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EFFECT OF DEPOSITION ON VERTICAL CONCENTRATION DISTRIBUTION
FROM A GROUND LEVEL SOURCE

INTRODUCTION

Turbulent diffusion of gases and particles released into the
atmosphere has become of increasingly practical importance.
Of special interest is the dispersion in the surface boundary
layer.

We may estimate concentration distribution with help of semi-~
empirical diffusion equations. In the real atmosphere the
height dependence of wind velocity and eddy diffusivities can
then not be neglected. Analytical solutions do only exist
when we express these parameters as power functions of the
height, but not when we also consider deposition to the ground.
We here present a numerical method, primariiy with the object
to study the effect of deposition. A ground source of finite
duration is selected.

SEMI-EMPIRICAL DIFFUSION EQUATION

We assume a stationary flow with mean wind along the OX-axis
of a cartesian coordinate system. The wind velocity, u, and
eddy diffusivities are assumed only dependent on height, and

the principal axes of the diffusivity tensor, K.., to coin-

; 1)
cide with the coordinate axes. The semi-empirical diffusion
equation, without sources or sinks in the space considered,

can then be written (1, p 613)
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where C = concentration in mass units per unit volume. The
along wind eddy diffusion is usually much smaller than the
advective term and is therefore neglected.

Vle are primarily interested in how the maximum ground level
concentrations and vertical concentration distributicns are
effected by depositicn. Height dependence of mean lateral
concentration has the same share as that of the maximum con-
centration in the 0Z~plane at a {ixed distance, and with sym-
metric horizontal distribution. Consequently, we may study
this height dependence using the 2-dimensional diffusion
equation, valid for a line source along the OY-axis. To sim~
plify boundary conditions, we use a release of finite time,
T. Our semi~empirical diffusion equation, with Kzz = K,

reads
ab{xm. ) 80 (xamat] o & S u,t)
=S~ = anfa Sl e (REalRSietshl it

with the boundary conditions

C(x,y,t)

o 0 for all x and z#0
aC _ .
q(0,0,t) = const for 0<t<«T, otherwise q = 0

Deposition is assumed proportional to the grcund level con-
centration, C(x,O). The factor R has dimension of velocity
and is named deposition velccity. (Fallout of particles by
gravitational settling can be included by adding a term
-w-%% to the left side of equation (2), where w then is the
settling velocity.)



NUMERICAL COMPUTATION SCHEME

Equation (2) is a 2-dimensional parabolic equation with va-
riable coefficients. A simple explicit difference formula
is used to solve our initial value problem.

We adopt a grid that covers a part of the 2-dimensional spa-
ce, with grid steps ~x and ~z. The mass concentration in a
cell is Cti ' where t denotes the current time and indexes

b
1 and j are cell numbers in x- and z-direction, respectively.
i= 1,2-°-1max, and j = 1,2“'Jmax, such that ax i and

max
NZ .jmax is the size of our grid.
A difference equation relating the state at the time t + 1

with the state at time t becomes

t+1 t U. »~t ) t
c..-c..=--—J—f—(c.. ) ) y
15 iy A X = i-1,3
s R i 45 1O
i Jtly at
THNCy e = B gt (3)
t t K. + K.
- (C. . ~-C, . . )(=l—2d=dy =t
b (F%By) i,j-1 2 22 AZ

where Uj and Kj are respectively velocity and eddy diffusivity
at the center of the j'th cell, »t is the constant time step.
Equation (3) is valid only with constant steps 2x and 22
throughout the grid and with the conditions l<i<imax, l<3<3max,
t>0.

Boundary conditions give the following relations

t+1 t t+1 t
O = a8l 16 w =,
19 Imax o T Tmax?d max

(4)

i’jmax

this allows a simple outflow of material from the grid.



The condition

t+l t :

reflects that there is no transport into the grid from the
left side.

The transport equation for the lower left cell is

t+1 16 1| TR
= = 1 -....Q....:..‘;:‘_.E..-
] Oy g ldsmg=] (6)

for 0« t £T, otherwise Cl 1= 0
’

Q is total release,

For j =1, 1 =2,**+1 _ -1 we get ;
t+1 U Ul AU 0] G
g0 =By q ™ =Sy 7 = 8g.7)
(7)
6 G K~ + K t
2 S A% 3
TR I L e s e L TR

where R is the deposition velocity.

Computational stability is maintained in this scheme with
the conditions

0. .atb T + K.
J+l ] b Al < 005

N a4




Pseudodiffusion

This simple method introduces pseudodiffusion, since every
time step moves material from one cell to the next. We thus
get a faster transport than the transport according to the
advection term, regardless of the strength of the wind.

According to Mahoney and Egan (2), this effect can be re-
duced considerably if a displacement of the center of mass
of the material in each cell is introduced.

Let gi denote the relative displacement of the center of
mass within the i1'th cell, measured from the middle of the
cell in the x-direction. iy then has a range from -0.5 to
0.5 at the left and right boundaries. The nature of the nu-
merical advection process then depends upon the value of the

sum

U,
At 4,

ax

U.
s o
We now }et di denote e ats

If dj + gi <0, no material is transferred out of the i'th cell
in the x~direction.

When 0<g, + 1 <1, some material is transferred to the next

cell, and some remains.

For the general case with

t t
g ®d s <] and 0%4% &, 5 <1

we have the following adjustments to the computational scheme:

Replace advection part with

G G t
Ci-—l,j (dJ + } ) = G (d~ + §l )

i-1,] 1,J J s J
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and compute a new relative displacement'for the i'th cell with

t t
ORI TR =

¢ = i{c,
Ry

t+1 t
g ™ B

t t t+1
* 0, =1 + e F 5 of| “hdy ®5, ) 7
Cl-laJ[ = g ‘1-1,3)} i 8y 555

At the boundaries { . . =

and
’Jmax

S
3. .
1 -
’Jmax 1
" o= .
§1

¢ 1 s
TmaxJ max 1,3.

This effect must especially be considered for an instaneous
or short lasting release. It becomes of no practical impor-
tance when calculating dosage distributions from a semi-con-
tinuous release.

EXAMPLE

We select a line source along the OY-axis with a total release
of 100 kg in 60 sec, i e a source strength of 1.67 kg e Tt
We further select ax = 20 m, az = 6 m, at = 1 sec, u = 4(Z{E)
and K = 0.3 (z/z,o‘6, where z) = 1 m. The program permits se-
lection of arbifrary functions. However, we here use power

functions in order to compare with analytical solutions.

The function for u fits quite well our own field observations
in near neutral stratification. The expression for K is based
on values from literature. Outprints are: concentration dis-
tributions at fixed times, total depositions, total cross-sec-
tional mass transports and dosage distributions. A dosage va-
lue can be approximated by the concentration value in the same
space point from a continuous line source, provided this lat-
ter release is of the same amount per sec as otherwise relea-
sed totally, i e equals 100 units of mass per m per sec.

0.2



s m-n+2
(m-n+2) Q uy ] uyz

e -
ulT(s) (m—n+2)2Kl°xJ o (m—n+2)?rKl-x o

C(xlz) =

where u = ulzm, K = Klzn, s = (mtl)/{m-n+2) and T is the gam-

ma function.

For Q = 100 mass units
C(x,z) = 52.64 =075 eXp[}S.Zl (zl.6)/x]mass units/m3

Figure J~4 show some computations which illustrates effects
of deposition.

Figure 1 shows no apparent difference between computed and
theoretical results beyond about 0.7 km. Thé finite source
extention explains the lower computed dosages at shorter dis-
tances.,

L
[ DOSAGE — kg-m?s
5.0~y \ CONCENTRATION - kg-m™
=

o
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Figure 1 Computed suriace dosazes and calculated ccncentrations
A - computed dosages - nc deposition =i
B - computed dosages - depcsition velocity 0.0C5 ms
¢ - thecretical concentrations rrom continuous release -
no deposition’




Figure 2 shcows vertical concentration distributions above the
10 m level. At 620 m there is no apparent difference between
computed dosages and concentrations. The maximum level is

still below 10 m for a deposition velocity of 0.005 ms™L, At
4 km there is a difference in computed and theoretical values

above 50 m and deposition gives a maximum dosage at 2C m.
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DOSAGE — kg-m>s, CONCENTRATION — kg-m’3 DOSAGE — kg-m'>s, CONCENTRATION — kg-m"”

Figure 2 Computed vertical dosage and calculated cencentration
distributions at 0o0 m (a) and at 4 xm (o]
A - computed dosages - no aeposition 1
B - computed dosages - deposition velocity 0.005 ms~
C - theoretical concentrations from continuous release -
" no deposition

The difference between maximum flux and concentration levels
is illustrated in Figure 3, which shows outlines of the cloud.
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Figure 3 Comruted concentration distributions -~ level of zom-
puted maximum concentration and dosage distribution
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Finglly, Figure 4 shows the decrease in total cross-sectionsl
flux with distance, due to deposition. The decrease is high
close t.o the source, but the flux gets nearly constant al-

recady beyond a few kilometers.
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Figure 4 Total mass passing through a cross~section
Relative values - depesition velocity 0,005 ms

The Mahoney - Egan method to reduce pseudodiffusiocn was spp-
lied to obtain Figure 3. But when we used this method to

compute dosages and fluxes, we could not detect any differ-
ence in the distributions from the other more direct methcd.
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APPERDIX

COMPUTING TECHNIQUEL

In the computer program based on the preceding scheme, 3 mat-
rixes of data have to be updated: the concentrations (C-mat-
rix), relative displacement (X¥SI-matrix) and the accumulated

flux in each cell (ACC-matrix).

The simplest way to do this is to have two copies of each mat-
rix, one for time t, and another for time t+1.

. can then be computed from Ct (and eventual-
have Ct+l as the old
t+2 into the former Ct°
and ACC. This method

is, however, very storage-~consuming, and thus restrictive re-

The value in CtJr
ly XSIt).
one and (we)
The same method can be applied for XSI

In the next computation, we
can store values for time

garding the number of grid elements.

s

In our program we have therefore used another method, which re-

quires some extra computing time, but only half the data space.

Equations (3) and (8), show that the new values computed are
based on nearest neighbours in the grid. Thus, if we update
the matrixes from bottom to top, we may very well store new
values in the same matrix as long as we do not destroy the va-

lues needed in computing values for the next cell.

Extra lines are therefore added in the matrixes, and used in
a roll-around fashion, as shown below. At least two extra

lines -are needed.

DATA BLOCK

22222

EMPTY SPACE

t=1

max

ZZZ’

EMPTY SPACE
T
f’f/// ’/;:
Z

.
T % e /,//, //’/:,,‘I?
g%gégéééé€%%2?

Z

_
i
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The outprints from this program are:

C-matrix - Concentration distribution C(x,z,t) at
fixed times t

Condensed - Total depositions after a time T in the
range X = 0 to x = K*ax
o K t
Amount = L. L ReC, j .
t=0 i=1 kg
Remaining - Total amount of mass passing the cross-

gection at x = K*ax
Amount remaining = l-condensed (x,T)

Concentrations - An isograph plot of the concentration
distribution at fixed times t

Integral - Total mass passing through a cell = D° u

Mean con - Mean concentration, i e dosage distribu~
tion D(x,z)



