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Abstract:

Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and 
pose a potential health hazard. Suspect and non-target screening with liquid 
chromatography (LC) high-resolution tandem mass spectrometry (HRMS/MS) can be 
used for comprehensive characterization of PFAS. To date no automated open source 
PFAS data analysis software exists to mine these extensive datasets. We introduce 
FluoroMatch, which automates file conversion, chromatographic peak picking, blank 
feature filtering, PFAS annotation based on precursor and fragment masses, and 
annotation ranking. The software library currently contains ~7,000 PFAS fragmentation 
patterns based on rules derived from standards and literature and the software 
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automates a process for users to add additional compounds. The use of intelligent data-
acquisition methods (iterative exclusion) nearly doubled the number of annotations. The 
software application is demonstrated by characterizing PFAS in landfill leachate as well 
as in leachate foam generated to concentrate the compounds for remediation purposes. 
FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate 
samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments.  By 
improving the throughput and coverage of PFAS annotation, FluoroMatch will 
accelerate the discovery of PFAS posing significant human risk. 

Introduction 

Over 7,500 per- and polyfluoroalkyl substances (PFAS) are compiled in the US EPA’s 
CompTox Chemistry Dashboard (“The PFAS Master List”),1,2 yet most targeted PFAS 
analyses cover fewer than 30 compounds3–5. Rarely screened and replacement PFAS 
may prove to have similar or higher toxicity compared with traditionally-measured 
PFAS.2,6–8 Therefore, user-friendly and high-throughput workflows and algorithms for 
characterizing these PFAS are needed. One major bottleneck is the comprehensive 
characterization of both known and unknown PFAS in high-resolution tandem mass 
spectrometry data. Current non-targeted approaches take advantage of the higher mass 
of fluorine-containing compounds and negative mass defect of fluorine compared to 
hydrogen to differentiate fluorinated from non-fluorinated compounds.9–12 In addition, 
many PFAS compounds can be grouped into classes and sub-classes consisting of per- 
and polyfluorinated alkyl and alkoxy-based polymers attached to unique chemical 
moieties. Common repeating structural units include CF2, CH2CF2, and CF2O. Mass 
defects calculated using fluorine-containing repeating units (e.g., CF2) instead of 12C, 
can be plotted against nominal mass to determine homologous series of PFAS sub-
classes.13–17 The success of this approach as annotation based solely on exact mass 
hinges on the assumption that most polyfluorinated compounds occupy a region of 
compositional space18 that is devoid of other non-halogenated chemicals. An analysis of 
the PubChem library as well as inventories of high production volume chemicals (e.g., 
the US Toxic Substances Control Act’s Chemical Substance Inventory)19 show that this 
assumption is not true. Additionally, the possible formulas for an exact mass containing 
fluorine atoms are numerous; for example, the exact masses of 142 formulae fall within 
1 ppm of that of PFOA¥1. Furthermore, PFAS compounds have a large number of 
isomers, with 25% of compounds in the EPA "PFAS Master List" having at least one 
matching PFAS isomer, thereby being indistinguishable by exact mass alone. This 
underscores the need to use complementary data to confidently filter suspected PFAS 
from complex mass spectrometric data, such as isotopic ratios which can narrow the list 
of potential formulae matches21,22 and (predicted) fragmentation which can provide 
further structural information. 

MS2 fragments shared across many PFAS compounds (e.g., [C2F5]-) can be used to 
distinguish fluorine-containing compounds from other exact mass matches.9,14,23 

¥Atomic constraints: C0-100 H0-100 N0-3 O0-10 F0-200 Cl0-17 Br0-17 I0-17 S0-3 P0-3
Algorithm used for formula prediction: MS-FINDER20
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Fragmentation patterns can also be used to differentiate PFAS with the same or similar 
exact mass-to-charge ratio (m/z) (e.g., [M-H5FCO]- for fluorotelomer alcohols). 

We developed FluoroMatch to address the described challenges. As part of the 
FluoroMatch software package, we introduce FluoroMatch Generator, which generates 
in-silico fragmentation libraries of perfluorinated and polyfluorinated molecules from a 
set of fragmentation rules and molecular structures indicating repeating units in order to 
continue to expand FluoroMatch in-silico libraries with the help of the PFAS research 
community. FluoroMatch can be used to annotate PFAS from data-dependent 
acquisition (DDA) and data-independent acquisition (DIA) experiments. In the case of 
DIA, spectral deconvolution is used to reconstruct precursor-fragment relationships. In 
addition, we employ iterative exclusion (IE) acquisition24, which generates exclusion lists 
from ions selected for fragmentation in previous injections, and fragments the next most 
abundant ions in iterative sample injections. This technique improves fragmentation 
coverage, especially of low abundance ions, as compared to DDA.24 We demonstrated 
the utility of FluoroMatch to characterize the breadth of PFAS molecules in liquid 
effluent from solid waste landfills (landfill leachate), as well as in foam generated to 
concentrate the compounds for remediation purposes. 

Experimental Section

Library Generation – FluoroMatch Generator 

In-silico fragmentation can be generated via: extracting fragment rules for specific 
classes of compounds where all members of the class share common fragments/neutral 
losses,25–27 predicting spectra based on fragmentation mechanisms and/or machine 
learning approaches,28–30 or using quantum mechanics to predict fragmentation31. In 
this case, because PFAS have similar fragmentation across a given sub-class, class-
based neutral losses and fragment ions were assigned, as this technique requires 
minimal assumptions and margin for error as fragments are hand-annotated from 
standards across multiple chain lengths and patterns are easily discerned. FluoroMatch 
consists of in-silico libraries that include over 7,000 species with predicted 
fragmentation (fragment and precursor formulae and m/z values, without intensity) 
across 72 PFAS sub-classes. See the supplementary files FluoroMatch_Libraries.xlsx 
and FlouroMatch_Supplemental.pdf for standards and literature used to generate 
libraries, compound sub-classes and fragmentation rules, and further details on library 
development. FluoroMatch Generator was developed in R32 to allow users to expand in-
silico libraries using their own standards and annotated PFAS spectra. The workflow for 
FluoroMatch Generator and examples are both shown in Figure 1 and describe in detail 
in FluoroMatch_Supplemental.pdf. Figure 1 shows that as PFAS differ in chain lengths, 
while the intensities of fragments fluctuate, certain main fragments are characteristic of 
all species. In the case where this assumption was not met (e.g. short-chain PFAS with 
less than 4 CF2 units), a separate library was generated. 

This document is the postprint version of an article published in 
Analytical Chemistry, copyright © American Chemical Society after peer review.  

To access the final edited and published work see https://doi.org/10.1021/acs.analchem.0c01591



4

Figure 1: Workflow to generate PFAS in-silico libraries using FluoroMatch Generator. The first step 
(Step 1) is to draw the PFAS structure in any chemical drawing software, indicating repeating units via the 
letter “A” on each side of the repeating unit. Then, the user right clicks and copies the SMILES structure 
from the drawing, pastes it into the correctly formatted input table and indicates the number of possible 
repeating units in the adjacent column. In Step 2, the user generates fragmentation rules from accurately 
annotated spectra, ideally with three or more species spectra per sub-class spanning the allowable 
number of repeating units to generalize fragment rules (column 4, 5, 6, and 7 in the topmost table). The 
table is imported in FluoroMatch Generator in step 3 and the software outputs molecular information and 
fragment masses to be used as libraries for FluoroMatch. This process employing FluoroMatch Generator 
was used to generate the current libraries included with FluoroMatch using both standards and literature. 
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Non-targeted and suspect screening workflow – Automated and Modular Modules

FluoroMatch can be applied to several acquisition workflows. Acquisition requires, at 
minimum, files containing MS/MS data and at least 10 full scans across 
chromatographic peaks for good integration. We recommend applying iterative 
exclusion data-dependent analysis (IE-DDA) to obtain the most coverage, at least for 
pooled samples (as this requires multiple injections of a single sample). Traditional 
data-dependent workflows and targeted MS/MS acquisition to increase coverage of 
known PFAS are also supported. All-ion fragmentation (AIF; also referred to as MSE) 
can also be acquired and deconvoluted using the software (currently only supported for 
Thermo) using algorithms previously developed for lipidomics.25   

FluoroMatch uses libraries generated according to the section above and modified 
software previously developed for lipidomics.25 Two versions of FluoroMatch have been 
developed: a standalone R script that can be used in a modular workflow (FluoroMatch 
Modular) and FluoroMatch Flow, which covers many aspects of the non-targeted and 
suspect screening PFAS workflow including file conversion using msConvert,33 a unique 
untargeted chromatographic peak picking strategy implementing MZmine 2.26,34 and 
blank feature filtering (BFF).35 Both versions output annotations using exact mass and 
fragment masses, rankings of multiple annotations for features, and compilations of 
meta-data on fragmentation information and peaks used to annotate features (Figure 2 
and FluoroMatch_FormattedOutput.xlsx). It is important to note that blank filtering is an 
important step employed to remove features which are from sample collection, 
processing, and acquisition, and not inherent to the sample itself. This is an important 
step in non-targeted PFAS analysis,36 especially given the various sources of PFAS 
cross-contamination that can occur.37 Note that for BFF to work best, blanks must be 
field blanks: they must have gone through the same process of sample collection, 
transport, extraction, and acquisition, as samples. The BFF method employed uses a 
stringent filter (Equation 1), and therefore samples should be chosen with the highest 
levels of all PFAS as the reference samples. More details and algorithms behind 
FluoroMatch are provided in the Supplementary Information and in-depth manuals are 
provided with the software. 

To use FluoroMatch Flow, users drag vendor files (no conversion necessary) onto the 
software interface and click run after choosing an export directory. Current vendor 
formats supported by FluoroMatch Flow include .d (Agilent), .raw (Thermo), and 
.wiff/.wiff2 (SCIEX). FluoroMatch Modular can be used to annotate feature tables 
generated by any approach (for example, XCMS or vendor software such as Compound 
Discoverer), and hence, annotations can be appended after prior non-targeted steps 
including selecting homologue features using mass defect plots.13–17 The modular 
version supports any vendor; specific methods and conversion parameters are provided 
in the manual for Waters and Bruker's files, along with the previous three vendors 
mentioned. 
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Figure 2: Workflow to use FluoroMatch software. FluoroMatch consists of FluoroMatch Flow (covering 
the entire workflow from file conversion to annotation), FluoroMatch Modular (covering only annotation, 
which can be integrated with upstream data-processing workflows), and FluoroMatch Generator (for 
developing new PFAS in-silico libraries). In blue is a workflow using FluoroMatch Flow; the user simply 
specifies which files are samples for chromatographic peak picking, which are MS/MS files for 
identification, and which samples are blanks, and then clicks run (a single sample can be used for 
multiple categories). Chromatographic peak picking is performed in an untargeted fashion on a subset of 
samples (e.g., pools), and the resulting peak list is used to target peaks across all samples. This two-step 
process improves throughput and the ability to handle large sample sizes by reducing the amount of 
samples which undergo the computationally expensive untargeted peak picking step. In grey is a modular 
workflow where the user can use their own peak picking algorithms and processing steps and use 
FluoroMatch Modular only for annotation. 

Leachate Collection and Data-Acquisition

The air-water interfacial partitioning tendencies of some PFAS species suggests that 
increasing the surface area of a PFAS-contaminated liquid may be an effective way to 
concentrate PFAS in a volume-reduced waste stream. In a laboratory experiment, 
sintered glass aquarium air stones were used to bubble air and produce substantial 
foaming (i.e., high air-water interfacial area) in samples of landfill leachate collected 
from an active MSW landfill in central Florida, US. The foam was collected using a 
stainless-steel mesh skimmer and allowed to coalesce back to a liquid form. Unlike 
destructive technologies, such as sonication38 which also relies upon the surfactant 
qualities of certain PFAS, aeration foaming is a low-energy sequestration technique that 
is shown to be effective across most of the PFAS which were analyzed using a targeted 
approach. Therefore, the highly concentrated coalesced foam samples as well as 
untreated leachate for comparison were of interest for FluoroMatch application.

Leachate, foam, and over 100 standards were acquired on a Thermo Vanquish UHPLC 
system coupled to a Thermo Q-Exactive Orbitrap mass spectrometer using a 
Phenomenex Gemini column (C18 with TMS endcapping, 110 Å, 100 mm  2.1 mm  
3.0 µm) with the mobile phase consisting of A: 100% water and B: 100% methanol, both 
with 5 mM ammonium acetate. For validation of FluoroMatch annotations, 25 labeled 
standards (13C or 2H labeled) were spiked into leachate samples acquired using the Q-
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Exactive LC-HRMS approach (Table S2).  For further validation and comparison to 
targeted approaches, a targeted QqQ approach was used across 51 standards (Table 
S1) on a Thermo Quantis triple-quadrupole mass spectrometer using the same UHPLC 
settings. Further acquisition details (scanning events, gradient, etc.) are in the 
Supplemental Information. 

Results and Discussion

Feature Filtering and Annotation 

We tested feature filtering and annotation in FluoroMatch by analyzing LC/HRMS data 
acquired from six leachate samples (three raw leachate samples and three samples of 
coalesced foam generated from the leachate via bubble aeration) from a municipal solid 
waste landfill in Florida. Of the 73,718 features determined using MZmine, 21,551 of the 
integrated peak areas were above the background threshold using blank feature filtering 
(BFF). The BFF filter was set as:
Equation 1: >  5 × ( + (3 × ))
Where = first quartile of samples,  = blank average, and  = blank standard deviation 

Therefore, 71% of features were likely background contamination, emphasizing the 
importance of blank feature filtering. 

Further filtering was manually performed using mass defect filtering to determine the 
fraction of chemicals likely containing fluorines (negative mass defect). With a mass 
defect from  to 0.1, 17,911 features were found, thereby removing 76% of features 
in combination with the BFF approach. FluoroMatch Flow performs an exact mass 
search against the EPA PFAS Master List (with over 7,500 PFAS compounds). Using 
FluoroMatch Flow 1,286 features had exact mass hits, or 7% of the filtered features. Of 
these, FluoroMatch returned 27 matches based on MS/MS matching of the 
experimental data and PFAS in-silico MS/MS generated using FluoroMatch Generator 
(0.2% of filtered features). These annotations have sufficient evidence to be level 2a 
identifications (probable structure) using the schema from Schymanski et al.39–41, having 
exact mass and literature/standard based MS/MS matching, except for the fact that the 
fragmentation cannot always be used to discern between certain PFAS isomers (e.g., 
branched versus linear chain). Hence, identifications are Level 3 (tentative); for 
example, both branched and linear chain perfluorocarboxylic acids are reported for the 
same feature by FluoroMatch. 

Validation of FluoroMatch Annotations

Validation showed no false positives for compounds where standards were available. 
The annotations were validated against labeled standards spiked into samples using the 
Q-Exactive non-targeted approach. Labeled standards were observed for 16 of the 26 
unique chemical structures annotated by FluoroMatch (supplemental excel). All 16 
chemicals were confirmed (level 1 annotation – matching retention time, MS/MS, and 
exact mass)41 using the labeled standards. A wider breadth of chemicals were targeted 
for comparison to a triple quadrupole (QqQ) approach screening 52 PFAS compounds 
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using the same chromatography (supplemental Excel). Of the 32 compounds confirmed 
above the limit of detection using the QqQ approach (level 1 annotation)41, 23 of these 
had chromatograms above the noise threshold using the Q-Exactive (the remaining 
showed no signal, or less than 10 scans across the peak). This suggests that selected 
reaction monitoring (SRM) scans using the QqQ are more sensitive for the detection of 
low abundance compounds than non-targeted approaches employing the Q-Exactive. 
Note that targeted t-SIM or similar experiments employing the Q-Exactive may be as or 
more sensitive. Of the 23 detected using the targeted approach, 20 were annotated 
using FluoroMatch, 15 by MS/MS (validating 15 of the 26 FluoroMatch annotations) and 
five only by exact mass. Of the remaining three, one was removed using BFF, while the 
remaining two were not picked up by the MZmine algorithms embedded in FluoroMatch 
Flow. Hence, no false positives were observed using this second confirmatory 
technique. 

Twelve compounds were annotated by FluoroMatch but not contained in the extensive 
targeted approach (52 compounds), showing the potential of FluoroMatch to enhance 
PFAS coverage compared to extensive targeted approaches. Unique annotations 
included pentafluoropropionic acid (PFPrA); ethyl trifluoromethanesulfonate; N-methyl 
perfluoro sulfonamido acetic acid: n=3 (MeFPrSAA), n=4 (MeFBSAA), n=5 
(MeFPeSAA), and n=6 (MeFHxSAA); n-ethyl-N-tridecafluorohexyl sulfonyl glycine; or 
related isomers. While exact mass and multiple PFAS specific fragments were assigned 
by FlouroMatch for these species (see supplemental excel for fragments annotated), 
further validation with standards would be necessary for confirmation of the exact 
molecular structure.

While targeted approaches and labeled standards spike into samples can be used to 
validate known PFAS, other non-targeted approaches are needed to validate PFAS for 
which standards do not exist and to increase PFAS coverage. Mass defect plots can be 
used to determine homologous series. In this case, the masses were normalized to CF2 

(Figure 3). Most PFAS with polar head groups and CF2 chains had a normalized (CF2) 
mass defect between  and 0.05. The normalized mass defect plot for this range 
can be seen in Figure 3. Forty-eight PFAS compounds were found across 11 
homologous series based on the same normalized mass defect within 0.003 Da for a 
series and mass differences divisible by 49.9968 (CF2). These non-targeted approaches 
can be used as a benchmark for the performance of FluoroMatch. Using current in-silico 
libraries, FluoroMatch was able to annotate the structure of 56% of the features that 
followed homologous series (Figure 3). Additionally, it is important to note that MS/MS is 
required for high-confidence annotation: for example, MS/MS was manually examined 
for 669.9611, and while the species followed the homologues series, fragmentation did 
not confer evidence that the compound belonged to the N-methylperfluorooctane 
sulfonamidoacetic acid class, nor PFAS with CF2 repeating units in general. Hence, 
coverage maybe be higher than 56%, with FluoroMatch removing false positives by 
necessitating fragmentation information for annotation. 
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Figure 3: Mass defect plot with masses (MS1) normalized to CF2 (manually generated) showing 
PFAS homologue series and associated FluoroMatch coverage across these series. Homologous 
series are identified by shifts in the x-axis divisible by 49.9968 (CF2) and the same CF2 normalized mass 
defect (within 0.003 normalized mass units in this case). Colored markers are those that were identified 
by FluoroMatch by MS/MS (either AIF or IE-ddMS2-topN). Lighter shaded colors for a given series are 
those that follow the homologues series but were not identified by FluoroMatch. Greyscaled larger 
markers are those that follow homologues series but had no identifications from FluoroMatch. In the plot, 
283 features are shown, 48 of which followed homologues series, and 23 of which were identified by 
MS/MS using FluoroMatch. The names of the compounds from top to bottom are as follows: 
perfluorosulfonic acid (PFSA), perfluorosulfonamide (PFSM), perfluorocarboxylic acid (PFCA), 
fluorotelomer perfluorosulfonic acid (FT-PFSA), N-methylperfluorooctane sulfonamidoacetic acid (N-
MeFSAA), and N-ethylperfluorooctane sulfonamidoacetic acid (N-EtFSAA). Note that for PFSM only one 
species existed, but as with all darker colored series, MS/MS evidence was used to annotate the 
compound.  

Iterative-Exclusion, Data-Dependent Analysis, and Data-Independent Analysis

In order to improve confidence in PFAS annotation, it is essential to have information 
orthogonal to the exact mass of the precursor. The accurate mass of a precursor ion 
can provide a restricted number of potential molecular formulas depending on the mass 
accuracy of the MS detector,42 whereas tandem mass spectrometry can provide 
evidence of certain structural components within a molecule. Because of the low 
abundance and high diversity of PFAS species in some samples, it is both difficult and 
essential to improve fragmentation coverage in comparison to traditional MS/MS 
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techniques. For this purpose, samples were analyzed using three different acquisition 
methods: data-dependent top N analysis (ddMS2-topN), iterative exclusion top N 
analysis (IE-ddMS2-topN), and data-independent analysis viz. all-ion fragmentation 
(AIF). DDA and IE use ion selection (1-Da isolation window in this work) prior to 
fragmentation, thereby providing explicit precursor fragment relationships assuming no 
other ions within 1 Da co-elute. DDA and IE have limited coverage, even with IE-ddMS2-
topN, where ions selected in a previous injection are excluded and the next top-most 
abundant ions are fragmented iteratively, fragmentation for all ions are not generally 
obtained. In addition, if isomers co-elute, the limited MS/MS scans can lead to mixed 
spectra (contributed from both isomers) that cannot be deconvoluted. Data-independent 
approaches, in this case AIF, obtains fragmentation across all species and has enough 
scans to deconvolute fragmentation from closely eluting isomers, but fragment-
precursor relationships are lost. Therefore, the techniques are complimentary. 

When the three acquisition methods were used separately, 11 PFAS from the leachate 
samples (both unadulterated and foam) were annotated using AIF, 15 using ddMS2-
topN, and 27 using IE. Figure 4A shows the increase in annotations using IE, showing 
an 80% improvement in coverage by applying IE to the traditional data-dependent 
approach. This advantage is due to the increase in lower abundance features with 
MS/MS (Figure 4B) and is similar to previous findings in lipidomics24. The low number of 
annotations produced using AIF is due to the need for correlation between precursor ion 
and fragment ion intensities for reconstructing precursor-fragment relationships: 
because common PFAS fragments (eg., [C2F5]-) may co-elute, the R2 between some 
precursors and fragments will be below the FluoroMatch threshold of 0.6, and the 
compound will not be identified. While lower in number, the AIF annotations increased 
confidence in compound determination; all AIF annotations were replicated in the IE 
analysis validating the deconvolution algorithm. 

Figure 4: Annotation coverage using iterative exclusion data-dependent analysis (IE-ddMS2-topN). 
Iterative injections, shown with black filled 
markers (A), exhibit an increase in the 
cumulative number of PFAS annotations as a 
function of injection number applying IE 
sequentially, which levels off at the fourth 
injection (IE3). The number of annotations for 
AIF (white marker) is shown for comparison to 
the first data-dependent scan (A). In the rigt 
panel (B) IE both increased the number of 
PFAS annotations, and specifically increased 
annotation of lower abundance compounds. 
The blue rectangle represents the mean; all 
differences were significant based on multiple 
t-tests (p-value < 0.05). 

While AIF using FluoroMatch deconvolution algorithms underperformed in terms of total 
annotations, AIF data can be used to estimate the number of PFAS compounds 
consisting of CF2 repeating units and assess the coverage of FluoroMatch annotations. 
The most common fragments observed for CF2 repeating units in LC/MS are [C2F5]-, 
[C3F7]-, [C4F9]-, [C5F11]-, and [C6F13]-. Fragment chromatographic traces from AIF 
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acquisition of leachate samples are shown in Figure 5A. Twenty chromatographic peaks 
can be estimated based on fragment traces (Figure 5A), suggesting 20 or more PFAS 
compounds. It is important to note that when overlaying precursor ion traces with 
fragment traces, different precursor ions often co-eluted, leading to each fragment trace 
representing one or more PFAS compounds (Figure 5B). After overlaying precursors 
identified in FluoroMatch annotations with fragment traces, 71% (15/21) of fragment 
traces were accounted for and the remaining traces were generally of low abundance 
(Figure 5A, Figure 5B, and Figure S2). This suggests that FluoroMatch was able to 
annotate a large portion of the CF2-containing PFAS compounds, especially the 
dominant species. 

Figure 5: Fragment and precursor traces provide an estimate of PFAS coverage by FluoroMatch. 
All-ion fragmentation data of fragment ions of the carbon-fluorine chain (A) and full-scan data of precursor 
ions (colored by class) identified by FluoroMatch (B). Triangles in (A) indicate whether a fragment trace 
had one or more precursors that matched based on the elution profiles. MS/MS identifications using 
FluoroMatch Flow were able to explain 15/21 (71%) of fragment traces. Fragment traces for repeating 
CF2 units with ether linkages are shown in Figure S2. 
*Grey triangles represent peaks that were identified but did not have carbon-fluorine chain fragments in 
the top panel (A). 

While 27 species were annotated by MS/MS and FluoroMatch, 23 had unique 
structures, meaning that the remaining four were likely different isomers with subtle 
structural differences. An example is shown for an N-methylperfluorooctane 
sulfonamidoacetic acid (N-MeFSAA) species with a CF2 chain length of eight in Figure 
6. In this case, three resolved peaks were determined, with the second and third 
species in terms of elution order identified by both AIF and IE analysis (Figure 6B and 
Figure 6C), showing high confidence that annotation were not false positives from trace 
fragments from co-eluting species. The first species had AIF fragmentation shifted to 
slightly earlier retention times (Figure 6B) and had a fragmentation profile slightly 
different than the second and third peak (Figure 6C), although the fragmentation 
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provides ample evidence of similar structural motifs. In this case, the major plausible 
possibility is that species could differ in terms of chain branching, with branched isomers 
eluting prior to straight-chain PFAS43, indeed, the latest eluting species and dominant 
peak (Figure 6) was confirmed as the non-branched form using a deuterated standard 
(supplemental validation excel file). Future studies might distinguish branched isomers 
using MS3 approaches.44 

Figure 6: Three PFAS isomers all showing MS/MS evidence as N-methylperfluorooctane 
sulfonamidoacetic acid (N-MeFSAA). A: The structure for N-MeFOSAA with eight carbons and some 
common fragmentations. Necessary fragments for annotation are colored, whereas other library 
fragments are in black, and fragments which were not contained in FluoroMatch libraries in grey. B: All-
ion fragmentation (AIF) data and precursor full-scan data, with fragment profiles highly correlated with the 
precursor ion trace for the second and third peak, but less correlated for the first peak (possibly due to 
fragment overlap). C: Data-dependent fragment scans at retention time 8.51, 8.64, and 8.82. 
Fragmentation patterns give evidence that all three isomers are highly similar in structure, and only subtle 
structural differences (e.g., branching) are responsible for the differences in retention time. 

Effect of Mass Accuracy on Confidence in PFAS Annotations

High-resolution mass spectrometers across vendors differ in mass accuracy (e.g. Q-
TOF, orbitrap, and FTICR mass spectrometers), with mass accuracy arguably one of 
the most important determinants in MS/MS confidence, especially given that 
FluoroMatch does not use intensity profiles. To test the effect of mass accuracy on false 
positive rate in annotations, the mass accuracy of the software was toggled across a 
tolerance of ± 5ppm, 10ppm, 20ppm, and 30ppm. Any additional annotations with lower 
mass accuracy are false positives, as the exact mass at 5ppm was incorrect. 

Toggling the mass accuracy parameter of the FluoroMatch software showed a slight 
increase in false positives for confident annotations (Figure S3). There was no 
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difference in confident annotations (rule based annotation) between ± 5ppm and ± 
10ppm mass tolerance. For ± 20ppm, only 1 false positive was obtained (4% false 
positive rate), whereas for ± 30ppm 2 false positives were obtained (8% false positive 
rate). For lower confidence annotations a higher percentage of false positives were 
obtained with decreasing mass accuracy, due to the less stringent criteria (any fragment 
and exact mass needed for confirmation). While only 1 additional false positive was 
obtained at ± 10ppm (3%), at ± 30ppm 23% (9/39) false positives were observed. This 
highlights the importance of mass accuracy for accurate annotation of PFAS, noting that 
this will become even more essential as libraries expand and the chances of false 
annotations increases for this reason.
Evaluations of FluoroMatch Identified PFAS for Municipal Solid Waste Leachate 
Characterization and Remediation

FluoroMatch was applied to unadulterated leachate and leachate foam generated 
through bubble aeration. Further in-depth discussion of findings is provided in the 
supplemental materials. Based on a one-sided t-test (p-value < 0.05), 19 of the 27 
PFAS compounds were significantly higher in the foam than unadulterated leachate by 
an average factor of 5. Partitioning of PFAS between the foam and the unadulterated 
leachate was modeled against predicted water solubility (mol/L) of the PFAS 
molecules45 using an exponential trend (R2 = 0.70) (Figure S1A). While short-chain 
PFAS species were found to have a lower concentration in the foam fraction, these 
species were characterized by a decreased potential for bioaccumulation and 
ecological46 and mammalian toxicity47 (Figure S1B).

The detection of PFSM, FT-PFSA, N-MeFSAA, and N-EtFSAA species in landfill 
leachate suggest that these species should be further studied as they are recycled back 
into the environment without full conversion to PFCA and PFSA from waste water 
treatment plants. This is especially urgent given that certain species may be significantly 
more toxic than PFCA and PFSA.  For example, evidence shows that PFSM is a more 
potent neurotoxin compared to other PFAS48,49. 

Conclusion

FluoroMatch automates PFAS annotation using in-silico PFAS fragmentation libraries 
and rule-based annotation. We introduce in-silico fragmentation libraries containing over 
7000 PFAS across 72 PFAS sub-classes, built using spectra from literature and 
authentic standards. To further expand libraries in the future, we include FluoroMatch 
Generator, for users to generate in-silico PFAS libraries using fragment annotations and 
SMILES structures for representative compounds. This software workflow falls between 
suspect screening and non-targeted approaches: a wide range of PFAS are screened, 
but evidence for each PFAS is stronger than in traditional non-targeted approaches as 
each library is based on experimental fragmentation. 

Validating the percent coverage and accuracy of annotations in real-world samples is 
challenging due to the case of known-unknowns and unknown-unknowns. Here, we use 
all-ion fragmentation to estimate that FluoroMatch covered 71% of CF2 containing PFAS 
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compounds with fragmentation, and CF2 normalized mass defect plots to estimate 56% 
coverage of compounds (remaining being false negatives). Here, we use all-ion 
fragmentation to estimate that FluoroMatch covered 71% of CF2 containing PFAS 
compounds with fragmentation, and CF2 normalized mass defect plots to estimate 56% 
coverage of compounds (remaining being false negatives). Furthermore, using both a 
targeted method (LC-QqQ) and spiked in internal standards (LC-HRMS), 100% of 
FluoroMatch annotated features with corresponding standards were confirmed 
suggesting a low false positive rate. Based on application to MSW leachate, the most 
abundant species were annotated using FluoroMatch, and the use of intelligent data-
acquisition, specifically iterative exclusion, nearly doubled the number of PFAS 
annotated, especially for those of low abundance. 

Further work on isotopic pattern scoring, fragment prediction where no standards or 
experimental spectra exists, and automating the use of CF2 normalized mass defect 
plots are being implemented to continually improve the coverage and accuracy of our 
FluoroMatch software platform. In addition, the research community stands to benefit 
from retention time index models for PFAS, fully automated fragmentation generation 
(for example improvement of the CFM-ID algorithm50 by increasing coverage of PFAS in 
the training set), and improved deconvolution algorithms for AIF. As users continue to 
validate and expand the open source software, especially in terms of modifiable 
databases, we expect FluoroMatch to continue to improve as a rapid, automated, and 
comprehensive tool for researchers interested in the environmental and clinical 
consequences, as well as industrial applications, of PFAS molecules. 
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