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Abstract: Continuous atmospheric sampling was conducted between 20102015 at Casey station in
Wilkes Land, Antarctica, and throughout 2013 at Troll Station in Dronning Maud Land, Antarctica.
Sample extracts were analyzed for polybrominated diphenyl ethers (PBDEs), and the naturally
converted brominated compound, 2,4,6-Tribromoanisole, to explore regional profiles. This represents
the first report of seasonal resolution of PBDEs in the Antarctic atmosphere, and we describe con-
spicuous differences in the ambient atmospheric concentrations of brominated compounds observed
between the two stations. Notably, levels of BDE-47 detected at Troll station were higher than those
previously detected in the Antarctic or Southern Ocean region, with a maximum concentration of
7800 fg/m3. Elevated levels of penta-formulation PBDE congeners at Troll coincided with local
building activities and subsided in the months following completion of activities. The latter provides
important information for managers of National Antarctic Programs for preventing the release of
persistent, bioaccumulative, and toxic substances in Antarctica.

Keywords: Antarctica; persistent organic pollutants; brominated flame retardants; environmental
transport; global chemical monitoring; chemical policy

1. Introduction

Polybrominated diphenyl ethers (PBDEs) are a group of organohalogen compounds
used extensively as flame retardants in consumer products during the past 50 years [1].
Their environmental behavior of persistence and long-range dispersal, combined with their
biological impact of bioaccumulation and toxicity, has led to the inclusion of all commercial
PBDE formulations under Annex A of the Stockholm Convention on Persistent Organic
Pollutants (POPs) [2]. The global ban of commercial penta- and octa-BDEs entered into
force in 2009, although not until 2019 for deca-BDE [3].

PBDEs have been reported in Antarctic biota since 2004 [4-21], and in case studies of
the Antarctic atmosphere since 2012 [22-27]. Unlike agrichemicals, such as organochlo-
rine pesticides, the Antarctic occurrence of which can be attributed solely to long-range
environmental transport (LRET), current and recently used POPs, such as PBDEs, are also
finding their way to the remote Antarctic region via in situ usage [8-10]. Recent studies
focusing on Antarctic research stations as emitters of PBDEs to the local environment have
evidenced such emissions at: McMurdo station and Scott Base in the Ross Sea Region [10];
Casey Station in the East Antarctic sector [28]; and Julio Escudero and Gabriel de Castilla
Stations [29] on the South Shetland Islands [29]. These findings in turn indicate that all
polar research stations can be potential sources of these compounds to the local environ-
ment [8,10,28]. In the above-named studies, there were significant differences in both the
levels and profiles of PBDEs detected within stations, and in the local surrounding area.
Although station population capacity appears to be an indicator of absolute contaminant
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levels, Hale et al. (2008) proposed that station contaminant profiles reflect the host nation of
the station, and thereby national chemical legislation and national chemical usage patterns.
Increasingly, as stations age and undergo renovation, profiles are also likely to reflect the
chemical constituents of chosen building materials at the time of construction.

The published data concerning PBDEs in the Antarctic atmosphere reveals a number
of limitations characteristic of POP research in the region, and which have previously been
discussed in the literature [30,31]. Specifically, they have been derived from predominantly
short, one-off sampling campaigns, with an evident strong spatial bias across the continent.
Further, resulting data has been obtained by a variety of sampling approaches, and the
targeted chemical structures of each study are also not uniform [31]. To our knowledge,
there have been six case studies that have reported PBDEs in air masses of the Antarctic
region. Associated sampling periods of these studies date back to 2001. Four of these
studies originate from the Antarctic Peninsula region [23,24,26,27], whereas one origi-
nates from Dronning Maud Land [22], and one from the eastern Antarctic sector [25].
Four of the six studies implicated local emission sources for one or more of the congeners
detected [24,26,27,32].

The Global Monitoring Plan (GMP) [33] was implemented to evaluate the effectiveness
of the Stockholm Convention in meeting its goals. It seeks to do so through collection and
analysis of comparable samples in UN regions, in order to understand temporal and spatial
trends. Data are collected from the core matrices of ambient air, human breastmilk, and
blood, in addition to surface water for water-soluble POPs. Although the human matrices
monitored under the GMP are not applicable in Antarctica due to the absence of a subsisting
human population, the detection of chemicals in the Antarctic atmosphere and surface
waters can provide unique insight into hemispheric chemical usage patterns and the global
reach of chemical emissions. As the most remote region on the planet, the Antarctic plays a
special role under the GMP because it is to the greatest extent removed from manufacturing
emissions. Detection of chemicals in Antarctica can therefore serve as direct and empirical
evidence of chemical persistence and capacity for LRET, i.e., two of the four requisite
criteria for categorization of a chemical as a POP [30]. Alternatively, detection may reveal
local emissions, in breach of the Protocol on Environmental Protection to the Antarctic
Treaty, which prevents the release of prohibited substances [34]. In both cases, monitoring
plays a pivotal role in accelerated regulatory decision making and effective, evidence-led,
chemical policy.

In support of the GMP, continuous atmospheric monitoring for POPs was imple-
mented at Troll Station (Norway) and Casey Station (Australia) in Queen Maud Land
and east Antarctica, respectively. Air extracts from the two programs were analyzed for
PBDE to further investigate long-range hemispheric sources versus local emissions of these
chemicals.

In addition to PBDEs, naturally occurring brominated compounds have been detected
in the global environment, including Antarctica [8,35,36]. Many are structurally similar to
problematic synthetic equivalents; hence, concerns have been raised with regard to their
associated environmental and biological risks. 2,4,6-Tribromoanisole (TBA) is a fungal
metabolite of brominated phenolic compounds often used as a fungicide or found as
contaminants in pesticides. 2,4,6-tribromophenol, the chemical structure of which closely
resembles PBDEs, was included in analysis for ancillary insight into the presence of, and
regional differences in, levels of this organobromine compound.

Here, we report the results of continuous atmospheric sampling, combined with tar-
geted PBDE analysis, at two all-year research stations in Antarctica. Parallel sampling and
analysis controls for inter-laboratory method variation and analyte repertoire comparison.
Similarly, the extended monitoring period (one (Troll) to five (Casey) years) yields the
first insight into the seasonal resolution of PBDEs in the Antarctic atmosphere. Finally,
TBA is reported for the first time in the Antarctic atmosphere. We describe the dramatic
differences in ambient atmospheric levels of PBDEs observed between the two stations.
The latter provides important information for the Council of Managers of National Antarc-
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tic Programs (COMNAPs) for local source identification, and thus mitigation of breaches
of the Antarctic Treaty related to release of prohibited substances in Antarctica.

2. Materials and Methods
2.1. Site Descriptions

Casey Station is one of Australia’s all-year Antarctic research stations. It is located on
Wilkes Land in the Australian Antarctic Territory (66°16'56”S 110°31'32”E) (Figure 1). On a
local scale, the station is situated on the Bailey Peninsula. A High Flow-Through Passive
Air Sampler (HFTPAS) was installed at an upwind, “background” site across Newcomb
Bay, at the abandoned Wilke’s station, on the Clark Peninsula, approximately 3 km from
Casey station [30].

.
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Figure 1. Antarctic air sampling locations in the current study.

The Norwegian Troll Atmospheric Observatory is located at 72°00'42" S; 2°32'06" E,
in Dronning Maud Land, Antarctica (Figure 1). It is situated 235 km inland from the
Antarctic coast and 1553 m above sea level. The South African SANAE IV station lies
190 km west-north-west of the observatory, and the German Neumeyer station lies 420 km
to the east-north—east. Troll station is serviced by a blue-ice airfield on the Jutulsessen
glacier, 7 km north of the main station.
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2.2. Air Sampling
2.2.1. High Flow-Through Passive Air Sampler—Casey Station, East Antarctica

Atmospheric monitoring in the Australian Antarctic Territory was performed with a
High Flow Through Passive Air Sampler (HFPAS) specifically developed for measuring
trace contaminant levels encountered in remote regions (Figure S2) [31,37]. The sampling
equipment has previously been outlined in detail [30,37]. In brief, the sampling unit
consists of three polyurethane foam (PUF) plugs loaded into a cartridge in series and
mounted in an aerodynamically shaped housing on a post with a rotatable joint. The
sampler-housing unit is designed to automatically face into oncoming wind, thereby
increasing airflow across the sampling media. This serves to increase the sampling rate
compared to other non-powered passive air samplers, thus permitting remote sampling
away from power sources/inhabited areas. The ambient wind speed is measured via an
anemometer mounted on a post, at a similar height to the sampler, two meters from the
sampler. At Casey station, each sampling set of cartridges included two PUF disk field
blanks (one 7.62 cm and one 2.54 cm), in addition to the three PUF disks (two 7.62 cm and
one 2.54 cm) that were used to make up the sampling train. Field blanks were handled
in the same manner as the sample PUFs. Upon deployment and retrieval of the sample
PUFs, the field blank jars were opened and the PUF disks removed and replaced using
pre-cleaned tongs.

2.2.2. High-Volume Active Sampling—Troll Atmospheric Observatory, Queen Maud Land

Air samples from the Troll Atmospheric Observatory, Queen Maud Land, Antarctica
were collected using a High Volume Active Air Sampler (HVAAS) (DHA-80, 5 DIGITEL,
Hegenau, CH). Air samples were collected during 2013 on a weekly basis covering seven
days per sample, drawing air at 15-25 m3/h across a glass fiber filter (GFF) (particulate
fractions) and two PUF plugs (gas phase fraction) (target volume of 2500-3500 m?). Flow
rates and sampling conditions were digitally monitored and documented.

2.3. Sample Preparation

Prior to deployment, the PUF disks for Casey station were scrubbed under hot water
and pre-cleaned by soxhlet extraction for 24 h with petroleum benzene, followed by 24 h
with acetone. PUF disks were dried in a dessicator under pure nitrogen flow and sealed
in furnaced glass jars with Teflon-lined lids until sampling. All solvents, adsorbents, and
gasses used were of the highest standard and selected for ultra-trace analysis. The PUF
plugs for Troll station were pre-cleaned by soxhlet extraction for 24 h in toluene, 8 h in
acetone, and 8 h in toluene, followed by drying in a dessicator. Glass-fiber filters were
baked at 450 °C. Both media were wrapped in foil and sealed in airtight Ziplock bags.

Upon collection, the exposed sample media from both Troll and Casey stations were
sealed in a gas-tight container for storage and transported to the Norwegian Institute for
Air Research (NILU) for processing and quantification.

2.4. Sample Extraction and Analysis

All sample media (glass fiber filters, PUF plugs from the HVAAS and the HFTPAS)
were soxhlet extracted for 8 h in hexane/diethylether (9:1) at NILU’s laboratory. The glass
fiber filter and PUF plugs from the HVAAS at Troll were extracted together and the
concentrations from Troll represents the bulk concentrations of gas and particle phase.
Prior to extraction, each sample was spiked with 10 ng of 13C-labelled internal standard.
The extract was cleaned by acid treatment and on a preconditioned silica column, topped
with sodium sulphate. Once the solvent volume of the cleaned extract was concentrated
down to 0.5 mL, 10 ng of tetrachloronaphthalene (TCN) was added as the recovery standard.
Further concentration of the sample to ~100 uL was completed by applying a gentle stream
of pure nitrogen gas.

The Casey and Troll air extracts were analyzed for seventeen PBDE congeners, namely;
PBDE-28, -47, -49, -66, -71, -77, -85, -99, -100, -119, -138, -153, -154, -183, -196, -206, -209,
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and for 2,4,6-Tribromoanisole (TBA). Compounds were separated using a Hewlett-Packard
6890N (2003-2006) high-resolution gas chromatography (HRGC) instrument with helium
used as the gas carrier. Detection and quantification were performed using a Micromass
AutoSpec (Micromass Waters, Manchester UK) high-resolution mass spectrometer (HRMS)
with a resolution >10,000 running in electron impact mode (EI) and electron capture
negative ion mode (ECNI).

2.5. Quality Assurance

To account for inherent PUF contamination or contamination that may have occurred
during analysis and/or transportation, lab blanks and field blanks were included in the
experimental protocol [38].

The following quantification conditions were fulfilled for all data presented: (i) The
retention time of the native was within three seconds of the corresponding '3C-labelled
isomer; (ii) the isotope ratio of the two monitored masses was within +20% of the theoretical
value; (iii) the signal/noise was >3/1 for quantification; (iv) the recovery of the added
13C labelled internal standards was within 30% to 140%; (v) prior to each new series of
samples, the blank values of the complete clean-up and quantification procedures were
determined. Clean-up of samples only commenced when a sufficiently low blank value was
obtained. At least once per year the laboratory participates in an international laboratory
inter-calibration exercise.

The final reported chemical concentrations (fg/m?) in Casey Station air samples were
calculated by adding together the chemical masses extracted from the the individual sample
PUF plugs of the sampling train, and subtracting the chemical masses extracted from twice
the 7.63 cm field blank and that of the 2.54 cm field blank. Where levels in the blanks were
below detection, the reported level of quantification (LOQ) was used. In 2014, all three of
the PUF samples of the sampling train were extracted as one sample and all blank PUFs
were extracted as a single sample. The final volume of air (m?) for each sampling period
was calculated by multiplying the average wind velocity (m/s), by the total sampling time
(s), by the cross-sectional area of the flow through the sampler (m?) and adjusting this for
standard conditions [30]. On six occasions the instrument data logger failed to record wind
data for the complete sampling period. On these occasions surrogate wind data obtained
from the Bureau of Meteorology Casey Station observatory (30017) was applied for some
or all of the sampling period. Finally, the total chemical mass was divided by the sampling
volume to give the chemical concentration for each of the sampling periods.

2.6. Sampling Schedule

Continuous sampling was conducted at Casey Station between December 2009 and
November 2014. Twenty-six cartridge sample-sets were obtained during this period, each
set representing sampling periods from 4 to 17 weeks (average 6.3 weeks) (Table S1).

The 39 weekly samples from the Troll station in February-November 2013 were com-
bined into ten monthly mean concentrations and one annual mean concentration. Troll
sample IDs, sampling period, and captured wind volumes are presented in Table S2.

2.7. Statistics

A simple linear regression (R?) was performed on homologue groups to evaluate
atmospheric concentrations relative to temperature. Similarly, Pearson’s correlation coeffi-
cients were calculated for breakthrough of key congeners in each of the HFTPS samples,
relative to temperature, average wind speed, and total air volume captured.

The cosine theta similarity metric (Cosf) [39] was employed to compare the similarity
of BDE congener profiles from the two stations. This metric calculates the cosine of the
angle between two multivariate vectors.
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The cosf metric is calculated from the formula for a Euclidean dot product of two
vectors according to:

where x4 is the concentration (fg/ m3) of congener k in Casey Station air samples, x4 is
the concentration of the same congener in Troll station air samples, and 7 is the number of
BDE congeners analyzed. Values of cosf can range from 0.0 to 1.0, with 1.0 representing
a perfect match, and 0.0 indicating perpendicular vectors and no similarity between the
congener profiles [40]. This approach has been used previously to quantify the similarity
of PCB congener profiles in sediment and air [40-42].

3. Results and Discussion
3.1. Brominated Compounds in Antarctic Air

Sixteen PBDE congeners were detected in the Antarctic atmosphere throughout the
monitoring period. The only BDE congener not detected in any sample was BDE-138, and
as such BDE-138 is not mentioned in further discussion. At Casey station, all congeners,
except for BDE-138, were detected, although only congeners BDE-28, -47, -49, -66, -99, -100,
-153, -154, -206, and -209 were detected in >50% of samples. At Troll station, all congeners,
except both BDE-119 and -138, were detected. Only BDE-28, -47, -49, -66, -99, and -100
were detected in >50% of samples. At Casey station, congeners BDE-71, -77, and -119 were
detected in <10% of samples. For Troll station, this list further included BDE-85, -153, -183,
and -196. BDE-206 and -209 were detected in 60% and 63% of samples at Casey Station,
and 37% and 47% of samples at Troll Station. Despite these differences, the profiles of both
stations showed a high degree of similarity, as indicated by a Cosf value of 0.830.

¥17PBDEs at Casey ranged from <0.035 to 1700 fg/m? (average of 130 fg/m?). £1,PBDEs
at Troll station ranged from 25.0 to 19,000 fg/m3 (average of 2000 fg/m?), revealing a
marked difference in overall concentrations. If we exclude BDE-209 from XPBDEs, because
BDE-209 is commonly associated with analytical challenges and thereby a larger analyti-
cal variability, the ranges and average >1,PBDE concentrations at Casey and Troll were
0.035-580 fg/m?3 (48 fg/m3) and 25-9500 fg/m3 (1100 fg/m3), respectively.

TBA was measured and detected for the first time in Antarctic air and was found to be a
ubiquitous contaminant in the air profiles of both stations, with a range of 30-27,000 fg/m?
at Troll and 8.6-860 fg/m3 at Casey. At both stations, TBA and BDE-209 contributed the
two highest mean concentrations of 110 and 140 fg/ m?3, and 27,000 and 2100 fg/ m?3, at
Casey and Troll stations, respectively. Summary statistics are presented in Table 1, full
sample data are presented in Tables S3 and S4, and annual station average concentrations
are presented in Table 2 alongside recent atmospheric measurements at the Canadian Arctic
Station, Alert [43].

Table 1. Summary statistics for brominated compounds in Antarctic air in the vicinity of Casey and Troll Stations, where the

mean concentration (fg/ m?) is obtained only from samples in which compounds were detected at >LOQ. The % Detection

is the percentage of samples that were >LOQ, and non-detect (ND) denotes concentrations <LOQ.

Casey Troll
Compound Mean (+SD) Range % Detection Mean (+SD) Range % Detection
TBA 110 (190) <LOQ-856 90 7100 (1100) 30-27000 100
BDE-28 0.38 (0.54) <LOQ-2.6 77 29 (46) 1.0-190 100
BDE-47 4.9 (7.3) <LOQ-29 87 760 (1500) 23-7800 100
BDE-49 * 0.27 (0.49) <LOQ-2.2 69 25 (44) <LOQ-190 92
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Table 1. Cont.

Casey Troll

Compound Mean (+SD) Range % Detection Mean (+£SD) Range % Detection
BDE-66 2.4 (6.6) <LOQ-3.4 76 21 (31) —120 76
BDE-71 * 0.13 <LOQ-0.13 4 58 (64) <LOQ-130 8
BDE-77 0.16 (0.06) <LOQ-0.2) 7 43 <LOQ-43 3
BDE-85 0.25 (0.33) <LOQ-0.89 27 3 <LOQ-4 3
BDE-99 2.1(24) <LOQ-7.8 87 160 (220) <LOQ-990 76
BDE-100 0.67 (0.68) <LOQ-2.3 63 62 (92) <LOQ-390 82
BDE-119 0.32 <LOQ-0.32 4 ND <LOQ 0
BDE-138 ND <LOQ 0 ND <LOQ 0
BDE-153 0.19 (0.18) <LOQ-0.65 53 18 (13) <LOQ-30 8
BDE-154 0.16 (0.18) <LOQ-0.67 57 15 (10) <LOQ-34 16
BDE-183 0.57 (0.6) <LOQ-1.3 47 15 (8) <LOQ-24 8
BDE-196 32 (60) <LOQ-170 33 300 <LOQ-300 3
BDE-206 46 (120) <LOQ-480 63 210 (290) <LOQ-1200 37

BDE-209 ** 140 (280) <LOQ-1100 63 2100 (2300) <LOQ-9200 47

* Summary statistics based upon 2012-2014 data in which these congeners were independently quantified. ** Data associated with
uncertainties.

Table 2. Annual average brominated compound concentrations (fg/m?) at Casey and Troll Stations, presented alongside
recent measurements from the Arctic. Casey and Troll station annual mean concentrations were obtained only from samples
>LOQ. Non-detect (ND) denotes concentrations < LOQ and “-” denotes an analyte not targeted.

Alert
Casey 2010 Casey 2011 Casey 2012 Casey 2013 Casey 2014  Troll 2013 2002-2004 [43]
TBA 62.0 41.0 35.0 170.0 180.0 7100
BDE-28 1.1 0.033 0.28 0.28 0.10 29.0 180.0
Y Tri-BDE 1.1 0.033 0.28 0.28 0.10 29.0 180.0
BDE-47 19.00 0.89 2.0 2.8 2.4 760 2500.0
BDE-49 1.0 0.04 0.22 0.42 0.057 25.0 160.0
BDE-66 13.0 ND 0.51 0.95 0.081 21.0 100.0
In 2010 and 2011,
BDE-71 congeners 49 and 71 ND 0.13 ND ND 58.0 -
were co-quantified.

BDE-77 ND ND 0.11 0.2 ND ND -

Y Tetra-BDE 33.0 0.93 3.0 44 2.5 860.0 2800.0
BDE-85 0.29 0.026 0.04 0.17 0.89 ND 120.0
BDE-99 42 0.91 22 1.6 14 160.0 2400.0

BDE-100 15 0.17 0.32 0.71 0.47 62.0 450.0
BDE-119 ND ND ND 0.32 ND ND -

Y PentaBDE 6.0 1.1 2.6 2.8 2.8 220 3000.0
BDE-138 ND ND ND ND ND ND 50.0
BDE-153 0.56 0.17 0.2 0.14 ND 18.0 170.0
BDE-154 0.37 0.066 0.13 0.20 ND 15.0 170.0

Y HexaBDE 0.93 0.236 0.33 0.34 ND 33.0 390.0
BDE-183 0.59 0.39 0.23 0.83 0.31 15.0 150.0

Y HeptaBDE 0.59 0.39 0.23 0.83 0.31 15.0 150.0
BDE-196 8.7 1.4 1.64 89.0 ND 300.0 -

Y OctaBDE 8.7 1.4 1.64 89.0 ND 300.0 -
BDE-206 37.0 12.0 53 140.0 1.3 210.0 -

Y NonaBDE 37.0 12.0 53 140.0 1.3 210.0 -

BDE-209 120.0 60.0 41.0 440.0 9.7 2100.0 1600.0

Y DecaBDE 120.0 60.0 41.0 440.0 9.7 2100.0 1600.0
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3.2. Regional Differences

The concentrations of PBDEs in air samples from Troll station throughout 2013 were
on average 70 times higher than those observed in Casey air samples during the same
time period. The differences were most pronounced for tri-and tetra-BDEs (e.g., BDE-
47 being 270 times greater), but comparable for nona-BDE-206. Despite comparatively
elevated ambient PBDE air concentrations at Troll station compared to Casey station, recent
measurements in the Canadian Arctic remained, on average, eight times higher than at
Troll for comparable congeners [44].

Dickhut et al. (2012) [24] performed high volume air sampling for PBDEs at three
Antarctic locations during four austral summer seasons, between 2001 and 2005. The mea-
sured average ambient concentrations of key BDE congeners at these locations, together
with Troll and Casey levels, are presented in Table 3. From these comparisons, it is evident
that the measured concentrations of tri- and tetra-BDE congeners (BDE-28, -47, -66) at Troll
station, are the highest concentrations measured in Antarctic air to date, and even higher
than those detected in Marguerite Bay in 2001 following a laboratory fire at Rothera station
in spring 2001 (Table 3. By contrast, BDE-100 and -209 concentrations at Troll were not the
highest in this comparison (third and second highest of the five stations, respectively).

Table 3. Comparison of selected average PBDE congeners in Antarctic air in the vicinity of active
research stations (fg/ md).

Palmer Marguerite
Case Troll Terra Nova Ba .
(Q0102014) (013 (20032009 [24]  Station 200 Bay (2001
[24] [24]
BDE-47 48 760 218 305 430
BDE-99 2.0 160 155 285 260
BDE-100 0.67 62.0 60.0 60 110
BDE-209 140 2100 355 765 103,000

The higher levels observed at Troll station compared to Casey station may be attributed
to the closer proximity of the Troll air monitoring observatory to the main station (200 m)
compared to the Casey station monitoring site from the main station buildings (3 km).
Further, the presence of an ice run-way/flight traffic just 7 km from Troll station remains a
plausible source of contamination. Finally, the elevated concentrations of the tri- and tetra-
BDE:s at Troll station, which are the main constituents of the commercial penta-formulation,
may be related to construction of a new sampling container in the vicinity of the Troll
Observatory in February-March 2013. Although the original Troll and Casey stations were
erected in 1990 and 1988, respectively, local emissions of penta-BDE may originate from re-
emission from land disturbance, or from materials/products present during construction.
This latter possibility is supported by the significant drop in tri-and tetra-BDEs throughout
2013 at Troll station (Figure 2). This observation highlights the constraints of short-term,
case-study air sampling in the region in accurately determining background levels, and
underscores the need of longitudinal monitoring for the determination of robust temporal
trends.
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Figure 2. Levels of key penta-formulation congeners detected at Troll station throughout 2013.
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Although interpretation of deca-BDE-209 results require caution due to associated
analytical challenges, e.g., frequent analytical contamination by this congener, it is inter-
esting to note the dominance of this and other highly brominated congeners in samples
in which they were quantified. Penta-formulations containing BDE-47, -99, and -100 were
listed under the Stockholm Convention in 2009. The deca-BDE formulation was used
as a replacement for octa- and penta-BDEs until its inclusion under Annex A in 2019 [3].
We may expect the impact of this global chemical policy action to be reflec\ ted in residential
and environmental levels, and in the homologue profiles of the different stations (Figure 3).
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Tera Nova Bay (2003—2005)

Marguerite Bay (2001)

Troll (2013)

WBDE-47
BDE-99
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Figure 3. Relative congener homologue contributions to the respective station air profiles.
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3.3. Breakthrough Considerations at Casey Station

The elevated levels of PBDEs, in addition to the naturally occurring TBA, at Troll com-
pared to Casey station, flag the possibility that the air volumes sampled with the HFTPAS
at Casey may have resulted in breakthrough. Breakthrough occurs when the sampling
media becomes saturated with an analyte before the sampling period is finished, thus
the calculated ambient chemical concentrations are lower than they should be. Analysis
of the last PUF in the HFTPAS sampling train found that it contained on average 19%
of the bulk analyte mass, ranging from an average of 8% for BDE-154 to an average of
34% for BDE-100. The back PUF (size adjusted), represents one third of the sampling
media, so an analyte proportion of 33% or greater suggests that complete saturation of the
media has occurred. BDE-28, -47, -49, -99, and -100 approached this threshold, indicating
that Casey station measures for these analytes should be considered an under-estimate
of ambient concentrations (Table S5), and consequently the differences to Troll station an
overestimation.

There was little apparent relationship between the level of breakthrough of key com-
pounds (TBA, BDE-28, -47, -49, -100, -153, -154, -206, and -209) and temperature, with the
exception of BDE-153 (r = 0.52). All other key compounds were found to have r values
ranging from low negative values to 0.19. Similarly, the captured wind volume showed
little correlation with the level of breakthrough. Indeed, negative relationships were ob-
served for TBA, BDE-47, -100, -154, -206, and -209. The only apparent positive relationship
was observed for BDE-49 (r = 0.4). Wind speeds were likewise found not to impact the
level of breakthrough (r = 0.009 to 0.20). Deployment duration impacted breakthrough of
the lightest key congeners (BDE- 47, -49, -100) in a negative manner (r = —35, —0.42, —0.26,
respectively). This is a counterintuitive relationship and may suggest that saturation occurs
quickly, and these trace levels are easily influenced by minor fluctuations.

3.4. Seasonal Trends

The Casey station dataset offers the first multi-year data regarding ambient PBDE
air concentrations in Antarctica. Lighter PBDE congeners may be expected to be more
prone to temperature dependent volatilization due to their lower vapor pressure. This may
lead to an increase in atmospheric levels with higher summer temperatures as previously
shown for legacy POPs [30]. As Casey station measurements for the lighter BDE-congeners
were impacted by breakthrough, further interpretation of such trends was, however, not
performed. Larger congeners (hepta-, octa-, nona- and deca-) showed no significant
relationship with either temperature, season, or wind speed, although correlations may
have been obscured by, e.g., temporarily elevated measurements during 2013 (Figure 4).
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Figure 4. Levels of higher brominated PBDEs according season and year.
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Interestingly, seasonal analysis of Troll data revealed a strong winter peak in TBA
concentrations (Figure 5). This pattern corresponds to that previously found in Norwegian
air [35]. Although authors of this previous study could not explain the pattern, they
emphasized the prerequisites of both the precursor of 2,4,6-TBA, namely bromophenols,
and the airborne fungi or bacteria responsible for biotransformation of bromophenols
to TBA.

TBA
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Figure 5. TBA levels at Troll station throughout 2013.

4. Conclusions

Levels of BDE-47 detected at Troll station were higher than those previously detected
in the Antarctic or Southern Ocean region [24,42], and in the range of those previously
detected in ambient air in Southern Taiwan [45] and the Bay of Bengal [46]. Levels of
BDE-99, -100, and -209 corresponded well with measurements made previously in the
Antarctic in the vicinity of active research stations. Although on-station PBDE sources at
both Casey and Troll station remain unidentified, and indeed are likely to be numerous
and varied, the atmospheric PBDE levels observed in the vicinity of these active stations
emphasize the growing importance of local sources for Antarctic chemical contamination,
and represent important quality assurance data for untangling local versus long-range
contaminant sources in long-term monitoring studies in the region.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12060668/s1. Figure S1. Trollhaugen atmospheric monitoring observatory, Figure S2.
Photograph of the HFTPAS (rights) and anemometer plus logger unit (left) installed at Casey Station,
Table S1. Casey Station sample-sets (A-I1) together with corresponding sampling periods and Sample
volume. *-" denotes sample sets in the series for which Brominated compound measure-ments are not
available, Table 52. 2013 Troll Station samples together with corresponding sampling periods and
captured wind volume, Table S3. Casey Station chemical concentrations by sample set (2 sig. figures).
Values are travel blank corrected (LOQ). Concentrations are presented in fg/m3 to two significant
figures. ‘ND’ denotes non-detected values. In 2010 congeners BDE-49 and BDE-71 were co-quantified
(*), Table S4. Troll Station chemical concentrations by sample set. Concentrations are presented in
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fg/m3 to two significant figures. ‘ND’ denotes non-detected values, Table S5. Average percent (%)
of analyte mass held within the last (3 of 3) PUF in the sampling train (size adjusted), where ~33%
indicates complete saturation of media for the analyte.
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