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Abstract. Emissions of harmful substances into the atmo- estimate the emissions properly from such measurements is
sphere are a serious environmental concern. In order to uralso necessary.

derstand and predict their effects, it is necessary to estimate This technical framework consists of three elements:
the exact quantity and timing of the emissions from sen-measurements, atmospheric dispersion models, and inverse
sor measurements taken at different locations. There are methods tailored to this specific linear inverse problem.
number of methods for solving this problem. However, these There has been a clear effort in deploying more reli-
existing methods assume Gaussian additive errors, makingble, precise, and extended sensor netwdZRB(TO, 2014).

them extremely sensitive to outlier measurements. We firstAlso, there has been an evident development of precise atmo-
show that the errors in real-world measurement data setspherical dispersion modelsl¢lmes and Morawsk&0086.
come from a heavy-tailed distribution, i.e., include outliers. However, inverse methods are still at a relatively early stage
Hence, we propose robustifying the existing inverse meth-of development.

ods by adding a blind outlier-detection algorithm. The im-  These inverse methods are technically complex, and re-
proved performance of our method is demonstrated on ajuire a multidisciplinary approach; collaboration among re-
real data set and compared to previously proposed methodsearchers from different fields is necessary for further ad-
For the blind outlier detection, we first use an existing al- vances.

gorithm, RANSAC, and then propose a modification called

TRANSAC, which provides a further performance improve- 1.2 Related work

ment.
Atmospheric dispersion models, such as Eulerian, or La-

grangian particle dispersion models (LPDMgJatnettj
1990 allow us to relate the source to the measurements in
a linear way:

1 Introduction

y=Ax+n, 1)
1.1 Motivation

wherey is the measurement vectar,is the source termi
Emissions of harmful substances into the atmosphere occus the transport matrix, andis the measurement error.
all the time. Examples include nuclear power plant accidents, LPDMs have some advantages with respect to the Eulerian
volcano eruptions, and releases of greenhouse gases. Hownes: they can have infinite temporal and spatial resolution;
ever, these emissions are difficult to quantify. Depending orthey avoid the artificial initial diffusion of a point source in
the scenario, measurement networks on scales from locahe corresponding cell and the advection numerical errors;
to global may be needed. A robust technical framework tothey are computationally more efficieltgnnettj 1990.

Published by Copernicus Publications on behalf of the European Geosciences Union.



2304 M. Martinez-Camara et al.: A robust method for inverse transport modeling

There are only a few freely available, open source im-We will refer to this data as the “ETEX data set”. In every in-
plementations of LPDMs. The Flexible Particle dispersion verse problem, a time window must be defined, during which
model (FLEXPART) Gtohl et al, 2005 is one of them. Ithas  the activity of the source is to be recovered. In this particu-
been used and validated in a large number of studies abouéar case, we define a window of 5 days (although we, in fact,
long-range atmospheric transpo8téhl et al, 1998. Here, know that the ETEX emissions took place over only 12 h) or
we use it to derivé\, which is an estimate of the true trans- 5-24=120h. Since the time resolution is 1 h, we have 120
port matrixA. unknowns in the system.

It is clear from Eg. {) that estimating the source means
solving a linear inverse problem. Most environmental sci- 1.3 Contributions
entists use a least-squares approach with the Tikhofev (

norm) regularization, or variants of this method, to recover'" this paper, we show that the errors present in a source-
an estimateé of the source: estimation problem come from a heavy-tailed distribution,

which implies the presence of outliers in the measurement
R=argmin|[Ax —y |2 4+A ] x |2, 2 data set. Typical source-estimation algorithms like 2yaé-
x sume Gaussian additive erroRusseeuw and Lerp$987).
where. > 0 is the regularization parameter. This incorrect assumption makes them highly sensitive to

For example, irSeibert(2001), the Tikhonov regulariza- outliers. In fact, if the outliers are removed, the source es-

tion is combined with a smooth first derivative constraint: ~ timation using Eq.2) improves substantially.
Hence, we propose combining EQ) (vith algorithms to

¥x=argmin||Ax —y ll2+r [ x ll2+8 || Dx ||2. (3)  detectand remove outliers “blindly”, i.e., without any knowl-

x edge of the ground truth. First, we use a well-known algo-
rithm for this task, RANdom SAmple Consensus (RANSAC)
(Fischler and Bollesl981), and study its performance. Next,
we propose a new algorithm which overcomes some of the
x=argmin||[Ax —yll2+A | x —xall2. (4)  weaknesses of RANSAC and tests its performance. The ef-

x ficiency of both algorithms is demonstrated in a real-world

In Winiarek et al.(2012, the Tikhonov regularization is data set, and their performance is evaluated and compared to

used with a non-negative constraint. A slightly different ap- Other existing methods. o o
proach is the use of a sparsity constraint, together with a Our presented algorithm is generic, in the sense that it is
non-negative constraint, ashfartinez-Camara et a{2013. suitable for all classes of input signals. Of the four key ele-
Yet, another point of view is given iBocquet(2007), where ments that constitute our algorithm — the least-squares term,

both the source and the error distributions are estimated df'¢ regularization, the outlier detection, and voting — only
the same time. the regularization is affected by the type of input signal. We

All of these approaches minimize the energy of the dis-Ch0se to use the regularizations given in Egs. (2) and (3)
agreement between the model and the observations, while &€cause they are the most generic and are known to apply
the same time keeping the energy of the solution in checkelatively well to a broad range of realistic signals (impulse,
While this is a reasonable approach, no metrics of real perforONtinuous, piece-wise constant, sparse, etc.). As always, im-
mance are (or can be) given in most of these studies, simplproved performance can be achieved when the structure of
because no knowledge of the ground truth is available. Thidh€ signal is known by using an appropriate, more specific
fact made it impossible to evaluate the true performance of€gularization suited to that structure. Our approach is, in
any of these approaches. fa_ct, independent of th_e re_gularlzatu_)n that_|s used, and is ap-

However, a few controlled tracer experiments have beerPlicable to any regularization found in the literature.
performed, the most important ones in Europe and in the
US (Nodop et al. 1998 Draxler et al, 1991). They present
exceptional opportunities to study model and measurement

errors, as well as to develop and test the various sourcegijyen A, the estimate of the transport matrix produced by

Also, a priori solutionxy can be introduced to the
Tikhonov regularization, as iStohl et al.(2012:

Non-Gaussian noise

recovery algorithms. _ FLEXPART, the forward model (Ed) now becomes
The European Tracer EXperiment (ETEXNddop et al,
1998 was established to evaluate the validity of long-rangey — Ax + e, (5)

transport models. Perfluorocarbon (PFC) tracers were re-

leased into the atmosphere in Monterfil, Brittany, in 1994. wheree is an additive error term that encompasses both the
Air samples were taken at 168 stations in 17 European counmodel and measurement errors.

tries for 72h after the release. The data collected in the Inthe ETEX experiment, we have access to the measure-
ETEX experiment and the correspondent matrix estimatednentsy, the true source, and the estimated transport ma-
by FLEXPART are used for several purposes in this papertrix A. This permits us to study the errarsLet us model the
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Figure 1. Histogram of the additive errar. For clarity, the zero- Figure 2. MSE of reconstruction obtained using E®).(The

error bin has been omitted here. strongest outlier measurements (the ones associated with the largest
errors) have been removed manually. Notice that the MSE decreases
as more outliers are removed.

componentg; of the vectore as random, independent, and

identically distributed. Some degree of correlation may ex-

ist among the errors, but this correlation is unknown. Thus, However, in areal-world problem, we do not have such an

it cannot be considered in the problem. We can approximatéracle. The question becomes thus: how could one locate the

the empirical probability distribution af by plotting the his-  outliers blindly?

togram of the elements.

Figurel graphically shows that the error has a heavy—tailed?’-1 RANSAC

distribution. The distribution clearly deviates from a Gaus-

sian one. This is confirmed by calculating the excess kurtosié)ne of_the si_mple_st and most popular algorithms to_local-
of the sample distribution. The value o= 12364 indicates  '2€ outliers blindly is RANSAC. RANSAC has been widely

that the underlying distribution is strongly super-Gaussian. and ;uccessfully used, mainly _by the computer visipn com-
Using thefz norm in the loss function in Eq2) is opti- munity (Stewarf 1999. Figure3 illustrates the operation of

mal when the additive errors are Gaussian, which is not owRANSAC’ and algont.hm 1 describes it in pseudocode.
case. Even worse, this loss function is very sensitive to out- Given a} data sey with m measurements, s_elect randomly
liers, just like those present in the heavy-tailed distribution@ SUPSEY" containingp measurements. Typically, < p <
shown in Fig.1. Hence, the performance of EQ)@nd its " wheren is the number of unknowng in the pr_oblem. .In
variants could be improved by additional processing, aimed 9- 3 m = 8 andp =2, an/d the subset is shown in red dia-
at removing and/or marginalizing the outliers. In the presentmonds' Using Eq.2) andy’, estimatex, and then compute

paper, we propose and demonstrate a novel scheme for th|g€ 'esiduat = Ax —y. Now, we can count how many of the
additional processing. original samples are “inliers”. For a given tolerangéehe set

of inliers is defined a£ = {g € {1,2,...,m} | n > (r[g])?}.
Repeat this proces¥ times and declare the final solution
x* to be that estimat# which produced the most inliers. In
3 Outlier detection Fig.3, N = 2.
Note that other regularizations can be used instead of
Imagine that we have an oracle which reveals to us the meaEq (2) Here, we use the Tikhonov regu|arizati0n because
surements corresponding to the largest errors (i.e., the ouft js simple, general, and most other existing approaches are
liers). If we remove these measurements from the data sepased on it. Nevertheless, if some properties of the source are
the performance of Eq2], in terms of the reconstruction er-  known a priori (e.g., sparsity or smoothness), this step of the
ror or mean square error (MSE), improves significahtly. algorithm can be adapted accordingly.
order to illustrate this, we remove the measurements asso- At the stage where th&' possible solutiong have been
ciated with the largest errors (sorted by magnitude) and obgenerated, what RANSAC actually tries to do is select the
serve the effect on the MSE. FiguPeshows how the MSE  spJutionx* with the smallest MSE. However, in a real-world
decreases as more and more outliers are removed. Some Qgroblem, the ground truth is unknown, so we do not have ac-
cillations may occur due to outlier Compensation effects. cess to the MSE itself. So, as mentioned above, RANSAC
overcomes this difficulty by using an indirect metric of the
1The MSE is defined a% | x—% ||§, wherez is the estimated MSE: it assumes that the number of inliers is inversely pro-
sourcex is the real source (ground truth), ands the number of portional to the MSE. Figur& depicts the intuition behind
elements inx. this in a simple 1-D problem: the superior solution (subset 2)

www.geosci-model-dev.net/7/2303/2014/ Geosci. Model Dev., 7, 22334, 2014
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Algorithm 1 RANSAC
Subset #1 Subset #2
INPUT: y e R™, A e R™*" X, n, N, p
Require: A>0,N>0,n>0,p<m * ° o °
LX< ¢ Step 1 oot .o
o o [e)
x* <~ 0eR” o o o
r<Q0eR™
k< 0eN? \’\o\ °
y < 0eRP Step 2 00° "o /op/a{e/
A’ <~ Qe RPX
for s=1to N do = —
k unique random integers frofi, °
<P q g fa, m] Steps 384 \K’bo\
Y < ylk] 00° %o o
A < ALK, :]

& <argmin || Ax -y |3+ x |13
, <—Afcx—y Figure 3. Visual representation of the fur_lctior!ing of RANSAC.

Lige{l2 - m}n>(righ?} Subset 1 and 2 represent two RANSAC iterations. The subset of
if #2 > #2* then - measurements selected by RANSAC in each iteration is represented
by red diamonds. Subset 1 contains one outlier. Hence, the solution

L* L
x* :fr corresponding with this subset generates fewer inliers than subset 2,
end if which is free of outliers.
end for
return x* RANSAC assumes that all the measurements have the

same influence; it just wants to maximize the number of in-

liers, and does not care about which exact measurements are
produces more inliers than the inferior solution (subset 1).the inliers. This is why it fails, in this case, and the inverse
Thus, RANSAC maximizes the number of inliers in the hope proportionality between the number of inliers and the MSE
that this also minimizes the estimation error. does not hold.

As we will see in the following sections, if the optimal In summary, RANSAC operates reliably when all of the
value for the threshold parameteris known and used, us- measurements are of similar importance, because the in-
ing RANSAC as a pre-processing stage for outlier removalverse proportionality between MSE and the number of inliers
before applying Eq.2) significantly improves the overall holds. However, when critical measurements are present, this
performance (compared to using only Egwith no outlier ~ proportionality does not hold, and RANSAC fails.
removal pre-processing). Unfortunately, the performance of
RANSAC depends strongly on the paramefeand finding 3.3 RANdom SAmple Consensus (TRANSAC)
the optimal value of; is an open problem. .

Furthermore, the assumed inverse proportionality betweef? Order to avoid the weakness of the standard RANSAC
the number of inliers and the MSE does not always hold in&/gorithm, we propose an alternative indirect metric to
the presence of “critical measurements”. This is the case iffliscriminate solutions with small MSE: the total residual

the ETEX data set, as we can see in B, € = | Ax — y|2. By replacing the number of inliers by
the total residual metric, we create the first step of the To-
3.2 Critical measurements tal residual RANdom SAmple Consensus (TRANSAC) al-

gorithm. The second step consists of a “voting” stage. Both

We identify critical measurements as those which have theare described in algorithm 2 in pseudocode.
largest influence in the source-estimation process. A quanti- The total residual is directly proportional to the MSE of re-
tative measure of this influence is the Cook’s distarimo construction. Unlike the number of inliers, this proportional-
1977). Figure5 shows the Cook’s distance of the ETEX mea- ity is also conserved when critical measurements are present
surements. It is easy to observe the peak that identifies thim the data set (Figdc and d). In a real-life problem, where
critical measurements. we do not have access to the ground truth, we do not know if

Let us consider again the ETEX data set, the seiVof critical measurements are present. Hence, we need a robust
solutionsx that RANSAC generates, and their correspond-algorithm like TRANSAC. In addition, TRANSAC does not
ing residualsr. It is interesting to note that the solutios  depend on the threshoid
with the most inliers (the superior solutions, according to The proportionality between the total residual and the re-
RANSAC) have high residuals at exactly the critical mea- construction error is not perfect, as we can see in the scatter
surements. This is shown in Fi@. In other words, by con- plot of Fig. 4d. Even if a candidate solution has the small-
sidering the critical measurements as outliers, these solutionsst total residual, it is not guaranteed to be the solution with
achieve more inliers. the smallest MSE. The intention of the voting stage is, using

Geosci. Model Dev., 7, 2303311, 2014 www.geosci-model-dev.net/7/2303/2014/
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Figure 4. Performance of RANSAC and TRANSAQa) and(b) show graphically the correlation between MSE of reconstruction and the
number of inliers(c) and(d) show graphically the correlation between MSE of reconstruction and the total residual. T¢abuitati (c)

the complete data set was used, to b(lilgand(d) the data set without critical measurements was used. The diamond indicates the solution
obtained by the traditional Tikhonov regularization in E2), the star indicates the solution chosen by TRANSAC before the voting stage,
the square indicates the final solution of TRANSAC, and the hexagon the solution chosen by RANSAC.
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Figure 5. Cook’s distance of the measurements in the ETEX data4,1.1 Sanity check
set.

In Sect.3.3 we confirmed the expected behavior of the first

the candidate solutions with a total residual under a certairstage of TRANSAC: we showed that the total residual is di-
threshold, to come up with the best possible final solution. rectly proportional to the MSE. Let us now check the second

Intuitively, the solutions with the smallest total residual stage: the voting. To do so, let us suppose that, during the
(i.e., smallest MSE) are generated using almost outlier-freavoting, we have access to the MSE of every candidate solu-
random subsets of measurememts We refer to these as tion x. Then, we would of course select the solutions which,
the “good” subsets. Outliers can appear sporadicly in somen fact, have the smallest MSE, and use them to build the his-
of these good subsets, but the same outlier is extremely urtogram. We run this modified TRANSAC with the data set
likely to appear in all of them. Hence, in the voting stage, without critical measurements.
we select the measurements that all the good subsets have inFigure 7a shows the MSE obtained for different values
common, or, in other words, exclude any measurements thatf the parametenM. The dashed line on the right indicates
appear very infrequently. the maximum possible value a4, such that = m, which

Thus, we first select the subsetsassociated with can- corresponds to using the whole measurement data set. The
didate solutions with a total residual smaller than a certaindashed line on the left indicates the minimum possible value,
threshold¢ < 8. Then, for each measurement we count how M = n, and corresponds to using as many measurements as
many times it appears in these good subsets. Finally, we séhere are unknowns. The red horizontal line indicates the
lect the M measurements with the largest frequency of oc-MSE of the solution obtained by using just the Tikhonov reg-
currence. ularization without TRANSAC, i.e., whem = m.

www.geosci-model-dev.net/7/2303/2014/ Geosci. Model Dev., 7, 22334, 2014
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Algorithm 2 TRANSAC 6000

4000

INPUT: y e R™, A e R™ " A N, p, M, B
Require: A>0,N>0,p<m,n<M <m,8>0

Residual

e<0¢ RN 2000 |-
k< 0eN? - J
K <« 0e NPXN o e b R a0f od o2 Tle ge Py
y/ - 0 e Rp 0 100 200 300 400 600 700 800 900
A < 0eRPX" I
g «— (/) 6000 T T T T
h<0ecR™
b« 0ecRM ERt
for s=1to N do E

k < p unique random integers frofi, m] 20001

y < ylk] I ] o]

/ . 'y " .. o I ] ¥ " )
A <~ A[k’ ] %50 ¢ ?560 §7O 580 590 600
X < arg min || Alx — y/ ||% +A | x ||§ Measurement ID
X

e[s]<||Ax—y 2 Figure 6. Residuals of two different source estimations: The blue

K[:s]<k peaks correspond to the residual produced by the soldtiaith
end for the largest number of inliers in Figa. The black arrows on the top
G<«{qge{l,2,---,N}|elq] < B} indicate where the two most critical measurements are localized.
Kg < K[:,G] Clearly, the residual corresponding to these two measurements is
h[k] < how many times appears ilKg, Vk € {1,2,--- ,m} much larger than the rest. The red peaks corresponds to the residual
b < indices of theM largest elements df produced by the solutiof with the smallest MSE in Figla.
y* < ylb]
A* < A[b,:]
x* < argmin | A*x — y* |2 +1 || x |2 i i i

e 2 2 B, as shown in Fig8, we note that, for practically any value

return x* of B, there is an improvement in performance.

These results show that TRANSAC clearly improves the
performance of the Tikhonov regularization in both cases
We can observe that the MSE of the solution increases aéwith and without critical measurements).
M increases. This is to be expected:dgrows, more out-
liers are included in the data set that is used to ohtdin 4.2 Outlier removal

and its MSE increases. We note that the result curve is non- ) ] ]
decreasing, because, in this particular experiment, we hav&S €xplained in Sec8, RANSAC and TRANSAC are blind

access to the MSE, and the histograris built from the ac- outlier-detection algorithms that can be combined with dif-

tual best-candidate solutions. ferent regularizations in order to improve their results. In
this section we combine RANSAC and TRANSAC with
4.1.2 Actual ETEX two different regularizations previously used in the literature,

Egs. @) and @), and study their performance. As before, we

In this subsection, the performance of the completeuse the ETEX data set with and without the critical measure-
TRANSAC algorithm is examined. Let us consider first the ments.
data set without critical measurements. As in the sanity check The results are shown in Fif. It is important to note that
above, TRANSAC is run for different values 1. The re-  all of these results were generated using the optimal values
sults are shown in Figgh. We observe that the MSE increases for all of the parameters\( 5, 8, M) that were found experi-
as M increases, as before, and the maximum MSE still oc-mentally. The blue bars correspond to the original algorithms
curs atM = m. This is reassuring: even if we do not find the (Egs.2, 3). The violet bars indicate that RANSAC is used for
optimal value for the parametéf, we will improve the solu-  outlier removal, and the green ones that TRANSAC is used
tion (with respect to using only the Tikhonov regularization) for outlier removal. First, we note that, with and without crit-
by taking anyn < M < m. Notice that the minimum MSE ical measurements, the outlier removal stage improves the
occurs again wheM = n. performance of both regularizations. Hence, our idea of re-

Figure 7c shows the results from the examination of the moving outliers, outlined in Sect. 2, does indeed lead to im-
whole data set, including the critical measurements. We camroved performance, regardless of critical measurements or
observe that, again, the maximum MSE occu®at m. On type of regularization. Next, in all cases, TRANSAC shows
the other hand, the minimum MSE does not occut,dtut higher performance than RANSAC. Therefore, our proposed
rather atM = 330. Also, although the exact performance of modification of the metric and the addition of the voting stage
the algorithm varies with the value chosen for the parameteresult in improved performance, as expected. Finally, we note

Geosci. Model Dev., 7, 2303311, 2014 www.geosci-model-dev.net/7/2303/2014/
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Figure 7. Performance of TRANSAC combined with Tikhonov regularization. In the three plots, the red dashed line indicates the estimation
error given by typical Tikhonov (E®). The dashed line on the right indicatés= m, the one on the left indicated = n. Plot(a) shows

the results of the sanity check. As the selected number of measureMenizeases, the MSE of the estimation decreases. Notice that
the maximum MSE corresponds wit = m. Plot (b) shows the results of applying TRANSAC to the ETEX data set without critical
measurements. Again, the MSE increases in general with M, and the maximum MSE appk@sssin Plot (c) shows the results of
applying TRANSAC to the whole ETEX data set, critical measurements included. In this case, the MSE does not always incrégse with
but the maximum MSE still corresponds with = m.
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larization to the parametet. The red line indicates the estimation

error given by typical Tikhonov (EdR). The algorithm is sensitive  Figure 9. MSE of source estimated by different algorithms. The

to beta, but, for practically all beta values, the performance is im-plue bars correspond with the original algorithms (Ef3). The

proved. violet bars indicate that RANSAC is used for outlier removal, and
the green ones shows that TRANSAC is used for outlier removal.
The plot on the left was generated using the whole ETEX data set.

that the MSE is higher, i.e., the reconstruction is poorer wherThe plot on the right was generated using the ETEX data set without

the critical measurements are not used, which is, again, coreritical measurements.

sistent with our analysis.

Figure10 gives a more qualitative assessment of these re-

sults by representing the estimated source. We first notic& Conclusions

that the reconstructed sources using E).dre generally

smoother than those reconstructed using BJj.due to the  In this work we showed that the additive errors present in the

added smoothness (derivative) term in the objective functionETEX data set come from a heavy-tailed distribution. This

Next, we note that the reconstructions using the critical meaimplies the presence of outliers. Existing source-estimation

surements are closer to the ground truth than the reconstrualgorithms typically assume Gaussian additive errors. This

tions without the use of the critical measurements, which isassumption makes such existing algorithms highly sensitive

consistent with the results shown in F&.Finally, we note  to outliers. We showed that, if the outliers are removed from

that in all four cases, the recovered source using TRANSAGhe data set, the estimation given by these algorithms im-

for the outlier detection produces the closest match to theroves substantially.

ground truth, as expected. However, in a real-life problem, we do not know which
of the measurements are outliers. Hence, we do have to re-
move them in a blind fashion. For this purpose, we proposed
RANSAC, a well-known blind-outlier-detection algorithm.
We then showed that RANSAC unfortunately strongly de-
pends on the chosen tolerance parameter, and it is sensitive

www.geosci-model-dev.net/7/2303/2014/ Geosci. Model Dev., 7, 22334, 2014
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Without critical measurements Without critical measurements
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Figure 10. Source reconstructions given by the different algorithms. The plots on the left were generated combir2hgviEig RANSAC
and TRANSAC. The plots on the right were generated combining3evith TRANSAC and RANSAC. The plots on the top were generated
using the ETEX data set without critical measurements. The plots on the bottom were generated using the whole ETEX data set.

to critical measurements. To overcome these difficulties, weDraxler, R., Dietz, R., Lagomarsino, R., and Start, G.: Across North
created TRANSAC, a modification of RANSAC, which also ~ America tracer experiment (ANATEX): Sampling and analysis,
includes a Voting stage. Atmos. Environ. A-Gen., 25, 2815-2836, 1991.

To demonstrate the efficiency of these methods in a realfischler, M. A. and Bolles, R. C.: Random sample consensus: A
world problem, we used the ETEX tracer experiment data set. Paradigm for model fitting with applications to image analysis
The source was first recovered with two previously propose%o?:qis “Logﬁgeﬂﬂzﬁgﬁgﬂﬂyf iorfvr?gvf ng[Siig;g;SI\jgaiﬁﬁlld
source-eétlmatlon gllgorl_lt_mms t.hat assume Ga(;JSSIan addr:tlve and its application to the dispersion of particles: An overview
errors — _qS'Z) and Q). en, it was recovered again wit of different dispersion models available, Atmos. Environ., 40,
our algorithms that use RANSAC and TRANSAC. The re-  5902_5928 2006.

sults clearly display how the source estimation improves if anpartinez-Camara, M., Dokmanic, I., Ranieri, J., Scheibler, R., Vet-
outlier-detection algorithm is used. They also show that the terli, M., and Stohl, A.: The Fukushima Inverse Problem, in: 38th
performance of our proposed algorithm TRANSAC clearly International Conference on Acoustics, Speech, and Signal Pro-
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