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PREFACE 

The Norwegian Institute for Air Research (NILU) and the Norwegian 

Meteorological Institute (DNMI) has cooperated in developing a numeri 

cal model for calculation of atmospheric flows on the mesoscale. The 

base of the model is the adiabatic part of the numerical weather 

prediction model at DNMI. The model is constructed to be run on the 

DNMI computer system (FPS-164/IBM-4341). The cooperation between NILU 

and DNMI was encouraged by Professor Anton Eliassen, DNMI. 
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SUMMARY 

This report gives a complete description of a numerical model, con 

structed to simulate a wide range of flows on the atmospheric meso 

scale. The adiabatic part of the model is taken from the routine 

weather prediction model at DNMI. The boundary layer formulation 

requires a dense resolution of the lower 1.5 km of the atmosphere. A 

first order closure scheme, which distinguishes between the unstable 

and the stable boundary layer, is chosen. Topography is included by 

using terrain-following coordinate surfaces, combined with a stagge 

ring of the vertical grid which lead to a consistent computation of 

the horizontal pressure forces. The physical processes include pre 

cipitation and clouds, terrestrial radiation and an equation for 

ground surface temperature. The sea surface temperature must be 

prescribed. The lateral boundary conditions is a relaxation-zone 

scheme modified to take into account effects of physical forcing. In 

all tested cases it has performed excellently. Since the model is 

quasihydrostatic, a lower limit is imposed on the scales to be simu 

lated. It is recormnended that the grid resolution is 1 km or larger 

when simulating slow wind speed situations with a strong static stabi 

lity. When modelling general mesoscale structures, the grid increment 

should be 5 km or larger. The few tests made so far are promising, but 

more case studies remain to be made. 



r. 
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1 INTRODUCTION 

The first three-dimensional, mesoscale models were made to study sea 

breezes along coastal shores (McPherson, 1970; Pielke, 1974; Tapp and 

White, 1976). These models did not contain a complete description of 

physical processes within the atmosphere, but was constructed for case 

studies. Later, more complete physical schemes were incorporated into 

the models, which thus had a much wider area of application (Anthes 

and Warner, 1978; Carpenter, 1979). Subsequent to these pioneering 

papers, the research on the atmospheric mesoscale has intensified con 

siderably. This is very much due to the invention of larger and faster 

computers, but is probably also a consequence of new ways of taking 

observations, especially by means of weather radars. The new disipline 

in modern weather prediction called "now casting", requires detailed 

knowledge of wind and precipitation in complex topography and coastal 

areas. There is also severe weather related to mesoscale vortices 

(tropical cyclones, polar lows) and unstable zones (cold fronts, 

squall lines). 

Another area of application is air quality modelling. Such modelling 

on scales from local to regional, requires detailed knowledge of wind 

and turbulence. During episodes of high concentrations of pollutants, 

winds and turbulence are very often weak and dominated by mesoscale 

forcing. 

This report describes a numerical model for simulation of atmospheric 

flows on the mesoscale. It includes a wide range of processes, which 

makes it quite generally applicable. The main restriction of the 

applicability is the use of the quasihydrostatic approximation. This 

approximation simplifies the numerical integration considerably, since 

vertically propagating, accoustic waves are removed. However, it 

restrics the model to simulations on scales larger than a certain 

minimum. After the general model descriptions in sectiens 2,3,4 and 5, 

the limitation of its applicability due to the quasihydrostatic 

approximation is summarized in section 6. Section 7 concludes the 

report with a few preliminary examples. 
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2 BASIC EQUATIONS AND NUMERICAL METHODS 

The adiabatic part of the model is the same as used in the routine 

numerical weather prediction model at The Norwegian Meteorological 

Institute (Grønås and Hellevik, 1982). The vertical coordinate is 

normalized pressure (a) with an upper lid at the constant pressure 

level p = PT, i.e. 

p - p T a = 
Ps - PT 

(2.1) 

where is the pressure on the ground surface. The horizontal coor- 

dinates are cartesian, and the quasihydrostatic approximation is 

assumed to be valid. The governing equations on a conformal map with 
-+ 

transformation factor m and v = (u,v) is the wind devided by m, are 

the hydrostatic equation 

cp + ell = 0, a a (2.2) 

the continuity equation 

the horizontal equations of motion 

2-+ -+2 + åu fv - - ell (ut)eddy ut+ m v. vu + mv m = cpx + 
X a X 

2-+ -+2 + åv -fu ell (vt)eddy, Vt+ m V. !JV + mv m = - cp - + 
y a y y 

the thermodynamic energy equation 

the equation for water vapor 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

R/c 
Here II = cp(p/p

0
) P is the Exner function, 

P* = Ps - PT· 

å = do/dt and 
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All quantities are ensemble averages, i.e. the system is purely 

detenninistic. Tendencies subscribed by "eddy" are detenninistic 

tenns due to nonlinear interaction between stochastic fluctuations. 

The tenns (et)rad and (et)lat are diabatic heating due to long wave 

radiation and condensation of water vapor respectively, while 

humidity's impact on buoyancy 

the specific humidity is 

assumed to be small. If necessary, however, it could be taken 

(qt)phase is the evaporization rate. The 

is not taken into account, since 

into 

e 
V 

account by computing the 

= [1 + ( ! - l)q]e, where£~ 5/8. 
£ 

virtual, 

The upper and lower, kinematic boundary conditions imply 

å = do/dt = 0 for o = 0 and o = 1 

potential temperature 

(2.7) 

The upper condition is an approximation when pT > 0 since pT is a 

temporal constant. The part of the atmosphere with p e [0,pT] is 

implicitely assumed to be at rest. If pT is chosen to be above the 

tropopause, this approximation is not expected to cause significant 

errors for short tenn prognostic calculations. However, this condition 

may cause spurious reflections of vertically propagating waves. 

The independent variables are x, y, o and t. The system is posed 

as an initial-boundary value problem in 

V, e, q and p. s All these variables 

the 

are 

dependent variables u, 

ideally supposed to be 

known for all points (x,y,o) inside a simply connected region for 

t = 0 (initially) and at its boundary fort> 0. The problem is then 

to find the variables within the region fort> 0. 

With ps ande known, p (and hence Il) is calculated from (2.1) 

and~ by integrating (2.2): 

Il 
Jse"'Il ~ = ~s + u 
Il 

(2.8) 

where~ s 
grating (2.3) vertically, (ps)t is found from 

is the surface geopotential (i.e. the topography). By inte- 

1 
2 -+ 

= -m rv. (p*v)6o 
0 

(2.9) 
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where (2.7) has been applied. Tne "vertical" motion å is also found 

from ( 2.3): 

å = 1 0 
[( ) m2J ( -+) ps to+ V. p*v 80] 

0 
(2.10) 

With the eddy- and forcing-terms known, ut, vt, et and qt are deter 

mined from (2.4), (2.5) and (2.6). 

One major problem that arises when integrating the primitive equations 

with coordinate surfaces not being close to horizontal, is the calcu 

lation of the horizontal pressure force. When the coordinate suface 

slopes, this force show up as a small difference between two large 

terms. In the present model, a vertically staggered discretization has 

been chosen in order to arrive at a consistent approximation to the 

horizontal pressure force (Janjic, 1977), see Fig. 2.1. 

layer no. 
C1. !1 l = o W'Ø/d//~ (),C1=0,K=O s 

O'm(1 l 1 8,u,v,q 

0'5(2) - -(),å',K 
• 
• • 0.(kl- --··- s 

O"m! kl k -··- 
O"m! k+1l - - - __ ,,_ 

• 
• 
• 05!Ml- - - __ ,._ 

~(M) M _,,_ 
I Om!Ml+ 0'5!M+1)1/2• • • • • • • • K . 

0
5
(M+1) =1 1/1//17/$//~ ()5,85 ,P5 ,0=0,K=O 

Figure 2.1: The vertical staggering of variables in the model. 

However, a consistent approximation, in the sense that the finite 

difference expression converges towards the differential operator as 

the grid increment becomes infinitesimally small, does not eliminate 

truncation errors. The net horizontal pressure force is calculated by 

the difference between the gravity force and total pressure force 

projected onto the coordinate surface o = canst. The major part· of 
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these tenns cancel due to the quasihydrostatic assumption. Since the 

horizontal grid resolution nonnally is several orders of magnitude 

coarser than the vertical, the hydrostatic balance that is approxi 

mated when calculating the horizontal pressure force has much larger 

truncation error than the balance approximated when integrating the 

vertical hydrostatic equation (2.8). This causes errors that will 

increase with height since (2.8) is cumulative. On the mesoscale, the 

largest errors will be expected to show up in the mass field, since an 

imbalance on this scale will cause the mass field to adjust towards 

the wind field (e.g. Økland, 1972). The problem to calculate the hori 

zontal pressure force has been addressed by several authors (e.g. 

Sundqvist, 1975; Janjic, 1977; Mesinger and Janjic, 1983). 

The horizontal, finite difference scheme is one of the schemes presen 

ted by Bratseth (1983). It combines the accuracy of a timestaggered 

D-grid (Eliassen-grid, see Fig. 2.2) with the advantages of a scheme 

that is not staggered in time. The combination is made possible by 

means of a third order accurate interpolation. A variable, e.g. e, is 

discretized in a unifonn, square grid on a confonnal map. Preliminary 

tendencies are computed in the centres of each grid square, and inter 

polated, accurately to the third order in grid distanced, back to the 

a-positions. 

◄ d .. 
V A V A 

1 
i1 u i1 u d 

V A V A ! 
i1 

. u C1 u 

A,. <l>,P5,8,K 

Figure 2.2: The horizontal staggering of variables in the model. 
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By obtaining this non-staggered (in time) scheme, the leapfrog time 

integration scheme can be modified by the "Schuman pressure gradient 

averaging technique" with the computational mode controlled by a time 

averaging filter (Brown and Campana, 1978). This imply that the time 

step ~t can be increased with about a factor two as compared to the 

pure leapfrog scheme. The accurate, horizontal interpolation of ten 

dencies also leads to a possible increase in timestep of a factor 

1.5-2. The linear stability criterion is 

~t < a d 
pm 2 J'2"(c + UMAX) (2.11) 

where ape <3,4>, UMAX is maximum advective speed and c is the phase 

speed of the fastest moving horizontal waves in the system. The 

phase speed of Lamb waves is c fe /c, where c is the phase speed 
0 p V 0 

of external gravity waves and c and c are the specific heat of dry p V 
air at constant pressure and volume respectively. 

A detailed presentation of the finite difference equations and the 

numerical methods is given in Grønås and Hellevik (1982). 

To assure a certain balance between the mass- and wind-fields ini 

tially, a dynamic initialization scheme of the Bratseth (1982)-type is 

applied. 

3 PARAMETERIZATION OF TURBULENCE 

The governing equations are deterministic in the ensemble-averaged 

variables. Nevertheless, the nonlinearity of the system implies that 

stochastic energy may combine to deterministic energy. For a specified 

realization of the system, a quantity A may be written as a sum 

A= <A>+ A' (3.1) 

of its ensemble average <A> (average over an infinite number of reali 

zations) and its stochastic deviation A'. In turbulent motion, which 

is common in the atmospheric boundary layer, the stochastic part of 

the flow is of major importance and deterministic terms that are 

functionals of the fluctuations (eddy-terms) are large. The model 
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expresses eddy-terms as functionals of the ensemble-averaged quan 

tities through diagnostic relations (first order closure). Horizontal 

turbulence is assumed negligible as compared to vertical, and density 

fluctuations are ignored. The eddy-terms of eqs. (2.4)-(2.6) are thus 

(A) = - g (-Q<A'w'>) 
teddy p* (3.2) 

where Q is density and w· is the fluctuation of vertical velocity. 

The basic philosophy behind the chosen boundary layer turbulence 

scheme, is to treat turbulent effects locally under stable conditions 

and as bulk effects in the unstable regime. This is justified by the 

fact that the average size of the individual turbulent eddies (the 

mixing lenght) increase abruptly when the abnosphere turns unstable. 

3.1 THE SURFACE LAYER 

The surface layer can be defined as the lowennost layer in the 

abnosphere where the timescale is so short that the inunediate adjust 

ment approximation is valid. The turbulent flux densities are there 

fore constant within this layer. The sign of the vertical, turbulent 

heat flux density determines whether the planetary boundary layer is 

to be treated with local relations or with bulk formulaes. 

The constant surface layer flux densities is defined by u* e* 

and q* through 

l<vw'>l112 

- - > u*e* = - <e w 

u*q* = - <q'w'> 

(3.3) 

To express these quantities with determinstic variables the flux 

profile relationship given by Businger (1973) as a result of a boun 

dary layer experiment (Businger et al., 1971), are used. These are, 

however, implicit formulaes and iterative methods have often been 
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applied. Louis (1979) fitted explicit relations to the Businger func 

tions, and they are used here. The Louis functions are (all heights, 

are relative to the ground, e.g. z = (~ - ~ )/g): s 

(3.4) 

where the bulk Richardson number is 

(3.5) 

(3.6) 

(3.7) 

and h is the height of the surface layer. The detennination of e and s s 
qs is given in section 4. Furthennore, a2 = k2 [ln i J-2, 

0 

1 - 
2b RiB . RiB < 0 

l+clRiBll/2 
, 

FM H = , 
[l + b RiB]-2 . RiB > 0 , 

(3.8) 

and 

c = a2bJz/z • 
0 

F-4 for FM 

~3 for FH 
(3.9) 

Here 

al., 

b = 

1971) 

4% 

as 

of 

the 

4.7, z is the roughness lenght and k = 0.35 (Businger et 
0 

is the von Kannan constant. The height h is taken to be s 
the height z. of the total abnospheric boundary layer, defined 

1 
height of the lowennost layer at least 200 m above the ground 

where e(z.) > e +~e. We have chosen ~e = 0.2 K. 
1 - S 

3.2 THE STABLE BOUNDARY LAYER 

The abnospheric boundary layer is defined as stable as a whole when 

e* > 0. However, local 

K-theory (the exchange 

bulent flux density of a 

unstable layers are possible. Traditional 

hypothesis) applied to the vertical, tur 

quantity A, give 
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(3.10) 

and hence from (3.2) 

(At)eddy (3.11) 

Superscript (z) denotes a quantity defined with z as vertical coordi 

nat. To account for a counter-gradient, turbulent heat flux in 

weakly stable conditions (Deardorff, 1966), the eddy-term fore is 

slightly modified by introducing y(z): 
cg 

n2 2 (z) (z) p* 
(e ) = ..z.... [Q K (e + y -)] 
teddy p* o cg Qg o 

where 

y(z) = 0.7 10-3 Km-1. 
cg 

(3.12) 

For calculation of the exchange coefficients for momentum K(~) and 

heat Kifz) , formulaes which are based on the Mellor and Yamada 

(1974) level 2-scheme are used. Formulaes of the type K = L2 lvzlF(Ri) 

was derived by Blackadar (1979), 

model, only slightly modified to 

and will be used in the present 

be a continuous functions of Ri. 

The mixing lenght Lis not determined by the Mellor and Yamada theory, 

and is a major problem in atmospheric turbulence theory. Here, the 

simple formulae used by McNider and Pielke (1981) is applied, 

-Gz ; z < z m (3.13) L = 
z . z > z m 

, 
m 

where z = 200 m. The formulaes are m 

(1.1 - 87 Ri)1/2 . Ri < 0 
K(z) 

, 

H 1.1 1.2 Ri 0 < Ri <.!_Ri (3.14) 
L 21vzl 

= - Ri 
; - 2 C 

Ri C 
1 R' 1 . < Ri < Ri - Ri , - J. 2 C C 

C 

and for momentum 

= 
(11 - 

- Ri 
C 

21 Ri)1/2 

Ri 
; Ri< 0 

; 0 <Ri< Ri 
C 

(3.15) 
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For Ri > Ri , there is no vertical turbulent exchange. The Ri- and 
C 

Ric-numbers are the Richardson number (Ri= gez/elvzl
2
) and the criti- 

cal Richardson number. From theory (e.g. Drazin and Howard, 1966), 

stratified shear flow stays laminar as long as the Richardson 

number is greater than 0.25. In a discretized model overturning to 

turbulence may be possible also for Ri somewhat larger, since the 

value computed by the model must be considered as a layer bulk 

value. Local values within a model layer can still be smaller than 

0.25. On the other hand, turbulence does not necessarily occur for 

Ri< 0.25 since this is not a sufficient condition. The formulae 

suggested by McNider and Pielke (1981) is used, 

Ri 
C 

(3.16) 

where A= 0.115, B = 0.175, ~z is the model layer thickness and 
-2 ~z = 10 m. 

0 

3.3 THE CONVECTIVE BOUNDARY LAYER 

The profile formulae for the exchange coefficients used when the 

surface layer heat flux is directed upwards, is the O'Brien (1970) 

relation. Hence fore*< 0, 

K = 

; z < h s 

· h < z < z. ' S 1 
(3.17) 

where Kis either K(:) or K(:~ 

Above the convective boundary layer (z > z.) the formulaes (3.14) and 
- 1 

(3.15) are applied. Since the surface layer flux densities are 

already known, the Businger et al. (1971)-functions can be used 

explicitely to find K(h) and K (h ). Thus s z s 

K(~z) = k ;~ (z) -M,H u* z ~M,H L (3.18) 
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Where L 2 = eu*/kge* is the Monin-Obhukov length. 

surface layer, 

~M = (1 - 15 z/L)l/4 

and 

~H = 0.74/(1 - 9 z/L)l/2 

In the free convection limit (e* < 0 and u* - 0) (3.20) cannot be 

used. To be able to include also such cases, one assumes 

1/3 
~H = 0.74/(1 - a z/L) ; z/L ~ -2 

In the unstable 

(3.19) 

(3.20) 

(3.21) 

Demanding continuity for z/L = -2, one arrives at 

1 a= 2 (J6859 - 1) ~ 40.9. (3.22) 

The free convection limit of K(z) is then H 

~z)(u* - 0) = (aka2b/0.74c)113(kgz2/0.74e)le(hs) - esl112 

(3.23) 

K(hs) is found by entering z = hs in (3.18) and the gradient 

by differentiating (3.18) with respect to z and entering z = h. s 

K (h) z s 

3.4 SOLUTION OF THE ADVECTION-DIFFUSION EQUATION 

The prognostic equations (2.4), (2.5) and (2.6) are parabolic diffe 

rential equations that contain terms of the advective and diffusive 

type. These two kinds of terms possess significantly different proper 

ties with respect to numerical approximations. Discretizations which 

are stable under certain conditions for one of the terms, are uncondi 

tionally unstable for the other. The numerical integration of the 

governing equations therefore needs considerable concern. 

Since advective terms corresponds to oscillation and diffusive terms 

to damping, the linear numerical properties of the time integration 

may be studied in full generality by the equation 
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(3.24) 

where Ct> and x are real numbers and i is the imaginary unit. The equa 

tion can be interpreted as governing the time development of the eigen 

functions A in a linear system, with w being the eigenvalues for the 

oscillatory terms and x2 the eigenvalues for the damping terms. As an 

example, consider the equation ht= - Uhx + Khzz Introducing the 

Fourier component h = Aexp [i(kx+mz)] lead to (3.24) with w = Uk and 
2 2 

X = Km . 

To be able to solve the advection-diffusion equation numerically, a 

fully implicit (backward) scheme is used for the diffusion terms and a 

conditionally stable, explicit three-level scheme for the oscillation 

terms (Bratseth, 1983). 

The diffusive step is first made: 

giving 

where n denotes the time level and the asterics a preliminary value of 
A(n+l)_ By approximating 

and using the leap frog scheme for the oscillation term, one arrives 

at 

A(n+l) = A(n-1) _ i26tCt>A(n) _ 26tx
2 

A(n-1) 
1+26tx2 

Assuming A(n) = ~nA(o) where~ is constant, one gets 

(3.25) 

(3.26) 
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The von Neuman sufficient contition for stability is that IÆlil. Now, 

w2~t2il/(1+2~tx2) 

w2~t2>1/(1+2~tx2) 

The solution Æ+ corresponds to the physical situation and is always 

stable, since IÆ+lil for all wand x. However, the spurious part of 

the solution (normally called the computational mode) ruins the 

unconditional stability. The instability increases with increasing 

damping factor x
2
, and when x2 

- -, then IÆ_l-2lwl6t. Hence, the 

linear stability criterion is 

lw l6t i 1;2 (3.27) 

Consequently, to achieve a stable integration for all possible values 

of x and w, the timestep must be half the one required with no diffu 

sion terms. Thus, the stability criterion (2.11) is to be applied with 

CX E (1.5,2>. p 

In practice when applying the fully implicit scheme on the diffusion 

equation, a set of simultaneous linear equations have to be solved in 

order to compute the preliminary fields for timelevel (n+l). The dif 

fusion equations take the form 

At= [K(A - y)] 
0 0 

(3.28) 

where A is either u, v, e or q, the countergradient flux density is 
2 2 (z) 2 • zero unless A=e, and K = g p K /p*. Following the notation of Figure 

2.1, the finite difference version of (3.28) is 

(n-1) 26t 
= ~ + _o _(.,..,.k-+~l..,...) --o__,(..,...k..,..) 

s s 

(3.29) 

for ke {2, ... ,¾-1} 
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The boundary conditions are for k=l: 

A(n+l)_ A (n+l) 
A(n+l)= A(n-1) + 26t [ 2 1 

1 1 os(2)-os(l) K2 oM(2) -oM(l) 

and fork=~: 

(3.30) 

~+l)= ~-1) + 26t 
[os(Ks) + oM(~)]/2-os(~) 

{n+l) ~+l) ~+l) - ~+1) 

~ 
-1 s 

s . a (K ) - oM(Ks) ~ OM(~) - oM(~-1) s s 

The surface values are 

0 

(n-1) + 26t ( )(n-1) 8K 8K t s s 

( (n+l) T(n+l)) 
o:qsat PK , K 

s s 

A(n+l) a A.(n+l) _ A.(n+l) = H. 
- Lk-1 k-1 + ~K-k Lk -1<:+l --k 

; A=u,v 

; A = e 

(3.31) 

(3.32) 

(n+l) + (1-o:) q~ ; A= q 

The formula for A = q is explained in section 4 (eg. (4.17)); the 

factor o:e[0,1] is a measure of the available ground surface humidity. 

In summary, the equations (3.29) through (3.32) may be written as a 

three-level recursion formula 

(3.33) 

for ke{l, ... ,~}; where L
0
=o, Lk' (3k and I\ are known for ke{l, ... , 

~}, and {n+l) is known. 
s 

This recursion formula is 

(Potter, 1973). 

(n+l) 
solved for~ by Gauss-elimination 
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4 PARAMETERIZATION OF PHYSICAL PROCESSES 

The physical processes that are implemented in the model include ter 

restrial and solar radiation, condensation processes, and cloud para 

meterization. Furthennore, there are two methods for calculation of 

ground surface temperature and a simple method for calculation of 

ground surface moisture. This comes in addition to the turbulence 

parameterization which is described in section 3. 

4.1 CLOUD PARAMETERIZATION 

Fractional cloud cover to be used in the radiation scheme is taken as 

a function of relative humidity: 

u - u 
( { C 0})2 a=max1 U' 

C 
(4.1) 

where U is relative humidity and U is the treshold humidity for 
C 

clouds to exist. Eq. (4.1) reflects that any model variable may be 

regarded as a mean value within a grid volume, and that subgrid scale 

fluctuations are possible. Even for a subsaturated model layer (U<l), 

local patches of clouds may be expected. u
0 

is a function of the grid 

distance d, and should approach unity as the resolution gets better. 

In the experiments reported here, we have chosen U = 0.8 for all 
C 

kinds of clouds in the free atmosphere, and U = 0.92 for boundary 
C 

layer clouds (fog) . In the unstable boundary layer, clouds are not 

supposed to exist even if the relative humidity would allow it. Thus 

we put a = 0 if the surface layer heat flux density is directed 

upwards. 

The long-wave radiation scheme assumes clouds to be black body radia 

tors. This is not correct for cloud depths less than ca 100 m. We have 

therefore chosen to have a layer thickness dependence on cloud cover 

age: 

a'= a. min{~o/~o ,1}, er 
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thus letting thin clouds act as grey radiators. At standard atmos 

pheric pressure and temperature, 12 hPa corresponds approximately to 

100 m. We therefore put ~o = 12 hPa/p*. er 

4.2 TERRESTRIAL RADIATION 

The species that are the principal absorbers and emittors of terres 

trial radiation in the troposphere, are water vapour, liquid water 

and carbondioxide. In this scheme the emissivity approximation is used 

in solving the radiative transfer equation. This means that the radia 

tive transfer equation has been integrated over frequency once and 

for all by defining emissivity-functions which do not depend on 

frequency. See Stephens (1984) for a comprehensive review on para 

meteriazation of radiation. In terms of the emissivity, the con 

tribution to the long wave radiation flux density at a level (o) from 

a layer (o') with thickness ~o are (radiation is counted positive when 

directed upwards): 

dE(o,o') A , 

do' uO 

where B(T(o')) is the black body radiation flux density at temperature 

T(o') and Eis the emissivity function (see Fig. la). Net long wave 

radiation flux density at a level (o) is then found by integration 

over all model layers: 

L o 
~ ( o ) = JB ( T ( o' ) ) 

0 

1 
+ J B(T(o' )) 

0 

dE(o,o') d , 
do' 0 

dE(o,o') d , 
do' 0 

+ (1 - E(l,o)) B(T ), s 

where T is the ground surface temperature. The emissivity function s 
E depends on carbondioxide and water vapour: E(o,o') = E (o,o') + 

V 

E (o,o'). E (o,o') is given by Jacobs et al. (1974): 
CO V 

2 
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0.113 log [1+12.62 s(o,o')], log s<-4 
10 10 

0.104 log (s{o,o')) + 0.440, -4< log s<-3 
10 - 10 

E (o,o' )= 0.121 log (s(o,o')) + 0.491, -3< log s<-1.5 (4.2) 
V 10 - 10 

0.146 log ( s ( o, o ' ) ) + 0.527, -1. 5< log s <-1 
10 10 

0.161 log ( s ( o, o ' ) ) + 0.542, -1< log s<O 
10 10 

0.136 log ( s ( o, o ' ) ) + 0.542, log s<O 
10 10 - 

s(o,o') is the pressure corrected path length between levels (o) and 
. 2 

(o') (CGS- units, i.e. g/cm) and is given by 

0 

s<o,a·) = II 
0 

(4.3) 

Assuming 

sivity 

constant CO
2 

concentration in the atmosphere, the emis 

for carbondioxide is (Kondratyev, 1969): 

Eco (o,o') = 0.185[1-exp(-0.392 C(o,o')0·4)] (4.4) 
2 

where C(o,o') = 0.415 lp(o) - p(o')I and the pressure pis given in 

hPa. 

When clouds are present in a model layer, the procedure is somewhat 

altered. Fig. 4.lb shows a principal sketch of the method. 

EMISSIVITY 

c 

er-......_ ... 
(j'+~(j'-+-----~ 

a 
Figure 4.1: Illustration to radiation scheme. 

a) Sketch of how the layer between o' and o' + ~o- contri 
butes to the long wave radiation at level o. Eis the 
emissivity function. 

b) Sketch of how the contribution of fractional cloud 
cover is taken into account in the radiation scheme. 
Shaded areas signify clouds. 
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Inclusion of clouds complicates the radiative transfer equations. From 

Fig. 4.1 it is seen that the contributition to the long wave radia 

tive flux density at a level o from a layer of width 60' at a level o' 

can be written as: 

L 6~ (o) = a(o')B(T(o')) [1-E(o,o')J 

+ [l-a(o')]B(T(o')).[E(o,0'+60')-E(o,o')J 

Contributions from layers beneath o' can only pass through the cloud 

free part of layer 60'. Downward and upward flux densities at a level 

kare therefore found from the summations, 

k-1 
mLkl =.[o{a.B (j+l)[l-E(k,j+l)] + (1-a.)B (j)[E(k,j)-E(k,j+l)]}P. l kl 

J= J s J m J+, - 
(4.5) 

M+l 
m~T =j~k{ajBs(j)[l-E(k,j)J + (1-aj)Bm(j)[E(k,j+l) - E(k,j)]}Pk,j-l 

j 
where Pk . =.Ilk (1-a.) • If k>j, then Pk . _ 1. ,J i= 1 ,J 

B (j) is the black body radiative flux density at main model levels, m 
while B (j) is defined at levels separating the model layers. The s 
vertical staggering of variables for radiation calculations are given 

in Figure 4.2. The contribution from the atmosphere above the model is 

taken into account by counting it as one layer, where there is no 

clouds (a0=0) and only CO
2 

is creating radiation. The blackbody 

radiation flux density Bm (0) is the average of Bm (1) and the radia 

tion emitted at temperature 140 K. 
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The temperature change in a layer due to long wave radiation is com 

puted from the net radiation flux per unit mass, (~L =~LT_ ~11) 

å~L _g_ -- , or in finite differences: 
P. II åa 

(4.6) 

The long wave radiation computations are rather time consuming and 

there are several possibilities to simplify the scheme. Since the com 

putation time for the radiation in a N-layer model is proportional to 

N-square, one approach is to compute radiation cooling in a coarse 

vertical grid. 

0- - - - E(k,d 

0 BmD) 
Pr f&#ll(Øl#,W'#!fÆBs (1) E(k,1) <!)1 

1 Bm(:1) 
. 
• -8/k) E(k,~ <l)k - - 
k B,,,(k) 
. . 
• E(k,M) <l)M .M Bm~ 

Ps Tf!llllflfnl!IT!Tl/l/111J.Bs<M+1) E(k,M+i <l)M+1 

Figure 4.2: Vertical staggering of variables in the radiation 
calculations. 

We have chosen not to compute radiation tendencies every time step. 

Results from the previous calculation are used until the radiation is 

recalculated. At present, the calculations are performed every half 

hour of simulation time. The long wave radiation flux densities at 

ground are, however, computed every time step for use in the ground 

surface temperature equation (Sect. 4.4). 
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4.3 SOLAR RADIATION 

The short wave radiation emitted from the sun is modified in the 

abnosphere by scattering and absorption in clouds and clear air and 

varies according to geographic location and time of day and year. 

Absorption due to water vapour is estimated by McDonald (1960): 

A (k) = 0.77(s(k)seccx)0.3 w (4.7) 

where s(k) is the optical depth from the top of the atmosphere to 

level k (Eq. (4.3)), and a is the zenith angle. Scattering in clear 

air is taken from Kondratyev (1969): 

-c (k) 1/2 = 1.041 - 0.16 [0.051 + 0.949(p(k)/p0)seca] ( 4. 8) 

where -c is the transmitted part of the scattered radiation and p(k) 

is the pressure at level k, p0 = 1000 mb. 

Transmission functions for different cloud types are taken from 

Grandin ( 1983): 

Sl = 0.90 - 0.040 seca (high clouds) 

s2 = 0.45 - 0.010 seca (medium clouds) ( 4. 9) 

s3 = 0.35 - 0.015 seca (low clouds) 

s4 = 0.16 + 0.005 seca (surface clouds, i.e. fog) 

When no clouds are present, the solar radiation flux density at level 

kis: 

(4.10) 

where IDS(O) is the solar constant(= 1395 Wm-2). Due to clouds, the 

solar radiation is further attenuated according to the formula 

(4.11) 
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where P(k) is the reduction factor due to clouds 

N(k) 
P(k) =nU1[l-cn(l-~n)], 

where en is the coverage of high, medium, low and boundary layer 

clouds. The cloudiness is separated into these four categories by 

defining high (p<0.6ps}, medium (0.6ps<p<0.8ps), low (0.8ps<p<0.99ps), 

and boundary layer clouds (0.99p <p<p ). The levels of separation s s 
correspond to values of the vertical index k, k, and k. Hence, 

1 2 3 

en= max 

and N(k) = n if k e{k 1, •.. ,k -1} n- n 
strates the principle. 

where k
0 

= 1. Figure 4.3 illu- 

~ Ll/l!Jl/!/111/llL N(k) 
1 

N = 1 
• . 
k1 

2 • N - 
• . 

k2_ 
N=3 . 

k3 - - N= 4 . • . • 
M 71/ I mi i mi I !1li 

Figure 4.3: Sketch of how the model abnosphere is separated into four 

main cloud layers in the solar radiation calculations. 
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The amount of solar radiation reaching the ground level and used in 

the ground surface temperature equation is then: 

i'fl 
s 

s -- {l? (0) (1-A)P(M+l) (1:(M+l)-A (M+l)) (n 'n ) , 
w s 

for -.- > 0 and (X > 0. n n cos 
s -- (4.12) 

for n n .s. 0 or cos<X .s. 0 
s 

where A is the albedo 

towards the and - sun n s 
surface. Heating of the 

lected. 

of - the ground, nis a unit vector pointing 

is the unit normal vector for the ground 

atmosphere due to solar radiation is neg- 

The zenith angle for the sun is given by ex in the equation 

coscx = sinosin{3 + cosocos~cos~, 

where o is the sun's declination given in degrees by the formula 

2rr o = 23.5 sin 360 [D-D
0 
]. 

is latitude, 

year and D is 
0 

time hour angle is given 

where tGMT and tGMT Nis , 

th is local time hour angle, Dis the 

the day no. of the spring equinox (D = 
0 

in degrees by~= (tGMT tGMT N) , 
GMT-time at present and at noon, and A is the 

day no. of the 

80) . The local 

15 + A 

longitude. When the ground surface is flat, then n · ns = coscx. If one 

wish to take into account the slope the earth's surface, then 

n · n =(-(oz /ox) n -(oz /oy) n +n )/(l+(oz /ox)2+(oz /oy)2 )1/2 (4.13) 
S S X S y Z S S 

where 

[

-cosBcososinth-sinysinBcosocosth-sinycosBsino] 
= sinycososinth-cososinBcosoth+cosycosBsino (4.14) 

COS<X 

Here, y is the angle between local north and they-direction in the 

cartesian grid. 
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4.4 GROUND/SEA SURFACE EQUATIONS 

The variations in albedo, roughness parameter, heat capacity, and 

thennal conductivity due to the horizontal distribution of land, sea, 

snowcover and forrests, are prescribed. Over sea, the surface tempera 

ture is prescribed, and the surface air is assumed to be saturated 

with respect to water 

Over land a ground surface temperature equation is solved. It may 

optionally be solved as a prognostic equation or as a diagnostic equa 

tion assuming a vanishing net flux density (Newton/Raphson solution 

method). The latter approach can be used if a surface temperature is 

missing at the start of an integration. The equation takes into 

account the flux density of latent and sensible heat, long and short 

wave radiation and heat conduction into the ground (Deardorff, 1978). 

The equation is 

3T 
C ~ = mL +ms+ HT+ L RT+ He - B 
sat s s s s s (4.15) 

where 

Cs= ground surface heat capacity per unit area. 

m~ =shortwave radiation flux density (positive downwards). 

m~ = long wave radiation flux density (positive downwards). 

HT= downward flux density of sensible heat due to turbulence s 

RT= downward flux density of moisture due to turbulence s 

L = heat of vaporization 

He= heat conduction from the deep soil 

B =blackbody radiation flux density from ground s 
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If the heat flux towards the surface from above varies periodi cally 

with time, and the surface temperatur e in response varies as: 

T - T + ~T . (2rrt) s - 0 s sin 7> 

where P is the period, ~Ts is the amplitude and T0 a constant mean, 

then the temperature at a depth ~z below the surface will vary as: 

T T AT ( 2rr~z) . 2w(! _ ~z) = 0 +us exp - --6- sin ,. P 6 

(Eliassen and Pedersen, 1977). If the thermal conductivity iss, the 

soil specific heat c, and soil density Q, then 

6 = 2 (rt sP//2 
CQ 

Eliassen and Pedersen gives the properties 6, c, Q ands for dif- 

ferent soil types and periods 

which the wave with period P 

by 0.40 m for the daily wave (P 
C type. H is then parameterized by 

P. 6/2 may be taken as the depth of 

penetrates, and can be approximated 

= 86400 s) independently of soil 

HC = ~ (T - T) 
6 d s (4.16) 

We have chosen Cs = 0.7 106 J/m2K and 2'(,/6 = 2.58 W/m2K for bare 

ground and Cs= 0.5 106 J/m2K and 2s/6 = 1.84 W/m2K for snow covered 

ground. The albedo A is 0.30 for bare ground and 0.5 for snow. The 

deep soil temperature Td is 273.15 K for snow covered ground and 

288 K for bare ground (summer value). The "snow values" reflects that 

there always will be a layer of vegetation, changing the parameters 

from that of a purely snowcovered plain. 

If a surface temperature is missing in the start of an inte 

gration, the ground surface temperature can be found by solving a 

diagnostic equation for Ts by assuming a balance between the heat 

fluxes at the earth's surface. A Newton/Raphson iteration technique is 

then used: 

Tµ+l = ~ - H (~)/H'(~) 
s s a s a s 
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where Ha is the right hand-side of eq. (4.15) and H; is the equation 

obtained by differentiation with respect to T: s 

H' (T ) a s = ~ (H) + L ~ (R) - ~- 4oT 3 

aT s aT s b s s s 

Here o is Stefan-Bolzmann's constant(= 6.5669 1O-8w;m2K4). 

The surface flux density of moisture 

where q is the specific humidity in g 
ground and q. is the g specific humidity in the atmospheric surface air 
layer. It is convenient to replace this relation by a relation 

dependant on surface temperature. By definition of a: 

is proportional to (q -q. ) g air 
the air very close to the 

(4.17) 

which implies 

The coefficient a 

extracted liquid water), a= min(W/Wk,1) 

value of W with 

is related to the soil moisture W (depth of 

where Wk is the maximum 

no 

qg i qsat(Ts). Deardorff 

late a. We have chosen to 

runoff. An obvious restriction is that 

(1978) discusses different methods to calcu- 

prescribe it and keep this prescribed 

value constant in our experiments. 

4.5 CONDENSATION AND PRECIPITATION 

The scheme is diagnostic. The model equations are first integrated 

without condensation processes included, and the effects of condensa 

tion are added in a second step. The scheme is initiated if super 

saturation is found in a grid point. As the horizontal resolution 

increases, the grid scale dynamics can be assumed to deal with the 

mesoscale organization of cloud cells into clusters, squall lines etc. 

Therefore, the parameterization only takes into account individual 

cloud cells, and no relation between convection and large scale 

convergence of moisture is explicitely assumed. 
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a. Supersaturation within an absolutely stable stratification 

Any excess moisture is condensed with the latent heat warming the air. 

The implicit equations to be solved are: 

'1v + 6'¼ = qsat(T+~T) 

cp~T + L 6'¼ = 0 

~'Iv + 6~ = 0 

where qsat (T) 

sure p), '1v 
densed liquid 

first order 

is the saturation humidity at temperature T (and pres 

is water vapour to be adjusted (6'¼), and 6~ i con 

water by the process. By approximating q t(T+6T) by a sa 
Taylor expansion and utilizing Clausius-Clapeyron's 

equation 

get: 

for the derivative of qsat with respect to temperature, we 

Hence, (et)lat = 

(qt)phase 

6T = L 
6'¼' and 6~ = 

cp 

(4.18) 

The time required for the adjustment to take place, is ~t. When 

water vapour is condensed ( 6'¼ < 0), an increase in temperature 

through release of latent heat (~T>O) and an increase in cloud liquid 

water(~~> 0) is caused. 

b. Supersaturation within a conditionally stable stratification 

In this case, a Kuo-like scheme (Kuo, 1965) distributes heat and 

moisture within the unstable atmosphere. A "cloud" is defined by 

following a moist adiabat from the saturated level until it intersects 

the given sounding. We want to distribute the moisture and heating 

within this part of the model atmosphere, so that some part of the 

grid square contains a cloudy air with temperature and humidity 

taken from the moist adiabatic values, while the remaining parts are 

cloudfree (environmental) air. 
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If (a) is the fraction of the grid covered by clouds, and we 

assume that the integrated enthalpy is conserved, then: 

J a(c T + LC!v) dp + J (1-a)(c T + LC!ve) dp 
cloud pc c cloud Pe 

= J (c T + LC!v) dp 
cloud P 

where (Tc ,Civc) are cloud values, (Te,Cive) are environmental 

values, and (T,Civ) are given values to be adjusted. By assuming that 

(a) is a constant one obtains: 

a = 

C 

J (Civ - Clve + r (T - Te)) dp 

C 

J (Clvc - Clve + r (Tc - Te)) dp 

The temperature and humidity of the environment have to be estimated. 

Here, the same assumption as in the Kuo-scheme (Kuo, 1965 - 1974) is 

used. As soon as the cloud is developed and the latent heat is 

released, it is 

therefore put T e 
case for the humidity. This leads to: 

dissolved by mixing with the environmental air. We 

= T. We will further assume that this is also the 

a = 
C 

J <Civc - Clve + i?- (Tc - T))dp 

The denominator is the amount of water vapor needed over the unstable 

column to obtain a cloud filling the whole grid space, while the 

numerator is the actual surplus of water vapor at present. 

The mean temperature and specific humidity after cloud production is: 

T' = a T + (1-a) T 
C 

q,;_ = a Clvc + (l-a) Clve' 

so that ~T = a(Tc - T) and ~Clv = a(Civc - Clve). Finally, 

(et)lat = (cp/Il) (~T/~t) 

(qt)phase = ~Clv/~t 
(4.19) 
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In the real atmosphere the temperature is increased by latent heat 

release and convective transport of sensible heat. In the scheme, the 

latter is not estimated and it is assumed that the temperature is 

increased due to latent heat release only. The condensed liquid 

water is then: 

~a = C ~T/L = a C (T -T)/L 
"W p p C 

c. Unstable stratification with saturated air aloft 

If (a) becomes grater than one, which may happen for a large surplus 

of moisture in a level and/or a nearly moist adiabatic stratification 

above, its value can no longer be regarded as the fractional cloud 

cover. A scheme of the moist adiabatic adjustment type (Manabe et al., 

1965) could be used to distribute the latent heat of condensation over 

the unstable layers in such a way that the final lapse rate becomes 

moist neutral. 

To calculate the moist adiabat that the atmosphere finally adjusts to, 

an approach which avoids iterations is chosen. Firstly, the scheme 

already described is used with (a)= 1, adjusting the model atmosphere 

to be exactly moist adiabatic. Secondly, the extra moisture 

is distributed within the cloud according to 

C 
I (oa + _E 6T) ~ = ~Q, 

-V L g (4.20) 

where 6q and 6T are further changes 

Since both the final lapse rate and the 

lapse rate are moist adiabates, we have 

in humidity and moisture. 

preliminary adjusted 

6a = q t(T + 6T) - q t(T) -v sa c sa c 

or approximately 

s Lq t(T ) sa c 

RT2 
C 

6T (4.21) 
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Since oT=T' - T where both T' and T are moist adiabats, the deri- c C 
varitive of oT with respect to pressure is 

0 
op (oT) 

where 

Z:(T) = 
1 + ~ qsat(T) 

eL2 
1 + 2 q t(T) 

CRT sa 
p 

Here, Z:(T) is the deviation of the moist adiabatic lapse rate from 

that of a dry adiabat (Eliassen and Pedersen, 1977). By writing 

Z:(T') = Z:(Tc) + (oZ:/oT).oT, perfonning the derivation oZ:/oT and omit 

ting second order te::r:ms, one ends up with 

(oT) = " sr p 

where 

2 
eL q t(T sa c 

RT 
C 

) 
( 1 - s EL 

C T p C 
) 

Then by integration, one gets: 

oT(p) 
Pb 

= oT(pb) exp(-J ydp) 
p 

(4.22) 

where pb is the pressure at cloud base and pis the pressure within 

the cloud. Insertions of (4.22) and (4.21) into (4.20) give: 

~Q 
C 

J [_E + 
cloud L 

eLq t(T) sa c] 
RT 2 

C 

while oT(p) at other levels within the cloud is found from (4.22). 
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Total changes in temperature and moisture are then; 

6T = T - T + oT 
C 

6'lv = 'lvc - 'lve + ( 
e Lq t(T ) sa c 

RT 2 
C 

) s r. and 

6~ = cp 6T/L, and thus 

(et)lat = (cp/Il)(6T/6t) 

(qt)phase = 6'lv16t (4.23) 

By this method a sub-grid convective cloud is produced if the moisture 

is less than what is needed to saturate the whole grid volume. If suf 

ficient moisture are at hand, a stratiform cloud, possibly extending 

over several model layers with a moist adiabatic stratification is 

produced. 

The test for supersaturation is then performed for the model layer 

just above the cloud top until all layers have been checked for super 

saturation. Thus stratiform and convective clouds (as defined by this 

scheme) may exist on the top of each other. 

The total amount of condensed water is removed through precipitation; 

1 * 
P = J 6~ ~- Numerically one gets 

Oq g 

M 
P = [ (6~)k p*6ok/g (4.24) 

k=l 

5 LATERAL BOUNDARY CONDITIONS 

The use of a limited area, nested grid technique is necessary due to 

limitations of capacity on electronic computers both with regard to 

core storage and computational speed. For a proper description of a 

phenomenon, one should employ a grid with adequate space resolution, 

and simultaneously cover an area large enough to contain the region of 

influence. Unfortunately, it is not possible in practice to study 

mesoscale structures with the required accuracy by the use of e.g. a 

hemispheric model with uniform grid resolution. Therefore the idea of 

combining grids of different sizes (grid nesting) has developed. 
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The method of nesting can be perfo:aned in two different ways. When 

applying two way interaction, the model equations are solved on a grid 

with variable density of gridpoints. Hence the finemesh area forecasts 

affects the coarse mesh forecasts and vice versa. This technique was 

early applied by Birchfield (1960) in a balanced barotropic model, 

later by Koss (1971), Ookochi (1972) and Phillips and Shukla (1973) in 

baroclinic primitive equation models. When applying one-way influence, 

the coarse mesh computations influence the fine mesh forecasts, but 

not vice versa. This method has the preference that the fine mesh 

integration can be carried out subsequent to the coarse mesh model. 

Therefore, this is a powerful tool for regional weather forecast 

centra that receive forecasts from a global centre. However, one has 

to face the problem of boundary conditions on the intersection 

between the coarse and fine mesh grid. In primitive equation models 

one has to pay special attention to the gravity mod e that should not 

be reflected at the boundary. For filtered models only the Rossby 

mode is present and the problem is simpler. The boundary conditions 

for limited area quasi-geostrophic models were discussed already in 

the pioneering paper by Charney et al. (1950). They stated that both 

components of the flow (tangential and no:anal to the boundary) should 

be prescribed at an instream boundary , while only one component should 

be prescribed at an outstream boundary . The second component of the 

flow at the outstream boundary should be computed from the interior 

data. 

The first experiments with the one-way nesting method were presented 

by Hill (1968). He prescribed both components of the flow at all parts 

of the boundary , and thus had to control the spurious oscillations at 

outstream regions by artificial smoothing. He integrated a baroclinic 

quasi-geostrophic model, while Wang and Halpern (1970) integrated the 

shallow water equations with the same overspecified boundary condi 

tion. Shapiro and O'Brien (1970) integrated the very simple non 

divergent barotropic model. They employed the boundary condition 

suggested by Charney et al. (1950), applying a pseudo-Lagrangian 

scheme at the outstream boundaries. This approach did not lead to 

spurious waves. Later, a number of extrapolation methods at outstream 

boundaries has been proposed. Other methods suggest overspecified 

boundary conditions together with artificial smoothing techniques. A 

review was given by Miyakoda and Rosati (1977). Most of the charac- 
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teristic problems connected with limited area models, are briefly 

reviewed by Sundstrøm and Elvius (1979), and Davies (1983). 

The flow relaxation scheme (Davies 1976, Kållberg and Gibson, 1977) 

forces the prognostic variables to relax towards the external speci 

fied fields in a marginal zone near the boundaries. This method is 

used for the fine mesh model described in this report. The method 

implies overspecified boundary fields according to the rules obtained 

from the theory of boundary conditions for initial-boundary value 

problems (e.g. Courant and Hilbert, 1962, Ch. VI). However, as demon 

strated by Anthes and Warner (1978), overspecified boundary conditions 

should be applied to mesoscale models, in order to avoid spurious mass 

loss and accelerations within the limited area of integration. Near 

the boundaries, some damping methods must then be applied to remove 

spurious waves. When using the relaxation method, such a damping is 

included implicitly (Newton-damping) and no additional operations are 

necessary. 

Even though the flow relaxation scheme solves most of the boundary 

problems associated with limited area models, it creates some new. If 

the model providing boundary data has different physical forcing than 

the limited area model, noise may develop within the relexation zone 

close to the boundary. In experiments with a mesoscale model with a 

comprehensive physical forcing, we found that a frontal zone developed 

within the relaxation zone and eventually influenced the whole inte 

gration area. The problem was remarked by Anthes and Warner (1978), 

who suggested that the tendencies due to vertical heat flux should be 

added to the otherwise specified temperature on the boundary. The 

boundary values would then be more compatible with the solutions in 

the interior. However, Anthes and Warner did not employ the relaxation 

technique. 

An ideal open boundary treatment should be able to leave meteoro 

logcial modes undisturbed both at inflow and outflow boundaries, 

completely transmit gravity waves out of the integration area, and 

allow physical forcing in the model atmosphere without spurious 

effects being created near the boundaries. The relaxation technique of 

Davies (1976) and Kållberg and Gibson (1977) has shown to satisfy the 

first two of these criteria. In this chapter we will show how the 
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relaxation method can be extended to take care of different physical 

forcing. 

5.1 THE RELAXATION SæEME 

The practial application of the relaxation technique is first to 

perform the time integration on the inner area, and then each timestep 

relax the solution towards the external fields in the relaxation zone. 

Applied on the equation 

oX + F(X)=0 
at 

where X is a prognostic model variable, the Leapfrog scheme give 

The preliminary value, 

external solution by 

~ n+l X is then adjusted towards the 

~+l = a~ n+l + (l-a) X n+l (5.1) 

A n+l where X is the 

relaxation parameter a 

external specified field 

varies smoothly between 

at time (n+l). The 

1 at the boundary 

and O inside the relaxation zone. Several functional forms are 

possible. We have chosen a= [(N-n)/N])2, where Nis the width of the 

relaxation zone measured in grid lengths, and nis the distance in 

grid units from the boundary n e(O,N). For N=6, we have a e{l.00, 

0.69, 0.44, 0.25, 0.11, 0.03}. 

If ~ does not carry information about mesoscale physical forcing, 

it is clear that strong gradients in X may occur within the relaxa 

tion zone. The problem may be solved by integrating the external 

fields due to the physical forcing on the inner area. 



where FP(X) is due to physical forcing alone, and Fa(X) is the 

residue: F (X)= F(X)-F (X). Then, 
a P 

X n+l 
p 

= X n-l - 2llt F (Xn) 
p p (integrate due to physics alone) 

(preliminary integration) (5.2) 

a(~ n+l + X n+l) + (1-a)x~ n+l ( d' t t d bo d f' ld) X a Jus owar s un ary 1e s p 

Since the computation of the physical forcing is confined to aver 

tical column, the computation may be performed for the whole integra 

tion area. The boundary values will then be consistent with the inner 

area values. 

5.2 EXPERIMENTS ON BOUNDARY CONDITIONS 

The succesfull behaviour of the scheme can be demonstrated by a series 

of integrations with simple numerical models. The simplest model 

describing propagation of disturbances is the one-dimensional advec 

tion equation, 

= -UC 
X 

In the first experiment with this model, an initial disturbance 

X-X 2 
( m) -4 (e- X - e ), 

0 

is imposed in the middle of an integration area consisting of 33 grid- 

points. Here X is the mid point of the integration area, X is 5 m 0 
gridlengths, llH = 100m and C is restricted to be positive. The grid 

0 
distance is 10 km, the advection speed u is lOms -1 and the time , 
step used is 450 s. The equation is solved by centered diffe- 

rences in space and by use of the Leapfrog scheme in time. The 

width of the relaxation zone is chosen to be 6 gridlengths for 

all the experiments presented in this subsection. At the boundary the 

external solution CR= 0 is imposed. As seen from Fig. 5.la the 
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Figure 5.1: Results from tests with boundary relaxation scheme on 
advection, showing amplitudes of disturbance at different 
times during integration. 
a) No infonnation in boundary fields. 
b) Boundary fields are the analytical solution to the 

advection equation. 
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initial disturbance propagates towards the boundary with no change of 

amplitude until it reaches the relaxation zone. Then the amplitude 

is reduced and the disturbance leaves the integration area with 

neglible spurious energy created. 

When a time-dependent solution is imposed at the boundary (i.e. the 

disturbance approach the integration area from outside) the distur 

bance is almost perfectly transmitted through the integration area 

(Fig. 5.lb). Here the specified field is the analytical solution of 

the advection equation. 

The one-dimensional advection equation has only one degree of freedom. 

A more complicated system is the one dimensional shallow water equa 

tions which describe two gravity modes and a Rossby-mode. 

The equations read: 

ut = fv - uu - cpx X 

Vt = -fu - UV + fu 
X g 

cpt = -ucpx - cpu 
X 

Here, cp is the geopotential cp= gz, where z is the height, (u,v) 

is the wind velocity, f is 

geostrophic wind in the x-direction. In the experiment 

and initiate the problem by assuming u = v = 0, cp= cp 
A A A o 

The external fields are chosen to u = v = 0, cp = gH. This 

the Coriolis parameter and u is the g 
we put u = 0 g 

initially. 

is an 

unbalanced state which generates gravity waves propagating away from 

the initial disturbance and initiates a geostrophic adjustment pro 

cess. The equations are solved in a domain containing 32 grid points 

by using centered finite differences in space and the Leapfrog scheme 

in time. No diffusion or smoothing is used. The initial condition cp
0 

is chosen as 

x-x 2 m 
cp= [H + ~H(e -(-X-) - e-4)Jg 
0 0 
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where ~H = Je/2 u fx /g gives a maximum geostrophic wind of 
-1 g 0 

u = 2 ms , x is the central point of the integration area, x = 5d, 
g m_4 -1 o 0 

and f = 1.26.10 s (60 N). 

In the first experiment the grid distance is 10 km and the scale 

height is H = 1 km. The Rossby radius of deformation LR= JgfH = 

1000 km. The scale of the initial disturbance is clearly less than 

this and the final state is determined by the initial wind (which is 

zero). One would expect gravity waves leaving the initial disturbance 

in both directions. Fig. 5.2a shows that this actually happens. The 

gravity waves neatly leave the integration area. Only some negligible 

noise is created (grid length twice the grid-distance) and the 

relaxation technique works satisfactory. 

In a second experiment the grid distance is chosen to 100 km. The 

other parameters are unchanged. Gravity waves still leave the initial 

disturbance, but the scale of the disturbance is so large that some 

of the wind adjusts towards the massfield. As seen from Fig. 5.2b the 

gravity waves leave the integration area while wind and geopotential 

gradually adjust to a geostrophic balance. This result shows that the 

relaxation technique separates the different modes of the solution in 

a proper way. The gravity waves disappear while the Rossby mode is 

retained more or less unaffected. 

A harder test of the boundary scheme, is to impose a completely diffe 

rent physical forcing on the interior integration area than on the 

exterior from which the boundary fields are taken. A two-dimensional 

primitive equation model in a-coordinates (o = (p-pT)/(ps-pT)) was 

constructed to demonstrate this effect. The sea-breeze dynamics are 

driven by physical forcing through differential heating due to con 

trasts between land and sea. 

The basic state is a calm 

(u = V = å = V<p = Ve = Vp = 
of oT K s 

rate = 0.6 100 m) · The oz 
state read: 

atmosphere in hydrostatic equilibrium 
oe 0, 00 = y, where y corresponds to a lapse 

equations describing deviations from this 
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Figure 5.2: Results frem tests with boundary relaxation scheme on 
gravity waves showing deviations frem initial disturbance 
(m) at different times during integration. The Rossby 
radius of deformation is 1000 km. 
a) Small scaled, initial imbalance. The length scale is 

150 km. 
b) Large scaled, initial imbalance. The length scale is 

1500 km. 
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ut + uu + åu = fv - rpx - ere (a) 
X 0 X 

Vt + UV + åv = -fu (b) 
X 0 

et + ue + å(e + y) = (et)phys (c) (5.3) X 0 

rp 0 + ere = 0 (d) 
0 

(ps)t + (p*u) + (åp* )0 = 0 ( e) 
X 

= C (p_)R/cp 
pp 

0 

The equations are solved in a two-layer model and on a domain con- 

taining 32 grid-points along the x-direction. We assume that 

å = 0 at p = p = 850 mb. The model layers are given by o = (0.0, 0.5, T 
1.0). å and rp are given at intersections between layers (o = 0.0, 

0.5, 1.0) while u,v,e are given in the middle of layers (o = 0.25, 

0. 75). 

The geopotential is found by integrating the hydrostatic equation 

(5.3d) from ground were rp= 0. The vertical velocity and the surface 

pressure tendency are found from the continuity equation (5.3e) by 

integration from the model top. Time derivatives of u,v and e are 

achieved from (5.3 abc). The Leapfrog-scheme is used for time inte- 

gratien, and space derivatives are determined by centered finite 

The grid-distance is 10 km and the Coriolis parameter 
-4 The chosen physical forcing is (et) h = 10 K/s P ys 

(corresponds to about 8.5 K heating per day at 1000 hPa). The 

forcing is imposed only over the right half of the integration area 

and in the lowest model layer to simulate land/sea differences in 

physical forcing. In the relaxation zone the solution is adjusted 

differences. 
-4 -1 f = 10 s . 

towards a specified solution, which in this experiment is chosen to 

be the same as the basic state. The model is run both with boundary 

scheme (5.1) and (5.2). 

Simulations with and without the extended version of the boundary 

relaxation scheme are shown in Figs 5.3 and 5.4. Figs. 5.3 show the 

evolution of the surface pressure together with winds in the two 

layers after 5 hours of integration for runs without and with the 

extended boundary relaxation scheme respectively. 
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Figure 5.3: Results from tests with boundary relaxation scheme. Arrows 
are winds at level I and II after 3 h of integration. The 
curves show deviation in surface pressure (p) from the 
initial state, after 1, 3 and 5 h of integra~ion. 
a) Original version of boundary scheme. 
b) Extended version of boundary scheme. 
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Figure 5.4: Results from tests with bowidacy relaxation scheme and 
physical forcing. I and II refer to upper and lower level 
in the two level model respectively. Continuous lines are 
results after 3 h with the original bowidacy scheme, while 
dotted lines shows results after 3 h with the new scheme. 
The upper and lower curves show deviations in potential 
temperature (0) from the initial state (ordinate axis on 
the left). The curves in the middle shows vertical motion 
(w = Dp/dt) (ordinate axis on the right). 
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when differential heating is taken into account explicitly. Strongest 

evidence of a spurios solution due to the boundary condition appears, 

in the flow field. Apparently there are small differences in the area 

of interest (close to the "coast"). The surface front propagates about 

40 km inland and the wind turns along the coast, thus achieving a con 

siderable geostrophic component, as one should expect. However, consi 

derable noise developes close to the relaxation zone. This shows up in 

the horizontal flow field, in the vertical motion, and in the tempera 

ture perturbations (Fig. 5.4). These strong undesired winds, and espe 

cially the strong vertical motion, may eventually influence the whole 

integration area in a more complete model due to initiation of preci 

pitation and subsequent release of latent heat. 

5.3 CONCLUSIVE REMARKS ON BOUNDARY CONDITIONS 

We have shown how the popular boundary relaxation scheme of Davies 

(1976) and Kållberg and Gibson (1977) may be extended to take care of 

situations where physical forcing is important for mesoscale pro 

cesses, but not taken into account in the externally specified fields 

to be used at the boundary. Simulations including gravity modes as 

well as Rossby modes show how the scheme nicely treates the inflow and 

outflow of information, with only some negligibly small scale noise 

created. This noise can be further removed with a wider relaxation 

zone (Davies, 1983). The method is easily incorporated into three 

dimensional limited area models, and is used with the mesoscale model 

described in this report. The method has performed excellently in the 

experiments referred to in this report. 

6 POSSIBLE APPLICATIONS 

The model documented in this report is aimed at simulating a wide 

range of dynamical and physical processes in the atmosphere. The 

scheme for parameterization of vertical turbulent diffusion requires a 

certain minimum resolution of the atmospheric boundary layer. The 

model is therefore specially suited to study phenomena closely connec 

ted with boundary layer processes. The atmospheric mesoscale includes 

several types of such phenomena. 
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It is well known that the quasihydrostatic approximation imposes a 

lower limit for the spatial and temporal scales of the phenomena to be 

simulated. The approximation is made for economical reasons; the equa 

tion for vertical momentum transforms into a diagnostic equation, and 

vertically propagating accoustic waves are removed, thus allowing 

longer timesteps. In this section the lower limit of the grid length d 

when applying the quasihydrostatic approximation, is examined. 

6.1 ANALYTICAL SOLUTIONS 

Firstly, a brief summary of known properties for pure types of motion 

studied by analytical methods, is given. 

6.1.1 Free waves 

By the study of small perturbations of an atmosphere in a basic state 

at rest, one may arrive at a dispersion relationship for free, com 

bined accoustic-gravity waves (Eliassen, 1983). The Coriolis force 

is neglected, and the dependent variables are transormed so that the 

coefficients vary little with height. The coefficients of the linea 

rized equations are thus 

1 N2 
= - (.9: - - ) 

2 c2 g · 
s 

Here C is the speed s 
Brunt frequency of 

of pure sound waves and N is the Vasala 

the basic atmosphere. Assuming that these 

coefficients are constants, trigonometric solutions may be sought 
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and a dispersion relation arrived at (Eliassen, 1983): 

2 2 )( = (a) + !._] 
c2 
s 

(6.1) 

where the tracer (a) vanishes for the quasihydrostatic approximation 

and equals unity in the non-hydrostatic case. When m2>0 we have inter 

nal (or vertically wavelike) waves, while m2~0 corresponds to exter 

nal waves with exponential dependence with height. In the non-hydro- 

static case there are two types of internal waves; one which is 

dominated by accoustic effects (compressibility) and another domi 

nated by gravity effects (buoyancy). With the quasihydrostatic approx 

imation, the internal accoustic waves are removed completely. 

However, there still are external accoustic-like waves; e.g. the Lamb 
2 2 2 2 2 . wave has m= -~ and w =C5x regardless of the value of a. The differ- 

ent wave-regimes are sketched in Fig. 6.1. 

To further investigate the effects of the quasihydrostatic approxima 

tion on the dispersion of free waves, eq. (6.1) may be expressed 

in terms of the aspect ratio a=H/L=k/m, where Land Hare the hori 

zontal and vertical scales of the motion. Hence, 

. [~2 + ~ (1-a w2)]/[l - 
C2 N2 
s 

2 
(a) 

N2 
(6.2) 

Fig. 6.1 shows the dispersion for an infinit aspect ratio, repre 

senting the transition between internal and external waves; and 

for a finite, positive 

that the quasihydrostatic 

waves of high frequency 

decreases with increasing 

a2, representing internal waves. It is seen 

approximation seriously damage external 

and short wavelength. The distortion 

stability ( N2 ) • For internal waves ( a2 >O 

and finite) the distortion decreases remarkably for decreasing 

aspect ratio and increasing wavelength (see also Table 6.1). In a 

numerical model with chosen mesh width done cannot resolve properly 

waves of shorter wavelength than~ 5d. Based on Table 6.1 we will 

recommend the lower limit of the mesh width to be 1 km, as long as one 

is only interested to model internal gravity waves with aspect ratio 

smaller than unity. 
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Table 6.1: Angular frequency of free waves squared w2(s2
) as a 

function of aspect ratio and wavelength. (N=0.01 5-l, 
C -330 ms-1) s- 

Type ot H/L •l H/L • 0.5 H/L • 0.1 
solution 

). . l km 5 km 10 km A• l km 5 km 25 km ) .. l km 5 km 50 km 

N.H. 3.442 8 .621 8,601 3,465 1,740 
accouatic 8,599 X 10-l X 10-2 . 21. 50 X 10-l X 10-2 . 434, 2 . 17. 37 X 10-l 

N.H. 5,000 4,997 4,987 2.000 l. 999 l. 9 85 9,901 9,901 9,886 
gravity x 10-5 X 10-5 X .l0-5 X 10-5 X 10-5 · X 10-5 X l0-7 · X 10- 7 X 10-7 

9,999 9,984 
5 

9,937 2,500 2,499 2,475 l.000 6 
l.000 9,984 

OH X 10-5 X 10- X 10-5 X 10-5 X 10-5 X 10-5 X 10- X 10-6 X 10-7 

w2 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

1A =O(n.hJ 

0 a2~0 
0 

Figure 6.1: Dispersion diagram for free linear waves with neglected 
Coriolis tenns. Continuous lines; non hydrostatic waves. 
Broken lines: Quasihydrostatic waves. Dotted line: the 
Lamb wave. See text for explanation of symbols. 
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6.1.2 Forced waves 

The stationary, linear flow around an isolated mountain was investi 

gated by Smith (1980). The mountain was assumed bell-shaped with scale 

a, and the Bouesinesq approximation was assumed. The basic state was a 

constant wind u and a constant Brunt-Vaisala frequency N. The condi 

tion for applying the quasi-hydrostatic approximation was deduced to 

be 

Na>> l u (6.3) 

Assuming that the shortest mesh width which properly resolves the 

mountain is defined by 5d = 2a, then the condition is 

d >> ~ !:! 5 N ( 6. 4) 

Hence, if the sign">>" signifies "greater than with at least a factor 

5", then the mesh width d can be chosen as small as 1 km provided that 

the wind is so weak and the stability so strong that U/N ~ 500 m. This 

is fulfilled with N=0.01 s-1 and U = 5 ms-1 which are normal 

values in the atmosphere. 

6.1.3 Forced circulation 

Assuming an atmosphere over a flat earth with a horizontally varying 

surface temperature, Martin and Pielke (1983) investigated the appli 

cability of the quasi-hydrostatic approximation. The solution of the 

equations linearized about a basic state at rest was found by the 

method of Defant (1950). In addition, the nonlinear equations were 

solved numerically, comparing the fully nonhydrostatic solution to the 

one obtained by imposing the quasihydrostatic approximation. 
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The main conclusion of the study was that a mesh width of 1.5 km or 

smaller may be appropriate in numerical models for sea-breezes over 

flat terrain which employs the quasihydrostatic approximation. The 

accuracy of the solution increases with increasing static stability 

and decreasing vertical turbulent exchange of heat. 

6.1.4 Unstable atmosphere 

In all investigations regarding the applicability of the quasihydro 

static appoximation, a result is that the quality of the quasi 

hydrostic solution increases with increasing static stability. This is 

not surprising, since a very stable atmosphere supress vertical motion 

and thus vertical accelerations. On the other hand, if the aunosphere 

turns unstable, vertical motion is reinforced so that the quasihydro 

static approximation should not be applied. This is indeed the case if 

the free solution of the equations linearized about a basic state at 

rest is considered. If accoustic waves are out of interest (which is 

normally the case), then the anelastic approximation can be made so 

that the term l/C2 can be removed from (6.1), giving s 

2 2 x2 
w = N 2 2 2 

ax +m +~ 
(6.5) 

In the case of an unstable abnosphere, N2 < 0, then w is imaginary and 

represents growth of convection cells. In the non-hydrostatic care, lit 

is seen that I w2l -+ N2 when x2 -+ - , while in the quasihydrostatic I w2 -+ 

- when x2-+ -. Thus, in the quasihydrostatic case the growth rate of 

convection increases beyond all limits with decreasing horizontal 

scale. In other words, the errors will be larger in a numerical model 

with a fine resolution than in a model with coarse. However, the 

horizontal extent of convective cells is so small that a mesh width 

smaller than 1 km is necessary for a proper resolution. The quasi 

hydrostatic approximation can therefore not be applied in this case. 

Important to note here is that flows in cumulus clouds or moist un 

stable circulations within cloud layers are equally impossible to 

model by quasihydrostatic models. If such unstable flow is initiated 

in the model, the vertical sounding must be adjusted to be stable and 

the overall impacts of the flow parameterized. However, if a grid 
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which resolves the unstable circulations is used, one would then not 

achieve a solution which is representative for the resolved scale, 

but rather a kind of resulting mean state which is a characteristic 

for the flows on larger scales. It is therefor wasted resources to 

choose such a fine gridresolution when aiming at unstable cases with 

quasihydrostatic equations. 

6.2 A SCALE ANALYSIS 

In order to shed some more light on the validity of the quasihydro 

static approximation, a simple scale analysis of the vertical 

momentum equation is made. The equation, ignoring Coriolis terms, is 

(6.6) 

where¾ is the horizontal 

Table 6.2 gives the order 

exchange coefficient and K the vertical. 

of magnitude of the different quanties 

employed in the equation. The horizontal scale is defined by the 

integer n (L~lOn) and the vertical velocity is made dependent on the 

stability and n. The smallest value of n which makes the non-hydro 

static terms substantially smaller than g, defines the lower limit of 

the applicability of the quasihydrostatic approximation. 

Table 6.2: Order of magnitude of the quantities in eq. (6.6) (nis an 
integer number) . 

Order of magnitude 

Stable Unstable 

Variable Symbol 

Horizontal scale L lOn m 10n m 

Vertical scale H 10
2 

m 10
3 

m 

Total atmospheric depth D 10
4 

m 10
4 

m 

T=L/U 
n-1 lOn-1 Time scale 10 . s s 

Potential temperature 0 10
2 

K 10
2 

K 
0 

3 2 -2 -1 
10

3
m 

2 -2 -1 Exner function II 10 ms K s K 
0 

-1 -1 Horizontal flow u 10 ms 10 ms 
2-n -1 3-n -1 Vertical flow w 10 ms 10 ms 
n-2 2 -1 10n-2m2s -1 Horizontal turbulent exchange K 10 ms 

Ho 
2 -1 

10
2 2 -1 

Vertical turbulent exchange K 1 m s m s 
Ho 
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By scaling the each variable and letting a bar denote dimen- 

(-v - sionless quantities = U v etc.), eq. (6.6) can be written in dimen- 

sionless form: 

w 
t 

( 1) 

- + V 'iJW 

( 1) 

LW -- + -ww- + HU z 
L0 Il 

0 0 

UWD 
err 

z 

102n-21102n-3 
<stable unstable) 

+ L 
uw g 

102n-21102n-3 
<stable unstable) 

'iJ 
LK 

(K-~ w) + ___9. (Kw-)- 
-lf UK2 z z (6.7) 

The order of magnitude is denoted below each term. It is seen that 

even in the unstable case with the horizontal scale L=l km (n=3), the 

non-hydrostatic terms are three orders of magnitude smaller than the 

gravity/vertical pressure gradient terms. This does not imply that the 

flow in an unstable atmosphere can be modelled explicitly by quasi 

hydrostatic equations. As seen from the discussion in section 6.1.4, 

so called grid point overturning will be the result, since the growth 

rate of the convective cells will approach infinity as the horizontal 

scale approach zero. It is therefore assumed that the vertical soun 

ding allways is adjusted to be stable. However, the values of vertical 

motion and turbulent exchange may be permitted to take values typi 

cally of an unstable atmosphere even for L=l km. 

As a scale analysis is quite inaccurate, we will not recommend to 

simulate scales as small as 1 km with quasihydrostatic equations. Held 

together with the discussions of section 6.1, we arrive at the follo- 

wing smallest permitted grid 

atmosphere with little moist 

increment. In 

acitivity, one 

an overall stable 

can choose d > 1 km. 

Examples of such simulations are drainage flows and other phenomena in 

the nocturnal boundary layer. (Winter time on high latitudes in areas 

under anticyclonic influence.) In a more general model aimed at simu 

lating several kinds of mesoscale flows including moist circulations, 

the recommended grid increment is d ~ 5 km. Such flows include coastal 

circulations, frontal rainbands, and mesoscale vortices. 
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7 EXAMPLES OF APPLICATIONS 

The present model requires a significant amount of computer capacity. 

The computer facilities at DNMI (august 1986) consists of an FPS-164 

array processor with core storage capacity of 1.024 MW of 64 bits, and 

an IBM 4341 front machine. A major part of these resources are well 

utilized by routine models on a daily basis, and there is at present 

no space left for routine modelling with the present mesoscale mesh. 

The work in this field is therefore presently restricted to case 

studies. In the following, results of three rather preliminary tests 

are shown. Basic data about the simulations are given in Table 7.1. 

Table 7.1: Basic parameters for the model experiments. 

Coastal circulation Gauss-mountain Complex topography 

Grid increment, d 10 km 3 km l km 

Timestep, /:it 20 s 6 s 1. 8 s 
0 0 0 

Latitude, B ~ 60 N 60 N 60 N 
Vertical layers, K 20 20 20 

Pressure at top, pt 300 hPa 300 hPa 300 hPa 

0 0 
Sea surface temp., T 12 C - 0 C 

s 

Ground surface category Bare earth Bare earth Bare earth/snow 

-4 
Roughness param. z 10 m(sea)/0.5 (land) 0.03 m Horizontally variable 

0 

Initial state Stable, calm atmosph. Stable, uniform wind Taken from weather 

1:1=1. 8 
-1 

Rh = 60% ms .Rh=60% maps. Rh=60% 

7.1 COASTAL CIRCTJLATION 

Starting from a calm, stable atmosphere, the sun is rising above the 

horizon and heats the ground surface. Along a shoreline separating a 

sea surface with constant temperature from the ground surface, a sea 

breeze circulation is created. Figure 7.1 shows the wind along parts 

of the coastline after three hours of integration, at sigma-surfaces 

o=0.98125 (~ 100 m above ground) and o=0.875 (~800 m above ground). 

There is a well defined sea breeze circulation with maximum wind from 

the sea at the lowest level just on the landward side of the shore. 

There is a tendency towards an anticyclonic circulation over the sea, 
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and a cyclonic over the land. The compensating return current aloft is 

considerably weaker and has a tendency towards anticyclonic circula 

tion over land and cyclonic over sea. 

7.2 GAUSS-MOUNTAIN 

The topography is constructed in order to study the flow around an 

isolated mountain. It is given by the formula 

0 ; r > r1 

exp [( ~ )
2
] 

rl 2 
zs(i,j)= - exp[( r ) J 

H 0 0 . ri rl (7.1) 
0 rl 2 

, 

1 exp[(r) J 
0 

.A B 
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Figure 7.1: Results from coastal flow simulation. Section of central 
part of integration domain showing wind after three hours 
of integration. The sea surface is shaded. 
a) a = 0.98125 
b) a = 0.875 
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where r = [(i-i
0
)
2 + (j-j

0
)
2J112, r

0 
= 7/3, r1 = 10/3, i

0 
= j

0 
= 17, 

H = 1000 m and (i,j) is a grid point. A homogeneous wind in 
0 

geostrophic balance with the massfield and a stable atmosphere are the 

initial conditions. The ground surface properties are homogeneous, 

except for the topography. There is no solar heating. Results after 

one hour of integration are shown in Figs. 7.2a) and b), where b) is a 

vertical section along the line indicated on a). These figures can 

qualitatively be compared to the results of Smith (1980). Upwind of 

the mountain there is a split in the current into two branches on the 

sides of the two. A part of the air is also passing over the mountain, 

which is clearly indicated by the distortion of the isentropic sur 

faces. Potentially cold air is carried upslope on the upwind side and 

potentially warm air is carried downslope on the downwind side of the 

top. The maximum wind is found just over the top, which is consistent 

with the fact that the phase of a lee-wave slopes backwards into the 

deep atmosphere. 
-1-.__2.Sm,/s \___5 m/s 

40 

Figure 7.2: Result from Gaussian mountain simulation. 
a) Section of integration domain after one hour of inte 

gration showing wind and change of potential tempera 
ture since t=0 (unit 10-1K), for o=0.99875. The posi 
tion of the mountain is indicated by a shaded circle. 
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Figure 7.2: Result from Gaussian mountain simulation. 

b) Vertical section along the line indicated on a), 
showing potential temperature at intervals of l K after 
l h of integration. 
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Figure 7.3: Results from complex terrain simulation. 
a) Section of integration domain showing wind and surface 

pressure (in steps of 20 hPa) after 1 hour of integra 
tion. The fjords are indicated by shaded areas. 
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Figure 7.3: Results from complex terrain simulation. 
b) Vertical section of the lowennost 300 hPa along line 

indicated in a), showing potential temperature at 
intervals of 1 K (broken lines), and magnitude of wind 
component normal to the paper plane towards the reader 
at intervals of 1 m/s-1 (continuous lines). Mindi 
cates the position of the mountain referred to in the 
text. 
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7.3 COMPLEX TOPOGRAPHY 

The last example of preliminary applications is a real-data simulation 

of wind in complex terrain. The actual area is the city and surround 

ings of Bergen on the western coast of Norway. This is an extremely 

complex site with respect to local meteorology . There are deep narrow 

valleys, in several cases with fjords that are year-around unfrozen, 

which separates mountains with heights over 1000 m. The city of Bergen 

is situated by a fjord in the bottom of such a valley. An example of 

wind modelling in this complicated geography, is shown in Fig. 7.3. 

The actual time was 20 Jan. 1986 01 local time. The initial conditions 

were taken from weather maps on the large scale. After one hour of 

integration, the winds had adjusted to the local forcing. The ground 

surface properties were highly inhomogeneous. The fjords were unfrozen 

with surface temperature o0c, and the roughness length ranged from 

10-4 mover the sea to 0.5 min the city center. The ground surface 

was considered as snow-covered above 300 m. (There was of course no 

sun heating.) From Fig. 7.3a) the effects of heating from the fjords 

as well as topographical steering are easily detected. At low levels, 

the wind blows from land out over the open sea. Fig. 7.3b) shows a 

vertical section along the line indicated on a). Considering the moun 

tain marked with Mon the figure, it is seen that the air current has 

split into two branches, one in each valley on the sides. Maximum wind 

speed is indeed experienced on each side of the top close to the 

ground surface. 
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