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Abstract 

In this report we describe the development of the NILU (Norwegian Institute for 

Air Research) SURFEX-EnKF (SURFEX-Ensemble Kalman filter) land data 

assimilation system. The system is being developed on a NILU computing 

platform in collaboration with the Norwegian Meteorological Institute (Met.no) 

and Météo-France. It is based on the SURFEX land surface model from Météo-

France, and uses various variants of the Ensemble Kalman filter and Particle filter 

data assimilation method, the main focus being on the former. It also uses the 

Extended Kalman filter method currently in place at Météo-France. The system is 

currently used to assimilate land surface temperature and soil moisture, and will 

be extended to snow variables at a later stage. The observations assimilated are 

from in situ platforms in the first instance; at a later stage, observations from 

satellite platforms, including soil moisture from the ESA SMOS (Soil Moisture 

and Ocean Salinity) mission, launched in November 2009, will be assimilated. 

The main objective for developing this land data assimilation system is to evaluate 

observations and models; as part of this exercise, analyses of land surface 

variables will be produced. Results from the effort at NILU will be of benefit to 

Numerical Weather Prediction agencies, space agencies and the broad scientific 

community. 
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The NILU SURFEX-EnKF land data assimilation 

system 

 

1 Introduction 

Variables such as land surface temperature (LST) and soil moisture are important 

for understanding interactions between the land and the atmosphere, involving 

energy, carbon and water cycles (Houser, 2003; Houser et al., 2010). This, in turn, 

benefits Numerical Weather Prediction (NWP) and climate prediction by allowing 

a better use of Earth Observation data; better simulation of land/atmosphere 

processes; and improved initial states for prediction at various temporal scales. 

Monitoring of the land surface is also becoming increasingly important for 

addressing climate change issues. 

 

Land surface temperature and wetness conditions affect and are affected by 

numerous climatological, meteorological, ecological and geophysical phenomena. 

Therefore, accurate, high resolution estimates of terrestrial water and energy 

storages are valuable for predicting climate change, weather, biological and 

agricultural productivity, and flooding, and for performing a wide range of studies 

in the broader biogeosciences. In particular, terrestrial stores of energy and water 

modulate fluxes between the land and the atmosphere, and exhibit persistence on 

diurnal, seasonal and interannual time scales. Furthermore, because soil moisture, 

temperature and snow are integrated states, errors in land surface forcing and 

parametrization accumulate in the representations of these variables in operational 

NWP models, which lead to incorrect surface water and energy partitioning. 

Therefore, accurate initialization of water and energy state variables in these 

models is crucial. 

 

Data assimilation (DA) is a technique involving the synthesis of a range of 

observations from many sources, and with a variety of errors, into a numerical 

model of an evolving system, e.g., the atmosphere or the land (Kalnay, 2003). It 

brings together information from observations and the model in an objective way. 

The key element of the DA method is to confront models with observations. The 

use of the DA method is already established in NWP; Simmons and 

Hollingsworth (2002) discuss how DA has helped improve the European Centre 

for Medium-Range Weather Forecasts (ECMWF) short-term forecasts over the 

last twenty years.  

 

Assimilation of land surface observations is at an earlier stage than, e.g., 

assimilation of atmospheric observations. However, during the past decade, land 

DA has been a very active field of research. Assimilated observations include 

satellite retrievals of land surface temperature (LST), soil moisture, snow water 

equivalent (SWE) and snow cover area (e.g. van den Hurk et al., 2002; Andreadis 

and Lettenmaier, 2005; Slater and Clark, 2006; Bosilovich et al., 2007; Dong et 

al., 2007; Drusch, 2007; Reichle et al., 2008; Houser et al., 2010). 
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Land DA has been mainly used to, first, test the methodology and, second, 

produce land surface analyses to study specific phenomena (Houser et al., 2010). 

A further use of land DA is testing model and observational information. For 

example, many innovative land surface observations are becoming available that 

may provide additional information necessary to refine and constrain the physical 

parametrizations and initialization of land surface states critical for seasonal-to-

interannual prediction. These constraints can be imposed in three ways: (i) by 

forcing the land surface primarily by observations (such as precipitation and 

radiation) the often severe atmospheric NWP land surface forcing biases can be 

avoided; (ii) by employing innovative land surface DA techniques, observations 

of land surface storages (such as soil temperature and moisture) can be used to 

constrain unrealistic simulated storages; and (iii) the land surface physical 

parametrizations themselves can be improved through the use of observed 

parameters, and through the DA process where model states are constantly being 

evaluated against observations. 

 

The main objective of the land DA effort at NILU is to make use of ideas 

successfully applied to NWP, and now starting to be applied to chemistry models 

and climate models (see, e.g., Lahoz et al., 2007a; Palmer et al., 2008; Trenberth, 

2008), to evaluate model and observational information for the land surface. As 

part of this, the land DA system will be used to test various state-of-the-art DA 

schemes and produce analyses of land variables. 

 

In Section 2 we discuss the elements of the NILU land DA system; in Section 3 

we present preliminary results from initial tests of the system; in Section 4 we 

discuss plans for further developments; Section 5 provides conclusions. 

Appendix A includes the SURFEX-EnKF (SURFEX-Ensemble Kalman filter) 

documentation; Appendix B includes the SURFEX EnKF user guide; Appendix C 

contains results from Météo-France against which we validate the NILU land DA 

system. 

 

 

2 Land data assimilation system  

The elements of the NILU SURFEX-EnKF land DA system (Lahoz, 2008) are: (i) 

DA scheme (mainly variants of the EnKF, but also variants of the Particle filter, 

and the Extended Kalman filter, EKF); (ii) land surface scheme, or model – this is 

the SURFEX model developed at Météo-France (Le Moigne, 2009); (iii) 

observations; (iv) the observation operator; and (v) error characteristics for the 

model and the observations. Figure 1 provides a schematic of the land DA set up, 

illustrated with the Ensemble Kalman filter. 
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Figure 1: Schematic of the NILU SURFEX-EnKF land DA system methodology. 

Observations and the model have errors that will be characterized 

(see Section 2.5). 

 

2.1 Data assimilation scheme 

Most DA algorithms, such as the Kalman filter and variational methods are built 

on statistical linear estimation. Bouttier and Courtier (1999) provide details of 

these algorithms. 

 

Statistical linear estimation achieves Bayesian estimation when the system is 

linear and the errors are Gaussian. In particular, statistical linear estimation 

provides a way of estimating the Best Linear Unbiased Estimate, BLUE 

(Talagrand, 2003a, 2010a). Independently of the notion of statistical estimation, 

there exist two broad classes of numerical algorithms for data assimilation: 

variational and sequential. In the context of statistical linear estimation, these 

algorithms take respectively the form of the 4-D variational method (4D-Var), or 

the Kalman filter. (If the time dimension is omitted, the 4D-Var method becomes 

the 3-d variational method, 3D-Var.) These are two different algorithms for 

determining the BLUE, and they are equivalent under the only condition of 

linearity. 

 

Ensemble assimilation is a form of Monte Carlo approximation which attempts to 

estimate probability distribution functions (PDFs) from the spread of the 

ensemble. It is not based on statistical linear estimation. In present applications 

(e.g. the Ensemble Kalman filter; Evensen, 2003), the size of the analysed 

ensembles typically lies between a few tens to a few hundreds of model states.  

 

We discuss and contrast below the assimilation schemes used in the NILU 

SURFEX-EnKF land DA system, viz., the Extended Kalman filter (EKF), and 

variants of the Ensemble Kalman filter (EnKF) and Particle filter (PF). As the 

focus of this land DA system is the development of EnKF and PF DA schemes, 

we only provide a brief description of the EKF. For a discussion of DA methods 

as applied to the land surface, see Houser et al. (2010).  
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Sequential methods 

To discuss the EKF, we first introduce sequential methods. In the Kalman filter 

(KF), a recursive sequential algorithm is applied to evolve a forecast, x
f
, and an 

analysis, x
a
, as well as their respective error covariance matrices, P

f
 and P

a
. The 

KF equations are (subscripts denote the time step; M and H are linear model and 

observation operators, respectively): 

 (1a) 

 (1b) 

         (1c) 

         (1d) 

         (1e) 

 

Equation (1a) represents the forecast of the model fields from time-step n−1 to n, 

while Eq. (1b) calculates the forecast error covariance from the analysis error 

covariance P
a
 and the model error covariance Q. Equations (1c) and (1e) are the 

analysis steps, using the Kalman gain defined in Eq. (1d). Q and P
a
 are assumed 

to be uncorrelated (Bouttier and Courtier, 1999). For optimality, all errors must be 

uncorrelated in time. 

 

The KF can be generalized to non-linear H and M operators, although in this case 

neither the optimality of the analysis nor the equivalence with 4D-Var holds. The 

resulting equations are known as the Extended Kalman filter, EKF (Bouttier and 

Courtier, 1999). 

 

The EKF is used for land DA at Météo-France (Mahfouf et al., 2009; see also 

Draper et al., 2009) and there are plans to use it for land DA at ECMWF (Drusch 

et al., 2009). The land DA work at NILU will use the EKF scheme described in 

Mahfouf et al. (2009). One aim of this work at NILU will be to compare the EKF 

formulation due to Mahfouf et al. with variants of the EnKF and the PF, described 

below. Section 3 provides results (analyses, increments) from a first comparison 

between the EKF scheme described in Mahfouf et al. and two EnKF variants. 

Prior to this comparison, we ascertain that the land DA set-up at NILU involving 

the EKF gives the same results as that at Météo-France. 

 

Ensemble methods 
1. Ensemble Kalman Filter. The EnKF represents a state space formulation of the 

KF that uses an ensemble of model states to store and propagate the system state 

and the state error covariance. The ensemble representation is particularly 

beneficial for large-scale systems, when explicit storage and manipulation of the 

covariance matrix is impossible or not feasible. It also makes possible an efficient 

and numerically robust propagation of the covariance with a non-linear model by 

integrating the ensemble of model states. Another attractive feature of EnKF 

methods is their conceptual simplicity. Compared to variational methods, the 

EnKF delivers similar performance (e.g. Kalnay et al., 2007), but requires no 

tangent linear or adjoint models. 
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These qualities make the EnKF a highly attractive option as a basis for building 

operational forecast systems, as well as an increasingly popular alternative to 

variational methods. As a result, there is a strong growth of the number of 

publications on the EnKF in recent years, with a doubling time of about two years 

from 2000 (8 publications in ISI Web of Knowledge) to 2008 (153 publications). 

These studies investigate both fundamental and applied aspects of EnKF, such as 

non-linearity; localization; non-Gaussianity; forecasting and reanalysis 

applications; hybrid systems; comparison with 3D-Var and 4D-Var. 

 

In the traditional EnKF (Evensen, 1994; Burgers et al., 1998) the state error 

covariance matrix is represented by the ensemble statistically, using a covariance 

estimator for a sample of random states. In Ensemble square root filters (ESRFs), 

e.g. Tippett et al. (2003), the ensemble of anomalies is regarded as a factorization 

of the state error covariance. Other EnKF schemes include the Maximum 

likelihood ensemble filter (MLEF; Zupanski et al., 2008), and the deterministic 

EnKF (e.g. Sakov and Oke, 2008b). The ensemble Kalman smoother (Evensen 

and van Leeuwen, 2000) provides a simple and efficient framework for 

assimilating asynchronous observations, making it equivalent to traditional 

(“strong constraint”) 4D-Var (Sakov et al., 2010). 

 

Two new state-of-the-art versions of the EnKF recently proposed by Sakov and 

Oke have been incorporated into the land DA system developed at NILU: (i) an 

Ensemble square root filter (ESRF), Sakov and Oke (2008a); and (ii) a 

Deterministic ensemble Kalman filter (DEnKF), Sakov and Oke (2008b). 

 

The ESRF of Sakov and Oke uses a product of a symmetric mean-preserving 

transform matrix with an optional mean-preserving orthonormal random rotation. 

This ensures that the KF equations are accurately solved for the ensemble mean 

and the variance-covariance matrix. The mean-preserving random rotations also 

prevent the build-up of ensemble outliers in ESRF-based DA systems; in 

particular for non-linear models (this is relevant for land DA). No perturbations of 

observations are necessary in this version of the filter. Sakov and Oke (2008a) 

also show that the new ESRF method is superior to other non-mean preserving 

ESRFs and the more traditional EnKF, using perturbed observations. 

 

The DEnKF of Sakov and Oke is a simple modification of the traditional EnKF; it 

uses a linear approximation to the ESRF update matrix. This linear approximation 

has the property that it automatically increases the spread of the ensemble in cases 

where the observation-based analysis correction of the ensemble is large; 

conversely, the increase in spread is much smaller when the analysis correction is 

small. This prevents the collapse of the ensemble. As for the ESRF filter of Sakov 

and Oke, no perturbation of the observations is necessary. In Sakov and Oke 

(2008b) it is shown that this DEnKF performs almost as well as the ESRF filter 

and significantly better than the traditional EnKF with perturbed observations. It 

thus combines the simplicity and flexibility of the traditional EnKF method, with 

the robustness and superior performance of the ESRF. The DEnKF also readily 

permits the use of Schur product-based covariance localization schemes. 

 

2. Applications of the Ensemble Kalman filter. The EnKF has a strong record of 

successful application to a wide range of problems. These include oil reservoir 
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modelling (Evensen et al., 2006); oceanography (Keppenne and Rienecker, 2002); 

meteorology (Houtekamer and Mitchell, 2001); air quality (Eben et al., 2005); and 

land modelling (Reichle et al., 2002; Clark et al., 2008). A variant of the EnKF is 

being developed at NILU, in collaboration with Met.no and Météo-France, for 

land data assimilation (Lahoz, 2008). Due to the relatively recent development of 

the EnKF and since operating a large-scale EnKF system requires substantial 

computational resources there are currently fewer EnKF-based large-scale 

forecasting applications than those based on variational methods. However, the 

situation is gradually changing, and several operational EnKF-based systems have 

been described in the last few years (Houtekamer et al., 2005; Whitaker et al., 

2008; Szunyogh et al., 2008). EnKF methods are considered for assimilation of 

snow data and Leaf Area Index (LAI) in the future ECMWF system 

(http://www.ecmwf.int/about/programmatic/2006/topical/6.pdf). 

 

In oceanography, the TOPAZ system (Evensen, 2007) developed at the Norway-

based NERSC (Nansen Environmental and Remote Sensing Centre), remains the 

only large-scale operational EnKF-based system. TOPAZ runs an ensemble of 

100 model states and provides forecasts of ocean currents and sea ice conditions 

in the North Atlantic and Arctic Oceans. It has been built as a Norwegian 

contribution to the Global Ocean Data Assimilation Experiment (GODAE), which 

currently is a part of the European MyOcean project that includes a number of 

major oceanographic centres. The currents from TOPAZ are used by the ECMWF 

as input to their operational wave model. 

 

3. Particle filter. Particle filters constitute a broad class of Sequential Monte Carlo 

(SMC) methods based on statistical simulations of model error evolution using 

various Monte Carlo random draw techniques (Doucet et al., 2001, 2008; Chen, 

2003). For illustration of the PF, we focus on the Sequential importance sampling 

and re-sampling (SIR) method, which recently has received some attention (van 

Leeuwen, 2003). 

 

The SIR is an ensemble-based DA method, founded on a general Bayesian 

statistical framework (Gelman et al., 2004). It makes no assumptions of linearity 

in the model equations, or that model and observational errors are Gaussian. The 

SIR is thus, in principle, well suited to deal with systems such as the land surface 

where model evolution can be highly non-linear, and where model and 

observational errors can be non-Gaussian. 

 

In the SIR, the ensemble of model states at any given timestep is used as an 

approximation for the prior and posterior density distribution of the true model 

state. The ensemble is evolved forward in time using the model operator as in the 

EnKF, but the analysis step is different. Instead of using the Kalman filter (KF) 

update equations (Eq. (1) above) to obtain the new analysed model states, 

importance sampling in the form of re-weighting of the ensemble is done; each 

forecast ensemble member gets a new weight proportional to the likelihood of the 

state given the observations. Ensemble members receiving high weights are kept 

in the ensemble; those receiving low weights are likely to be removed. At the 

beginning of the next timestep, the new ensemble members are re-sampled and 

given equal weighting again, and the process is repeated. 

 

http://www.ecmwf.int/about/programmatic/2006/topical/6.pdf
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The re-sampling step is an essential element of the SIR; without it the method 

degenerates very quickly, and only a few ensemble members with high weights 

remain. The analysed model state is calculated as the arithmetic mean of the 

ensemble members. It can be shown that this model state represents a variance-

minimizing estimate of the true model state, even for highly non-linear models. 

As for other ensemble-based methods, ensemble members provide an estimate of 

the analysed model state uncertainty. 

 

A major drawback of the EnKF is the underlying assumption that the model states 

have a Gaussian distribution, making the PF attractive. Furthermore, the PF does 

not require a specific form for the state distribution, but the distribution of particle 

weights quickly may become highly skewed (this is known as “particle 

impoverishment”), and in this case a re-sampling algorithm needs to be applied 

(see, e.g., Weerts and El Serafy, 2006). 

 

At NILU three PF algorithms are implemented (or will be implemented) as part of 

the SURFEX-EnKF DA system. These are the SIR PF described above and, in 

addition, a Regularized PF (RPF) and an Auxiliary PF (ASIR) (Doucet et al., 

2001, 2008; Ristic et al, 2004). In the RPF, in addition to a standard re-sampling 

step, a regularization step is also performed by randomly drawing new particles 

using a Gaussian kernel. This increases the spread of the particles and is designed 

to avoid the particle impoverishment mentioned above. In the auxiliary PF, a more 

advanced re-sampling scheme is employed, which places higher weights on 

particles more likely to survive when considering states one time step ahead in the 

dynamic system. A review of the current status of various PF methods is given in 

Doucet et al. (2008). 

 

4. Applications of the Particle filter. The ease of use and applicability of the PF to 

a wide range of non-linear and non-Gaussian systems makes the method 

potentially attractive for land surface data assimilation. The SIR, and other PF 

methods described above, has been applied with good results in different fields 

such as control theory, robotics, tracking and perception, where model non-

linearity is important. It has also been used with success in several oceanographic 

studies involving relatively large multi-dimensional non-linear models (van 

Leeuwen, 2003).  

 

The PF has been applied in hydrology (where assumptions of linearity and 

Gaussianity do not hold) to estimate model parameters and state variables 

(Moradkhani et al., 2005). Moradkhani et al. comment that the PF is easily and 

directly applicable to more complex models (e.g. land surface models, LSMs), but 

that prospective improvement in its application to hydrometeorological models is 

an open issue. For a conceptual rainfall-runoff model, Weerts and El Serafy 

(2006) have compared the SIR to the Residual-resampling (RR) filter and an 

EnKF that can handle dynamic non-linear/non-Gaussian models. Their results 

show that the EnKF performs best with a low number of ensemble members, and 

the RR filter performs best at intermediate and high number of particles, although 

differences are small. Weerts and El Serafy comment that these methods are 

feasible and easy to implement in real flood forecasting systems, and recommend 

further research on assumptions on model and measurement uncertainties. 
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5. Intercomparison between the EKF, EnKF and PF. The EKF is an example of a 

sequential data assimilation method; the PF and EnKF are examples of ensemble 

data assimilation methods. Each of them has advantages and limitations: 

 

 The EKF is capable of handling some departure from Gaussian 

distributions of model errors and non-linearity of the model operator. 

However, if the model becomes too non-linear or the errors become highly 

skewed or non-Gaussian, the trajectories computed by the EKF will 

become inaccurate. The EKF needs to run the physical model (SURFEX) 

n times per period (time step), where n is the number of control variables. 

Currently, only at most n = 4 control variables are used in the land DA 

system making use of SURFEX, so the extra computational burden of 

running the physical model several times is modest; 

 The EnKFs are capable of handling a larger degree of non-linearity in the 

model operator than the traditional EKF, but for its optimality it still relies 

upon the errors being approximately Gaussian. The EnKFs need to run the 

physical model (SURFEX) N times per period (time step), where N is the 

number of ensemble members. In the case one uses far more ensemble 

members (N) than control variables (n, as described for the EKF 

immediately above), i.e., N >> n, the EnKF would generally be more 

computational demanding than the EKF. This could be especially true for 

current land DA systems based on SURFEX, since calculations have 

shown that for these systems running of the SURFEX model takes up a 

significant fraction of the CPU time compared to the assimilation part 

(approximately 95% of the time). As shown in Section 3 below, tests with 

the NILU land DA system suggest that the number of ensemble members 

required for the EnKF is essentially the same as the number of control 

variables, i.e., N~n; 

 In contrast to the EKF and the EnKFs, PFs are able to handle arbitrary 

probability distributions and non-linearity. However, this is commonly 

done by operating on a quite large ensemble of particles (ensemble 

members). As for the EnKFs, PFs need to run the physical model 

(SURFEX) N times per period (time step) where N is the number of 

particles (ensemble members). Thus, a PF may require large resources for 

high-dimensional problems (Snyder et al., 2008). For such large numbers 

of particles, we thus may need to use parallel computing facilities. This 

could be particularly true for the SURFEX-EnKF DA system set up as a 

3-D problem; currently it is set up at NILU as a 1-D problem, with 

independent columns in the soil (see Section 2.2). By 3-D we mean 

inclusion of horizontal information from neighbouring grid cells in the DA 

system. 

 

The EKF is implemented (not necessarily operationally) at operational centres 

such as Météo-France and ECMWF; the EnKF and PF have started to be 

successfully applied for DA in land applications (see references above). However, 

there are only a few comparison studies between the EKF, EnKF and PF for these 

land applications, typically characterized by a combination of features that do not 

fit well any particular method: strong non-linearity, non-Gaussianity, and high 

dimensionality. Representative examples are provided below: 
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 Reichle et al. (2002) compare the EKF and the EnKF for soil moisture 

assimilation and conclude that the EnKF outperforms the EKF for ten 

or more ensemble members. This is ascribed to the EnKF’s flexibility 

in representing model errors; 

 Zhou et al. (2006) argued that the traditional (“perturbed observations”) 

EnKF (Burgers et al. 1998) is able to provide a good approximation for 

non-linear and non-Gaussian land surface problems, despite its 

dependence on Gaussian assumptions. Weerts and El Serafy (2006) 

found that both the EnKF and PF are feasible and easy to implement in 

a realistic flood forecasting system. 

 

Comparison between the EKF, EnKF and PF will help to understand the strengths 

and weaknesses of these DA methods, and address the weaknesses. This 

information will help improve the methods and will benefit, among others, the 

NWP community. Progress in operational application of these data assimilation 

methods requires an understanding of their strengths and weaknesses, with focus 

on several issues identified as crucial by the land DA community. These include: 

 

 Observed quantities are often non-linearly related to the model variables, 

Thus, the abilities of the different DA assimilation algorithms to handle 

non-linear observation operators need to be compared and evaluated; 

 Most observations for land DA are concerned with surface or near-surface 

conditions, while important model variables represent more deep soil 

conditions. Deep soil moisture is one example. The abilities of different 

DA methods to solve inverse problems must be compared and evaluated; 

 Remote sensing data, from, e.g., satellites, are becoming more and more 

important for land DA (see, e.g., Drusch et al., 2009). These remote 

sensing data often have complicated observation error structures, for 

example biases and spatially correlated errors. The abilities of different 

DA methods to handle such complicated observation error structures must 

be compared and evaluated. The interaction between (systematic) model 

errors and (systematic) observation errors is another issue that must be 

handled in a proper way; 

 The atmospheric forcing for the land DA may come from models or from 

observations, with precipitation as an important example. Here, again, 

specification of model error characteristics is crucial. 

 

Overview 

Three methods are commonly used for land DA (Houser et al., 2010): variational 

(3D-/4D-var); sequential (Kalman filter and Extended Kalman filter, EKF); and 

ensemble (Ensemble Kalman filter, EnKF). The PF is being considered for land 

DA at, e.g., NILU. Because of the 1-D nature of most land surface processes, 1-D 

and 3-D versions of a DA scheme are often used (e.g. Reichle and Koster, 2003).  

 

The EKF is capable of handling some departure from Gaussian distributions of 

model errors and non-linearity of the model operator. However, if the model 

becomes too non-linear or the errors becomes highly skewed or non-Gaussian the 

trajectories computed by the EKF will become inaccurate. 
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The EnKF is attractive as, e.g., it requires no derivation of a tangent linear 

operator or adjoint equations, and no integrations backward in time, as for 4D-Var 

(see Evensen, 2003). This can be problematic given non-linearities and on-off 

processes at the land surface. The EnKF also provides a cost-effective 

representation of the background error covariance matrix, B (its analogue in the 

KF is commonly represented as P
f
 – see Eq. (1)). Several issues need to be 

considered in, for example, developing the EnKF: (i) ensemble size; (ii) ensemble 

collapse; (iii) correlation model for B; and (iv) specification of model errors. 

However, the major drawback of the EnKF is the underlying assumption that the 

model states have a Gaussian distribution. 

 

The PF does not require a specific form for the state distribution, but its major 

drawback is that distribution of particle weights quickly becomes skewed, and a 

re-sampling algorithm needs to be applied (Weerts and El Serafy, 2006). 

 

The EnKF and PF are complementary. This complementarity makes a hybrid 

EnKF/PF version highly attractive for systems that can exhibit non-linear and 

non-Gaussian features, an example being the land surface. For example, the EnKF 

could be used as an efficient sampling tool to create an ensemble of particles with 

optimal characteristics with respect to observations. The PF methodology could 

then be applied on that ensemble afterwards to resolve non-linearity and non-

Gaussianity in the system. This method is getting increased attention among DA 

experts (P. van Leeuwen and J. de Vries, pers. comm.). Developing such a hybrid 

system for the land is beyond the scope of current land DA efforts at NILU, but is 

being considered for the future (see Section 4). 

 

2.2 Land surface scheme 

Many land surface schemes (LSMs) have been developed and enhanced since the 

mid 1990s, with varying features, such as subgrid variability, community-wide 

input, advanced physical representations, and compatibility with atmospheric 

models (Houser et al., 2010).  

 

There are strong justifications for studying a LSM uncoupled from atmospheric 

and ocean models. In coupled models the atmospheric model can impose strong 

land surface forcing biases on the LSM. For example, biases in precipitation and 

radiation can overwhelm the behaviour of the LSM physics. By using an 

uncoupled LSM, we can better specify land surface forcing using observations, 

use less computational resources, and address most DA development questions.  

 

In collaboration with Met.no and Météo-France, NILU is developing a land DA 

system incorporating the SURFEX land surface model (Giard and Bazile, 2000; 

Le Moigne, 2009) used in the HIRLAM (HIgh-Resolution Limited Area Model) 

and ALADIN (Aire Limitée Adaptation dynamique Développement 

INternational) NWP consortium. At NILU the SURFEX model will be used in the 

first instance as a stand-alone model, i.e., uncoupled from the atmospheric and 

ocean models. 
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The SURFEX model includes the following elements: 

 

 Soil and vegetation scheme (ISBA, Interface Soil-Biosphere-Atmosphere, 

and ISBA-A-gs): This simulates the exchange of energy and water fluxes 

between the land surface and the atmosphere; 

 Water surface scheme (COARE/ECUME – for the sea; FLAKE – for 

inland water): This simulates various features of the water surface: 

turbulent fluxes, temperature, salinity, heat budget, and mixed layer depth; 

and ice and snow cover for inland water; 

 Urban and artificial areas (Town Energy Balance, TEB, model): The 

TEB model simulates the exchange of fluxes between a town/urban area 

and the atmosphere. A town/urban area is represented, e.g., by roofs, roads 

and facing walls; 

 Surface boundary layer (SBL) scheme: This accounts for the way the 

vegetation canopy modifies the interaction between the land and the 

atmosphere. It incorporates the SBL equations into a surface scheme with 

implicit coupling to the atmosphere; 

 Chemistry and aerosols: This takes account of the contribution of dust 

aerosols, sea salt emission, dry deposition of aerosols and gaseous species, 

and biogenic VOCs (volatile organic compounds) to: (i) surface fluxes 

(information from the land surface to the atmosphere), and/or (ii) 

atmospheric forcing (information from the atmosphere to the land 

surface); 

 Land use database (ECOCLIMAP): ECOCLIMAP is a global database of 

land surface parameters at 1 km horizontal resolution combining land 

cover maps with satellite information. It provides a detailed description of 

surface conditions such as vegetation types, sea/lake, and town; 

 Land surface analysis: This uses a DA scheme (e.g. EKF at Météo-

France) to update the SURFEX model state variables by assimilation of 

various in situ and satellite observations. The NILU effort extends the 

Météo-France land surface analysis to include variants of the EnKF and 

PF. 

 

A brief description of how SURFEX works follows. During a model time step, 

each surface grid box receives from the atmosphere the following information: 

upper air temperature, specific humidity, horizontal wind components, pressure, 

total precipitation, long-wave radiation, short-wave direct and diffuse radiation, 

and, possibly, concentrations of chemical species and dust. 

 

In return, SURFEX computes averaged fluxes of momentum, sensible and latent 

heat, and, possibly, chemical species and dust fluxes. These fluxes are then sent 

back to the atmosphere with the addition of radiative terms like surface 

temperature, surface direct and diffuse albedo, and surface emissivity. 

 

The above information provides the lower boundary conditions for the radiation 

and turbulent schemes in an atmospheric model coupled to SURFEX, or forced by 

SURFEX output. In SURFEX, each grid box is made up of four adjacent surfaces: 

one for nature, one for urban areas, one for sea or ocean, and one for lake. The 

coverage of each of these surfaces is known through the global ECOCLIMAP 

database. The SURFEX fluxes are the average of the fluxes computed over nature, 
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town, sea/ocean or lake, weighted by their respective fraction. Figure 2 provides a 

summary of how SURFEX works. 

 

 
 

Figure 2: Exchanges between the atmosphere and land surface implemented in 

SURFEX. See text. (From Le Moigne (2009).) 

 

At NILU we have successfully installed the SURFEX model on a local computing 

platform. The DA system implemented at NILU, incorporating SURFEX, is 

currently run as a 1-D problem, with independent soil columns. To set up this 

system, we have used the architecture of the Météo-France SURFEX-EKF land 

DA system, with the following changes: 

 

 A new main program enkfassim.f90 and module files 

ensb_m.f90, rand_m.f90 and util_m.f90 have been 

introduced incorporating the ensemble based data assimilation methods 

(EnKF and PF). This replaces the varassim.f90 main program as 

used by the SURFEX-EKF system; 

 Corresponding changes have been done in the file 

Makefile.SURFEX.mk in order to be able to compile the new 

SURFEX-EnKF system; 

 The standard namelist file of SURFEX (OPTIONS.nam) has been 

extended with an extra namelist (NAM.ENKF) containing the type of 

Ensemble Kalman filter or Particle filter method to be used, and the 

number of ensemble members (N) to be used. For details see 

Appendix A of this report; 

 A new run script (run_enkf.sh) incorporating the running of the 

SURFEX-EnKF system has been coded. A number of enhancements 



 

NILU TR 2/2010 

17 

have been made compared to the existing SURFEX-EKF script 

run_ekf.sh. For example, it is now possible to change a larger 

number of run parameters in the OPTIONS.nam file directly from the 

run_enkf.sh script. This includes the selection of the assimilation 

method, number of ensemble members, parameters governing the 

ensemble perturbations, and the observations to be included and their 

error variances (elements of the observational error covariance matrix, 

R); 

 The documentation for the NILU SURFEX-EnKF land DA system is 

provided in Appendix A of this report. A manual for running the 

SURFEX-EnKF land DA system is provided in Appendix B of this 

report. 

 

The SURFEX-EnKF land DA system has been compiled, run and tested at NILU 

for various land DA set-ups for 24 and 48 hours (four and eight 6-hour data 

assimilation cycles) in early July 2006, for which we have input data provided by 

Météo-France. The region over which the land data assimilation is performed is 

currently centred over France (see Section 3). These DA set-ups are: (i) no 

assimilation; (ii) EKF assimilation; (iii) EnKF assimilation, with 2, 3 and 5 

ensemble members, and with two different EnKF methods (ESRF and DEnKF); 

and (iv) PF assimilation. Runs with 9 ensemble members have also been made. 

 

2.3 Observations 

Observations are commonly divided into conventional observations (e.g. in situ 

ground-based measurements such as screen-level temperature and relative 

humidity) and remotely-sensed satellite observations. Land DA considers both 

types of observations. Often, satellite land surface data are assimilated and the 

process validated using in situ measurements. Houser (2003) discusses the 

assimilation of land surface retrieved quantities and radiances.  

 

The emphasis of land surface DA research is to assimilate remotely-sensed 

observations of the land surface that previous research suggests will provide 

memory to the land-atmosphere interaction. Remote observations of interest 

include: (i) temperature; (ii) soil moisture (surface moisture content, surface 

saturation, total water storage); (iii) other surface water bodies (lakes, wetlands, 

large rivers); and (iv) snow (areal extent, snow water equivalent – SWE). The 

NILU SURFEX-EnKF land DA system is designed initially to assimilate 

retrievals of land surface temperature and soil moisture (from in situ and/or 

satellite platforms). At a later stage, snow variables will be assimilated. 

 

Assimilation of observation-based surface fields will continually steer the 

modelled states towards our understanding of reality. However, only a few 

variables can be observed directly, such as skin temperature. Other variables, such 

as subsurface soil temperature, will be affected by the assimilation, but their 

representation is dependent on imperfect model physical assumptions.  

 

In the first instance, we assimilate at NILU in situ land surface temperature and 

soil moisture provided by the SYNOP/CANARI (Code d’Analyse Nécessaire à 

Arpege pour ses Rejets et son Initialisation; Taillefer, 2002) analysis. The data 
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assimilated in the current NILU set-up are: two-metre screen-level temperature 

(T2m); and two-metre screen-level relative humidity (RH2m). There is an option of 

assimilating superficial soil moisture content data from satellites, but this has not 

been implemented in the current set-up at NILU. The control variables are:  

 

 Surface temperature (a surface quantity), units of K – TG1; 

 Mean surface temperature (a volume quantity), units of K – TG2; 

 Superficial volumetric water content (a surface quantity), units of m
3
/m

3
 – 

WG1; 

 Mean volumetric water content of the root zone (a volume quantity), units 

of m
3
/m

3
 – WG2. 

 

Results in Section 3 discuss the assimilation of T2m and RH2m observations using 

the above control variables. At a later stage, we will consider assimilation of 

satellite data. In particular, in the near future we propose to assimilate land surface 

temperature from at least one of Envisat-AATSR (Advanced Along Track 

Scanning Radiometer) and Aqua/Terra-MODIS (MODerate Resolution Imaging 

Spectroradiometer); and soil moisture from AMSR-E (The Advanced Microwave 

Scanning Radiometer - Earth Observing System; see, e.g., Draper et al., 2009) and 

SMOS (Soil Moisture and Ocean Salinity; Kerr et al., 2000). In the more distant 

future we propose to assimilate snow variables from, e.g., Aqua/Terra-MODIS. 

Brief details of the types of land surface remote (satellite) observations to be 

assimilated follow. 

 

1. Land surface temperature. Remote sensing of surface temperature is a 

relatively mature technology. The land surface emits thermal infrared radiation at 

an intensity directly related to its emissivity and temperature. The absorption of 

this radiation by atmospheric constituents is lowest in the 3-5 µm and 8-14 µm 

wavelength ranges, making them the best atmospheric windows for sensing land 

surface temperature (LST). Some errors due to atmospheric absorption and 

improperly specified surface emissivity are possible, and the presence of clouds 

can obscure the signal. Generally, surface temperature remote sensing can be 

considered an operational technology, with many spaceborne sensors making 

regular observations (e.g. MODIS, Landsat Thematic Mapper, Advanced Very 

High Resolution Radiometer – AVHRR, and Advanced Spaceborne Thermal 

Emission and Reflection Radiometer – ASTER)  - see Lillesand and Kiefer (1994) 

for details. The evolution of LST is linked to all other land surface processes 

through physical relationships. These land surface process interconnections can be 

exploited in a land DA framework to constrain all the predicted land surface 

states. 

 

2. Soil moisture. Remote sensing of soil moisture content is a developing 

technology, although the theory and methods are well established (Eley, 1992). 

Long-wave passive microwave remote sensing is ideal for soil moisture 

observation, but there are technical challenges involved in correcting for the 

effects of vegetation and roughness. Houser et al. (2010) provides details of the 

use of soil moisture data from satellites. 

 

3. Snow. Key snow variables of interest to land surface understanding include area 

coverage and snow water equivalent (SWE). While the estimation of SWE by 
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satellites is in many ways still a research activity, snow areal extent can be 

routinely monitored by many operational platforms. Houser et al. (2010) provides 

further details. 

 

2.4 Observation operator 

The non-linear observation operator H (see Section 2.1) transforms from the 

model space to the measurement space. It involves a mapping from geophysical 

inputs in model space (e.g. LST) to simulate an instrument measurement in 

measurement space (e.g. radiances), taking into account the physics of the 

measurement and the characteristics of the instrument. The role of the non-linear 

model operator M, or the forward model (see Section 2.1), depends on the data 

assimilation approach. In the sequential approach, the model operator maps the 

analysis forward in time to give a background state for a subsequent assimilation 

cycle (this applies to the EnKF and its variants if the evolution of the model state 

is treated as in the KF); in the variational approach, the model operator may be 

part of the analysis process. The observation operation must also take account of 

the different resolutions of the model and the measurement. Errors in mapping 

from the model to the measurement are accounted in the representativeness error 

(Cohn, 1997). 

 

To represent the observation operator for a general land DA scheme computer 

code, we have made use of the approach described by Mandel (2007), which 

involves the use of the observation function, h(x). This avoids explicit 

construction of the Jacobian matrix of H, which is often difficult.  

 

2.5 Error characteristics 

Representation of errors is fundamental to DA. One needs to consider errors in 

observations, background information, and model (see Eq. (1) for identification of 

the error covariance matrices mentioned in the following). R, the observational 

error covariance matrix, is typically assumed to be diagonal, although this is not 

always justified. R includes errors of the measurements themselves, E, and errors 

of representativeness, F; R=E+F. B is the background error covariance matrix; its 

off-diagonal elements determine how information is spread spatially from 

observation locations. Estimating B is a key part of the DA method. Estimating 

model error Q is a research topic.  

 

In the EnKF and also in the PF, the background (or forecast) errors are 

represented by the spread of the ensemble. This simplifies the computation of B, 

and is an advantage of the EnKF; this can also be used to account for the model 

error Q. For land DA, the model error Q (associated with the temporal evolution 

of the model) is often tuned (e.g. Reichle et al., 2008). In land DA, an approach 

introduced by Desroziers et al. (2005) is also used to estimate the model and 

observation error covariances separately. Application of this approach to the 

heterogeneous land surface is discussed in Reichle et al. (2008). 

 

In general, in DA, errors are assumed to be Gaussian. The most fundamental 

justification for assuming Gaussian errors, which is entirely pragmatic, is the 

relative simplicity and ease of implementation of statistical linear estimation 

under these conditions. Because Gaussian probability distribution functions 
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(PDFs) are fully determined by their mean and variance, the solution of the DA 

problem becomes computationally practical. Note that the assumption of 

Gaussianity is often not justified in land DA applications. 

 

Typically, there are biases between different observations, and between 

observations and model (see, e.g., Ménard, 2010). These biases are spatially and 

temporally varying, and it is a major challenge to estimate and correct them. 

Despite this, and mainly for pragmatic reasons, in DA it is often assumed that 

errors are unbiased. For NWP many assimilation schemes now incorporate a bias 

correction, and various techniques have been developed to correct observations to 

remove biases; these methods are now applied to land DA (DeLannoy et al., 

2007a, b). 

 

Possibility distributions (more general than PDFs) have been used in the retrieval 

of information from satellite imagery to account for incomplete information 

(Verhoest et al., 2007), and for non-Gaussian errors, which can occur with land 

surface variables. 

 

At NILU we will investigate the representation of observational errors; the 

development and implementation of bias correction methods; and the application 

of ideas from possibility theory.  

 

2.6 Evaluation and data assimilation 

General 

A crucial element of DA is the evaluation of the quality of the observations, the 

models and the analyses, and the test of several assumptions built into DA 

algorithms, e.g. Gaussian errors; unbiased observations and models. Several 

diagnostics have been developed to do this (Talagrand, 2003b, 2010b). Broadly 

speaking, these consist of self-consistency tests and independent tests. 

 

Self-consistency tests provide useful information for evaluating the quality of the 

data assimilation ingredients and the assumptions built into assimilation 

algorithms. Histograms of OmA (observation minus analysis) and OmF 

(observation minus forecast) differences are computed for a range of spatial and 

temporal scales to test whether the observations, forecast and analysis fields, and 

their errors, are consistent with each other. For example, the OmA histogram 

should be more peaked than that for OmF, as the analyses should be closer to the 

assimilated observations than the forecast. Furthermore, the OmF histogram 

should be Gaussian, if both the observation and forecast are assumed to have 

Gaussian errors. Time averages of the standard deviation of OmA can also be 

used to test whether the assimilation system is consistent with the concept of the 

Best Linear Unbiased Estimate, BLUE (Talagrand, 2003a, 2010a). Other tests 

check whether there are biases between observation and forecast, or between 

observation and analysis. Tests for Gaussian errors can also include tests of 

skewness and kurtosis. 

 

Independent tests involve comparison of analyses with data that are independent 

from the analyses, i.e., data not assimilated to provide the analyses. Independent 

data can provide information on whether the analyses are realistic and can help 

attribute biases to observations, forecast and analysis; note that self-consistency 
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tests cannot be used to perform this attribution. Estimating the bias in the analyses 

by comparison against independent data is only possible when the error 

characteristics of the latter are well known.  

 

In general, comparison against independent data is much more significant than 

comparison against the assimilated observations. Thus, independent data are the 

ultimate arbiter of the quality of analyses.  

 

Evaluation of models 
Data assimilation has been very successful at improving NWP models (Simmons 

and Hollingsworth, 2002). The desirability of applying DA ideas to improve 

climate models has long been recognized (Puri, 2002), but has not been fully 

implemented, mainly because climate models are not generally developed in 

conjunction with an appropriate DA scheme. However, recently, these ideas have 

been applied to the CAPT (Climate Change Prediction Program, Atmospheric 

Radiation Measurement Program, CCPP-ARM Parameterization Test-bed) 

initiative (see Phillips et al., 2004) with the aim to improve parametrizations in 

climate General Circulation Models. DA also has been used to evaluate ozone 

chemistry components in DA systems (Geer et al., 2006, 2007; Lahoz et al., 

2007a, b). At a recent WCRP (World Climate Research Programme) Climate 

Summit at ECMWF, the use of observations, including DA ideas, to evaluate 

climate models was discussed (Trenberth, 2008). 

 

Recently, Palmer et al. (2008) have discussed the concept of “seamless 

prediction” and its relevance for weather and climate forecasting (see also 

Rodwell and Palmer, 2007). In particular, Palmer et al. point out there are 

fundamental physical/dynamical processes common to both weather and seasonal 

forecasts on the one hand, and climate-change timescales on the other. Because of 

this, they propose that probabilistic validation of models at timescales where 

validation data exist (i.e., daily, seasonal and, to some extent, decadal timescales) 

can be used to calibrate climate-change probabilities at longer timescales. A key 

point made by Palmer et al. is that the need for calibration reflects a need for 

model improvement.  

 

Data assimilation not only corrects weaknesses in models, but also identifies 

model deficiencies such as biases (e.g. between model and observations; between 

different observations), which as Rood (2005) states is likely the greatest 

challenge in DA. 

 

Overview 

At NILU we will use elements of the methodology described above to evaluate 

the fidelity of land surface observations, the SURFEX model, and various DA 

methods. In earlier work, Mahfouf (2007) compared the EKF and the EnKF 

methods in a land data assimilation context; we extend this work. Finally, to our 

knowledge, the data assimilation ideas discussed immediately above, have not 

been applied to evaluate land surface models. 
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3 Results 

In this section we present first results for the four control variables in the NILU 

SURFEX-EnKF land data assimilation system: surface temperature – TG1; mean 

surface temperature – TG2; superficial volumetric water content – WG1; mean 

volumetric water content of the root zone – WG2 (see Section 2.3). Analysed 

fields are presented in Sections 3.1-3.4; analyses increments are presented in 

Sections 3-5-3.8; results are discussed in Section 3.9. Figure 3 provides a 

flowchart of the set-up for the SURFEX-EnKF (see also Appendix A). As part of 

the evaluation of the NILU SURFEX-EnKF land data assimilation system, in 

Section 3.9 we first compare the EKF results with those produced by the system at 

Météo-France (Appendix C; plots provided by J.-F. Mahfouf). 

 

The NILU SURFEX-EnKF land data assimilation system assimilates two-metre 

temperature and relative humidity screen-level observations (T2m and RH2m, 

respectively) into the off-line SURFEX v4.8 model; Mahfouf et al. (2009) 

discusses the set up of the atmospheric forcing of the SURFEX model. The 

SURFEX model incorporates the two layer version of the ISBA (Interface Soil-

Biosphere-Atmosphere; see Chapter 4 of Le Moigne, 2009) scheme. The T2m and 

RH2m observations come from SYNOP/CANARI analyses at 0000, 0600, 1200 

and 1800 UTC. For the period analysed (see below) there are no superficial 

volumetric water content observations (termed WG1 and applicable to 

observations from a satellite platform, e.g., ASCAT – Advanced SCATterometer), 

and hence they are not assimilated. These three observation types (T2m, RH2m and 

WG1) are currently assimilated into the Météo-France land DA system, 

SURFEX-EKF (Mahfouf et al., 2009). An extension of this system to assimilate 

soil moisture data from AMSR-E is discussed in Draper et al. (2009). NILU have 

plans to extend the work of Draper et al. by performing the assimilation of 

AMSR-E soil moisture using variants of the EnKF. 

 

Observational errors are 1 K for T2m, 10% for RH2m and 10% of the soil wetness 

index (SWI) for WG1. The observational background error covariance matrix, R, 

is assumed to be diagonal. Model forecast errors in the EKF (error covariance 

matrix B) are as in the SURFEX-EKF land DA system at Météo-France (see 

Section 2.3): 2 K for TG1 and TG2; 10% of the soil wetness index for WG1 and 

WG2. In the EKF, the model error matrix covariance Q is specified to be 

0.125 times the B matrix. Only diagonal entries in B and Q are prescribed (see, 

e.g., Draper et al., 2009). The Jacobian calculations in the EKF use relative 

perturbations of 10
-4

 for the WG1 and WG2 humidity control variables, and 10
-5

 

for the TG1 and TG2 temperature control variables.  
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Figure 3: Flowchart of the NILU SURFEX-EnKF land DA assimilation system. 

This flowchart is similar to the one used for the EKF used at Météo-

France (Mahfouf et al., 2009).  

 

The perturbation to create the ensemble members for the EnKF method is 

currently 1% of the logarithm of the SURFEX model value, treated as a random 

variable with mean value zero, this value being independent for each grid cell. 

This is done at the beginning of each assimilation time window to help avoid 

ensemble collapse. The 1% refers to the standard deviation of a Gaussian 

distribution about the SURFEX model value. This is done for all control variables, 

which are perturbed simultaneously. No extra factor is added to the error 

represented by the ensemble spread to take further account, e.g., of the model 

error (Q in the traditional notation, applied to the EKF – see Section 2.5). This 

means that the errors in the initial conditions and model are assumed to be 

represented by the ensemble spread. Note that the observations are not perturbed, 

as this is not required in the variants of the EnKF we use (see Section 2.1). 

 

The way the perturbation is currently performed is likely to account for the 

presence of random noise in the EnKF analysed fields (see Sections 3.1-3.4) and 

analyses increments (see Sections 3.5-3.8). To remedy this perceived weakness in 

the EnKF set-up, other methods of setting up the ensemble members are being 

developed and tested. For example, we are considering introducing a simple 

representation of the ensemble spread based on the diagonal (background error 

variance) of the B matrix in the EKF set-up; later, we will consider a horizontal 

localization to account for correlations between physical variables over a finite 

spatial scale.  



 

NILU TR 2/2010 

24 

The assimilation period for the experiments described below is 24 hours and 

includes four 6-hour assimilation cycles (i.e., the assimilation time window is 

6 hours). It starts on 0000 UTC, 1 July 2006, and ends on 0000 UTC, 2 July 2006. 

 

There are a total of 38177 land observations of T2m and RH2m for this period. The 

spatial domain is a 289  289 grid over Europe, with horizontal resolution of 

9.5 km in the North and East directions, and centred at 46.5
o
 latitude and 

2.6
o
 longitude (see map in, e.g., Fig. 4) – at a later stage we will extend the 

experiments to other regions in Europe. In particular, the region of Norway/ 

Sweden will be a focus of the assimilation of soil moisture from SMOS. 

 

The forcing data and initial data are provided by Météo-France (Mahfouf et al., 

2009). For this experiment (24 hours long), the forcing is not affected by the land 

data assimilation, which over time periods longer than 24 hours may affect the 

results as the atmospheric forcing may not be consistent with the land variables. 

At a later stage, we will take steps to develop a fully-coupled land DA system that 

can avoid this inconsistency. In particular, for long DA experiments (order one 

month) we will aim to provide atmospheric forcing that includes the effect of the 

soil variables. This could be accomplished by running in a free mode (i.e., no 

assimilation) an atmospheric model coupled to a soil model.   

 

Wall-clock timings for 24-hour assimilation for the EKF and EnKF variants are 

given in Table 1 below. The machine on which the experiments were performed is 

a Linux Enterprise Server based computer system at NILU (“Ulven”). Note that 

the timings for the EKF and the EnKF variants for 5 ensemble members are very 

similar. The efficiency of the Ulven system is being studied, with a view to 

decreasing the wall-clock timings.  

  

Table 1: Wall-clock timings. 

DA scheme Wall-clock time 

EKF 1 hr 41 min 

EnKF (square root, 2 ensemble members) 0 hr 53 min 

EnKF (square root, 3 ensemble members) 1 hr 03 min 

EnKF (square root, 5 ensemble members) 1 hr 44 min 

EnKF (deterministic, 2 ensemble members) 0 hr 43 min 

EnKF (deterministic, 3 ensemble members) 1 hr 02 min 

EnKF (deterministic, 5 ensemble members) 1 hr 43 min 
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3.1 Surface temperature (TG1 control variable) 

 
 

Figure 4: Surface temperature analysed field (K) at 4 times using the EKF. Top 

left panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 5: Surface temperature analysed field (K) at 4 times using the square 

root EnKF, mean of 5 ensemble members. Top left panel: 0600 UTC, 

1 July 2006; top right panel: 1200 UTC, 1 July 2006; bottom left 

panel: 1800 UTC, 1 July 2006; bottom right panel: 0000 UTC, 2 July 

2006. 
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Figure 6: Surface temperature analysed field (K) at 4 times using the 

deterministic EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 7: Surface temperature difference field (K) at 4 times, percentage 

difference between the square root EnKF, mean of 5 ensemble 

members, and the EKF, as a percentage of the EKF values. Positive 

values indicate the EnKF has higher values than the EKF. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

wg2_xa_pdif_enkf1_5_ekf_06070106     wg2_xa_pdif_enkf1_5_ekf_06070112 

wg2_xa_pdif_enkf1_5_ekf_06070106     wg2_xa_pdif_enkf1_5_ekf_06070200 
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Figure 8: Surface temperature difference field (K) at 4 times, percentage 

difference between the deterministic EnKF, mean of 5 ensemble 

members, and the EKF, as a percentage of the EKF values. Positive 

values indicate the EnKF has higher values than the EKF. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

3.2 Mean surface temperature (TG2 control variable) 

 
 

Figure 9: Mean surface temperature analysed field (K) at 4 times using the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 
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wg2_xa_pdif_enkf1_5_ekf_06070106     wg2_xa_pdif_enkf1_5_ekf_06070200 
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Figure 10: Mean surface temperature analysed field (K) at 4 times using the 

square root EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 11: Mean surface temperature analysed field (K) at 4 times using the 

deterministic EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 
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Figure 12: Mean surface temperature difference field (K) at 4 times, percentage 

difference between the square root EnKF, mean of 5 ensemble 

members, and the EKF, as a percentage of the EKF values. Positive 

values indicate the EnKF has higher values than the EKF. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 13: Mean surface temperature difference field (K) at 4 times, percentage 

difference between the deterministic EnKF, mean of 5 ensemble 

members, and the EKF, as a percentage of the EKF values. Positive 

values indicate the EnKF has higher values than the EKF. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 
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wg2_xa_pdif_enkf1_5_ekf_06070106     wg2_xa_pdif_enkf1_5_ekf_06070200 
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wg2_xa_pdif_enkf1_5_ekf_06070106     wg2_xa_pdif_enkf1_5_ekf_06070200 
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3.3 Superficial volumetric water content (WG1 control variable) 

 
 

Figure 14: Superficial volumetric water content (m
3
/m

3
) analysed field at 4 times 

using the EKF. Top left panel: 0600 UTC, 1 July 2006; top right 

panel: 1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 

2006; bottom right panel: 0000 UTC, 2 July 2006. 

 

 
 

Figure 15: Superficial volumetric water content (m
3
/m

3
) analysed field at 4 times 

using the square root EnKF, mean of 5 ensemble members. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 
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Figure 16: Superficial volumetric water content (m
3
/m

3
) analysed field at 4 times 

using the deterministic EnKF, mean of 5 ensemble members. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 17: Superficial volumetric water content (m
3
/m

3
) difference field at 

4 times, percentage difference between the square root EnKF, mean of 

5 ensemble members, and the EKF, as a percentage of the EKF 

values. Positive values indicate the EnKF has higher values than the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 
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Figure 18: Superficial volumetric water content (m
3
/m

3
) difference field at 

4 times, percentage difference between the deterministic EnKF, mean 

of 5 ensemble members, and the EKF, as a percentage of the EKF 

values. Positive values indicate the EnKF has higher values than the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 

 

3.4 Mean volumetric water content (WG2 control variable) 

 
 

Figure 19: Mean volumetric water content (m
3
/m

3
) analysed field at 4 times using 

the EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 
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Figure 20: Mean volumetric water content (m
3
/m

3
) analysed field at 4 times using 

the square root EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 21: Volumetric water content (m
3
/m

3
) analysed field at 4 times using the 

deterministic EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 
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Figure 22: Volumetric water content (m
3
/m

3
) difference field at 4 times, 

percentage difference between the square root EnKF, mean of 

5 ensemble members, and the EKF, as a percentage of the EKF 

values. Positive values indicate the EnKF has higher values than the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 

 

 
 

Figure 23: Volumetric water content (m
3
/m

3
) difference field at 4 times, 

percentage difference between the deterministic EnKF, mean of 

5 ensemble members, and the EKF, as a percentage of the EKF 

values. Positive values indicate the EnKF has higher values than the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 
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3.5 TG1 increments 

 
 

Figure 24: Surface temperature analyses increments (K) at 4 times using the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 

 

 
 

Figure 25: Surface temperature analyses increments (K) at 4 times using the 

square root EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 



 

NILU TR 2/2010 

36 

 
 

Figure 26: Surface temperature analyses increments (K) at 4 times using the 

deterministic EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

3.6 TG2 increments 

 
 

Figure 27: Surface temperature analyses increments (K) at 4 times using the 

EKF. Top left panel: 0600 UTC, 1 July 2006; top right panel: 

1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; 

bottom right panel: 0000 UTC, 2 July 2006. 
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Figure 28: Surface temperature analyses increments (K) at 4 times using the 

square root EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 29: Surface temperature analyses increments (K) at 4 times using the 

deterministic EnKF, mean of 5 ensemble members. Top left panel: 

0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 2006; 

bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 
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3.7 WG1 increments 

 
 

Figure 30: Superficial volumetric water content (m
3
/m

3
) analyses increments at 

4 times using the EKF. Top left panel: 0600 UTC, 1 July 2006; top 

right panel: 1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 

1 July 2006; bottom right panel: 0000 UTC, 2 July 2006. 

 

 
 

Figure 31: Superficial volumetric water content (m
3
/m

3
) analyses increments at 

4 times using the square root EnKF, mean of 5 ensemble members. 

Top left panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 

1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right 

panel: 0000 UTC, 2 July 2006. 
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Figure 32: Superficial volumetric water content (m
3
/m

3
) analyses increments at 

4 times using the deterministic EnKF, mean of 5 ensemble members. 

Top left panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 

1 July 2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right 

panel: 0000 UTC, 2 July 2006. 

 

3.8 WG2 increments 

 
 

Figure 33: Volumetric water content (m
3
/m

3
) analyses increments at 4 times 

using the EKF. Top left panel: 0600 UTC, 1 July 2006; top right 

panel: 1200 UTC, 1 July 2006; bottom left panel: 1800 UTC, 1 July 

2006; bottom right panel: 0000 UTC, 2 July 2006. 
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Figure 34: Volumetric water content (m
3
/m

3
) analyses increments at 4 times 

using the square root EnKF, mean of 5 ensemble members. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 

 

 
 

Figure 35: Volumetric water content (m
3
/m

3
) analyses increments at 4 times 

using the deterministic EnKF, mean of 5 ensemble members. Top left 

panel: 0600 UTC, 1 July 2006; top right panel: 1200 UTC, 1 July 

2006; bottom left panel: 1800 UTC, 1 July 2006; bottom right panel: 

0000 UTC, 2 July 2006. 
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3.9 Discussion 

The analyses and increments from the 24-hour experiment (four 6-hour 

assimilation cycles) described in the preamble to Section 3 are some of the first 

results produced with the NILU SURFEX-EnKF system and require further 

investigation. Extension to a longer assimilation period (order weeks) is needed to 

properly assess and compare the behaviour of the EKF and EnKF land DA 

schemes. However, although a 24-hour assimilation experiment is very short in 

the context of the timescale of soil variables, it is still possible to discern some 

general features in the behaviour of the DA system and DA schemes, which we 

identify below. 

 

Comparison of NILU EKF results with Météo-France EKF results 

We first discuss comparison of the EKF results shown in Sections 3.1-3.8 against 

results produced by Météo-France and kindly provided to us by J.-F. Mahfouf 

(Appendix C). This comparison shows that the NILU EKF results are essentially 

the same as those of from Météo-France. This suggests that NILU have 

successfully implemented the SURFEX and EKF set-up at Météo-France. 

 

Analyses 

TG1 and TG2. The diurnal cycle in temperature is captured by all data 

assimilation schemes, with the cycle being less evident in the mean surface 

temperature (TG2; a volumetric quantity) than for the surface temperature (TG1; a 

superficial quantity), as expected. The maximum in TG1 should be at 1200 UTC, 

and the maximum in TG2 should be at 1800 UTC (lagged from TG1). These 

features are seen for the EKF and the EnKF (both versions give similar results). 

Note that for TG2, and both the EKF and the EnKF, while the values at 1800 UTC 

tend to be higher than those at the other times, the values at the other three times 

(0000 UTC, 0600 UTC and 1200 UTC) are less different between themselves than 

for TG1. 

 

The percentage difference plots show that the EnKF analysed temperature fields 

(TG1 and TG2) are very close to the EKF analysed temperature fields, differences 

being generally around 0%, with maximum values being generally less than 1% in 

magnitude. This would be expected given the short time period (24 hours) of the 

data assimilation experiment. 

 

There are a few highly localized outliers in the percentage difference field, but 

these difference values are generally less than 1% of the EKF analysed values. 

The difference fields for the TG1 and TG2 forecasts tend to be noisier than for the 

analyses, especially for TG2 (not shown). These noisy features arise likely due to 

the way the ensemble members are produced (see preamble to Section 3), and 

appear to concern the evolution of the SURFEX model ensemble members rather 

than the way the observations are assimilated. 

 

WG1 and WG2. The general patterns (which reflect the precipitation forcing) in 

WG1 (a superficial quantity) are similar for the EKF and EnKF, with generally 

dry areas over most of Western Europe, and generally wet areas over Eastern 

Europe (except Poland). These patterns do not vary much throughout the day (i.e., 

the four assimilation cycles). The general patterns for WG2 (a volumetric 

quantity) are also similar for the EKF and EnKF, and do not vary much 
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throughout the day; the WG2 patterns have somewhat smaller spatial scales than 

for WG1. 

 

The percentage difference plots show that very often the differences between the 

EKF and EnKF (results are similar for both variants of the EnKF) WG1 and WG2 

analysed fields are around zero, and small in absolute value. This would be 

expected given the short time period (24 hours) of the data assimilation 

experiment. 

 

However, there are some exceptions where the differences are not close to zero, 

and occur over areas bigger than patches, and thus less likely to be attributable to 

noise. For WG1, the EnKF is slightly wetter than EKF at 1800 UTC over regions 

that are relatively very dry (e.g. Southern England, Southwest France) – 

confirmed by the absolute difference plots (not shown). For WG2, the EnKF is 

slightly drier than EKF at 1800 UTC over regions that are neither very dry nor 

very wet (e.g. parts of Southwest France) – confirmed by the absolute difference 

plots (not shown).  

 

Note that because the analysed values of WG1/WG2 concerned are very small, 

occasionally the percentage difference can be large in magnitude. There is a 

suggestion that the percentage difference field for WG1/WG2 is noisier than for 

TG1/TG2. As for TG1/TG2, the way the ensemble members are set up is likely to 

contribute to this noisy feature, although the smaller values for WG1/WG2 are 

also likely to contribute. Although results are not clear cut, there is a suggestion 

that the difference fields for the WG1 and WG2 forecasts are occasionally slightly 

noisier than for the analyses (not shown). This suggests that, as well as the way 

the ensemble is set up (see above), the smaller values for WG1/WG2 could also 

play a role in producing these noisy difference fields. 

 

Summary. The results presented in Sections 3.1-3.4 show that the EKF and the 

two versions of the EnKF (for 5 ensemble members) represent qualitatively 

similar analysed fields with, for example, relatively warm regions coinciding with 

relatively dry regions (e.g. low lying areas in Spain), and relatively cold regions 

coinciding with relatively wet regions (e.g. mountain areas such as the Alps and 

the Pyrenees). The performance of the EnKF schemes for 2 and 3 ensemble 

members is similar to that for 5 ensemble members shown in the figures in 

Sections 3.1-3.4 (this is also the case for the increments, Sections 3.5-3.8 – see 

below). 

 

In comparison to the EKF scheme, the EnKF variants perform similarly for the 

temperature control variables. The performance for the humidity control variables 

(WG1/WG2) is slightly different for the EnKF variants (with respect to the EKF), 

with some differences occurring over larger areas than for TG1/TG2, although 

there is no clear cut evidence of a bias in any of the schemes. 

 

Results with 9 ensemble members (not shown) show EnKF analysed fields that 

are slightly closer to the  EKF analysed fields, but show no decrease in the noisy 

features present in the EnKF analyses and increments. This supports the notion 

that the main reason for the noisy features in the EnKF is the way the ensemble 

members are set up. 
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Increments  

General comments. The increments strongly vary according to the diurnal cycle, 

with soil temperature increments being larger during nighttime (0000 and 0600 

UTC), and soil moisture increments being larger during daytime (1200 and 1800 

UTC). At their maximum, value, the increments should have the same magnitude 

as the background errors (J.-F. Mahfouf pers. comm.), i.e., order 1 K for soil 

temperature and order 0.01 m
3
/m

3
 for soil moisture. This is seen to be generally 

the case. This subsection has benefited from discussions from J.-F. Mahfouf, 

which have helped clarify the behaviour of the TG1/TG2 and WG1/WG2 

increments. 

 

TG1 and TG2. For both the EKF, and the EnKF variants, the largest increments 

(in magnitude) for TG1/TG2 occur during nighttime (0000 UTC and 0600 UTC), 

as expected. The pattern in the TG2 increments is similar to that in the TG1 

increments (e.g. positive increments over France at 0000 UTC), with the TG2 

increments being larger in magnitude by a factor of about 3-4. This is expected, as 

the surface layer (with which TG1 is associated) has very low thermal inertia, i.e., 

it has short-term memory. At 1800 UTC the largest values in the TG2 increments 

are in the Eastern part of the domain (e.g. Poland). This is to be expected as this 

region experiences nighttime first during the 24-hour assimilation experiment. 

 

The increments for TG1/TG2 for the EKF and EnKF variants have the same 

spatial patterns. However, for the EnKF, the increments are slightly larger in 

magnitude and have small-scale noise. This is likely due to the way the ensemble 

members are set up (see the above discussion on the analyses), which would affect 

the representation of the background errors (as discussed above, at their 

maximum, the increments should have the same magnitude as the background 

errors).  

 

WG1 and WG2. For both the EKF, and the EnKF variants, the increments are 

generally small, especially for WG1. WG1 increments should be small as this 

reservoir is very shallow, as it has no memory, i.e., no sensitivity to initial 

conditions. The increments for WG2 should be bigger in magnitude than those for 

WG1, as WG2 is the most sensitive variable to surface fluxes. An example occurs 

for the EKF over Northwest France, where there are strong negative increments at 

1200 UTC, and strong positive increments at 1800 UTC. For the EnKF, and over 

the same region, the range of the colour palettes suggests this is also the case, 

although the effect is less clear than for the EKF. Overall, the largest increments 

(in magnitude) for WG1/WG2 occur during daytime (1200 UTC and 1800 UTC), 

as expected. 

 

As for TG1/TG2, the increments for WG1/WG2 for the EKF, and EnKF variants, 

have the same spatial patterns. There are cases of slightly more negative 

increments for the EnKF for WG1 (e.g. 0600 UTC over Spain, 1800 UTC over 

Eastern Europe), and slightly more positive increments for the EnKF for WG2 

(e.g. 1200 UTC over Northwest France), but as for the analyses, there is no clear 

cut evidence of a bias in any of the schemes. As for TG1/TG2, a difference 

between the EKF and EnKF is the presence of small-scale noise in the increments 

for the EnKF variants, likely due to the way the ensemble members are set up (see 

the above discussion on the analyses).  
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4 Plans for future developments 

4.1 Immediate future 

Technical 

For technical reasons, the current focus of the NILU SURFEX-EnKF land DA 

system is France and its surrounding area for a period in early July 2006 (see 

results in Section 3). At a later stage, with the collaboration of Met.no, NILU will 

shift its focus to Scandinavia and, in particular, the Norway/Sweden area, and 

other time periods will be considered. NILU will also consider other forcings of 

the land DA system, including at a later stage the possibility of an on-line system 

where the atmosphere and land are coupled, and other observations (in situ and 

satellite). 

 

As seen in section 3.9, the EnKF analyses and increment fields have noisy 

features that are unlikely to be realistic, and are likely to arise due to the way the 

ensemble members are set up. This makes it important that a better way to set up 

the ensemble members be found. To remedy this perceived weakness in the EnKF 

set-up, other methods of setting up the ensemble members are being developed 

and tested. For example, we are considering introducing a simple representation 

of the ensemble spread based on the diagonal (background error variance) of the B 

matrix in the EKF set-up; later, we will consider a horizontal localization to 

account for correlations between physical variables over a finite spatial scale.  

 

Finally, the computer code will be optimized to work with ten or more ensemble 

members. 

 

Data assimilation set up 

As part of the development of the land DA system, the schemes incorporated into 

the system (EKF; variants of the EnKF and PF) will be tested and compared for 

various spatial and temporal scenarios. Standard tests for evaluating the self-

consistency of the land DA system, and tests against independent data to evaluate 

the quality of the analyses, will be implemented (see Section 2.6 for details). 

 

Measures of non-linearity (e.g. Lyapunov exponents) may be considered to assess 

the non-linear behaviour (or otherwise) of the various DA schemes. 

 

Assimilation of satellite data 

Soil moisture from AMSR-E will be assimilated into the NILU SURFEX-EnKF 

system for the month of July 2006. This work will extend that described in Draper 

et al. (2009), and compare the performance of the EKF against that of the EnKF 

variants implemented in the NILU SURFEX-EnKF system. As of January 2010, 

the data assimilation experiment (satellite data, forcing data) is being set up at 

NILU. 

 

NILU lead the ISSI (International Space Science Institute) International Team 

“Land Data Assimilation: Making sense of hydrological cycle observations”, 

which focuses on assimilation of soil moisture from SMOS. The International 

Team has funding for 3 meetings to be held at ISSI in Bern, Switzerland. The first 

meeting will take place February 2010. International Team members include 

leading experts in the disciplinary areas in land data assimilation, and land surface 
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Earth Observation and modelling in Europe and the US. They come from 

institutions in Norway (NILU, Met.no and NERSC), France (Météo-France, LMD 

and U. Toulouse), Belgium (U. Ghent), The Netherlands (KNMI), USA (George 

Mason University), UK (U. Exeter), Spain (U. Valencia) and Finland (FMI). The 

PI of SMOS, Y. Kerr (based at U. Toulouse) is a member. The ISSI International 

Team will be used to develop assimilation of soil moisture data from SMOS, and 

strengthen collaboration in the hydrological sciences. 

 

4.2 Long-term future 

In the long-term future, NILU will move from a 1-D approach to a 3-D approach, 

to avoid potential inconsistencies between the atmospheric forcing data and the 

land variables. This will be relevant for assimilation experiments longer than a 

few days.  

 

NILU will consider various refinements to the treatment of errors. In particular, 

the suitability of the Desroziers approach to estimate model and observation error 

covariances separately will be tested; bias correction schemes to correct biases in 

the observations and/or the model will be tested; and the potential of possibility 

theory ideas will be tested for characterizing observational errors. 

 

Development of a hybrid land DA system incorporating the advantages of the 

EnKF and the PF will also be considered. 

 

Availability of system to SURFEX-modelling community 

Once the 1-D NILU SURFEX-EnKF land DA system has been tested further and 

its functionality extended to include more general time periods and geographical 

areas, it will be made available to the SURFEX-modelling community. This could 

be done with the SURFEX model being off-line. At a future time, an off-line 3-D 

version, and an on-line version (1-D or 3-D) could be made available. 

 

4.3 Collaboration 

The NILU land DA system owes a lot to collaboration between NILU, Météo-

France and Met.no, and the invaluable help provided by the latter two to NILU. 

The broad areas of collaboration for NILU are currently expected to be: 

 

 DA theory: NERSC and Met.no, Norway; Météo-France, LMD (France); 

 Comparison of land DA schemes: NERSC and Met.no, Norway; Météo-

France, LMD (France); Paul Houser and colleagues, USA; 

 Bias correction: Paul Houser and colleagues, USA; 

 Possibility theory: Niko Verhoest and colleagues, Belgium; 

 Hybrid land DA system: NERSC and Met.no, Norway; 

 Land surface observations, including temperature, soil moisture (including 

SMOS) and snow: members of the ISSI International Team “Making sense 

of hydrological cycle observations” – this includes the SMOS PI, Yann 

Kerr; members of the GlobSNOW consortium (http://globsnow.fmi.fi); 

 Assimilation of soil moisture data from AMSR-E: Météo-France (France). 

 

 

http://globsnow.fmi.fi/


 

NILU TR 2/2010 

46 

5 Conclusions 

In collaboration with Météo-France and Met.no, NILU is developing the 

SURFEX-EnKF land data assimilation (DA) system. This is based on the 

SURFEX land surface model developed at Météo-France, and used in the 

HIRLAM/ALADIN NWP consortium. The main motivation is to develop a land 

DA system to test various state-of-the-art DA schemes (EKF; variants of the 

EnKF and PF), produce analyses of land variables, and test land surface 

observations and models. This information will allow better use of Earth 

Observation data by the NWP community, will help improve short- and medium-

term NWP forecasts, and will help improve land surface models and climate 

models. These outcomes will also benefit the scientific community interested in 

the variability and evolution of the land component of the Earth System, and its 

interactions with other elements of the Earth System. 

 

This report presents very preliminary results of the SURFEX-EnKF land DA 

system being developed at NILU, which show a flavour of what it can do. These 

results suggest that the NILU system for the EKF has been set up properly, and 

that the NILU system produces qualitatively and quantitatively reasonable results 

with both the EKF and the EnKF schemes. One clear difference between the DA 

schemes is the presence of small-scale noise in the EnKF analyses and 

increments, likely due to the way the ensemble members are set up in the EnKF. 

To remedy this perceived weakness in the EnKF set-up, other methods of setting 

up the ensemble members are being developed and tested. For example, we are 

considering introducing a simple representation of the ensemble spread based on 

the diagonal (background error variance) of the B matrix in the EKF set-up; later, 

we will consider a horizontal localization to account for correlations between 

physical variables over a finite spatial scale.  

 

It is still early days and many things remain to be done, but NILU now have the 

capability (in collaboration with colleagues at Met.no and Météo-France) to 

develop a powerful tool to study the land component of the Earth System. 
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1 Introduction 

The present description is based on an off-line version of SURFEX v4.8 that runs on a PC. 
One assumes that this version is currently running on your computer, if not, the first 
step is to install such a version before trying to use the SURFEX Ensemble Kalman filter 
Land Data Assimilation System, LDAS (SURFEX-EnKF LDAS). 
 
 

2 Source code - creation of the binary 

To get the source code, contact Sam-Erik Walker at NILU (sew@nilu.no). The source 

code will be provided to you in a tar file SURFEX-ENKF-SRC.tar. You should untar 
the directories ENKFASSIM and MYSRC under the directory SURFEX_EXPORT/src. 
Once this is done you will have the following files in the directory ENKFASSIM: 

 enkfassim.f90: Main program that performs the various steps of the 
assimilation: definition of ensemble members by initial perturbed states, 
reading of fields from SURFEX outputs, writing out of fields necessary for the 
analysis and, finally, the surface analysis;  

 ensb_m.f90: Module containing the Ensemble Kalman filter and Particle filter 
subroutines used by the main program; 

 rand_m.f90: Module containing various subroutines handling the pseudo 
random number generation necessary to set up the ensemble; 

 util_m.f90: Module containing other utility routines used by the system; 

 mkl_vsl.f90: Interface file to the Intel Math Kernel Library (MKL) Vector 
Statistical Library (VSL); 

 trans_chaine.f90: Transformation of an integer into a character; 
 get_file_name.f90: Gets the name of files for the current assimilation 

window.  
 

In order to compile these routines and to get an executable ENKFASSIM, the file 
Makefile.SURFEX.mk (provided in the tar file) contains the following sequence of 
instructions: 
 

Source ENKFASSIM 

DIR_ENKFASSIM += ENKFASSIM 

ifdef DIR_ENKFASSIM 

DIR_SOURCE += DIR_ENKFASSIM 

endif 

 

In the variable PROG_LIST defining the various main programs to be generated, 
ENKFASSIM has been added. You can then type “make” in order to generate the LDAS 

mailto:sew@nilu.no
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executable, to be located in the directory SURFEX_EXPORT/src/exe (which is also 

where the other executables: PGD, PREP and OFFLINE are). 
The additional files in the directory MYSRC correspond to additional features: one is 

an interpolation of the atmospheric forcing that conserves the accumulated fluxes; 
another concerns the diagnostic of relative humidity for each individual patch (only 
required if you use the ISBA version with tiles); the last one is a modified definition of an 
array in order to read the forcing data files in binary format. 
 

 

3 The EnKF scheme 

The tar file SURFEX-ENKF.tar.gz contains a sample of all the required data and 
scripts to run the SURFEX-EnKF LDAS. First, you need to have all the required data to run 
a “standard” SURFEX integration: a file of initial conditions (e.g. PREP.lfi if you work 
with the LFI format) as well as a set of forcing data (e.g. 

Forc_TA_YYYYMMDD_r12.txt and Params_config_YYYYMMDD_r12.txt if 
you work with an ASCII format). If you want to run the LDAS over a long period of time, 
the forcing should be split according to the length of your assimilation window and not 
according to the actual duration of the time period. Therefore, if you have already run 
an off-line integration without data assimilation (called an “open loop” run), you should 
redo this exercise by splitting the forcing data set into a number of files corresponding 
to the duration of your integration divided by the length of the assimilation window 

(with the same units for time in all cases). You should set the logical LRESTART to 
TRUE and copy the output file SURFOUT.lfi from a given SURFEX integration to 
define the input file PREP.lfi for the next integration (see the example for the script 

run_enkf.sh). 
In addition to the initial conditions and forcing files, you need observation files. 

Currently, these files are written in ASCII and observations have been interpolated from 
the raw data onto the model grid. There is one file per assimilation window that 
contains all types of observations that are located around the analysis time (i.e., the end 
of the assimilation window). Note that for asynoptic data there is a mismatch between 
model and observation times. The generation of this single file needs some pre-
processing (this strategy could be revised in the future both in terms of data format and 
content). When an observation is missing at a given model grid point, it is set to 999.0 
(this is the default for undefined values within the SURFEX system).  
 

 

4 The namelist 

The standard namelist of SURFEX (OPTIONS.nam) has to be complemented by options 
related to the EnKF LDAS. The extra namelist options related to the EnKF LDAS are as 
follows (as set for you in the example provided): 
 

&NAM_IO_ENKFASSIM 

LPRT =  F, 

LPRF =  F, 

LSIM =  F 

/ 

&NAM_OBS 

NOBSTYPE   = 3,  

YERROBS(1) = 1.0, 

YERROBS(2) = 0.1, 

YERROBS(3) = 0.4, 
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INCO(1)    = 1, 

INCO(2)    = 1, 

INCO(3)    = 1 

/ 

&NAM_VAR 

IVAR        = 1, 

NVAR        = 1, 

XVAR_M(1)   = 'WG2', 

XVAR_M(2)   = 'WG1’, 

XVAR_M(3)   = 'TG2', 

XVAR_M(4)   = 'TG1', 

PREFIX_M(1) = 'X_Y_WG2 (m3/m3)                                   

', 

PREFIX_M(2) = 'X_Y_WG1 (m3/m3)                                   

', 

PREFIX_M(3) = 'X_Y_TG2 (m3/m3)                                   

', 

PREFIX_M(4) = 'X_Y_TG1 (m3/m3)                                   

',   XSIGMA_M(1) = 0.1, 

XSIGMA_M(2) = 0.1, 

XSIGMA_M(3) = 2.0, 

XSIGMA_M(4) = 2.0, 

TPRT_M(1)   = 0.01, 

TPRT_M(2)   = 0.01, 

TPRT_M(3)   = 0.01, 

TPRT_M(4)   = 0.01, 

INCV(1)     = 1, 

INCV(2)     = 0, 

INCV(3)     = 0, 

INCV(4)     = 0 

/ 

&NAM_ENKF 

IENS  = 1, 

NENS  = 5, 

ENKFM = 1 

/ 

 

Table 1 below gives an overview and description of all the different namelist 
parameters. 
 
Table 1. Description of variables in the namelist OPTIONS.nam for the blocks relative 
to the SURFEX-ENKF LDAS. The elements with a star (*) should be kept at their value in 
bold – note their actual values are defined by the script run_enkf.sh. 
Namelist block Variable Type Description 

 
NAM_IO_ENKFASSIM 

 
LPRT

*
 

 
 
LPRF

*
 

 
 
LSIM

*
 

 
 

 
F 
T 
 
F 
T 
 
F 
T 

 
Perform analysis 
Perturb control variables for ensemble 
Perform analysis 
Perturb forcing data for ensemble 
(currently not used) 
Perform analysis 
Write state vectors and 
simulated observations 
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NAM_OBS 
 

 
NOBSTYPE 
 
 
YERROROBS(1) 
YERROROBS(2) 
YERROROBS(3) 
 
INCO(i) 

 
Integer 
 
 
Real 
Real 
Real 
 
Integer 

 
Number of possible observation types. 
This value must be consistent with the 
obs. file 
Observation error for T2m in K 
Observation error for RH2m (no unit) 
Observation error for wg (fraction of 
SWI – soil wetness index) 
1 if observation type included 
0 if observation type excluded 

 
NAM_VAR 

 
IVAR

*
 

NVAR
*
 

XVAR_M(i) 
 
PREFIX_M(i) 
 
XSIGMA_M(1) 
 
XSIGMA_M(2) 
 
XSIGMA_M(3) 
 
XSIGMA_M(4) 
 
TPRT_M(1) 
 
TPRT_M(2) 
 
TPRT_M(3) 
 
TPRT_M(4) 
 
INCV(i) 
 
 

 
1 
1 
Character 
 
Character 
 
Real 
 
Real 
 
Real 
 
Real 
 
Real 
 
Real 
 
Real 
 
Real 
 
Integer 
 

 
Control variable of interest 
Number of control variables 

Control variable identifier in PREP file 

Control variable prefix in PREP.txt 
file 
(Initial) BG (background) error for w2 
(fraction of SWI) (currently not used) 
(Initial) BG error for wg (fraction of 
SWI) (currently not used) 
(Initial) BG error for T2 (K) (currently 
not used) 
(Initial) BG error for Ts (K) (currently 
not used) 
SDev (standard deviation) of 
perturbation of log w2 for ensemble 
SDev of perturbation of log wg for 
ensemble 
SDev of perturbation of log T2 for 
ensemble 
SDev of perturbation of log Ts for 
ensemble 
1 if control variable number i included 
0 if control variable number i excluded 

 
NAM_ENKF 
 
 

 
IENS 
 
NENS 
ENKFM 

 
Integer 
 
Integer 
Integer 

 
Ensemble member of interest 
(currently not used) 
Number of ensemble members 
Type of Ensemble Kalman filter 
method 
0 = No assimilation performed 
1 = Ensemble square-root Kalman 
filter, ENSRKF (Sakov and Oke 2008a) 
2 = Deterministic ensemble Kalman 
filter, DENSKF (Sakov and Oke 2008b) 
3 = Importance sampling and re-
sampling particle filter SIR 
4 = Regularized particle filter RPF 
5 = Auxiliary PF, ASIR (currently not 
used) 

 
 

Currently, the EnKF runs with the two-layer version of the ISBA scheme. It means that 
the control variables can be the four main prognostic variables of this scheme: (i) The 
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surface temperature, Tg (TG1); (ii) the mean surface temperature, T2 (TG2); (iii) the 

superficial volumetric water content, wg (WG1); and (iv) the mean volumetric water 
content in the root-zone, w2 (WG2). The choice of the control variables is done by setting 
the corresponding element of the array INCV to one. For the chosen variables, the 
corresponding value TPRT must also be set. This value denotes the standard deviation of 
a random Gaussian variable used to perturb the logarithm of the initial value of this 
prognostic variable. The mean value of these random perturbations is assumed to be 
zero. The EnKF could also be run with the activation of the patches, which means that in 
such circumstances the analysis of the prognostic variables will be done separately for 
each patch (see Section 9 in Appendix A).  

Regarding the observations, three observation types are considered: (i) screen level 
temperature, (ii) relative humidity and (iii) superficial soil moisture content. As for the 
control variables, the elements of the array INCO control which type of observation one 
wants to assimilate. 

The number of ensemble members to be used in the Ensemble Kalman filter is 

selected by choosing a value for NENS. For example by choosing NENS = 100 you will 
run the system with 100 ensemble members. The type of Ensemble Kalman filter 

method is selected by setting the parameter ENKFM according to the possibilities as 
listed in Table 1. In addition to the two main Ensemble Kalman filter methods, two 
Particle filters have also been added to the list of ensemble methods (a third is planned). 
Currently the value IENS is not used. It may be used in the future in order to perform 
an operation on a given ensemble member. 
 

 

5 Run script 

You have a script run_enkf.sh (in SURFEX-ENKF/rundir from the tar file 

SURFEX-ENKF.tar.gz) that allows you to run the EnKF over a specified time period. 
This script is the main driver of the assimilation. It does the looping over assimilation 
windows, gets the required data, stores outputs, creates temporary files, cleans 
directories, etc. It operates in several steps (see the flowchart in Fig. A1): 

 Step 0: Call ENKFASSIM in order to create perturbed initial conditions. This 
option is triggered by the logical LPRT = T in the namelist 
&NAM_IO_VARASSIM. A new ensemble member, i.e., a perturbed file of initial 
conditions (PREP_ENSB_N.lfi), is created, where N is the ensemble member 
number, and where N = 1,..., NENS, with NENS the number of ensemble 
members; 

 Step 1: Run SURFEX (name OFFLINE) with the current ensemble member 
(perturbed initial conditions); 

 Step 2: Call ENKFASSIM in order to store the ensemble member related data, 
i.e., the perturbed evolved prognostic variables and simulated observations in 

temporary ASCII files MDSIMU and OBSIMU. These values are read from the 
output file generated during the previous step. This option is triggered by the 
logical LSIM = T in the namelist &NAM_IO_VARASSIM; 

 Step 3: Redo steps 0 to 2 for each ensemble member in turn; 

 Step 4: Calls ENKFASSIM in order to perform the soil analysis: the 
corresponding switches are LPRT = F and LSIM = F. Store the analysis for 
the model state for the next assimilation cycle. Go to step 0 until the maximum 
number of assimilation cycles is reached. During this step, the following 
instructions are performed: 
- Read observations and perform a bias correction if required; 
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- Read model state and simulated observations from each ensemble member 
run; 

- Compute the covariance matrix R of observation errors; 
- Perform the analysis and store the result in PREP_ENSB_N.lfi files (for 

the next cycle). 
 
In Fig. A.1 a flowchart of the SURFEX-ENKF LDAS is shown, corresponding to the various 
steps of the script run_enkf.sh. 

N = 1

ENKFASSIM
LPRT = T : Perturbed IC

SURFEX OFFLINE

PREP_ENSB_N.lfi
→ PREP.lfi PREP.lfi

SURFOUT.lfi

MDSIMU_ENSB_N 
OBSIMU_ENSB_N

ASCII

N>NENS ? N = N + 1

CANARI OBS 
ASCII

ENKFASSIM
LSIM = T : Storage of data

ENKFASSIM
LPRT = LSIM = F : Analysis PREP_ENSB_N.lfi

no

yes

 
Figure A1. Flowchart of the EnKF-SURFEX LDAS (corresponding to the various steps of 
the script run_enkf.sh). NENS corresponds to the number of ensemble members. 

 
 

6 Management of dates 

The dates defined as YYYYMMDDHH are evolved in time using the command smsdate 
which is a script that uses an executable decdate generated from the C program 
decdate.c using the command: 
 

gcc -o decdate decdate.c 

 

The script and the C program are available in the directory UTILITY of the tar file 
SURFEX-ENKF-SRC.tar. If other tools are available in your computing environment 
you can use them accordingly. 
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7 Directory structure 

A number of directories should be created and provided: 

 repforcing: Directory where the forcing data are stored (sample for one day 

provided in ASCII); 

 represults: Directory where the results will be stored; 

 reprun: Defines the working directory in the script (script run_enkf.sh 
provided); 

 repobs: Directory where the observations are stored (sample for one day 
provided in ASCII); 

 repnamel: Directory where the namelist is located (namelist OPTIONS.nam 
provided); 

 repanalyse: Directory where the initial conditions are stored (PREP.lfi) – 
currently provided for the ALADIN-France domain on 01 July 2006 at 0000 UTC; 

 repbin: Directory where the binary files to execute SURFEX and the EnKF are 
located. 
 

This structure has been created for you in the example provided in SURFEX-
ENKF.tar.gz. You will find in this tar file the script run_enkf.sh and a namelist 

OPTIONS.nam. Once you have created the executables OFFLINE and ENKFASSIM, 
the content of SURFEX-ENKF.tar.gz should allow you to run one day of EnKF 
assimilation of screen-level parameters every 6 hours over the ALADIN-France domain 
(see above). 
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9 Appendix: On the use of the EnKF with the SURFEX “patch” option 

9.1 Introduction 

An EnKF surface analysis scheme has been coded within SURFEX. The first version was 
not designed for the “patch” approach of the ISBA scheme. It has been recently 
extended to include such an option, which is compulsory when considering the ISBA-Ags 
scheme. The “patch” approach is similar to the “mosaic” land surface model of Koster 

and Suarez (1992) where the NATURE tile within a grid box is divided into a number of 
independent patches, each having its own set of prognostic variables, and surface 
energy and water balances. On the other hand, the forcing level for the fluxes and the 
meteorological variables is assumed to be identical for each individual patch. When 
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aggregated values are needed (in particular to be passed to the atmospheric model) a 
simple weighted average of each tile parameter is computed as: 
 

 

1

M
k k

k

x x  

 

Where k  is the fraction occupied by patch k within the NATURE tile, and kx  is the 
value of the parameter computed over this specific patch. Currently, the number of 
patches, M, is set to 12. 
 

9.2 Ensemble Kalman filter without patches 

With only one patch, the dimension of the control vector x  is equal to the number of 
prognostic variables to be initialized 

xN  (the analysis problem is solved independently 

for each individual model grid point). The (non-linear) observation operator H  projects 
this vector onto the observation space vector y : 

 

 ( )y H x  

 

This vector is then compared to the actual observation vector 
oy  to produce the 

innovation vector 
oy y . The dimension of the observation vector is equal to the 

number of independent observations to be assimilated, yN . The observations are 

interpolated onto the model grid before analysis, which means that the observation 
operator does not include any spatial interpolation; this part is done in an independent 
pre-processing of the data. 

The two Ensemble Kalman filter methods implemented here use an observation 
matrix free method to solve the Kalman filter equations. Thus, the computation of the 
Kalman gain and the new analysed control vector is done without the need to calculate 
the Jacobian matrix of the observation operator H . This also applies to the Particle filter 
methods available. 

 

9.3 Ensemble Kalman filter with patches 

With M  patches, the dimension of the control vector x  is extended to
xN M . On the 

other hand, the number of observations is still equal to yN . The model counterpart of 

the observation 
oy  is assumed to be the average of the corresponding value ky  for 

each patch k : 
 

 

1

M
k

k

y y  

 

Therefore, the innovation vector becomes
oy y . 

For the computation of the Kalman gain, the dimension of the background error 

covariance matrix B has to be increased to the size 
x xN M N M , whereas the 

observation error covariance matrix R keeps the same size y yN N . For each patch k 

there is an observation operator H providing the simulated observation ky  from the 

control vector kx : 
 

 ( )k ky H x  
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This relation states that the simulated observation over the patch k only depends 
upon the control vector over the same patch. The actual observation operator combines 
the above relation with the spatial averaging over the patches: 
 

 

1 1

( )
M M

k k k k

k k

y y H x  

 
Again, since the Ensemble Kalman filter methods implemented here use an 

observation matrix free method to solve the Kalman filter equations, the computation of 
the Kalman gain and new analysed control vector is done without the need to calculate 
the Jacobian matrix of the observation operator H . This also applies to the Particle 
filter methods available. 

 

9.4 Conclusion 

In Section 9 of Appendix A we have shown that it is possible to extend the EnKF coded 
within SURFEX for one patch to a set of M  patches. The analysis equation and 
methodology for integrating the individual ensemble members are kept unchanged. In 
particular, the number of perturbed integrations to be performed remains equal to the 
number of ensemble members

eN , and not
eN M . This comes from the fact that the 

simulated observations are a linear combination of independent results from each 
patch, therefore, they can be perturbed simultaneously. In practice, the control-vector 

needs to be enlarged from 
xN  to 

xN M (and, accordingly, the B matrices 

to
x xN M N M ). The simulated observations need to be computed from the weighted 

contribution of each patch. Since an observation matrix free method is used to solve the 
Kalman filter analysis equations, no calculations of Jacobian matrices are necessary. This 
also applies to the Particle filter methods. The changes have been coded in the most 
recent version of the SURFEX-EnKF and are available from the author. 
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Appendix B  
 

User’s Guide for compiling and running 

SURFEX-EKF and SURFEX-EnKF 
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User’s Guide for compiling and running 
 

SURFEX-EKF and SURFEX-EnKF 
 

Sam-Erik Walker and Dyre Dammann 
Norwegian Institute for Air Research - NILU 

20 October 2009 
 

 

1 Introduction 

This document describes how to compile and run the SURFEX-EKF and SURFEX-EnKF land 
data assimilation systems currently implemented at NILU. It may also be read as a guide 
for others who wish to set up and run these systems using their own local computing 
facilities. 

 

 

2 Computing environment 

The SURFEX-EKF and SURFEX-EnKF land data assimilation systems are currently 
implemented on a Linux based computer at NILU with host name “ulven”. In order to 
access this computer from other Windows based PCs at NILU, open an MS-DOS 
command prompt window from Windows and type 

 
>> telnet fenris 

 
and log in with your user name and password. After you have successfully logged in to 
the computer “fenris”, you can log in to “ulven” by issuing the command 

 
>> ssh ulven 

 
and provide the same password as before. 

The SURFEX-EKF and SURFEX-EnKF systems are located in the directories 

 
/nilu/inby/b106015/williaml/SURFEX-EKF 

 
and 
 

nilu/inby/b106015/williaml/SURFEX-EnKF 

 
respectively. 

In order to obtain faster access to these two folders you may wish to include the 
following two aliases in your C-shell and BASH-shell system files .cshrc and 
.bashrc, typically located in your home directory: 

 
alias goto_ekf 'cd /nilu/inby/b106015/williaml/SURFEX-

EKF/EXPORT_v4.8' 

 

alias goto_enkf 'cd /nilu/inby/b106015/williaml/SURFEX-

EnKF/EXPORT_v4.8' 
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We may then proceed directly to the two specific directories by issuing the 
commands 

 
>> goto_ekf 

 

or 
 
>> goto_enkf 

 

Typically you will only compile or run one of these two systems at any given time. 
 

 

3 SURFEX-EKF 

3.1 How to compile SURFEX-EKF 

3.1.1 How to set up the computer for compiling 

Add the following line to the file .bashrc, in order to set the environmental variables 
associated with the Intel Math Kernel Library (Intel MKL): 

 
./opt/intel/Compiler/11.0/081/mkl/tools/environment/mklvars32.sh 

 

The Intel MKL is only used by the SURFEX-EnKF system.  
The following three lines must also be added in order to define the SURFEX-version 

and to set the SURFEX environmental variables: 

 
export SURFEX_EXPORT=/nilu/inby/b106015/williaml/SURFEX-

EKF/EXPORT_v4.8 

 

source $SURFEX_EXPORT/conf/profile_surfex 

 

export 

PATH=$PATH:$SURFEX_EXPORT/src/LIB/netcdf3.6.1/bin/:$SURFEX_EXPORT/src/exe/ 

 

3.1.2 How to compile 

In order to compile, we first need to move to the directory program source directory. 
Type: 
 

>> goto_ekf 

>> cd src 

 
Then we need to be in a BASH shell. Type: 
 

>> bash 

 
Then we compile by typing: 
 

: make 

 

The model will then compile using the file Makefile.SURFEX.mk in the current 
directory.  

If the compilation was successful the following main program executables should 
exist in the sub directory exe: 
 

PGD PREP OFFLINE SXPOST OI_MAIN VARASSIM 
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The make command will generally only compile changes made to the source code of 
the system since the last compilation. In order to compile all of the source code of the 
system completely from scratch, type: 

 
: make clean 

 
and then 
 

: make 

 

3.2 How to run SURFEX-EKF 

3.2.1 How to set up the computer for running 

Before running SURFEX-EKF we need to make a path to the program smsdate. We 

created a path to the directory UTILITY, where smsdate is located, in the file: 

 
\inby\b106015\williaml\SURFEX-EKF\EXPORT_v4.8\conf\profile_SURFEX 

 
The following line was added to this file: 

 

PATH = 

$SURFEX_EXPORT/bin/:.:sPATH/SURFEX_EXPORT/:UTIL:$surfex_export/src/UTILIT

Y 

 
3.2.2 How to set up the program for running 

The script file to run SURFEX-EKF is called run_ekf.sh and is located in: 

 
N:\inby\b106015\williaml\SURFEX-EKF\EXPORT_v4.8\SURFEX_EKF\rundir 

 

Open the script run_ekf.sh in a text editor.  
In this file you have the options of setting the following parameters: 

 expid – the current run experiment identifier text string; 

 vm - the number of control variables; 

 l -  the number of time periods. 

 

If you edit this file in a text editor like WORDPAD remember to use the command

dos2unix on the file in order to convert it to a Linux (UNIX) ASCII format again. For 

more information, please see Section 5.1 below.

N.B.! The above script file automatically edits the contents of the OPTIONS.nam file 

associated with the SURFEX-EKF system regarding the above three parameters.  

You may also need to edit the OPTIONS.nam file, in order to set the following 

parameters: 

 tprt_m – amount of perturbation for each control variable;  

 nobs – number of observation types; 

 yerrorobs – amount of observational error for each type of observation;

 inco – include observation type logical variable (0=false,1=true). 



 

NILU TR 2/2010 

70 

After editing the file, please remember to use the command dos2unix on the file in 

order to convert it to a Linux (UNIX) ASCII format again. For more information, please 

see Section 5.1 below.  

A result catalogue needs to be created in the directory: 

N:\inby\b106015\williaml\SURFEX-

EKF\EXPORT_v4.8\SURFEX_EKF\result 

with the same name as the expid text string as defined in the run script. 

 
3.2.3 How to run the program  

The file to run SURFEX-EKF is called run_ekf.sh and is located in the directory: 
 

N:\inby\b106015\williaml\SURFEX-EKF\EXPORT_v4.8\SURFEX_EKF\rundir 

 

Please make sure first that you have started the BASH-shell. You do this by writing 

 

>> bash 

 
and you will receive a : prompt in the terminal window. 

To run the model, move to the above directory, and type: 
 

: run_ekf.sh 

 

3.3 SURFEX-EKF results 

The following directory will contain all the results: 
 

N:\inby\b106015\williaml\SURFEX-

EKF\EXPORT_v4.8\SURFEX_EKF\result\<expid> 

 

where <expid> is the expid text string defined in the run script. 

 

 

4 SURFEX-EnKF 

4.1 Differences between EnKF and EKF 

The SURFEX-EnKF directory structure is generally a copy of the SURFEX-EKF directory 
structure with identical directories, subdirectories and filenames, except for the 
following four files: 

 
SURFEX-EKF/EXPORT_v4.8/SURFEX-EKF/rundir/run_ekf.sh 

SURFEX-EKF/EXPORT_v4.8/src/VARASSIM/varassim.f90 

SURFEX-EKF/EXPORT_v4.8/SURFEX_EKF/namelist/OPTIONS.nam 

SURFEX-EKF/EXPORT_v4.8/src/Makefile.SURFEX.mk 

 

which for the SURFEX-EnKF system are replaced by the following modified files:  
 

SURFEX-EnKF/EXPORT_v4.8/SURFEX-EnKF/rundir/run_enkf.sh 

SURFEX-EnKF/EXPORT_v4.8/src/ENKFASSIM/enkfassim.f90 

SURFEX-EnKF/EXPORT_v4.8/SURFEX_EnKF/namelist/OPTIONS.nam 

SURFEX-EnKF/EXPORT_v4.8/src/Makefile.SURFEX.mk 
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The changes that have been made to run_enkf.sh, enkfassim.f90 and 

OPTIONS.nam are extensive and will not be described here. However, regarding the 
file Makefile.SURFEX.mk the following changes have been made: 
 
The code block: 

 
DIR_VARASSIM += VARASSIM 

#CPPFLAGS_VARASSIM=   

# 

ifdef DIR_VARASSIM 

DIR_SOURCE += $(DIR_VARASSIM) 

CPPFLAGS   += $(CPPFLAGS_VARASSIM) 

 

has been replaced by: 
 

DIR_ENKFASSIM += ENKFASSIM 

DIR_MKL += $MKLPATH 

CPPFLAGS_ENKFASSIM=-Dmkl -Dlinux 

# 

ifdef DIR_ENKFASSIM 

DIR_SOURCE += $(DIR_ENKFASSIM) 

CPPFLAGS   += $(CPPFLAGS_ENKFASSIM) 

INC        += $(DIR_MKL)/include 

LIBS       += $(DIR_MKL)/lib/libmkl_intel.a 

LIBS       += $(DIR_MKL)/lib/libmkl_sequential.a 

LIBS       += $(DIR_MKL)/lib/libmkl_core.a 

LIBS       += -lpthread 

Endif 

 

Also, the line: 
 

PROG_LIST = PGD PREP OFFLINE SXPOST OI_MAIN VARASSIM 

 

has been replaced by 
 

PROG_LIST = PGD PREP OFFLINE SXPOST OI_MAIN ENKFASSIM 

 

4.2 How to compile SURFEX-EnKF 

4.2.1 How to set up the computer for compiling 

Add the following line to the file .bashrc, in order to set the environmental variables 
associated with the Intel Math Kernel Library (Intel MKL): 

 
./opt/intel/Compiler/11.0/081/mkl/tools/environment/mklvars32.sh 

 
The following three lines must also be added in order to define the SURFEX-version 

and to set the SURFEX environmental variables: 

 
export SURFEX_EXPORT=/nilu/inby/b106015/williaml/SURFEX-

EnKF/EXPORT_v4.8 

 

source $SURFEX_EXPORT/conf/profile_surfex 

 

export 

PATH=$PATH:$SURFEX_EXPORT/src/LIB/netcdf3.6.1/bin/:$SURFEX_EXPORT/src/exe

/ 
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Note that if you have already made the above changes to the .bashrc file for the 
SURFEX-EKF system (Section 3.1.1 in Appendix B), the only change you need to do here 

is to replace the text string “SURFEX-EKF” with “SURFEX-EnKF”. You may, 
alternatively, issue the command 
 

>> export SURFEX_EXPORT=/nilu/inby/b106015/williaml/SURFEX-

EnKF/EXPORT_v4.8 

 

directly in the terminal window, if you want to avoid changing the .bashrc file.  

 
4.2.2 How to compile 

In order to compile, we first need to move to the program source directory. Type: 
 

>> goto_enkf 

>> cd src 

 

Then we need to be in a BASH shell. Type: 
 

>> bash 

 
Then we compile by typing: 

 

: make 

 

The model will then compile using the file Makefile.SURFEX.mk in the current 
directory.  

If the compilation was successful the following main program executables should 
exist in the sub directory exe: 

 
PGD PREP OFFLINE SXPOST OI_MAIN ENKFASSIM 

 

The make command will generally only compile changes made to the source code of 
the system since the last compilation. In order to compile all of the source code of the 
system completely from scratch, type: 
 

: make clean 

 
and then 
 

: make 

 

4.3 How to run SURFEX-EnKF 

4.3.1 How to set up the computer for running 

Before running SURFEX-EKF we need to make a path to the program smsdate. We 
created a path to the directory UTILITY, where smsdate is located, in the file: 

 
\inby\b106015\williaml\SURFEX-EnKF\EXPORT_v4.8\conf\profile_SURFEX 

 
The following line was added to this file: 

 

PATH = 

$SURFEX_EXPORT/bin/:.:sPATH/SURFEX_EXPORT/:UTIL:$surfex_export/src/UTILITY 
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4.3.2 How to set up the program for running 

The script file to run SURFEX-EnKF is called run_enkf.sh and is located in: 
 
N:\inby\b106015\williaml\SURFEX-

EnKF\EXPORT_v4.8\SURFEX_EnKF\rundir 

 

Open the script run_enkf.sh in a text editor.  
In this file you have the options of setting the following parameters: 

 expid – the current run experiment identifier text string; 

 vm – the number of control variables; 

 l – the number of time periods; 

 nens – the number of ensemble members in the Ensemble Kalman filter and 

Particle filter; 

 enkfm – the type of ensemble-based data assimilation method; 

 tprt_m – amount of perturbation as relative standard deviation for each 

control variable ; 

 nobs – number of observation types;

 yerrorobs – amount of observational error for each type of observation; 

 inco – include observation type logical variable (0=false,1=true). 
 

If you edit this file in a text editor like WORDPAD remember to use the command

dos2unix on the file in order to convert it to a Linux (UNIX) ASCII file again. For more 

information, please see Section 5.1 in Appendix B. 

N.B.! The above script file automatically edits the contents of the OPTIONS.nam file 

associated with the SURFEX-EnKF system regarding the above parameters. However, if 

for some reason you should wish to edit this file, remember to use the command 

dos2unix on the file in order to convert it to a Linux (UNIX) ASCII file again. For more 

information, please see Chapter 5.1 in Appendix B.  

A result catalogue needs to be created in the directory: 

N:\inby\b106015\williaml\SURFEX-

EnKF\EXPORT_v4.8\SURFEX_EnKF\result 

 

It must be given the same name as the expid text string set in the script. 
 

4.3.3 How to run the program 

The file to run SURFEX-EnKF is called run_enkf.sh and is located in the directory: 
 

N:\inby\b106015\williaml\SURFEX-

EnKF\EXPORT_v4.8\SURFEX_EnKF\rundir 

 

Please make sure first that you have started the BASH-shell. You do this by writing 
 

>> bash 
 

and you will receive a : prompt in the terminal window. 
To run the model, move to the above directory, and type: 

 
: run_enkf.sh 
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4.4 SURFEX-EnKF results 

4.4.1 Result directory 

The following directory will contain all the results: 
 
N:\inby\b106015\williaml\SURFEX-

EnKF\EXPORT_v4.8\SURFEX_EnKF\result\<expid> 

 

where <expid> is the expid text string defined in the run script. 

 
4.4.2 Missing data 

If observation data are missing (i.e., have the value 999.0) they will be assigned the 
modelled value at the same grid point.  

 

 

5 Other issues to be aware of 

5.1 DOS ASCII and Linux (Unix) ASCII 

If the text editor used to make changes to files use DOS ASCII format (for example 
WORDPAD) you need to convert the files to UNIX ASCII format. You do this by typing: 
 

>> dos2unix filename 

 
It is highly recommended you use a text editor which preserves the Linux (UNIX) ASCII 
type of the file, when editing Linux (UNIX) ASCII files from Windows. For example, the 
EditPad Lite text editor for Windows is one such text editor. 

 

5.2 Sed-command  

Avoid changing the number of spaces in the file OPTIONS.nam. It can cause problems 

for the sed-command if the number of spaces between values, equal signs (“=”), and 
values are different in this file and in the script.  

 

5.3 Changing the .bashrc file 

If you want to run the SURFEX-EnKF version after having run the SURFEX-EKF version, or 
vice versa, you must remember to repeat the commands in Section 4.3.1, or the reverse 
of Section 4.3.1, respectively.  

 

5.4 Empty work catalogue 

If an error message shows up right away when running the scripts run_enkf.sh or 
run_ekf.sh, saying “can’t erase ‘*’- no such file or directory, create a file in the work 
directory and try again.  
 

5.5 Permission denied 

If an error message shows up right away when running the script run_ekf.sh or 
run_enkf.sh, e.g., “permission denied”, try to use the command dos2unix on the 
file (see also Section 5.1 in Appendix B). 
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Appendix C  
 

EKF results from Météo-France 
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EKF results from Météo-France 
 
Note: units, geographical area and time stamps are as in Sections 3.1-3.8 

 

TG1. 
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TG2. 
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WG1. 
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