 presents the metrics of the AQ prediction using
RFreg, Section 3.2 presents a comparison of the three approaches (Eaamm 2010, Wager
2014 and Lu 2019) in the Total Error framework for our case study, Section 3.3 presents an
analysis of the structural modeling error for RFreg and Section 3.4 presents a discussion of
the results. Finally, the conclusion is presented in Section 4.

2. Materials and Methods
2.1. Air Quality Monitoring Stations in the Metropolitan Region of Oslo, Norway

The city of Oslo is a municipality of around 650,000 inhabitants located at the end of
the Oslo fjord. The municipality has a surface of 480 km2 but the metropolitan area extends
beyond its boundaries along the Oslo fjord. It is thus a population of 1.7 million inhabitants
(34% of Norwegian population) living and circulating inside this area. Principal sources of
urban air pollution are vehicle traffic, as NOx emission, and domestic wood-burning in
stoves used for winter heating, as PM2.5 and PM10 emission. The study focuses only on
NO2. The nine AQ monitoring stations measuring the concentration of NO2 and used in
this study are presented in Figure 2 with the station metadata presented in Table 1. Eight
of the monitoring stations belong to European AQ monitoring network (EOI), and one is
not part of this network.

Table 1. Metadata of the nine monitoring stations measuring NO2 located in the metropolitan region of Oslo.

Name ID Municipality Coordinates (Lon/Lat) Area Class Station Type EOI

Alnabru 7 Oslo (10.84633, 59.92773) suburb near-road NO0057A
Bygdøy Alle 464 Oslo (10.69707, 59.91898) urban near-road NO0083A
Eilif Dues vei 827 Bærum (10.61195, 59.90608) suburb near-road NO0099A

Hjortnes 665 Oslo (10.70407, 59.91132) urban near-road NO0093A
Kirkeveien 9 Oslo (10.72447, 59.93233) urban near-road NO0011A
Manglerud 11 Oslo (10.81495, 59.89869) suburb near-road NO0071A

Rv 4, Aker sykehus 163 Oslo (10.79803, 59.94103) suburb near-road NO0101A
Smestad 504 Oslo (10.66984, 59.93255) suburb near-road NO0095A

Åkebergveien 809 Oslo (10.76743, 59.912) urban – –
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Figure 2. Map of Oslo with its residential (blue) and industrial (dark gray) areas, its roads (primary,
secondary, motorway and trunk) and its air quality (AQ) station network measuring NO2 (purple
circle). GIS data come from Open-Street Map.

2.1.1. Instrumentation of AQ Station Measuring NO2 Concentration

AQ monitoring station reports NO2 using an automatic NOx analyzer. In the region
of Oslo, analyzers are model T200 from Teledyne-API [40]. The measurement method for
the determination of the concentration of NO2 and NO present in ambient air is based
on the chemiluminescence measuring principle following the European reference method
for measurement of Oxides of Nitrogen ([8], Annex VI). The following is a sum-up of the
measurement process: in a reaction chamber, NO reacts with excess of O3 produced inside
the analyzer to form NO2. NO2 already present in the ambient air will not participate in the
reaction. During the reaction, light with an intensity proportional to the concentration of
NO is produced when electrons of the excited NO2 molecules decay to lower energy states.
The emitted light is measured by a photo multiplier tube. To measure NO2 in ambient air,
NO2 is converted to NO in a catalytic converter before the air enters the reaction chamber
and mixes with O3. A solenoid valve switches between passing ambient air directly to
the reaction chamber for measuring NO and passing the air through the converter for
measuring NO2 + NO, that is NOx. The voltage output of the photo multiplier tube
is conditioned and presented as ppb NO and ppb NOx. NO2 is finally calculated as
NOx − NO in ppb.

A data logger is connected to the analyzer and receives new values typically every
10 s from the instrument. The instantaneous readings are averaged to 1-h values which are
stored in the data logger and transferred to the central database at NILU every hour.

2.1.2. Hourly NO2 Concentration Dataset

The dataset of NO2 concentration used in the study covers 4 years of hourly mea-
surements from 2015 to 2018, with their corresponding QC label. The percentage of data
coverage as described in Table 2 are close to 100% for the nine stations in between years
2015 and 2018.
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Table 2. Metadata of the nine monitoring stations measuring NO2 located in the municipality of Oslo.

ID Component
2015–2018

Coverage (%) Valid (%)

7 NO2 99 93
464 NO2 99 90
827 NO2 99 99
665 NO2 99 98

9 NO2 92 92
11 NO2 99 99

163 NO2 97 96
504 NO2 98 98
809 NO2 99 90

As an illustration, Figure 3 represents the nine timeseries of hourly NO2 in Oslo
between the period 4 December 2015 00:00:00 and 8 December 2015 00:00:00.

Figure 3. NO2 observation timeseries between 4 December 2015 00:00:00 and 8 December 2015 00:00:00 of the nine
monitoring stations in the municipality of Oslo.

2.1.3. Road Work at Smestad between 2015 and 2016

In 2015–2016, the Norwegian Public Roads Administration (Statens Vegvesen) did a
major upgrade of the tunnels on the motorway called ‘Ring 3’, close to the station located
at Smestad. While the work was going on, the station was moved temporary from 21 May
2015 to 8 February 2017 a few meters closer to the road, to give way for a temporary
footpath and bus stop. This temporarily location was 10.670066 degrees longitude and
59.932529 degrees latitude (Figure 4). As consequence, NILU collected the measurements
from the two locations in two different time series to be able to separate them. It is thus
expected that the concentrations at the temporary location from 21 May 2015 to 8 February
2017 to be slightly higher than at the permanent location. This event is exploited in
our study.

2.2. Air Quality Prediction Using RFreg in a Total Error Framework

We take the case of a one-site AQ prediction based on a multi-site network using
RFreg. The model predicts NO2 concentration at one specific location and at each time
step. The predictors are the other stations, located in the same city, measuring components
having a connection with the NO2 signal. Meteorological observations such as wind,
temperature and other traffic-related observations are of great importance while improving
the prediction of NO2 over a city. However, for sake of simplicity, only stations measuring
NO2 are used to develop a multi-timeseries regression model. Furthermore, the regression
model will not take any space-time information; no past observation will be included as
predictors into the model to predict a value at time t. We are aware that such simplification
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will alter the accuracy of the prediction. Nonetheless the main goal of this study was not to
provide the best prediction model but instead to introduce RFreg with the three approaches
Eaamm 2010, Wager 2014 and Lu 2019 into the Total Error framework.

Figure 4. Permanent location of station 504 at Smestad (left). Temporary location of station 504 from 21 May 2015 to
8 February 2017 (right).

The purpose of this section is to highlight the different p-value expressions according
to the error models used by Eaamm 2010, Wager 2014 and Lu 2019. All three approaches
are applicable once the measurement campaign is completed. Then predicting errors can
be processed either on historical data or used for real-time error prediction. All three
approaches, Eaamm 2010, Wager 2014 and Lu 2019 using Random Forest, and adaptations
cited in this section, are incorporated in the R-package cipred https://git.nilu.no/rqcr/
cipred (accessed on 18 March 2021).

2.2.1. Theoretical Approach

Input and output errors. Let X = (Xt)t=1,...,T and Y = (Yt)t=1,...,T denote the true
input timeseries (perfect signal of air pollution component at different stations) and true
output timeseries (perfect signal of one specific air pollution component at one station),
respectively. Let X̃ = (X̃t)t=1,...,T and Ỹ = (Ỹt)t=1,...,T denote the observed values of X and
Y, respectively. We describe our input and output error as:

X = f (X̃, ε f ) (1)

and
Y = g(Ỹ, εg) (2)

where f () and g() describe the input and output error models, respectively, and ε f and εg
are their respective latent variables.

Structural modeling error. Models such as linear regression, non-linear regression,
machine learning or any other powerful concepts, approximate a real phenomenon. Their
internal algorithm is prone to artifacts that add error to the prediction. Considering a
data-centric model such as Random Forest, even though inputs and outputs are perfect
but are available for a limited period, it is unlikely a model will reproduce true outputs
outside of the data region it has been trained for. These errors are referred to as structural
modeling errors.

Let M() denote a model with a set of parameters θ that matches perfectly the relation
between true input and true output. Let Ŷ = (Ŷt)t=1,...,T denote the output predicted by
the model:

Ŷ = M(X, θ) (3)

Incorporating structural modeling errors into (3) reads:

https://git.nilu.no/rqcr/cipred
https://git.nilu.no/rqcr/cipred
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Ŷt = h(M̃t(Xt, θ), εh) (4)

where M̃t() is the non-perfect model at time t, h() the structural error model and its latent
variable εh. In our study, M̃t(Xt, θ) represents the supervised regression model based
on the Random Forest algorithm [27] implemented in [30] where θ characterizes its set
of parameters.

Remnant error. Our lack of knowledge about AQ phenomena and our omissions
in the descriptions of our input and output errors and structural error create inevitable
imperfections. These are called “remnant” error [38,39]. In the case of a data centric AQ
modeling, this error appears because of the approximation of the impact of weather on air
pollution, its coarse representation of urban activity (e.g., lack of information about work
on road, etc.) and emission due to traffic activity (e.g., lack of information about traffic jam,
or any accident, etc.). The remnant error reads:

Yt = r(Ŷt, ηr, εr) (5)

where r() is the remnant error model and its latent variables ηr, and εr. Traditional data
fitting methods, such as standard least squares method, assume all observed inputs to be
error free and structural and output errors to be gathered into a remnant error also called
residual error being described as a Gaussian random process.

Total Error framework. By including Equations (1)–(3) into (5), the expression of AQ
prediction in the Total Error framework reads:

g(Ỹ, εg) = r(h(M̃t( f (X̃, ε f ), θ), εh), ηr, εr) (6)

2.2.2. Approach by Eaamm 2010

Input error. They assume input to be error-free.
Output error. This error represents the measurement error of the target station mon-

itoring AQ. The European Committee for Standardization (CEN) published a standard
EN 14211:2012 [41] about ambient air monitoring instrumentation. It describes a specific
method for the measurement of the concentration of NO2 and NO by chemiluminescence,
and a specific procedure for testing a candidate analyzer and thus quantifying its error.
The testing requires extensive equipment and certification and is usually left to specialized
testing organization like TÜV in Germany. In its report [42], TÜV presents the analyzer
model T200 to get measurements Ỹt with an additive, heteroscedastic error proportional
to the measure and following a Normal distribution. Including these information into
Equation (1), AQ signal and its error read:

Yt = Ỹt + εg,t, (7a)

εg,t ∼ N (0, σ2
g,t), (7b)

σg,t =

{
Φg,1 if Ỹt ≤ Φg,3
Φg,2.Ỹt if Ỹt > Φg,3

(7c)

where εg,t is the measurement error model and Φg,1, Φg,2 and Φg,3 its parameters.
In addition to TÜV, NILU is accredited according to ISO 17025:2017 [43] for testing

analyzer by following a Standard Operating Procedures (SOPs). The estimation of the
parameters is based on the results at CI95 from the TÜV report (at page 76, table 34). NILU
tested the analyzer and estimated some component of the errors: the uncertainties for
repeatability at zero, repeatability at the hourly limit value and linearity. The estimated
standard uncertainties were 0.047, 0.287 and 2.585, respectively. Both results from TÜV and
NILU about the parameters Φg,1, Φg,2 and Φg,3 are presented in Table 3.
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Table 3. Parameters of the measurement error expression. Φg,1 and Φg,3 are expressed in µg/m3,
Φg,2 is a percentage. Values from NILU come from an internal technical report. Parameters Φg,1

and Φg,2 are divided by 1.96 in order to get a generalization on the whole Normal distribution and
not only at the confidence interval 95-percentile (CI95). Parameter Φg,3 is a threshold and does not
require any division by 1.96.

Entity Φg,1 Φg,2 Φg,3

TÜV 0 4.35/1.96 0
NILU 5.64/1.96 5/1.96 112.8

Structural modeling error. The structural modeling error is additive and follows a
Normal distribution centered in zero with an unknown standard deviation. It reads:

Ŷt = M̃t(Xt, θ) + εh,t, (8a)

εh,t ∼ N (0, σ2
h,t), (8b)

Remnant error. The remnant error is highlighted by plotting a quantile–quantile chart
with a reference dataset against a dataset to be tested. The remnant error represents an
affine equation with a coefficient β0 and a second part additive, εr, homoscedastic and
following a Normal distribution centered in β1 and with an unknown standard deviation
σr. It reads:

Yt = β0.Ŷt + εr, (9a)

εr ∼ N (β1, σ2
r ), (9b)

Total Error framework. By including Equations (7)–(9) into (6), the approach
Eaamm 2010 in the Total Error framework reads:

Ỹt ∼ N
(

β0.M̃t(Xt, θ) + β1, σ2
g,t + σ2

h,t + σ2
r

)
(10)

Eaamm 2010 estimates first, the parameters β0 and β1 from Equation (9), then estimates
the standard deviation gathering both σ2

r and σ2
h,t, by using the following expression:

σ2
r + σ2

h,t = rss/(n− 2)− σ2
g,t + β0 + (β1 − 1).Ỹt (11)

where rss is the sum of the squared of the residuals between the affine equation β0 + β1.
Ỹt and the prediction Ŷt.

Finally, the expression of the p-value reads:

pteaamm2010 = N
(

Ỹt|β0.M̃t(Xt, θ) + β1, σ2
g,t + σ2

h,t + σ2
r

)
(12)

2.2.3. Approach by Wager 2014

Input error. They assume input to be error-free.
Output error. They assume output to be error-free.
Structural modeling error They assume structural modeling error being an hetero-

cedastic error following a Normal distribution with an unknown standard deviation σr.
It reads:

Yt = Ŷt + εh,t, (13a)

εh ∼ N (0, σ2
h,t), (13b)

Remnant errors. They assume no remnant error.
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Total Error framework. By including Equation (13) into (6), the expression of Wa-
ger 2014 in the Total Error framework reads:

Ỹt ∼ N
(

M̃t(Xt, θ), σ2
r,t

)
(14)

According to [29], Wager 2014 processes the standard deviation σr,t by estimating the
variance of the bagged predictors of the RFreg.

Finally, the expression of the p-value reads:

ptwager2014 = N
(

Ỹt|M̃t(Xt, θ), σ2
h,t

)
(15)

2.2.4. Approach by Lu 2019

Input error. They assume input to be error-free.
Remnant errors. They gather structural and output errors into a non-parametric

remnant error.
Total Error framework. This approach provides a heteroscedastic non-parametric

prediction error distribution which reads:

Ỹt ∼ F̂
(

M̃t(Xt, θ), v(Xt)

)
(16)

with v(), the ensemble of the out-of-bag weights given the X̃ used while training RFreg
model [31].

Finally, the expression of the p-value reads:

ptlu2019 = F̂
(

Ỹt|M̃t(Xt, θ), v(Xt)

)
(17)

2.3. Predictive qq-Plot: Diagnostic to p-Values

Performance of the error prediction. Instead of a metric such as mean-square-error
and all the relatives, error predictions are validated using the p-value of the observations
Ỹ. The predictive qq-plot (pqq-plot) provides a simple and informative summary of the
performance of error prediction. It has been used as a verification tool for hydrological and
meteorological prediction and simulation [38,39,44,45]. We summarize here the concept: If
the observation Ỹt is a realization of the predictive distribution described by its cumulative
distribution function (cdf) F̂t(), every p-value F̂t(Ỹt) is a realization of a uniform distribu-
tion on [0,1]. The pqq-plot compares thus the empirical cdf of the sample of p-values F̂t(Ỹt)
for every time step with the cdf of a uniform distribution. An illustration of the pqq-plot is
adapted from [45] and presented in Figure 5; it can be interpreted as follows:

– Case 1: If all points fall on the 1:1 line, the predicted distribution agrees perfectly with
the observations.

– Case 2: the window of the predicted error is overestimated.
– Case 3: the window of the predicted error is underestimated.
– Case 4: the prediction model systematically under-predict the observed data.
– Case 5: the prediction model systematically over-predict the observed data.
– Case 6: When an observed p-value is 1.0 or 0.0, the corresponding observed data

lies outside the predicted range, implying that the error prediction is significantly
underestimated.
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Figure 5. Interpretation of the predictive qq (pqq)-plot adapted from [45].

Precision of the error prediction, also called sharpness, is a term used while being
in case 1. It is a qualitative description of how narrow the error prediction distribution is
while including the ’ground truth’. A higher precision describing a narrow error prediction
is helpful for taking decision.

2.4. Experimentation Plan
2.4.1. Comparison of the Three Approaches

The first experimentation focus on comparing models of error prediction according to
the three approaches Eaamm 20110, Wager 2014 and Lu 2019 for each station presented in
Table 1 but the one located at Smestad. While one station is the target, the other stations
represent the predictors. The model does not use any space-time information; no past
observation will be included as predictors into the model to predict a value at time t. The
intern parameters of the Random Forest algorithm are kept as the default ones from the
Ranger library [30] (number of trees: 500, number of variables to possibly split at in each
node: 2, minimal node size: 5). The purpose of the study is not to improve the RFreg
prediction. The second experiment focus on highlighting the effect of changing the location
of a station. The target station is the one located at Smestad, the other stations represent
the predictors.

For the diagnosis of both the RFreg prediction and the error prediction, we focus
on valid observed hourly NO2 data only, as determined by quality control experts from
NILU. The full observed dataset is split in two equal and continuous parts: the first period
is used for the training and the testing of the model; the second period is used for the
validation. The first period is randomly split in two parts with a ratio 80/20 for the training
and the testing steps. Given road works at Smestad between 2015 and 2016, we decide
to choose the training and testing phase for years 2017–2018 and the validation phase for
years 2015–2016.

We apply regular metrics to quantify the general accuracy of the predicted output from
RFreg: Root Mean Square Error (rmse), Mean Absolute Error (mae), Bias and coefficient of
determination (R2).

To compare the error predictions of the three approaches, we plot their output on
a pqq-plot.
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2.4.2. Quantifying the Structural Modeling Error of RFreg with Synthetic Datasets

Quantifying each part of the Total Error framework is useful to give insights to QC
AQ experts on how much they can trust the error prediction and which part of the errors
might be failing in producing relevant information.

In our specific case, input and output errors got their expression quantified by a
certified organization (TÜV). In addition, Eaamm 2010 showed remnant error to follow an
affine equation. We focus this second experiment in providing more information about the
structural modeling error of RFreg.

The work of [46,47] highlights the presence of structural modeling error in RFreg.
In order to illustrate the structural modeling error in RFreg in a more general case, we
create two synthetic datasets representing a “truth”: (i) dataset A representing the study
of [46,47] with one input characterized by an uniform probability density function (pdf)
and a linear expression connecting input and output, (ii) dataset B with 10 inputs, each of
them following an exponential pdf with parameters from 0.01 to 0.055 and a non-linear
expression connecting inputs and output. In all our experiments, input and output are
scaled and assumed perfect, i.e., without any noise. The parameters of the synthetic
datasets are described in Table 4. The RFreg model is trained on a subset of the “truth”.
Two types of subset are created: (i) type 1 with values chosen uniformly in the middle
of the dataset, (ii) type 2 with values chosen randomly. We avoid any remnant error by
including all the inputs in the training and the prediction phases. The parameters of the
training dataset are described in Table 5. To reproduce the results from [46,47], we process
a first experiment by using dataset A and train our RFreg on training dataset subset type 1.
We then predict using the input of the whole dataset A. We process a second experiment by
using dataset B and train our RFreg on training dataset subset type 2. We then predict with
the inputs from dataset B not used in training dataset. We repeat the second experiment
four times to get an overview of structural modeling error RFreg with datasets having
similar characteristics.

From the three approaches used in this study, Wager 2014 provides an expression of the
structural modeling error independent from the other errors. In addition, the construction
of the error prediction from Lu 2019 enables to catch the structural modeling error in the
case where only this type of error is present. We thus implement both Wager 2014 and
Lu 2019 in our second experiment to look at how these approaches catch the error signal.
The work of Eaamm 2010 determined indirectly structural modeling error from input and
remnant errors and empirical residual. It will not be included in this part of the study.

Table 4. Characteristics of “truth” datasets with expression between input and output, linear:
y = 1/40x0, non-linear: y = x0 + x1 + x2 + log(x3)− x4 + x5/x6 + x7 + log(x8)/x9, with x9 = 1 if
x9 mod 2 = 0, and x9 = 50 otherwise.

ID Length Input
Pdf

y = f (x)
Distribution Parameters

A 2991 1 uniform – linear
B 2991 10 exponential [0.01:0.055] non-linear

Table 5. Characteristics of training datasets subset, built-up from “true” datasets.

Type Length Index Range Choice of the Indexes

1 1000 [1001:2000] non-random, no replacement
2 1000 [1:2991] random, no replacement

3. Results
3.1. Metrics of AQ Prediction Based on RFreg

Metrics about the RFreg prediction is presented in Table 6. For the testing phase,
RFreg provides moderate prediction for most of the stations with a R2 around 0.75, a bias
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close to zero and low rmse. Only station 11 sees its RFreg prediction getting a low R2 at
0.57. For the validation phase, all the stations but station 11 gets a R2 around 0.75 with a
light decrease in comparison to the testing phase. The bias is slightly larger than during
the testing phase and are in a range between −5.2 and 4.7. As expected, station 504 sees its
bias decreasing to −11.95.

Table 6. Metrics of the prediction of the nine monitoring stations measuring NO2 for the testing
phase and the validation phase.

Testing Validation

ID rmse Bias R2 rmse Bias R2

7 12.92 0.10 0.76 15.49 4.70 0.76
464 10.13 −0.13 0.79 13.82 −5.21 0.80
827 11.33 0.42 0.74 15.37 0.79 0.70
665 16.26 −0.53 0.71 3.34 −2.04 0.67

9 7.34 0.13 0.85 12.35 −3.20 0.80
11 18.22 0.81 0.57 22.01 2.71 0.54
163 10.31 −0.29 0.76 13.91 0.17 0.72
809 8.16 0.33 0.79 9.98 1.18 0.80
504 9.66 −0.10 0.83 19.94 −11.95 0.77

3.2. Comparison of the Three Approaches

An illustration of the timeseries at station 7, including the observations, the RFreg
prediction and the different error predictions at CI95 during the validation period is
presented in Figure 6. The error prediction looks wider with Eaamm 2010 than with
Lu 2019 and thinner with Wager 2014. This impression is confirmed in the pqq-plot
Figure 7 where all the stations are present. During the testing phase and according to
Figure 5, Eaamm 2010 overestimates the window of the predicted error, while Wager 2014
underestimates the window of the predicted error. Lu 2019 agrees with the observations.
During the validation phase, Lu 2019 provides a better error prediction in comparison
to Eaamm 2010 and Wager 2014 but sees the uniform distribution of its p-values being
slightly distorted.

Figure 6. Cont.
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Figure 6. Sample of observation (dots) timeseries with the RFreg prediction (line), the error prediction at CI95 (gray area)
following Eaamm 2010 at station 7 between 4 December 2016 and 8 December 2016 (upper left), following Wager 2014 at
station 7 between 4 December 2016 and 8 December 2016 (upper right), following Lu 2019 at station 7 between 4 December
2016 and 8 December 2016 (lower).

Figure 7. Predictive qq-plot for the training/testing period 2017–2018 (left). Predictive qq-plot for the validation period
2015–2016 (right). The different methods are colored in red for Eaamm 2010, green for Wager 2014 and blue for Lu 2019.
Each curve corresponds to one station.

An illustration of the timeseries at station 11, between 4 December 2016 and 8 De-
cember 2016 and characterized by an RFreg prediction model with a low R2 during the
validation period, is presented in Figure 8. This low metric does not alter the error predic-
tion both for the training and the validation phases, as we see in Figure 9.

An illustration of the timeseries at station 504, between 4 December 2015 and 8 De-
cember 2015 and characterized by the change of location during the validation period, is
presented in Figure 8. The error model Lu2019 agrees with the observations in the testing
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phase, but systematically under-predict the observed data in the validation phase, as seen
on Figure 10.

Figure 8. Sample of observations (dots) timeseries with the RFreg prediction (line), the error prediction at CI95 (gray area)
following Lu 2019 at station 11 between 4 December 2016 and 8 December 2016 (left), following Lu 2019 at station 504, one
year earlier, between 4 December 2015 and 8 December 2015 (right).

Figure 9. Results at Station 11. Predictive qq-plot for the training/testing period 2017–2018 (left). Predictive qq-plot for the
validation period 2015–2016 (right). The different methods are colored in red for Eaamm 2010, green for Wager 2014 and
blue for Lu 2019.
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Figure 10. Results at Station 504. Predictive qq-plot for the training/testing period 2017–2018 (left). Predictive qq-plot for
the validation period 2015–2016 (right). The different methods are colored in red for Eaamm 2010, green for Wager 2014 and
blue for Lu 2019.

3.3. Structural Modeling of RFreg

The result of our experiment with the synthetic dataset A and subset type 1 is illus-
trated in Figure 11. It reproduces the results of [46,47]. We see two phases in this figure.
The first one represents the RFreg model correctly predicting the output. The second one
shows RFreg reaching its limit at the border of the sampling dataset used for training the
model. Indeed, the prediction describes two constants determined by the output at the
limit of the sampling. Like RFreg, its corresponding error shows two phases: a plateau
with a value around zero inside the sampling area and two vertical asymptotes.

Figure 11. Illustration of the artifact of RFreg on structural modeling error with dataset A and subset
type 1. Artfact on the prediction is shown on the left. Artifact on the error is presented on the right.
Vertical gray lines represent output subset used for the training phase.

The illustrations of the errors for our second experiment with synthetic dataset B
and subset type 2 are presented from Figures 12–15. The errors do not describe a distinct
two-phase behavior anymore. Instead, the plateau gets noisier the further it gets away from
the dense area of the output used for the training. The error then “waves” as a transition
phase until getting to the asymptote. Both the error predictions of Wager 2014 and Lu
2019 get a wider error CI95 window the further it gets away from the dense area of output.
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Contrarily to the Wager 2014 approach, which follows the waving signal with a symmetric
window, Lu 2019 reaches an upper and lower constant in an asymmetric way. The pqq-plot
of our second experiment with synthetic dataset B and subset type 2, both from Wager 2014
and Lu 2019, during the prediction period, are presented in Figure 16. Lu 2019 provides a
better error prediction in comparison to Wager 2014.

Figure 12. Illustration of the artifact of RFreg on structural modeling error with dataset B and subset type 2. Artifact on the
error (purple) and Wager 2014 error prediction CI95 (dark gray) is shown on the left. Artifact on the error (purple) and
Lu 2019 error prediction CI95 (dark gray) is shown on the right. Vertical gray lines represent output subset used for the
training phase.

Figure 13. Same as Figure 12 for the second run of the experiment.
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Figure 14. Same as Figure 12 for the third run of the experiment.

Figure 15. Same as Figure 12 for the fourth run of the experiment.
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Figure 16. Predictive qq-plot for the prediction period with dataset B and subset type 2. The different methods are colored
in red for Wager 2014 and blue for Lu 2019.

3.4. Discussion

Accuracy of the RFreg prediction. In our case study, the results indicate that a simple
one-site AQ prediction based on a multi-site network using RFreg provides moderate
metrics. Former studies [19,28] showed that adding meteorological observation as input
will increase accuracy, as for example getting R2 closer from 0.9.

Performance of the error prediction. The results indicate that among the three ap-
proaches used in this study, Lu 2019 provides an error prediction with a predicted distri-
bution that best agrees with AQ monitoring stations. This is reflected by a density of its
p-values following the pattern of Case 1 in Figure 5.

Precision of the error prediction. In addition to the performance, the precision of the
error prediction, also described as its “sharpness”, is of great importance for QC experts. A
higher precision describing a narrow error prediction is helpful for taking decision. For
instance, the error prediction based on Lu 2019 for station 11 shows a good performance.
Due to an RFreg model getting poorer metrics, the error prediction describes a wider
error CI95 window in comparison to the error prediction on other stations. Increasing
the precision of error prediction for this station will require an investigation into new
features affecting the AQ signal and incorporating them in the RFreg model. To a larger
extent, ensuring an error prediction with a high precision requires efforts on getting
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accurate input, output and prediction model, and limiting our lack of knowledge about a
“true” phenomenon.

Quantifying each error type in the Total Error framework. Quantifying each type of
error involved in the error prediction is useful for assessing the error prediction model and
further improving it, in terms of performance and precision.

The expression of input and output errors results in experiments in a highly controlled
environment on AQ monitoring stations. The expression of remnant error results from the
study of Eaamm 2010. By its construction, Wager 2014 is the approach that provides an
expression for quantifying the structural modeling error of RFreg. By testing Wager 2014
and comparing it with Lu 2019 in a specific case where only structural modeling error oc-
curs, it is possible to highlight potential changes for improving the description of structural
modeling error. A better performance and precision might be reached by (i) enabling a
model error following a non-parametric or a non-Gaussian and asymmetric distribution,
(ii) getting the error model following an upper and a lower constant after a prediction
threshold. In addition, both Wager 2014 and Lu 2019 get difficulties in predicting larger
errors related to high values of prediction. Further work will focus on improving the
structural modeling error model of RFreg.

Finally, input is considered error-free in the three approaches. Further work will be
required to include it into the Total Error framework.

Towards a spatial error prediction. As shown in the study with the case of the station
in Smestad, a temporarily short shift of a station location alters considerably the ability
of our error prediction to provide good results. Further work will focus on reducing the
location-dependency of our prediction model. First, reducing the bias of the prediction
model will be done through the use of Land Use regression (LUR) model that enables to
catch small-scale spatial variation of air pollutants within urban areas [48]. Indeed, spatial
features, such as topography, proximity to infrastructure as well as the land use in a buffer
area near to air quality monitoring stations, have proven to improve the performance of
deep learning-based air pollution predictions [49]. DNN LUR, such as [50] provide an
approach of geo-context in an unsupervised way that outperforms other approaches such
as RF. For these reasons, spatial error prediction will require the use of either Bayesian
DNN or Deep Ensemble.

4. Conclusions

Instead of a flag valid/non-valid usually proposed in the quality control (QC) pro-
cesses of air quality (AQ), we proposed a method that predicts the p-value of each obser-
vation as a value between 0 and 1. We based our error predictions on three approaches:
Eaamm 2010, Wager 2014 and Lu 2019.

Total Error framework enables to differentiate the different errors: input, output, struc-
tural modeling and remnant. We thus theoretically described a one-site AQ prediction based
on a multi-site network using Random Forest for regression in a Total Error framework.

We implemented the methodology with a dataset of hourly NO2 measured by a
network of monitoring stations located in Oslo, Norway, and implemented the error
predictions for the three approaches. The results indicate that a simple RFreg prediction
model provides moderate metrics for fixed stations. According to the diagnostic based
on pqq-plot and among the three approaches used in this study, Lu 2019 provides better
error predictions. Our RFreg prediction model sees limitations while temporarily shifting a
station location. Further work will be required on reducing the location-dependency of our
prediction model.

Quantifying each type of error involved in the error prediction is useful for staying crit-
ical about the error prediction models and further improving them in terms of performance
and precision. We presented the structural modeling error of RFreg with synthetic datasets
aiming at reproducing existing results and proposing improvement in the expression of its
error model. Further work will focus on improving the structural modeling error model of
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RFreg. Finally, input is considered error-free in the three approaches. Further work will be
required to include it into the Total Error framework.
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