NILU TR : 2/88

NILU TR : 2/88 REFERENCE: E-8**6**62 DATE : FEBRUARY 1988 ISBN : 82-7247-898-6

MIGRATION OF ¹³⁷Cs FROM AIR TO SOIL AND PLANTS IN THE GULSVIK AREA, NORWAY AFTER THE CHERNOBYL REACTOR ACCIDENT

Jozef M. Pacyna, Arne Semb and Gordon C. Christensen*

NORSK INSTITUTT FOR LUFTFORSKNING Norwegian Institute For Air Research POSTBOKS 64 — N-2001 LILLESTRØM — NORWAY

NILU TR :	2/88
REFERENCE :	E-8662
DATE :	FEBRUARY 1988
ISBN :	82-7247-898-6

MIGRATION OF ¹³⁷Cs FROM AIR TO SOIL AND PLANTS IN THE GULSVIK AREA, NORWAY AFTER THE CHERNOBYL REACTOR ACCIDENT

Jozef M. Pacyna, Arne Semb and Gordon C. Christensen*

NORWEGIAN INSTITUTE FOR AIR RESEARCH P.O. BOX 64, N-2001 LILLESTRØM NORWAY

*1 INSTITUTE FOR ENERGY TECHNOLOGY P.O. BOX 40, N-2007 KJELLER NORWAY CONTENTS

-			
- D	-	\sim	0
r	α	u	-

	ABSTRACT	2
1	INTRODUCTION	2
2	EXPERIMENTAL	3
3	RESULTS	3
4	DISCUSSION	4
	 4.1 Contamination of land	4 5 7 9
5	CONCLUSIONS	10
6	ACKNOWLEDGEMENT	10
7	REFERENCES	11

MIGRATION OF ¹³⁷Cs FROM AIR TO SOIL AND PLANTS IN THE GULSVIK AREA, NORWAY AFTER THE CHERNOBYL REACTOR ACCIDENT

ABSTRACT

A migration of 137 Cs from air to soil and vegetation after the Chernobyl accident is studied using the concentrations measured in the Gulsvik area in Norway. The major part of the 137 Cs deposition seems to be in the soil. An uptake of 137 Cs from soil to plants through their root system is not a rapid process. Only a few per cent of the deposition can be traced in plants. This seems to suggest that as far as 137 Cs is concerned, an effect of the Chernobyl releases is not an acute but a long-term phenomenon. The 137 Cs accumulation in soils is rather high but does not result in 137 Cs levels in plants and diet higher than acceptable in Norway.

1 INTRODUCTION

The reactor accident in Chernobyl on 26 April, 1986 caused a release of various radionuclides to the atmosphere. Since the accident happened, there has been a number of studies reported in the literature on the emissions of radionuclides (e.g. USSR State Committee on the Utilization of Atomic Energy, 1986), their atmospheric transport (e.g. Persson et al., 1986; Saltbones, 1986), and the contamination of soils, plants and human diet (Backe et al., 1986; Helsedirektoratets Rådgivende Faggruppe, 1986).

The radioactivity of the air at selected stations in Norway after the accident has been studied by Pacyna et al. (1986). The highest activities of several radionuclides in precipitation were measured in samples from Gulsvik. The estimated dry deposition at this and other stations was lower by two orders of magnitude, and therefore insignificant. Pacyna et al. (1986) concluded that it should be of interest to study the consequences of this highly contaminated precipitation to soil and plants. The major objective of this work was to study the ¹³⁷Cs migration from the air via precipitation to soil and plants in Gulsvik. The ¹³⁷Cs migration through the environment is presented in Figure 1. In this report the ¹³⁷Cs activities are presented together with the transport coefficients. In addition the ¹³⁴Cs activities were also measured to assess to what extent the Chernobyl releases have contributed to the ¹³⁷Cs accumulation in soil and plants.

2 EXPERIMENTAL

All samples were collected at seven locations (I to VII) in Gulsvik in August 1987 (see Figure 2). The locations I-IV were on agricultural land (cultivation of hay on moraimic till), V and VI were forest clearings at higher altitudes, and location VII was a small peat bog. As the half life of 134 Cs is only 2.06 years, the radioactive decay has been taken into account.

The details of sampling of soil and plants are presented in Tables 1 and 2. The samples of vegetation were collected from the same plot as the soil sample, dried, homogenized, weighted and analysed, as indicated in "Remarks" of Tables 1 and 2.

The radioactivity measurements were carried out at the Institute for Energy Technology (IFE) at Kjeller. All samples were analysed by gamma spectrometry with the use of a large Ge(Li) detector, a 4096 channels MCA, and computerized spectrum analysis. The system has been duly calibrated using certified standards of ¹³⁴Cs and ¹³⁷Cs.

3 RESULTS

The 134 Cs and 137 Cs concentrations in soil and plant samples collected at locations I, II, III, IV, V and IV are presented in Table 3. The 134 Cs and 137 Cs concentrations in a peat bog sample taken at Gulsvik are shown in Figure 3.

Finally, the 137 Cs/ 134 Cs ratios were calculated for all samples and these are presented in Figure 4.

4 DISCUSSION

There are three major pathways for atmospheric ¹³⁷Cs to contaminate plants and later human diet: 1) deposition on soil and uptake by the plant root system, 2) direct deposition on pasture grass and 3) direct deposition on the above-surface food crops. The two first pathways are discussed in this work.

4.1 CONTAMINATION OF LAND

Based on the previous work (Pacyna et al., 1986), a precipitation of 4.4 mm during 28-29 April, 1986 at Gulsvik contributed 5.8 kBq·m⁻² of ¹³⁷Cs. Dry deposition of ¹³⁷Cs was found insignificant. The inferred deposition of ¹³⁷Cs and ¹³⁴Cs from soil samples at 6 locations were from 3.6 to 75.2 kBq·m⁻² (Table 4). There are substantial differences between the amounts of ¹³⁷Cs and ¹³⁴Cs deposited at the different sites within only 1-2 km.

It should be noted, however, that the 137 Cs deposition measured at the sampling sites within the farm (I, III and IV) was comparable with the data from precipitation measurements. Concerning outfield soil samples, much higher amounts of 134 Cs and 137 Cs suggest that the deposition must have been considerably larger at higher elevations during this particular event.

It was interesting to assess to what extent the Chernobyl releases of 137 Cs have contributed to the total deposition of the radionuclide in soil within a 20 cm plough layer of soil. For this purpose 134 Cs measurements were carried out and it was assumed that the 134 Cs/ 137 Cs ratio in the Chernobyl releases was 0.5. Clough (1986) indicates that the 134 Cs/ 137 Cs ratios measured in a wide range of samples from the dispersed radioactivity, both within and outside the Soviet Union fall in the range 0.4 to 0.6. Thus, it is assumed here, that the ratio 0.5 may be representative. As the half-life time of 134 Cs is only 2 years it is reasonable to suggest that all the deposited 134 Cs was due to the Chernobyl releases, and is not a result of nuclear bomb tests in the early 1960's. As can be seem from Table 4, 80% or more of 137 Cs in soil at all locations in this work except location IV can be related

to the releases of the radionuclide after the Chernobyl accident. Location IV is in the agricultural land near location III. It is difficult to explain why the 134 Cs at location IV is significantly lower than at the other locations. One explanation can be that the old 137 Cs has been kept in "agricultural" land closer to the surface and more available than in "natural" locations. The other explanation could be a measurement error.

The ¹³⁷Cs and ¹³⁴Cs deposition data in Table 4 can be compared with other measurements in Norway. According to Backe et al. (1986) the average deposition for various counties ("fylker") in Norway after Chernobyl ranged from 0.17 kBq·m⁻² (Troms) to 15.0 kBq·m⁻² (Oppland) for ¹³⁴Cs, and from 0.33 kBq·m⁻² to 28.0 kBq·m⁻² for ¹³⁷Cs. The average values for Norway were 3.7 kBq·m⁻² for ¹³⁴Cs and 7.1 kBq·m⁻² for ¹³⁷Cs with the ¹³⁴Cs/¹³⁷Cs ratio of 0.52. The highest ¹³⁴Cs and ¹³⁷Cs deposition was measured in Øystre Slidre municipality in Oppland being in average 52.3 and 103.5 kBq·m⁻², thus twice as much as the highest activities at location VI in this work.

The major part of the ¹³⁴Cs and ¹³⁷Cs depositied was found in the soil top layer <10 cm, as shown in Figure 3. Then the concentrations have decreased with depth but ¹³⁷Cs was still measurable at 25 cm due to fallout. The ¹³⁷Cs/¹³⁴Cs ratio ranges from 2 to 3 (Figure 4) indicating that most of the ¹³⁷Cs measured down to 25 cm depth was due to the radionuclide releases after the Chernobyl reactor accident.

4.2 CONTAMINATION OF PLANTS

A part of the radionuclides in the agricultural land can be transferred to plants via its root system. Eriksson (1986) has suggested that before the hay harvest in June about 50% of a deposition on agricultural land may be intercepted by the growing crops. Fortunately, as the Chernobyl fallout occured in April, the result was less devastating.

The ¹³⁷Cs activities in various plants growing at the locations where the soil samples were collected are shown in Table 5. The ¹³⁷Cs activities in the hay samples are also presented. The ¹³⁷Cs activity range for grass is 0.24 to 0.70 kBq⁻¹ dry matter and can be compared to 0.3-4.3 kBq kg⁻¹ for the sum of ¹³⁴Cs and ¹³⁷Cs measured by SIS in Oppland (Helsedirektoratets Rådgivende Faggruppe, 1986). The ¹³⁷Cs activities in the hay samples in this work were somewhat lower than in the grass samples, while higher for the litter and moss samples. However, the ¹³⁷Cs content of hay has never exceeded 4 kBq kg⁻¹ which corresponds to a ¹³⁷Cs level of 370 Bq in 1 kg of cow's milk.

Eriksson (1986) suggested that even lower levels, in the range 1-2 $kBq kg^{-1}$ of hay, would be enough to yield contents of $1^{37}Cs$ in milk and especially in meat, which were unacceptable to the consumers. It should be noted that the Swedish action level of 370 $Bq kg^{-1}$ was established for $1^{37}Cs$ in all foods, while Norway had a $1^{34}Cs + 1^{37}Cs$ action level of 370 $Bq kg^{-1}$ for milk and baby food, and 600 $Bq kg^{-1}$ for all other foods; and later (autumn 1986) even 6000 $Bq kg^{-1}$ for reindeer meat and 6000 $Bq kg^{-1}$ for freshwater fish. The maximum values observed during this experiment where those for hay from the storage (location II) and reached only about 0.6 $kBq kg^{-1}$.

The ¹³⁷Cs transport to plants can be discussed on the basis of various factors. Transport coefficients and transfer factors are shown in Table 5. The transport coefficient is the ratio of the cesium content in 1 kg dry matter to the deposition of the radionuclide per 1 m^2 . The transfer factor is the ratio between the activity of 1 kg harvested material and the activity of 1 kg dry soil in a plough layer of 20 cm (Eriksson and Rosen, 1987). The transport coefficients and transfer factors in Table 4 vary by a factor of 10. To explain the variability in the transport and migration, differences in both soil conditions and in plant growth conditions should be considered. Cesium is similar to potassium in ion radius, and potassium competes with cesium both with respect to soil cation exchange saturation and root uptake by plants. Eriksson and Rosen (1987) found that soil exchangeable potassium reduced the uptake of cesium in plants, while organic matter increased the uptake. Glowiak and Pacyna (1978) found, however, that soils rich in humus allow higher dosages of ¹³⁷Cs than light, or sandy soils. These findings can be reconciled, under the condition that the Polish soils rich in humus also contain more exchangeable cations than the light and sandy soils, while the opposite may be true for the Swedish soils with high organic content relative to clay soils with less organic material.

Uptake by plants also depends on plant growth conditions, particularly where migration coefficients are considered. Growth conditions on sites III and IV were probably limited by soil conditions.

If organic matter is high, it is another matter. It is also possible that high organic matter influences growth conditions and thereby plant-uptake.

The other method to express the 137 Cs migration from soil to plants is the use of a migration coefficient, which relates the 137 Cs content of plants collected from the area of 1 m² to the 137 Cs content of soils in 1 m² and 20 cm depth. Thus, the migration coefficient tells what part of the deposition is contained in plant. The migration coefficients calculated in this work are presented in Table 6. They indicate that in total only ca. 4 per cent of the deposition was contained in hay, 1 to 9 per cent in grass and 1 to 10 per cent in litter and mosses. Concerning grass samples, those grown on agricultural land (locations III and IV) have significantly higher migration coefficients than those from natural land (7-9 vs. 1-1.5).

Eriksson (1986) concluded that only 3 per cent of the ¹³⁷Cs deposition was still contained by the whole vegetation cover at the end of June 1986 in Middle Sweden where the heaviest depositions of radioactivity had taken place after the Chernobyl reactor accident.

4.3 PREDICTED CONTAMINATION OF MILK, MEAT AND DIET

Pasture grass contamination results in a transport of ¹³⁷Cs to milk and meat (Figure 1) according to:

$$C_{\text{milk}} = TC_{1} C_{\text{grass}}$$
(1)

and

$$C_{\text{meat}} = TC_2 C_{\text{grass}}$$
(2)

where C is the ¹³⁷Cs concentration and TC is the transport coefficient. The TC has been presented by the International Commission on Radiological Protection (ICRP) in a report on the effects of radionuclide release into the environment and the assessment of doses to man (ICRP, 1979). The TC coefficients are shown in Table 7. These coefficients were used to predict the contamination of milk and beef meat in the Gulsvik area on the basis of the 137 Cs concentrations in pasture grass. The results are shown in Table 8. Concerning milk, the predicted ¹³⁷Cs concentrations are lower than the suggested 370 Bg^{·1⁻¹} (as already mentioned) unless the maximum TC value is used. It should be mentioned, however, that in general, the observed TC values are lower than the nominal values. The Directorate of Public Health has presented a report (Helsedirektoratet, 1986) on the radiactivity level in various food and environmental media after the Chernobyl accident indicating that the ¹³⁷Cs + ¹³⁴Cs concentrations in cow's milk from dairies were up to 50 Bg^{-1⁻¹} and in goat's milk up to 600 Bg^{-1⁻¹}. The ¹³⁷Cs concentrations in milk predicted in this work can be regarded as higher than measured in Norway after the Chernobyl releases. Unfortunately, the ICRP values of transport coefficients are not explained whether they are related to cow's milk or goat's milk (most probably cow's milk). The amounts of 137 Cs + 134 Cs in goat's milk being sold to the customers were below 200 Bq'1-1. The ICRP nominal value of the transport coefficient from pasture grass to milk seems to be at least two times higher than the transport coefficient that has been used in this work. This means that the transport coefficient from pasture grass to milk will be $0.2 \text{ m}^2 \cdot 1^{-1}$ in this work.

The Directorate of Public Health reports on very high concentrations of ¹³⁷Cs in wild reindeer, up to 70 000 Bq[·]kg⁻¹ compared to the action level of 6 000 Bq[·]kg⁻¹ (Helsedirektoratet, 1986). When this kind of meat is not considered, the total ¹³⁴Cs and ¹³⁷Cs concentrations measured in beef meat in most parts of the country were generally lower than 600 Bq[·]kg⁻¹. The predicted values can be compared with the ¹³⁷Cs content of beef meat ("storfekjøtt") being 100 Bq[·]kg⁻¹. This may suggest that the transport coefficient from pasture grass to beef in this work is twice as high as the nominal value from ICRP (1979), thus $0.2 \text{ m}^{2} \cdot \text{kg}^{-1}$.

Consumption of milk and meat is the major intake route of 137 Cs to the human body, contributing about 76 per cent to the individual dose of the radionuclide in Norway. It can be assumed that the transport coefficients for milk and meat are $0.2 \text{ m}^2 \cdot \text{kg}^{-1}$ and the yearly average consumption of milk and meat is 240 kg and 62 kg, respectively (Helse-direktoratet, 1986). Thus the yearly intake of 137 Cs from milk and meat based on the Gulsvik data would be in the range of 8 to 50 kBg and the total 137 Cs intake from 10 kBq to 60 kBq. This will correspond to individual doses in the range 0.15 to 0.9 mSv per year. The average values for Norway are calculated to be 0.2 mSv per year for low consumption of reindeer meat and 3.3 mSv per year for high consumption of reindeer meat (Helsedirektoratet, 1986). Thus, it can be concluded that the predicted values in this work are in good agreement with these official data from Norway.

4.4 <u>COMPARISON OF THE DATA COLLECTED IN THIS WORK TO THE</u>¹³⁷<u>Cs</u> <u>CONCENTRATIONS MEASURED AFTER THE NUCLEAR BOMB TESTS IN THE</u> <u>1960's</u>

A comparison of the ¹³⁷Cs measurements in precipitation, soil and grass samples from Uppsala (1966-1967), Wroclaw, Poland (1972-1975) and Gulsvik (this work) is given in Table 9. It has already been indicated that the ¹³⁷Cs deposition in the mostly affected regions in Norway after the Chernobyl reactor accident was about three orders of magnitude higher than the ¹³⁷Cs deposition measured after the nuclear bomb tests in the early 1960's (Pacyna et al., 1986). This is also valid for the ¹³⁷Cs contamination of grass as can be seen from Table 9. Interestingly, the soil contamination after the Chernobyl accident is even more pronounced than the grass contamination.

It should be admitted, however, that the above comparison needs to be done with some caution. The soil condition can be quite different in the compared regions. Besides, the collection of samples and analytical techniques were also different, influencing the above comparison.

5 CONCLUSIONS

The ¹³⁷Cs measurements in soil and plant samples from Gulsvik can be used to assess the migration of the radionuclide in the Norwegian environment after the Chernobyl reactor accident. The major part of the ¹³⁷Cs deposition seems to be in the soil. An uptake of ¹³⁷Cs from soil to plants through their root system is not an efficient process. Only a few per cent of the deposition can be traced in plants. This seems to indicate that as far as ¹³⁷Cs is concerned, the effect of the Chernobyl releases is not an acute but a long-term phenomenon. The ¹³⁷Cs accumulation in soil is rather high but does not result in ¹³⁷Cs levels in plants and diet higher than acceptable in Norway. In this connection the effect of the Chernobyl accident might have been much worse if it had happened in June. Then the direct deposition on plants almost ready for harvest would result in a much more serious contamination of the human diet and body by ¹³⁷Cs.

The results of this study were used to calculate various transport coefficients for 137 Cs and to compare these coefficients with coefficients calculated in the 1970's (e.g. Pacyna, 1975). Generally, the Chernobyl releases of 137 Cs caused an increase of the amount of this radionuclide in the Norwegian environment by more three orders of magnitude, but did not seem to change the migration scheme of 137 Cs through the individual environmental media. The uptake of the radionuclide from soil to plants is as low as it used to be, and so is the transport from plants to milk and meat. Thus, the major contributor of 137 Cs in grass and hay is direct deposition on their leaves. Pacyna (1975) concluded that this contribution is as high as 70% while the rest is through the root system. It is difficult to ascribe any numbers to the Gulsvik ecosystem in this connection, but the principle of low 137 Cs migration through the root has been confirmed.

7 ACKNOWLEDGEMENT

The authors thank Drs. Brit Salbu of Agricultural University of Norway and Brynjulf Ottar and Jørgen Schjoldager of NILU for very valuable comments.

6 REFERENCES

- Backe, S., Bjerke, H., Rudjord, A.L. and Ugletveit, F. (1986) Fallout of cesium in Norway after the Chernobyl reactor accident (in Norwegian). Østerås, Statens Institutt for Strålehygiene.
- Clough, P.N. (1986) Inconsistencies in the Soviet data relating to the source term for the Chernobyl Unit 4 accident. Culcheth, U.K. (SRD, Technical Paper D3).
- Eriksson, Å. (1976) Studies on the transport of fission products through food chains. IV. On the relationship between ¹³⁷Cs in fall out and ¹³⁷Cs in grass and milk. Uppsala, Agricultural College of Sweden.
- Eriksson, Å. (1986) Consequences in Sweden of the Chernobyl event: II Agriculture. In: 2nd Contact Seminar in Radiology, Piacenza.
- Eriksson, Å. and Rosen, K. (1987) Observations on the transfer of ¹³⁷Cs from soils to barley crops in Sweden after the Chernobyl fallout in 1986. In: Proc. IUR Workshop Soil-to-Plant Transfer Factors, Egham, Surrey, 13-16 April.
- Helsedirektoratets Rådgivende Faggruppe (1986) Report on the Chernobyl reactor accident. Oslo (NOU 1987:1) (in Norwegian).
- Helsedirektoratet (1986) The radiactive fallout in Norway after the nuclear reactor accident in the Soviet Union. Oslo (in Norwegian).
- Glowiak, B. and Pacyna, J. (1978) Radionuclide movement in an ecological chain. Ecotoxic Environm. Safety, 1, 447-455.
- ICRP (1979) Radionuclide release into the environment: assessment of doses to man. Annals of the ICRP, 2, No. 2.
- Pacyna, J.M. (1975) ⁹⁰Sr and ¹³⁷Cs migration in the individual links of the ecological chain. Ph.D. dissertation. University of Wroclaw, Poland.
- Pacyna, J.M., Johansen, O., Saltbones, J. and Semb, A. (1986) Air radioaktivity at selected stations in Norway after the Chernobyl reactor accident. Lillestrøm (NILU TR 7/86).

- Persson, C., Rodhe, H. and De Geer, L.-E. (1986) The Chernobyl accident. Meteorological analysis of how the radioactivity has spread to Sweden. Stockholm, Sveriges Meteorologiska och Hydrologiska Institut (SMHI Meteorologi Nr. 24)(in Swedish).
- Saltbones, J. (1986) The nuclear reactor accident in Chernobyl: Atmospheric transport and dispersion of the radioactive material. Oslo, Det Norske Meteorologiske Institutt (in Norwegian).
- USSR State Committee on the Utilization of Atomic Energy (1986) The accident at the Chernobyl nuclear power plant and its consequences. Vienna, IAEA Experts Meeting.

Loca- tion	Sample No	Depth, cm	Sampling area (cm x cm)	Weight, g dry matter	Remarks
		1		bog samples	
	1	0-4	17 x 17	255	1) A sample of mosses
	2	4-5	17 x 17	169	(No. 48 in Table 2)
	3	5-7	17 x 13	216	was collected from
	4	7-9	17 x 13	307	the top of the soil.
	5	9-10	17 x 13	238	2) Natural environment.
	6	10-11.5	17×13 17×13	259	
	7	11.5-13	17×13 17 x 13	351	
	9	13-14.5	17×13 17 x 13	508	
VII		14.5-16	17×13 16 x 12		
	10		16×12 15 x 16	352	
	11	17-18	15×16 15 x 16	308	
	12	18-19	15 x 16	308	
	13	19-20	15 x 16 14 x 16	301	
	14	20-21	14×16 14 x 16	366	
	15	22-23	14×16 14 x 15	302	
	16	22-23	14×15 14 x 15	190	
	17	>24	14×15 14 x 15	755	
	TO	724	14 X 15	/55	
	19	0-5	18 x 16	230	1) Agricultural land
	20	5-20	18 x 16	650	used for hay.
I					2) 5 samples of hay
					(No. 31-35) were
					collected from this
				-	field.
	*	0.0.5	10 - 16	244	1) 1
* * *	21	0-2.5	18 x 16	744	1) A sample of grass
III	22	2.5-5.0	18 x 16	452	(No. 41) was collec-
	23	5-15	7 x 8	602	ted from the top of soil.
					2) Agricultural land.
	24	0-4	18 x 17	853	1) A sample of grass
IV	25	4 - 8	18 x 17	1207	(No 42) was also
					collected.
					2) Agricultural land.
	*				
	26	0-2.5	17 x 17	849	1) 4 samples of various
	27	2.5-7	17 x 17	1162	plants (No. 43-46 in
V	28	>7	17 x 17	1414	Table 2) were col-
					lected nearby the
					soil sample 26. 2) Natural environment.
	29	0 - 7	17 x 17	554	1) A sample of grass
VI	30	>7	17 x 17	314	(No. 47) was collec-
					ted.
					2) Natural environment

Table 1: Information about soil sampling.

* The samples were divided into two parts to differentiate between the layer of some rests of plants on the top layer of soil and the soil itself.

Loca- tion	Sample No.	Type of plant	Sampling area (cm x cm)	Weight, g dry matter	Remarks
I	31	Нау		15	1) Soil sample No. 19
	32	99		10	from Table 1.
	33	**		12	
	34			13.5	
	35	н		13	
II	36	Нау		17	These samples were
	37	14		16	taken from the storage
	38	C 11		13.5	room.
	39			12	
	40			14	
III	41	Grass	18 x 18	13	Soil sample No. 21
IV	42	Grass	17 x 18	13	Soil sample No. 24
v	43	Litter and mosses	17 x 17	11	Samples collected in
	44	Litter and mosses	17 x 17	15	the same area as the
	45	Mosses	30 x 30	16	soil sample No. 26.
	46	Grass	17 x 17	17	
VI	47	Grass	17 x 17	14	Soil sample No. 29.
VII	48	Mosses	17 x 17	10	Soil sample No. 1.

Table 2: Information about vegetation samples.

			1:	34 Cs	1:	37 Cs
Sample site	Sample no.	Sample type	Concentration	Counting error *	Concentration	Counting error *
VII	1 2 3 4 5 6 7 8 9 10 11	Soil	0.47 0.45 0.34 0.17 0.09 - 0.02 - 0.02 - 0.02		1.67 1.53 1.11 0.75 0.39 0.24 0.14 0.08 0.07 -	$\begin{array}{c} \pm & 2.1 \\ \pm & 4.9 \\ \pm & 5.7 \\ \pm & 8.9 \\ \pm & 4.8 \\ \pm & 18.2 \\ \pm & 7.9 \\ \pm & 45.3 \\ \pm & 10.4 \\ \pm & 15.2 \end{array}$
	12 13 14 15 16 17 18			= 93.2	0.03 0.04 0.02 - 0.02 - 0.02	± 44.6 ± 26.2 ± 76.1 ± 45.7 ± 47.5
I	19 20	Soil	0.06 0.01	± 14.6 ± 48.6	0.17 0.05	± 7.4 ± 14.2
III	21a 21b 22 23	Soil	1.37 0.04 0.01	± 6.9 ± 23.5 ± 25.8	3.95 0.15 0.04 0.01	+ 4.6 + 7.5 + 6.5 + 20.5
IV	24a 24b 25	Soil	0.02	± 26.0	0.08 0.03	± 5.2 ± 6.9
v	26a 26b 27 28	Soil	0.31 0.11 0.02 0.01	± 2.8 ± 5.3 ± 8.4 ± 62.8	0.92 0.39 0.08 0.02	$ \begin{array}{c} \pm & 1.4 \\ \pm & 3.3 \\ \pm & 4.1 \\ \pm & 21.1 \end{array} $
VI	29 30	Soil	0.85 0.03	± 6.2 ± 28.7	2.72 0.17	± 3.1 ± 8.0
I	31 32 33 34 35	Нау	0.06 0.10 0.05 0.09 0.05	* 35.7 * 19.5 * 65.7 * 21.7 * 32.8	0.14 0.30 0.11 0.22 0.09	+ 11.0 + 7.7 + 35.3 + 15.8 + 18.5
II	36 37 38 39 40	Нау	0.16 0.15 0.14 0.16	± 7.6 ± 10.0 ± 12.7 ± 11.4	0.59 0.47 0.39 0.42	± 3.1 ± 4.5 ± 5.5 ± 6.8
III	41	Grass	0.22	± 15.4	0.68	± 5.8
IV	42	Grass	0.25	± 5.7	0.70	± 3.3
V	43 44 45 46	Litter & mosses Litter & mosses Mosses Grass	0.22 0.64 0.28 0.08	± 19.0 ± 6.1 ± 3.0 ± 19.6	0.65 1.71 0.83 0.24	
VI	47	Grass	0.52	± 3.8	1.61	± 1.6
VII	48	Mosses	1.15	± 5.9	4.10	± 2.7

Table 3: Concentrations of 134 Cs and 137 Cs in samples of soil and vegetation (in Bq'g⁻¹).

In addition to the counting error (2σ) in Table 3, 5% calibration standard uncertainty must be accounted for.

	Measured deposition ^{*3} , kBq ^{·m⁻²}		Fraction of ¹³⁷ Cs ^{*1} from Chernobyl	
Location	¹³⁷ Cs	¹³⁴ Cs	kBq·m ⁻²	8
I III IV V VI VII	2.4 4.6 3.5 15.8 52.1 14.8	$1.2 \\ 1.8 \\ 0.6^{*2} \\ 6.5 \\ 23.1 \\ 5.9$	2.3 3.6 1.3 13.1 43.2 11.8	96 80 37 83 89 80

Table 4: Deposition of ¹³⁷Cs and ¹³⁴Cs at various locations.

*1 Assuming the $\frac{134}{Cs}/\frac{137}{Cs}$ ratio of 0.5. *2 Measurement error cannot be excluded.

*3 Soil only.

Table 5: Transfer of ¹³⁷ Cs to plants on the basis of transport coefficients and transfer factors.

Location	Plant type	137 Cs content of plant kBq`kg dry matter	Transport coefficient 21 (TC) m kg dry matter	Transfer factor (TF)
I	hay	0.142	0.059	1.8
	hay	0.302	0.126	3.8
	hay	0.113	0.047	1.4
	hay	0.217	0.090	2.8
	hay	0.089	0.037	1.1
	average hay	0.170	0.071	2.2
III *1	grass	0.683	0.149	9.0
IV ^{*1}	grass	0.702	0.203	13.3
v	long litter and mosses	0.654	0.041	4.8
	long litter and mosses	1.705	0.107	12.5
	mosses	0.827	0.052	6.0
	grass	0.244	0.015	1.8
VI	grass	1.610	0.031	1.1
VII	mosses	4.103	0.278	9.6

*1 Very low data for soil have resulted in very high transfer factor value.

		Plants		
Locations	137 Cs in soil kBq°m	Туре	137 Cs content, kBq m ⁻²	Migration coefficient K %
I	2.41	hay	0.09	3.7
III	4.57	grass	0.34	7.4
IV	3.45	grass	0.30	8.7
V	15.80	long litter and mosses	0.25	1.6
		long litter and mosses	0.30	1.9
		mosses	0.15	1.0
		grass	0.14	0.9
VI	52.14	grass	0.80	1.5
VII	14.76	mosses	1.42	9.6

Table 6: Transfer of ¹³⁷ Cs to plants on the basis of migration coefficients.

Table 7: Transport coefficients from pasture grass to milk (TC) and meat (TC $_{\rm 2}$) after (ICRP, 1979).

Coefficient	Unit	ICRP nominal value	Observed range in other literature
TC	$m^2 \cdot 1^{-1}$ $m^2 \cdot kg^{-1}$	0.38	0.12-2.1
TC ₂		0.10	0.034-0.21

Table 8: Predicted ¹³⁷ Cs contamination of cow milk and beef meat in the Gulsvik area.

	137 Cs concentration	, when TC nominal used	137 Cs concentration, when TC_{max} used	
Location	milk, Bqʻl ^{~1}	beef meat, Bq'kg ⁻¹	milk, Bqʻl ⁻¹	beef meat, Bq'kg ⁻¹
111	129	34	714	71
VI	114	30	630	63
V	53	14	294	29
VI	304	80	1680	168

Table 9: ¹³⁷ Cs concentrations in precipitation, soil and grass measured in Uppsala (1966-1967), Wroclaw, Poland (1972-1975) and Gulsvik (this work).

		137 Cs cond		
Site	Author	Precipitation kBq°m ⁻²	Soil Bgʻm ⁻²	Grass Bq`kg dry matter
Uppsala (1966-1967)	Eriksson, 1976	0.02-0.06		3.7-18.5
Wroclaw, Poland (1972-1975)	Pacyna, 1975	0.001-0.01	0.7-2.7	1.5
Gulsvik	(this work)	5.85	2410-52100	244-1610

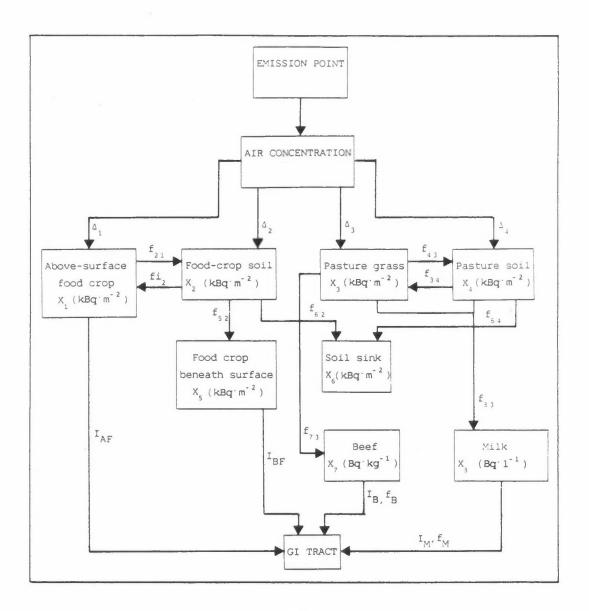


Figure 1: Migration of ¹³⁷Cs in the environment.

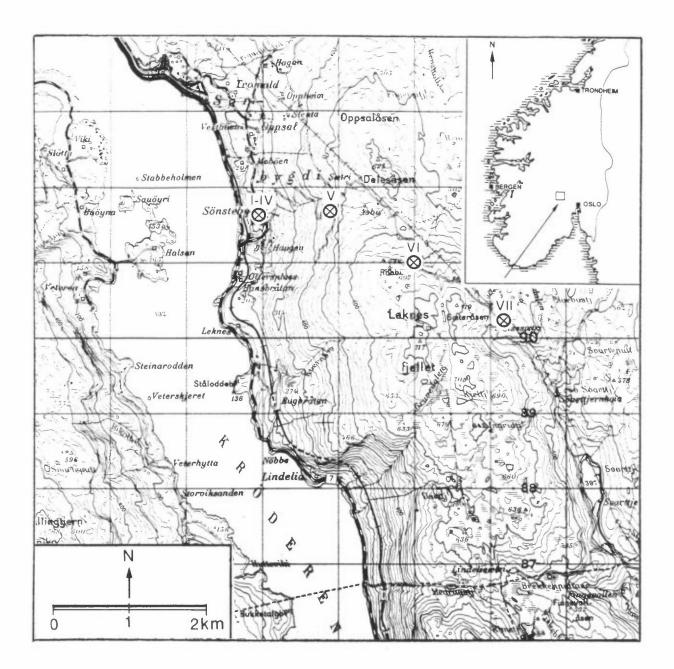


Figure 2: Location of the sampling sites.

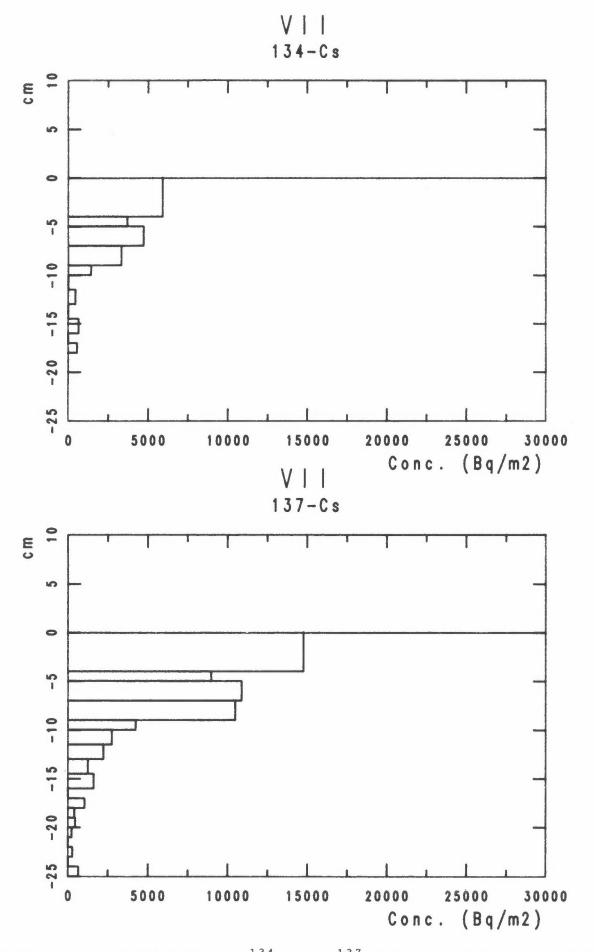


Figure 3: Concentrations of ¹³⁴Cs and ¹³⁷Cs in a peat bog samples collected at Gulsvik.

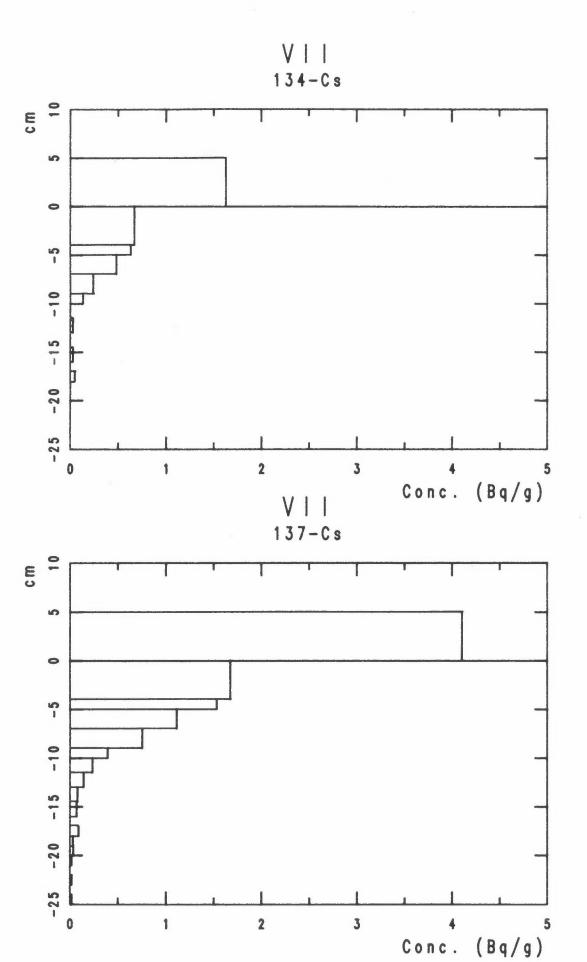


Figure 3 cont.

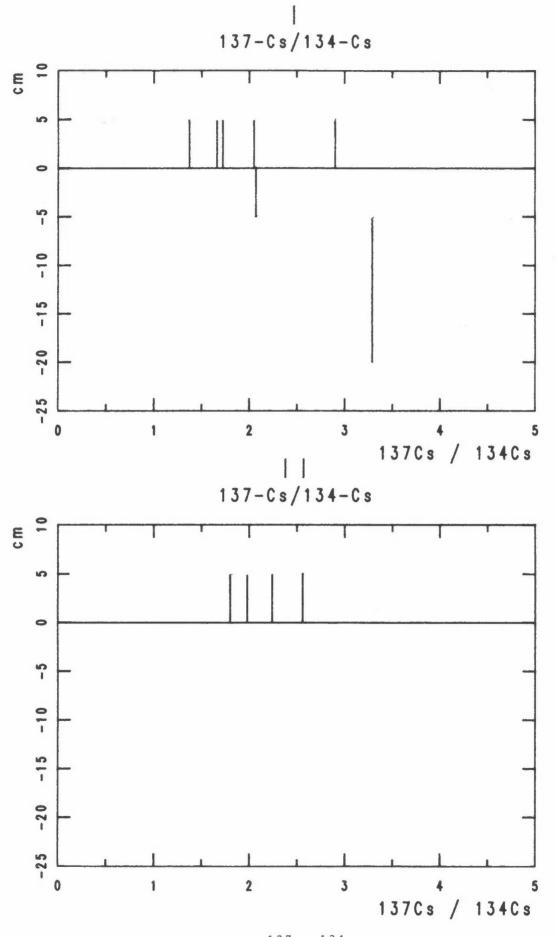


Figure 4: Ratio of ¹³⁷Cs/¹³⁴Cs for all samples.

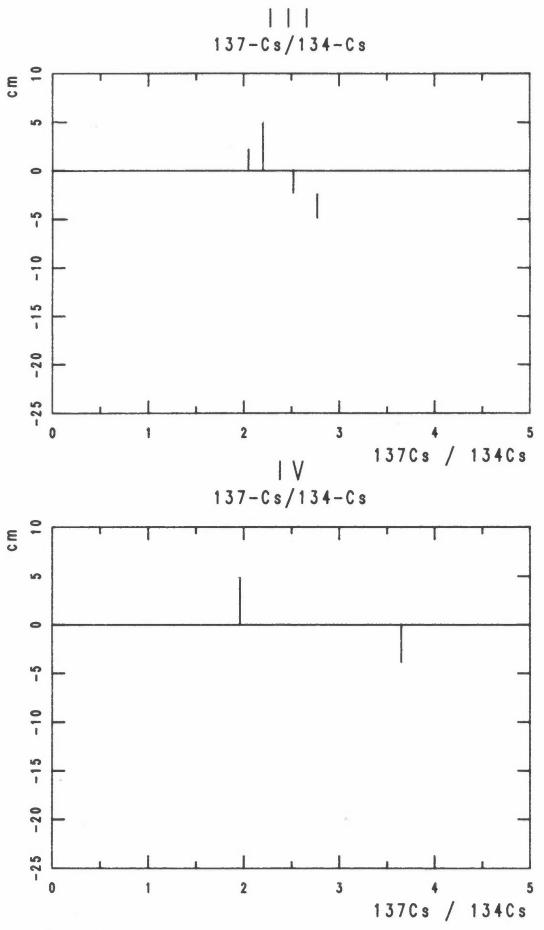
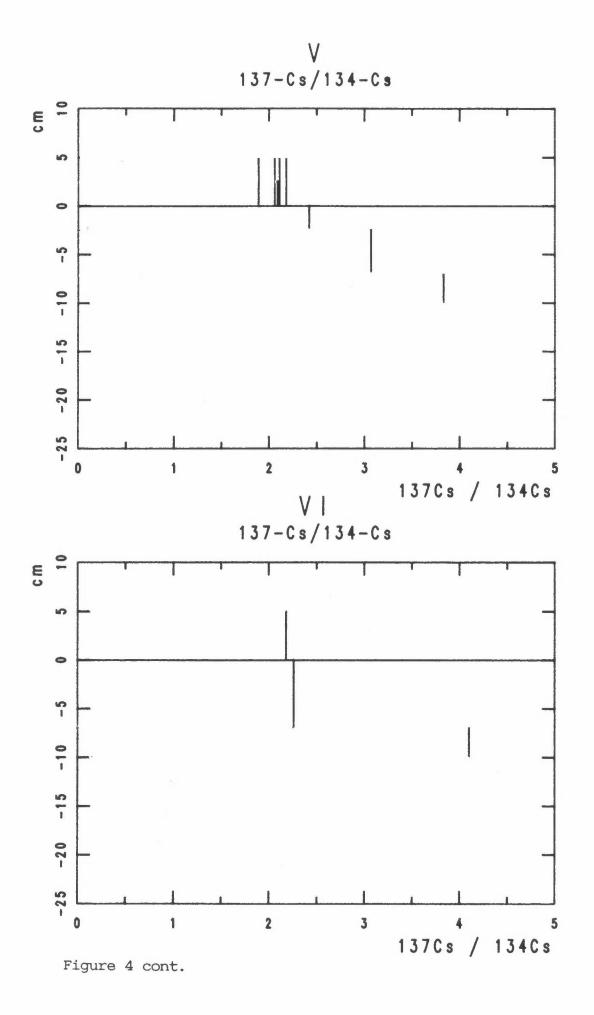



Figure 4 cont.

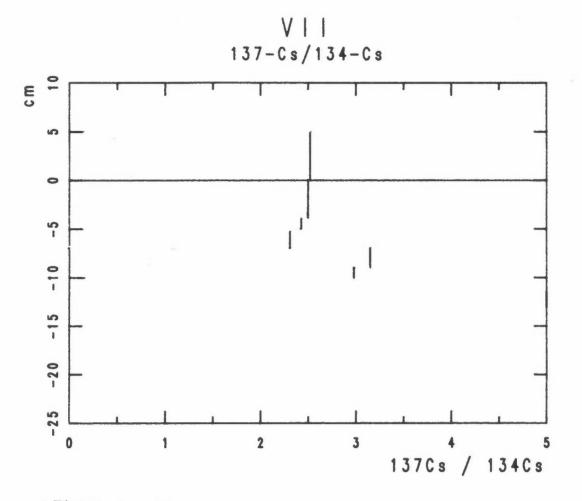


Figure 4 cont.

NORSK INSTITUTT FOR LUFTFORSKNING (NILU) NORWEGIAN INSTITUTE FOR AIR RESEARCH POSTBOKS 64, N-2001 LILLESTRØM

RAPPORTTYPE OPPDRAGSRAPPORT	RAPPORTNR. TR 2/88	ISBN-82-7247-898-6			
DATO FEBRUARY 1988	ANSV. SIGN. J. Schjoldagu	ant. sider 26	PRIS		
TITTEL 137 Migration of Cs from ain Gulsvik area, Norway after accident.	r to soil and plants in the	PROSJEKTLEDER J. Pacyna NILU PROSJEKT NR. E-8¢62			
FORFATTER(E) Jozef M. Pacyna, Arne Semb	TILGJENGELIGHET A				
		OPPDRAGSGIVE	ERS REF.		
OPPDRAGSGIVER (NAVN OG ADRE: NILU	SSE)				
STIKKORD (à maks. 20 anslag) Radionuclide Migration Food chain		in			
REFERAT (maks. 300 anslag, 7 linjer)					

ABSTRACT (max. 300 characters, 7 lines) A migration of 137 CS from air to soil and vegetation after the Chernobyl accident is studied using the concentrations measured in the Gulsvik area in Norway. The major part of the 137 CS from soil to plants through their root system is not a rapid process. Only a few per cent of the deposition can be traced in plants. This seems to suggest that as far as CS is concerned, an effect of the Chernobyl releases is not an acute but a long-term phenomenon. The CS accumulation in soils is rather high but does not result in 137 CS levels in plants and diet higher than acceptable in Norway.

*	Kategorier:	Åpen – kan bestilles fra NILU	A
		Må bestilles gjennom oppdragsgiver	В
		Kan ikke utleveres	С

TITLE