
ARTICLE

Global predictions of primary soil salinization under
changing climate in the 21st century
Amirhossein Hassani 1,2✉, Adisa Azapagic 1✉ & Nima Shokri 3✉

Soil salinization has become one of the major environmental and socioeconomic issues

globally and this is expected to be exacerbated further with projected climatic change.

Determining how climate change influences the dynamics of naturally-occurring soil salini-

zation has scarcely been addressed due to highly complex processes influencing salinization.

This paper sets out to address this long-standing challenge by developing data-driven models

capable of predicting primary (naturally-occurring) soil salinity and its variations in the

world’s drylands up to the year 2100 under changing climate. Analysis of the future pre-

dictions made here identifies the dryland areas of South America, southern and western

Australia, Mexico, southwest United States, and South Africa as the salinization hotspots.

Conversely, we project a decrease in the soil salinity of the drylands in the northwest United

States, the Horn of Africa, Eastern Europe, Turkmenistan, and west Kazakhstan in response to

climate change over the same period.
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The Soil Science Society of America1 defines saline soil as a
non-sodic soil containing sufficient amount of soluble salt
which could adversely influence most crop plants. Con-

ventionally, electrical conductivity of a saturated soil paste extract
(ECe) has been used as a measure of the soil salinity2. Soil sali-
nization is a land degradation process that results in excessive
accumulation of soluble salts in the soil3,4. In naturally occurring
or primary soil salinization, the predominant origins of soluble
salts are rainfall (wet deposition of oceanic salts), aeolian pro-
cesses (dry deposition of oceanic salts), and physical or chemical
weathering of parent rock materials5,6. Transport of the accu-
mulated salts from saline geological depositions by streamflow or
shallow underground waters is an additional source of primary
salinization7. In anthropogenic or secondary soil salinization,
however, the main sources of salinization are human interven-
tions, such as irrigation with brackish or saline water, rising water
tables due to poor land and water management, surface or sub-
surface sea water intrusion into coastal aquifers as a result of
rising sea levels or over-exploitation of the fresh underground
waters, and overuse of fertilizers5,7,8.

Excessive accumulation of the soluble salts in the root zone
may go beyond the salt tolerance of plants, affecting adversely the
growth rate of the plants9. A soil with salinity of ECe ≥ 2 dS m−1

(at 25 °C) is traditionally considered as a saline soil10; however,
depending on the plant type, climatic conditions, and soil-water
balance properties, the salt tolerance of sensitive crops and plants
can be different11. Salinity stress deteriorates the plants’ tran-
spiring leaves which is known as specific ion effects12 or directly
reduces the plant water uptake from the rooting zone, resulting in
osmotic stress on the plant13,14. Soil salinity also imposes nutri-
tious imbalances in plants6. Soil salinity between 2 and 4 dS m−1

can negatively impact the yields of sensitive plants and at salinity
levels higher than 8 dS m−1, the growth of most of crops and
plants shows a severe decrease in response to excessive soil
salinity1,15. Vegetation loss in turn reduces the soil stability and
exposes the soil to wind or water erosion16. In addition to dele-
terious effects on vegetation, excessive soil salinity decreases the
biological functioning of the soil micro-organisms to a level that
disturbs the soil nitrogen cycle, respiration, and organic matter
input17,18. Reduced environmental health due to aeolian disper-
sion of saline dust originated from the saline soils16,19, land
abandonment and desertification20,21, worsening of economic
welfare, and human migration are other detrimental con-
sequences of excessive soil salinity6,19.

Accurate and reliable data on spatial distribution of salt-
affected soils are important to develop action plans for manage-
ment of soil, water, and vegetation and will contribute toward
data-driven policy making22–24. These data have also implications
for tuning large-scale agro-ecological models25 and planning
sustainable reclamation practices26. With varying levels of accu-
racy and spatial coverage, from the local27–29 to the global
scale30–33, defining the spatial distribution and location of salt-
affected soils has been under focus of various studies. According
to the global-scale studies, salt-affected soils lie across all climate
zones and continents with an estimated global area of
~8.31–11.73Mkm2, depending on the methods used for estima-
tion of area of the salt-affected soils. Nevertheless, the general
consensus is that the saline and salt-affected soils (including sodic
soils) are particularly found in drylands where the excess of
evaporation over water input to the soil accumulates salts in the
upper soil layer3,34,35.

Drylands, including hyper-arid, arid, semi-arid, and dry sub-
humid lands, are characterized by a multi-annual Aridity Index
(AI) of less than 0.65 mmmm−1, computed as the ratio of total
precipitation to potential evapotranspiration36,37. Drylands
occupy a total of ~45% of the Earth’s surface38,39. With the

advance of proximal/remote sensors and digital soil mapping
techniques, there is a rising interest in spatio-temporal mapping
and monitoring of the soil salinity40–42. Due to the temporal and
vertical variability in salinity levels of the salt-affected soils5,42,
updated predictions on long-term variations of soil salinity can
provide a clearer understanding of the dynamics of the terrestrial
carbon sink43, climate change impacts44, and alterations in the
land, vegetation, and water resources45. Even though the above-
mentioned purely spatial or spatio-temporal studies have sub-
stantially advanced our understanding of the current status of the
salt-affected soils and processes involved in salinization, predic-
tions of the future extent and dynamics of soil salinization at the
global scale are still missing, partly due to the complex processes
and many parameters influencing soil salinization at the global
scale. This makes the future prediction of soil salinization in the
face of future climate uncertainties a grand challenge, which is
precisely one of the key objectives of the present investigation.

The projected hydrological consequences of climate change
may result in physical, biological, biochemical, and chemical
degradation of the soils46. As one of the major threats to soil
stability, fertility, and biodiversity, it is expected that the soil
salinity will be a significant and growing concern in a warmer
world47,48. To formulate appropriate plans for sustainable man-
agement of soil, water, and vegetation, reliable predictions on the
probable occurrence and expansion or shrinkage of the salt-
affected soils in response to the threat of climate change are
crucial. Compared to other dynamic soil properties, such as P, N,
and organic matter content, prediction of soil-salinity responses
to climate variability on a global scale has received much less
attention49. The available literature on the effect of climate
change as a source of soil salinization is mainly descriptive and
quantitative predictions of the future status of salt-affected soils
on the basis of current trends are rare. The IPCC report50 predicts
that climate change will likely impact all the primary mechanisms
for soil salinization, including soluble salts accumulation due to a
change in hydrological balance, sea salt intrusion, and wind-born
salt deposition. An increase in the rate of evapotranspiration and
alteration in precipitation patterns, particularly in arid and semi-
arid areas, is expected to reduce the soil leaching efficiency and
consequently, increase the salt concentrations in top-soil
horizons51–53. Expansion of irrigated areas and the higher
demand for water use under rising global temperatures, in
combination with poor drainage/irrigation practices, are expected
to result in the spread of secondary salinization54. Land use
modifications and occurrence of more extreme climate events,
such as prolonged droughts followed by severe floods, have the
potential to release and redistribute large amount of salts from the
geological substrates with high concentration of salts and may put
new areas at risk of soil salinization55. In addition, rising sea
levels and unsustainable extraction of freshwater resources from
coastal aquifers can worsen the issue of sea water-induced soil
salinization in coastal regions53,56.

A few studies investigated some aspects of the relationship
between projected climate change and soil salinization. Szabolcs51

was among the first who estimated that the salt-affected areas in
North Mediterranean regions will be doubled by 2050 in response
to 1 °C increase in the average annual temperature. Similarly,
National Land and Water Resources Audit45 estimated that
Australia’s drylands at risk of soil salinity imposed by dryland
management actions may expand to 170,000 km2 in 2050, relative
to approximately 57,000 km2 in 2000. Schofield et al.57 developed
a set of soil salinization indicators including low relief, high two-
way annual moisture flux, and local flow deficit in large catch-
ments to identify the current and future (2079–2099) locations
with salinization potential across the globe and concluded that
areas at risk of soil salinity are expanding. Although these studies
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provide an understanding of the salinization potential and lim-
itations of the methods used for projecting the soil salinity, they
are not based on up-to-date datasets and they mainly highlight
the areas at risk; no quantitative and spatially explicit predictions
are provided. Other studies on predicting impacts of climate
change on soil salinization are mainly focused on predicting
secondary salinization processes imposed by unsustainable irri-
gation practices58–60 or sea water intrusion61–63 at local scales.
Thus, there is a need for a quantitative global-scale analysis,
characterizing the geographical distribution and projecting the
long-term variations in soil salinity in the face of future climate
fluctuations and uncertainties, which motivated the present
investigation.

This study is among the initial attempts for addressing the need
for a quantitative tool capable of predicting long-term primary
soil salinity on a global scale with a high spatial and temporal
resolution. These models and the results will be of interest to local
authorities, land managers, and policy makers, helping to plan
mitigation of and adaptation to soil salinization. In particular, we
performed comprehensive data-driven modelling and analyses to
reveal how the projected or hypothesized variations in the key
drivers may influence primary soil salinity on the global scale, in
both mid- (2031–2060) and long-term (2071–2100) futures. We
only focus on soil salinity in the top-soil horizon (0–1 m),
quantified by the concentration of soluble salts which is expressed
by the extent of ECe. Other aspects of salt-affected soils, such as
sodicity (which is traditionally measured by the soil exchangeable
sodium percentage) or alkalinity, are not within the scope of this
analysis. The potential soil salinity caused by sea level rise, saline
groundwater, or irrigation is also excluded from the study. Note
that modelling the salinity intrusion in coastal areas in response
to sea rise needs a relatively precise estimation of the future
groundwater extraction from the coastal aquifer. Similarly, pro-
jected data of groundwater level and salinity change (either nat-
ural or anthropogenic) are needed for predicting the
groundwater-induced soil salinity, which is not currently avail-
able. As mentioned in Yeo54, it is difficult to generate a clear
prediction of the impacts of climate change on the extent of
salinization caused by irrigation as this requires reliable estima-
tions of irrigation expansion and the quality of irrigation water in
future. Therefore, this study can be deemed as projection of the
primary soil salinization under future climate uncertainty.

Several numerical methods have been developed to simulate
the soil salinization by considering different modes of mass
transfer mechanisms transporting solute in unsaturated soil (such
as Corwin et al.64, Schoups et al.65); however, the application of
these models remains limited to small-scale simulations where the
detailed soil characteristics data are available. Moreover,
employing analytical approaches, such as the stochastic model of
soil salinity66,67 or the developed frameworks for mechanistic
modelling of the climate, vegetation, and soil salinity
interactions68–70, would be applicable for projecting soil salinity
only if the initial soil salinity or required calibration parameters
for tuning were available; currently, such data are not available,
particularly on a global scale. As a result of these practical lim-
itations, we utilize Machine Learning (ML) algorithms as an
alternative approach to predict the future of primary soil salini-
zation on a global scale.

Recent studies demonstrated the great potential of ML algo-
rithms in digital soil mapping and predicting spatio-temporal
properties of the soil71. In the present study, we used supervised
ML algorithms for projecting the long-term (up to year 2100)
variations in soil salinity. In summary, the methodology included
exposure of a known set of input data (predictors) and a set of
known responses (soil salinity profiles) to ML models to develop
trained models based on the relations between the two sets. The

trained models were later applied to a new set of known input
data (with unknown responses) to generate predictions for the
response (see Methods).

Dryland areas are generally known as the regions with the
highest vulnerability to hydro-climatic consequences of climate
change7. For this reason, the majority of our measured input soil-
profiles data were sampled from the dryland areas of the world.
We made predictions of soil ECe only for the dryland areas with
an AI ≤ 0.6537 as extrapolation of the ML results to other areas is
a matter of uncertainty72. The rest of this paper discusses the
significance of the predictors and global variation in primary soil
salinization at the grid-cell level, followed by the country-level
analysis. Changes in the total area of drylands with an ECe ≥ 2
dS m−1 (and ECe ≥ 4 dS m−1) at the country and continental
levels are also presented. Finally, methods and their limitations
are discussed.

Results
Predictors’ significance and their relation to the predicted soil
salinity. Supplementary Table 1 shows the estimates of the pre-
dictor importance for the trained models based on the output of
the GCMs used for spatio-temporal prediction of the ECe (see
Methods for details of predictors and trained models). The per-
centage values reported in Supplementary Table 1 indicate the
relative importance of each predictor in the final trained model in
each input dataset. Among the 14 applied predictors, the long-
term (5-year average) annual precipitation frequency is relatively
the most influential soil predictors with an overall importance of
14% for all 16 best-fitted models. WRB soil classes and daily
evapotranspiration are, respectively, the second and the third
influential environmental predictors in estimation of the soil ECe

with the overall importance of 13.07% and 9.26%, respectively.
The effect of each of the 13 non-categorical predictors (see

Methods) on the predicted outcome of the trained models is
shown in Supplementary Fig. 1 (Partial Dependency Plots, PDPs).
The effect of long-term daily wet and dry deposition rates of sea
salts are presented in Supplementary Fig. 2. Supplementary
Fig. 1a, b suggest that shallower depths are not necessarly
associated with higher ECe in soil under natural conditions.
However, in many previous experimental, analytical and
numerical investigations73–77, higher solute concentrations and
solute precipitation close to the evaporation surface were
observed when the Peclet number (quantifying the relative
importance of chemical diffusion and advection) was greater than
the one during saline water evaporation from porous media. It
must be noted that under natural environmental conditions
(which is the case in our investigation), many parameters
influence the complex dynamics of solute transport and
deposition in soil, including the vegetation and land cover,
rainfall, micro-organisms’ activities, depth of water tables, soil
chemical compositions and heterogeneity, human interventions,
and land-atmosphere interactions. These parameters, which could
not be included in the majority of the previous experiments
conducted under well-controlled laboratory conditions or
numerical simulations, could induce significant impacts on solute
distribution in soil under natural conditions3,29.

Fine-textured soils (soils with the higher clay content) show
higher Water Holding Capacity (WHC, the difference between
field capacity and wilting point) and lower saturated hydraulic
conductivity. Overall, the predicted ECe values provided by each
of the 16 trained models show a reverse relation with the soil clay
content and WHC which is in line with previous experimental
results78 and a literature review78 (Supplementary Fig. 1c, g, h).
Similarly, based on numerical, experimental, and field-scale
investigations, Shokri‐Kuehni et al.79 concluded that soil salinity
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for coarse‐textured soils is greater than for medium and fine‐
textured soils when the water table is shallow and hydraulically
connected to the evaporation surface. Our predicted results
regarding the effects of soil texture on soil salinity are generally in
agreement with the above-mentioned physically based deter-
mined trends and behaviour.

Moreover, the analysis of PDPs shows that the effective plant
rooting depth influences the predicted ECe approximately up to
the depth of 4 m. The PDPs also demonstrate a strong negative
correlation between soil salinity and terrain elevation, topo-
graphic slope, and precipitation frequency (Supplementary
Fig. 1d, e, i). These correlations can be explained by the prior
pedologic knowledge: the lower hillslope and the higher
precipitation frequency result in more efficient leaching of the
salts accumulated in the root zone66, resulting in lower salinity.
The relationship between the predicted soil ECe values and other
predictors, however, is more complicated and deriving general
trends remains a challenge.

Projected soil salinity in drylands up to the year 2100. The
trained models based on the output of Global Circulation Models
(GCMs) were applied to new input predictor data to estimate the
annual soil salinity for each grid-cell (0.5° spatial resolution) of
the global soil base map of the drylands between 1904 and 2100
(see Methods for details of GCMs, predictors, and trained mod-
els). Figure 1 shows the spatial distribution of the change in
primary soil ECe projected by the multi-model ensembles in the
mid- (2031–2060) and long-terms (2071–2100), relative to the
reference period (1961–1990) at the 0.5° spatial resolution. The
RCP 4.5 and RCP 8.5 scenarios (Representative Concentration
Pathways which result in a respective radiative forcing of 4.5 and
8.5Wm−2 in year 2100, relative to pre-industrial conditions) are
related to CMIP5 (Coupled Model Inter-comparison Project
Phase 580) data project, while the SSP 2-4.5 and SSP
5-8.5 scenarios (projections forced by RCP 4.5 and RCP 8.5 global
forcing pathways for the Shared Socio-economic Pathways 2 and
5) refer to CMIP6 (CMIP Phase 681).

Our results reveal that the sign (positive: indicative of a higher
ECe and negative: indicative of a lower ECe) and intensity of
changes in primary soil salinity are geographically highly variable;
the variations are more extreme at the end of the 21th century
compared to the mid-term future. Generally, the relative changes
in soil salinity are more severe for the GHG emission rates which
result in higher radiative forcing scenarios (RCP 8.5 and SSP
5-8.5). However, the intensity and spatial distribution of the
projected changes based on the CMIP5 models are not necessarily
the same as the CMIP6-based models predictions. Although our
aim was to include all available projections in the analysis, in the
case of discrepancy between CMIP5 and CMIP6 models, the
predictions made based on the CMIP6 GCMs should be
prioritized as they are more recent, forced by more updated
data, and generally of higher spatial resolutions81.

According to our long-term predictions based on all multi-
model ensembles, the drylands areas of South America, southern
Australia, Mexico, south-west United States, and South Africa are
generally at the highest risk of increased soil salinity, compared to
the reference period. The threat of climate-induced soil salinity is
also projected to increase in drylands of Spain, Morocco, and
northern Algeria. To a lesser extent, western and southern Sahara
and central Indian drylands, in addition to the desert soils of
southeast Mongolia and north of China, are estimated to become
saltier in response to the projected climate change by 2100 for
different GHG concentration trajectories. On the other hand, our
results indicate that the extent of soil salinity will remain constant
or decrease relative to the reference period in the drylands located

across the northwest United States, the Horn of Africa, Eastern
Europe, Turkmenistan, and west Kazakhstan.

Additionally, Supplementary Fig. 3 shows the long-term future
relative change in the five-year moving averages of daily dry and
wet deposition rates of the sea salts (the 1971–2100 mean minus
the 1961–1990 mean) projected by the multi-GCM ensemble
means, as the two predictors used for training the models.
Overall, the CMIP6 models predict a more severe increase or
decrease in dry and wet deposition rates; however, all ensemble
means are in agreement on an increasing trend in the dry
deposition rate of sea salts in coastal regions, particularly in the
southern hemisphere. All models also project a decreasing trend
in dry deposition rates in north-western United States, west
Canada, and central Asian regions; however, for these locations,
the projected sign of the change in wet deposition rates is
different between the CMIP5 and CMIP6 models. To some
extent, the projections of these deposition rate can explain why
soil salinity decreases in some regions, e.g. central Asia and
Kazakhstan, where there is less certainty on the projected sign of
changes in precipitation and evapotranspiration82.

Not all of the predictions generated based on the CMIP5 and
CMIP6 GCMs used in this study are in agreement on the extent
and sign of the soil salinity by the end of the century. Figure 2, in
particular, shows the multi-model ensemble agreements on the
sign of the predicted change in soil salinity in the long-term
future under different trajectory scenarios of GHG concentration.
A cell value close to 100% indicates a complete agreement of the
ensemble members on the sign of the salinity change. For the
RCP 4.5 ensemble, as an example, an ensemble agreement of
100% of a grid-cell shows that all seven models in the ensemble
are predicting an increase or a decrease in soil salinity in the long-
term future relative to the reference period (depending on the
sign of change). Especially under the SSP 2-4.5 and SSP
5-8.5 scenarios, the multi-GCM certainty of the predictions for
a great proportion of the drylands of southern/eastern Australia,
South America, and southern Africa indicate the southern
hemisphere is at a higher risk of salinity caused by climate
change. The projected increase in soil salinity in south-west and
southern Australia induced by rising shallow groundwater tables
as a result of dryland resource management and activities45 can
exacerbate the climate-induced soil salinization projected here.
However, the certainty of the predictions made for drylands
located in the Middle East, Russia, and Sahara is seemingly lower
than for the other zones. For those dryland regions, the
uncertainty is also recognizable through the difference in the
predictions made based on the CMIP5 and CMIP6 models in
Fig. 1. For example, the CMIP5 models predict an increase in soil
salinity in Russian drylands, while the CMIP6 models show the
opposite trend in those regions.

Country-level projected changes in soil salinity. At the country
level, we calculated descriptive statistics for the relative changes in
soil salinity estimated at each grid-cell (in the mid- and long-term
futures compared to the reference period) based on the multi-
model ensemble mean, including grid-cells mean, 95% confidence
intervals of the mean, standard error of the mean, and variance
(Supplementary Tables 2–9). We did not calculate these
descriptive statistics at the continental level as there was no
noticeable difference between the results for various continents
due to the high number of grid-cells within each continent.

Although the country-level results mask the majority of the
local-scale variabilities of the soil salinity, the provided statistics
help to have a better understanding of the countries with the
highest risk of salinization. We ranked the countries based on the
total number of grid-cells located in each country and calculated
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all aforementioned statistics only for the 30 countries with the
highest number of grid-cells (Supplementary Table 10 shows the
top 30 countries and the total estimated area of their drylands).

For the 2071–2100 period relative to 1961–1990 and under
RCP 8.5 as the worst case scenario, the countries with the highest
relative increase in the soil salinity were Brazil (with a mean grid-
cell increase in ECe of 15.1% and the 95% confidence intervals of
13.25–16.95%), Namibia (13.57%; 12.1–15.04%), South Africa
(11.2%; 9.41–13%), and Mexico (6.38%; 4.96–7.8%). The increase
in soil salinity for Australia was much lower (3.31% and
2.88–3.73%). Under SSP 5-8.5, the countries with the highest

relative increase in grid-cell means of soil salinity in the same
period were Botswana (24.94%; 22.71–27.16%), South Africa
(21.35%; 19.84–22.85%), Namibia (17.69%; 16.14–19.24%), and
Brazil (16.21%; 14.77–17.66%). Overall, our calculated statistics
suggest that the soil salinity will be increased more extensively by
the climate change impacts in the regions spread across the
southern latitudes, specifically below −20°.

Change in the total area of salt-affected soils in drylands.
Additionally, based on our predictions for soil salinity extent in

Fig. 1 Multi-model ensemble mean of the change in predicted soil salinity represented by saturated paste electrical conductivity (ECe) in the mid- and
long-term futures, relative to the reference period (1961–1990) under different greenhouse gas concentration trajectories. a–d Mid-term prediction of
changes in ECe (2031–2060). e–h Long-term prediction of changes in ECe (2071–2100). The average of the predictions to the depth of 1 m were used for
calculations of salinity change. At each map cell (pixel) and based on each GCM, we calculated the mean of soil salinity for the reference, mid-, and long-
term future periods and then computed the relative change as: (Future mean− Reference mean)/Reference mean; the percentage value of each cell
represents the multi-GCM mean of the calculated relative changes presented by the colour map. Positive values indicate an increase in soil salinity while
the negative values are indicative of a decreasing trend.
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each grid-cell, we estimated the total area of salt-affected soils up to
year 2100. Currently, no unique definition is available for the salt-
affected soils. Contingent on the soil classification system, different
values of ECe, ranging from 2 dSm−1 to even 30 dSm−1, are
adopted as the minimum threshold of salinity for characterizing
the saline soils35,83,84. Accordingly, here we quantified the areal
variation of the soils exposed to the threat of primary salinization
assuming an ECe equal to 2 dSm−1 as the critical threshold, cor-
responding to the upper salinity limit tolerable by sensitive crops11.
The results were computed at the country (Supplementary
Table 11), continental (Table 1, Fig. 3; Supplementary Fig. 4), and
global levels (Supplementary Fig. 5). Additionally, Supplementary
Figs. 6–8 and Supplementary Tables 12, 13 show the projected
variation in the total area of naturally occurring salt-affected soils
assuming 4 dSm−1 as the critical threshold at the continent
and country levels. As before, at the country level, only the top
30 countries with the highest number of the grid-cells were
included. This analysis could be an indicator of the spatial

expansion of the soil salinity in drylands in response to climate
change.

Overall, under emission rates resulting in the radiative forcing of
8.5Wm−2, all CMIP5 and CMIP6-derived predictions indicate an
increasing trend in the total area of dryland soils with an
ECe ≥ 2 dSm−1 for Australia and South America and a decreasing
trend for Asia and Europe relative to the average of 1904–1999
period. For Australia and South America, we estimate the respective
increases of 3.4% and 6.7% in the total area of dryland soils with
ECe ≥ 2 dSm−1 between 2071–2100 relative to 1904–1999 period
according to the multi-GCM ensemble means under the SSP
5-8.5 scenario. The CMIP5 and CMIP6-derived predictions of the
total area of dryland soils with ECe ≥ 2 dSm−1, however, are not in
agreement on the sign and extent of the change for Africa and
North America. The multi-model ensemble means under the SSP
5-8.5 scenario predict an increase of 1.5% and a decrease of 2.5% for
the total area of dryland soils with a salinity ≥2 dSm−1 located in
Africa and North America (between 2071–2100 relative to

Fig. 2 Multi-GCM ensemble agreement on the sign of change in predicted values of soil ECe in the long-term future (2071–2100), relative to the
reference period (1961–1990) under different greenhouse gas concentration trajectories. a, b Multi-GCM ensemble agreement of the models adopted
from Coupled Model Inter-comparison Project Phase 5 (CMIP5) forced by RCP 4.5 and RCP 8.5 scenarios (Representative Concentration Pathways, which
result in a respective radiative forcing of 4.5 and 8.5Wm−2 in year 2100, relative to pre-industrial conditions), respectively. c, d respective multi-GCM
ensemble agreement of the models adopted from CMIP6 project under SSP 2-4.5 and SSP 5-8.5 pathways (projections forced by RCP 4.5 and RCP 8.5
global forcing pathways for the Shared Socio-economic Pathways 2 and 5, respectively). 100% shows the full agreement of the models on the sign of
change, while zero indicates inconsistency among the models’ predictions.

Table 1 Continental-level predicted change in the total area of soils with ECe≥ 2 dSm−1 in the mid- and long-term futures
relative to the average of the 1904–1999 period under different greenhouse gas concentration trajectories.

Scenarios Africa Asia Australia North America Europe South America

RCP 4.5, mid term (%) 0.00 −1.03 0.02 −0.23 −6.58 2.35
RCP 4.5, long term (%) 0.17 −2.02 0.70 −0.33 −9.13 1.84
RCP 8.5, mid term (%) 0.02 −1.36 0.79 0.13 −2.55 2.21
RCP 8.5, long term (%) −0.02 −3.05 0.60 0.83 −5.35 4.88
SSP 2-4.5, mid term (%) 0.41 −0.05 1.59 −3.32 −2.09 2.56
SSP 2-4.5, long term (%) 0.61 −0.25 2.40 −2.89 −2.68 3.04
SSP 5-8.5, mid term (%) 0.51 0.02 1.36 −2.28 −1.90 3.60
SSP 5-8.5, long term (%) 1.45 −0.28 3.38 −2.45 −0.92 6.70

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26907-3

6 NATURE COMMUNICATIONS |         (2021) 12:6663 | https://doi.org/10.1038/s41467-021-26907-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


1904–1999), respectively. Brazil (with 43%), Mexico (14.5%), and
Mongolia (8%) had the highest estimated expansion in the total
area of dryland soils with a salinity ≥2 dSm−1 between 2071–2100
relative to 1904–1999 periods under SSP 5-8.5 at the country level.
On the opposite side of the continuum, Canada (with −10%),
Somalia (−8.5%), and Ethiopia (−5%) had the largest predicted
shrinkage of saline soils under SSP 5-8.5 (among the top 30 counties
with the highest number of grid-cells in our analysis).

Discussion
One of the questions that arises from this research is if the pro-
jected changes in primary soil salinization can actually occur in
the time scales (10–40 years or 50–80 years) used for projections,
especially in inland (hyper) arid regions where salt deposition is
minimal and weathering very slow. The fast transition in near
surface salt-budget has been reported in some studies which
evaluated the temporal variations of naturally occurring soil
salinity in arid environments using laboratory analysis and
remote sensing techniques. Bannari and Al-Ali85 examined the
effect of climate change on spatio-temporal variability of soil
salinity during the last 30 years (1987–2017) in the state of
Kuwait using Landsat images and 100-geo-referenced soil data;
for instance, only between 1987 and 1992, they estimated an
increase equivalent to 350% in total area of salt-affected soils

compared to the salt-affected area approximated in map of 1987
(433 km2). As another example, Wang et al.86 investigated the
spatio-temporal changes of soil salinity in Kashgar region, north-
western China with respective annual precipitation and potential
evapotranspiration of 67.5 mm and 2100mm using multi-
temporal Landsat images and saline soil types from 19 field
survey sites in the years 2000, 2010, and 2017. They estimated a
total of 6.13% decrease (relative to 26,500 km2) in the net area of
salt-affected soils between 2000 and 2010, followed by further
decrease of 1.75% between 2010 and 2017. Another example is
the study by Taghadosi and Hasanlou87 who monitored the
salinity changes in bare soils near the arid district of Bakhtegan
Lake in Iran between 2000 and 2016 using multi-temporal
Landsat images. Through a comparative analysis, the authors
concluded that 92% of these soils have become saltier over the
studied period (referring to Fig. 6 in their paper). Although
according to the literature, the predicted changes in soil salinity in
arid and hyper-arid regions are feasible in the period considered
in our study spanning over almost two centuries (1905–2100),
physically constrained models are still required to evaluate the
feasibility of occurrence of the conclusions obtained from our ML
models. To conduct such a physically based analysis on a global
scale, one would need detailed soil and environmental data to
model precipitation, leaching events as well as in situ salt amount
in the root zone on a global scale which is currently not available.

Fig. 3 Continental-level predicted annual change in the total area of soils with an ECe≥ 2 dS m−1 relative to the 20th century average (1904–1999) for
the models obtained from the CMIP6 data project. a–f Relative change under SSP 2-4.5 greenhouse gas concentration trajectory. g–l Relative change
under SSP 5-8.5 greenhouse gas concentration trajectory. Shaded areas show the minimum and maximum range of the relative changes predicted by multi-
model ensemble members. Red lines show the low-pass filtered (5-year running window) of the multi-model ensemble mean of the predicted variations;
since all spatio-temporal predictors are five-year moving averages, 1904 is the beginning of the period.
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The changes predicted here do not agree with the global-scale
predictions of Schofield et al.57 who estimated that Australia and
western North America would be the areas with lower saliniza-
tion potential in the 2070–2099 period, while they predicted a
high potential for salinization in lands across Eastern Europe and
Kazakhstan. In addition to the difference between the meth-
odologies used for the projections of soil salinity, this discrepancy
is due to various other reasons. For example, unlike the current
study, Schofield et al.57 only used one GCM (HadCM3GGa),
developed before 2000, to specify their salinization indicators.
Furthermore, they estimated the future potential evapo-
transpiration as an empirical function of air temperature to cal-
culate AI as an indicator of soil salinity, while we used total
evapotranspiration derived from the more physically
based GCMs.

The results of ML models are primarily based on the trends
they capture from the input data used for training. Therefore,
projected changes of ECe in the hotspots of climate-induced soil
salinization can be mainly attributed to the variations in spatio-
temporal input data projected by GCMs. As mentioned before,
precipitation frequency and evapotranspiration were the most
influential spatio-temporal predictors for the predictions of the
trained models. According to the analytical salt mass balance,
higher evapotranspiration rate and precipitation with a lower
frequency and intensity accumulate more salts in the root zone66.
By the end of the century, an ensemble mean decrease in pre-
cipitation (under RCP 8.5) of up to 40% was reported by Giorgi
et al88. for the southern hemisphere, particularly southern and
western Australia, Namibia, and Brazil for the June–July–August
months, which are also the salinization hotspots according to our
results. Similarly, in the northern hemisphere, they predicted a
more severe decrease in precipitation for Mexico, West Africa,
and Mediterranean coasts for December–January–February. At
smaller spatial scales, other studies projected an increase in the
number and duration of drought events, higher potential and
actual evapotranspiration, decreasing trends in frequency and
intensity of precipitation, and in general drier conditions by the
mid and end of the century.

Using 34 GCMs under the two different emission scenarios of
RCP 4.5 and RCP 8.5, Shi et al.89 predicted that potential eva-
potranspiration tends to increase in south-eastern Australia.
Likewise, using 22 CMIP5 models, a substantial increase in the
number of warm temperature extremes and periods of dryness
was projected by Alexander et al.90 for Australia, one of the
predicted salinization hotspots in the current study. Similar
trends for Australia were projected by Grose et al.91 by analysing
the available CMIP6 multi-model ensemble. By analysis of 14
GCMs under the RCP 4.5 and RCP 8.5 future scenarios, a sub-
stantial decrease in precipitation during the summer (up to
1.5 mm day−1) is expected by Colorado‐Ruiz et al.92 in southern
Mexico, also a projected salinization hotspots in the present
study. A decrease in the frequency of precipitation during winter
and spring in south-western United States is projected by East-
erling et al.93, as also found in this study to be a hotspot. An
increase in the number of consecutive dry days in west Sahara94

and actual evapotranspiration in arid areas across north-western
China95 under the 1.5 °C and 2.0 °C global warming scenarios
reported in the literature is congruent with the findings of the
current study.

To conclude, lack of reliable predictive tools and data to assist
land managers and policy makers for understanding the land
cover dynamics is one of the main obstacles to long-term sus-
tainable land and environment management. In the present
study, we used legacy soil-profiles data and a set of purely spatial
and spatio-temporal predictors to develop some predictive ML
models for projection of the primary soil salinity (represented by

electrical conductivity) as one of the major threats to the soil
fertility, stability, and biodiversity in world drylands. Our analysis
provides long-term gridded (at 0.5° spatial resolution) predictions
of primary soil salinity change in drylands globally in response to
projected key climatic drivers of soil salinity, which is currently
missing in the soil and land management literature. In the face of
projected future climatic uncertainties, the developed predictive
models and generated data in the present investigation can help
with decision-making regarding land and water resources man-
agement to recognize the hotspots of soil salinization, devise the
necessary action plans, and implement those plans towards sus-
tainable land and water resources management.

Under different GHG concentration trajectories, our predic-
tions suggest that by the late 21th century the drylands areas of
South America, southern Australia, Mexico, south-west United
States, and South Africa are at the risk of higher soil salinity
caused by climate change, compared to the reference period
(1961–1990). In addition, increase in climate-induced soil salinity
threatens the drylands of Spain, Morocco, and northern Algeria
by the end of the century. On the other hand, our results project a
decreasing trend in primary soil salinity of the drylands located in
the northwest United States, the Horn of Africa, Eastern Europe,
Turkmenistan, and west Kazakhstan, relative to the reference
period. The reliability of the predictions made here are different:
the projected soil salinities for the drylands located in North
America and Australia are of the highest level of reliability while
the drylands of central Asia, Middles East, and the Great Sahara
have the highest uncertainty in predictions for soil salinity. Other
zones such as India, South America, and South Africa are in the
middle in terms of the reliability of predictions.

Methods
In a previous study33, we developed tree-based two-part predictive ML models for
determining annual surface (referring to top 30 cm of the soil) soil salinity and
sodicity (represented by exchangeable sodium percentage) over the past four
decades (1980–2018) at ~1 km2 spatial resolution on a global scale. In the present
study, however, we aimed to predict the future dynamics of soil salinization up to
the year 2100 under changing climate. In the present investigation, we focused on
primary salinization and the trained tree-based ML models were only of regressive
models. The next sections explain the details of the workflow for predicting soil
salinity (ECe) including: (1) collection of the measured soil-salinity profiles, (2)
collection and processing of salinity predictors, (3) exposing the salinity profiles
and predictors data to ML models, training the models, and validation of the
trained models, and (4) employing the trained models to project the spatio-
temporal variation of the soil ECe up to the year 2100 under different greenhouse
gas (GHG) concentration trajectories. Finally, we discuss the accuracy of the
trained models for prediction of ECe.

Soil-salinity profiles. We obtained the geo-referenced soil profiles (points) with
measured values of ECe from the soil-profile dataset of World Soil Information
Service (WoSIS)96. The spatial distribution of the profiles data used as an input into
the ML models is presented in Fig. 4a. The WoSIS ECe database includes
19,434 soil profiles and each individual profile (with a unique profile ID) may
include one or more samples for various depths below the soil surface. The data
cover the sampling period from 1950 to 2014. Since the date of sampling was an
essential parameter in model training, we removed the ECe profiles without sam-
pling dates. This reduced the total number of ECe samples from 73,517 to 59,649,
with the number of samples per year shown in Fig. 4b. In addition, we dropped the
soil ECe profiles sampled from the croplands to remove the effects of human
interventions from the analysis. As a result, a total 44,708 samples (11,517 profiles)
remained in our analysis for model training and accuracy assessment.

Global land cover data provided by Earth-Observation Satellites before 1997
were scarce. Accordingly, we divided the profiles into two categories based on the
date of sampling: before 1997 and after 1997. For the period before 1997, we
identified the profiles located in croplands using the Global Land Cover
Characteristics Database, Version 2.0 at ~1 km resolution97. Due to a lack of
historical land cover data, we assumed that the land cover/land use did not change
considerably before the 1980s. For profiles sampled after January 1997, however,
we identified the samples/profiles located in croplands using land cover maps for
years 2000, 2006, 2014, and 2018 with similar International Geosphere-Biosphere
Programme (IGBP) land cover legend adopted from the MODIS Data Collection
(MCD12Q1 and MCD12C1)98. We selected the IGBP land cover legend as it was
available in both datasets. Each profile sampling date was attributed to the layer
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with the nearest year of acquisition. The MODIS land cover layers were first re-
projected to the World Geodetic System (WGS 1984) spatial coordinates at 0.004°
(~500 m) using the nearest neighbour method.

Predictors. We used two types of predictor to train the models for predicting ECe

as the target variable: purely spatial and spatio-temporal. Purely spatial predictors
included the land and soil attributes, which were relatively constant during the
period of the analysis, while spatio-temporal predictors were the large-scale hydro-
climatic variables derived from the output of selective GCMs. In total, 14 predictors
were used, of which nine purely spatial and the rest spatio-temporal. The pre-
processing details, projection, extent, and resolution of the predictors’ layers are
summarized in Table 2. These predictors were primarily selected to represent the
main factors affecting the salt balance in the root zone in non-irrigated soils66. In
addition, we included in our model training additional soil formation factors,
including topography and parent material (weathered rock or deposit from which
the soil is formed)96,99.

The purely spatial predictors comprised:

● soil classes based on the World Reference Base (WRB) classification72,100;
● soil texture represented by the percentage of clay content, obtained from

the ISRIC global gridded soil information at ~250 m spatial resolution72;
● soil wilting point in mm101;
● soil field capacity in mm101;
● effective plant rooting depth in m102;
● topographic slope in degrees; and
● terrain elevation in m.

Slope and terrain elevation layers were derived from the World Elevation
Terrain data adopted from ArcGIS Living Atlas of the World103 and were re-
projected to the WGS 1984 coordinates system at 0.002° (~250 m) spatial
resolution using the cubic convolution method. We filled the missing grid-cells (or
cells with no data values) in purely spatial predictor layers with an average from the
cells surrounding the missing grid-cell. We used a circle with a radius of four cells
from the neighbouring cells to calculate the average and fill the data gap. All purely

Fig. 4 General properties of the ECe profiles used for training the models. a spatial distribution of the soil salinity profiles used for model training and
prediction of the soil salinity. Each profile includes one or more soil samples. b temporal distribution of the samples used for training the predictive models
of soil salinity. Each bar shows the number of samples within one year. c frequency distribution of the measured values of ECe. The solid and dashed
vertical lines represent the mean and median values, respectively. d average of the measured soil salinity values at 1 cm intervals to the depth of 1 m below
the surface.
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spatial predictors were assumed to be vertically constant. Raster processing was
conducted in ArcGIS 10.7104. Then, we obtained the values of grid-cells of purely
spatial predictors at the locations of ECe profiles (Fig. 4a) to later train predictive
models of soil salinity (see “model training for prediction of soil salinity”). The
upper and lower depths of the measured ECe samples derived from the original
WoSIS database were the additional purely spatial predictors used for model
training; these were introduced to account for the effect of depth on soil
salinization processes.

The spatio-temporal predictors considered here were precipitation intensity,
precipitation frequency, daily evapotranspiration, and sea salts wet and dry
deposition rates (Table 2). To make predictions for future periods, we needed the
projected values of the predictors. Therefore, we derived the values of spatio-
temporal predictors from the outputs of the GCMs under different GHG
concentration trajectories.

For training the models, we used the GCMs available in both CMIP5 and
CMIP6 data projects to consider the uncertainty in GCMs predictions and to cover
all available projections for dry and wet sea salt deposition rates. Additionally, this
gave us the opportunity to analyse the differences between the CMIP5 and CMIP6
model outputs in terms of the derived predictors’ values and their effects on the
projected soil salinity. The historical outputs of GCMs, including precipitation,
evapotranspiration, and dry and wet deposition rates of sea salts, were used for
training the predictive ML models (CMIP5: 1900–2005; CMIP6: 1900–2014). The
projected outputs of GCMs for the same parameters were used to make future
predictions of soil salinity (CMIP5: 2006–2100, CMIP6: 2015–2100). For the
CMIP5 models, predictors were calculated based on the future projections forced
by the RCP 4.5 and RCP 8.5 scenarios. Likewise, for the GCMs models of CMIP6,
predictors were computed using future projections forced by RCP 4.5 and RCP 8.5
global forcing pathways for the Shared Socio-economic Pathways (SSP) 2 and 5,
respectively. These medium (4.5) and high (8.5) radiative forcing pathways were
chosen because they, respectively, represent the most plausible (or stabilization)
and worst case scenarios of emissions by the end of the 21th century.

Since the total number of wet days and the total annual precipitation values
were calculated from the daily precipitation fluxes, the GCMs with precipitation
data at daily resolution were required. Additionally, not all of the available GCMs
in the CMIP5 and CMIP6 projects had the dry and wet deposition rates of the sea
salts. Accordingly, our analysis was narrowed down to a total of 16 GCMs outputs
under different GHG concentration trajectories from both CMIP5 and CMIP6
projects. For the GCMs with different ensemble members (MIROC5 and CESM2-
WACCM-gn, in particular), we computed an ensemble mean to avoid a bias in the
results of final multi-GCM ensembles toward the GCMs with the higher number of
participating ensemble members. In total, data of eight GCMs (seven with
projections under RCP 4.5 and six GCMs with projections under RCP 8.5) and
eight GCMs (with projections under both SSP 2-4.5 and SSP 5-8.5) were
downloaded from the CMIP5 and CMIP6 data105, respectively. Details on the final
chosen GCMs, their spatial resolution, and their used ensemble members are
presented in Table 3.

The original longitude values of netCDF files were set in the range −90° and
90°, referenced to the Greenwich Prime Meridian, to be in the same spatial extent
as the purely spatial predictors. Then, using the bilinear interpolation method, all
were interpolated to 0.5° × 0.5° WGS 1984 longitude-latitude regular grid to be able
to generate multi-GCM ensemble from the outputs of our predictive models.
Calculation of the spatio-temporal predictors and processing of the original
netCDF files were conducted in the Climate Data Operators106 environment. The
prepared netCDF data based on the outputs of GCMs were then converted to
multi-band rasters, after which we obtained the values of spatio-temporal
predictors at locations of ECe profiles. These values combined with the values of
purely spatial predictors were used to train the predictive models of soil salinity. It
was not practical to use these spatio-temporal predictors at daily or monthly
temporal resolutions because of strong intra/inter-annual fluctuations in these
predictors66. Therefore, we used a 5-year moving average instead (as a smoother
input) to better capture the effect of intra/inter-annual trends in these predictors on
soil salinity variations. Finally, the 5-year moving averages of the spatio-temporal
predictors were attributed to each observation of ECe according to the year of
sampling.

Model training for prediction of soil salinity. The measured values of ECe (target
or response variable) and the values of each of the 14 predictors (each represented
by one column of data), attributed to the measured values of ECe, were then
imported to MATLAB for model training and validation. For each GCM, a separate
matrix of data was prepared, with a total of 16 matrices. The WRB soil classes (as
the only categorical predictor) were represented by a vector of positive integers that
contained values assigned to different soil classes. The other 13 predictors were
non-categorical represented by a set of real numbers. In spite of employing the
method explained earlier for estimation of the missing cells in predictors’ layers,
the values of some purely spatial predictors were still missing in the final imported
matrices. Therefore, the corresponding ECe values (each represented by a row of
data) were eliminated and not used for model training. As a result, 1.28% of the
sample rows were excluded from the analysis.

We applied MATLAB Statistics and ML toolbox (MATLAB, R2019b) for
building and validating the predictive models of ECe. Here, we used an ensemble of

regression trees for training and projecting the soil salinity based on the predictor
datasets obtained from each of the 16 GCMs shown in Table 3. We chose tree-
based models due to their relatively higher accuracy and computational speed
compared to other ML algorithms33,107. Additionally, tree-based predictive models
are highly flexible in mapping non-linear relations between the known predictors
and known responses108,109 and are robust in handling outliers and collinearity
concerns in environmental modelling110,111. The MATLAB built-in “fitrenemble”
function was applied for training the regression ensembles.

The model hyperparameters, or parameters that should be set before launching
the training process of a ML algorithm, were tuned using MATLAB automatic
hyperparameter optimizer. These comprised ensemble aggregation method,
number of learning cycles, learn rate, minimum leaf size, maximum number of
splits, and number of variables to sample107. By varying the hyperparameters, the
optimizer attempts to find a combination of their values which minimizes the “log
(1+ cross-validation loss)”. Holdout cross-validation method (with 25% of data
being held out) was used for optimization and the cross-validation loss was
quantified using mean squared error. The optimizer used the Bayesian
optimization algorithm with the “expected-improvement-per-second-plus”
acquisition function. The maximum number of objective function evaluations was
100 since there was no notable decrease in the value of the observed minimum
objective function after 100 evaluations. We repartitioned the cross-validation at
every iteration and assumed the weight of all observation rows to be equal to one.
We applied the log-transform to address the issue of right skewness in frequency
distribution of the target variable; however, the log-transformation and back-
transform of the predicted responses had a negligible impact on the accuracy of the
trained modes.

The Bayesian optimization algorithm could return different results since its
chosen acquisition function depends on the runtime of the objective function; the
optimizer avoids the regions with extremely high runtimes. According to the non-
reproducibility of the tuned set of hyperparameters, the model training and
hyperparameter tuning jobs on each of 16 datasets were repeated 30 times (480
models in total). The maximum number of learning cycles was limited to 500 to
keep the runtime for each training task below 10 min. High runtime and
computational costs did not allow us to repeat the trainings more than 30 times.
We accelerated the model training process by running the computations on a
machine with 48 cores using the MATLAB Parallel Computing Toolbox. The
goodness-of-fit of the trained models was evaluated by 10-fold cross-validation R2

(the extent of variation explained by the model112), root mean squared error
(RMSE), mean absolute error (MAE), and Nash-Sutcliffe model efficiency
coefficient (NSE113). Then we used the bias corrected and accelerated percentile
method to calculate the 95% confidence intervals of the mean for each validation
metric based on 1,000 bootstrap samples (with replacement) derived from the
results of the 30 runs performed for each of the 16 datasets. Among the 30 trained
models for each input training set, the one with the lowest RMSE was selected; we
chose RMSE as it is more sensitive to large errors114. In total, 16 models remained
in our analysis for soil salinity projections.

Model implementation and soil salinity projection. We converted the world
drylands layer delineated by the United Nations Environment Programme World
Conservation Monitoring Centre37 to a raster layer at 0.5° spatial resolution for
generation of a global soil base map of the drylands. From that layer, we con-
strained our analysis to areas with an AI ≤ 0.65 and masked out the grid-cells
(pixels) with an AI > 0.65 to keep only the drylands in our analysis37. The remained
raster had 24,045 grid-cells and we used it as the global soil base map of the
drylands.

Similar to input training profiles data, we extracted the values of purely spatial
and spatio-temporal predictors to the location of the base map grid-cells and then a
5-year moving average from the values of spatio-temporal predictors was
computed. We applied the best chosen trained models to these new locations (cells)
and the corresponding values of the predictors. As mentioned before, the degree of
soil salinity and solute concentration change along the soil depth. Usage of the
upper and lower depths of the samples as predictors in the model training enabled
us to make predictions of ECe at different depths below the soil surface. In this
regard, the trained models can be considered as four-dimensional predictive
models of soil salinity that make predictions for different longitudes, latitudes,
depths, and times. For each pixel and each year, we predicted the values of soil
salinity at five depths: 0, 10, 30, 60, and 100 cm. We used the trapezoidal rule to
compute an average of the ECe (dS m−1) to the depth of 1 m as follows:72

ECe;ave ¼ ð10� 0Þ ´ ðECeð10Þ þ ECeð0ÞÞ þ ð30� 10Þ ´ ðECeð30Þ þ ECeð10ÞÞ þ ¼
�

ð60� 30Þ ´ ðECeð60Þ þ ECeð30ÞÞ þ ð100� 60Þ ´ ðECeð100Þ þ ECeð60ÞÞ
�
=ð100 ´ 2Þ ð1Þ

where ECe is the predicted salinity at the corresponding depth. The outlier that is
more than three scaled Median Absolute Deviations (MAD) away from the median
of all predictions of a year were removed by the MATLAB “isoutlier” built-in
function; this was the most robust method for removing outliers according to the
user guide (see MATLAB “isoutlier” documentation for further details). In total, for
each grid-cell of the global soil base map of the drylands, 197 predictions of ECe

were made in the period between 1904 and 2100 (one prediction for each year);
since all spatio-temporal predictors are five-year moving averages, 1904 is the
beginning of the period.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26907-3 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6663 | https://doi.org/10.1038/s41467-021-26907-3 | www.nature.com/naturecommunications 11

www.nature.com/naturecommunications
www.nature.com/naturecommunications


T
ab

le
3
G
lo
ba

l
C
ir
cu
la
ti
on

m
od

el
s
(G

C
M
s)

us
ed

fo
r
ca
lc
ul
at
io
n
of

th
e
sp
at
io
-t
em

po
ra
l
pr
ed

ic
to
rs
.

C
M
IP
5
a
an

d
C
M
IP
6

m
od

el
na

m
es

En
se
m
bl
e

m
em

be
r(
s)

b
S
ce
na

ri
o(
s)

S
pa

ti
al

re
so
lu
ti
on

(l
at
it
ud

e
×
lo
ng

it
ud

e)
S
ou

rc
e

G
IS
S-
E2

-H
r6
i1
p3

R
C
P
4
.5

2°
×
2.
5°

N
A
SA

G
od

da
rd

In
st
itu

te
fo
r
Sp

ac
e
St
ud

ie
s1
21
.

G
IS
S-
E2

-R
r6
i1
p3

R
C
P
4
.5

2°
×
2.
5°

N
A
SA

G
od

da
rd

In
st
itu

te
fo
r
Sp

ac
e
St
ud

ie
s1
21
.

M
IR
O
C
5

r1
i1
p1
,

r2
i1
p1
,r
3i
1p
1

R
C
P
4
.5
,

R
C
P
8
.5

1.
4
0
0
8
°
×
1.
4
0
6
25

°
A
tm

os
ph

er
e
an
d
O
ce
an

R
es
ea
rc
h
In
st
itu

te
(T
he

U
ni
ve
rs
ity

of
T
ok
yo
),
N
at
io
na
l
In
st
itu

te
fo
r

En
vi
ro
nm

en
ta
l
St
ud

ie
s,
an
d
Ja
pa
n
A
ge
nc
y
fo
r

M
ar
in
e-
Ea
rt
h
Sc
ie
nc
e
an
d
T
ec
hn

ol
og

y1
22
.

M
IR
O
C
-E
SM

-C
H
EM

r1
i1
p1

R
C
P
4
.5
,

R
C
P
8
.5

2.
79

0
6
°
×
2.
8
12
5°

Ja
pa
n
A
ge
nc
y
fo
r
M
ar
in
e-
Ea
rt
h
Sc
ie
nc
e
an
d

T
ec
hn

ol
og

y,
A
tm

os
ph

er
e
an
d
O
ce
an

R
es
ea
rc
h

In
st
itu

te
(T
he

U
ni
ve
rs
ity

of
T
ok
yo
),
an
d
N
at
io
na
l

In
st
itu

te
fo
r
En

vi
ro
nm

en
ta
l
St
ud

ie
s1
23
.

M
IR
O
C
-E
SM

r1
i1
p1

R
C
P
4
.5
,

R
C
P
8
.5

2.
79

0
6
°
×
2.
8
12
5°

Ja
pa
n
A
ge
nc
y
fo
r
M
ar
in
e-
Ea
rt
h
Sc
ie
nc
e
an
d

T
ec
hn

ol
og

y,
A
tm

os
ph

er
e
an
d
O
ce
an

R
es
ea
rc
h

In
st
itu

te
(T
he

U
ni
ve
rs
ity

of
T
ok
yo
),
an
d
N
at
io
na
l

In
st
itu

te
fo
r
En

vi
ro
nm

en
ta
l
St
ud

ie
s1
23
.

M
R
I-
C
G
C
M
3

r1
i1
p1

R
C
P
4
.5
,

R
C
P
8
.5

1.
12
14
8
°
×
1.
12
5°

M
et
eo

ro
lo
gi
ca
l
R
es
ea
rc
h
In
st
itu

te
12
4

N
or
ES

M
1-
M

r1
i1
p1

R
C
P
4
.5
,

R
C
P
8
.5

1.
8
9
4
7°

×
2.
5°

N
or
w
eg
ia
n
C
lim

at
e
C
en

tr
e1
25
.

M
R
I-
ES

M
1

r1
i1
p1

R
C
P
8
.5

1.
8
9
4
7°

×
2.
5°

M
et
eo

ro
lo
gi
ca
l
R
es
ea
rc
h
In
st
itu

te
12
6

C
ES

M
2-
W

A
C
C
M
-g
n

r1
i1
p1
f1
,r
2i
1p
1f
1,

r3
i1
p1
f1

SS
P
2-
4
.5
,S

SP
5-
8
.5

0
.9
4
24

0
8
38

°
×
1.
25

°
C
om

m
un

ity
Ea
rt
h
Sy
st
em

M
od

el
C
on

tr
ib
ut
or
s1
27
.

C
N
R
M
-E
SM

2-
1-
gr

r1
i1
p1
f2

SS
P
2-
4
.5
,S

SP
5-
8
.5

1.
4
0
0
34

77
°
×
1.
4
0
6
25

°
N
at
io
na
l
C
en

tr
e
fo
r
M
et
eo

ro
lo
gi
ca
l
R
es
ea
rc
h,

M
ét
éo

-F
ra
nc
e
an
d
C
N
R
S
la
bo

ra
to
ry

12
8
.

G
FD

L-
ES

M
4
-g
r1

r1
i1
p1
f1

SS
P
2-
4
.5
,S

SP
5-
8
.5

1°
×
1.
25

°
N
O
A
A

G
eo

ph
ys
ic
al

Fl
ui
d
D
yn
am

ic
s
La
bo

ra
to
ry

12
9
.

IN
M
-C
M
4
-8
-g
r1

r1
i1
p1
f1

SS
P
2-
4
.5
,S

SP
5-
8
.5

1.
5°

×
2°

In
st
itu

te
fo
r
N
um

er
ic
al

M
at
he

m
at
ic
s1
30
.

IN
M
-C
M
5-
0
-g
r1

r1
i1
p1
f1

SS
P
2-
4
.5
,S

SP
5-
8
.5

1.
5°

×
2°

In
st
itu

te
fo
r
N
um

er
ic
al

M
at
he

m
at
ic
s1
31
.

M
IR
O
C
-E
S2

L-
gn

r1
i1
p1
f2

SS
P
2-
4
.5
,S

SP
5-
8
.5

2.
78

8
9
8
23

°
×
2.
8
12
5°

A
tm

os
ph

er
e
an
d
O
ce
an

R
es
ea
rc
h
In
st
itu

te
(T
he

U
ni
ve
rs
ity

of
T
ok
yo
),
N
at
io
na
l
In
st
itu

te
fo
r

En
vi
ro
nm

en
ta
l
St
ud

ie
s1
32
.

M
R
I-
ES

M
2-
0
-g
n

r1
i1
p1
f1

SS
P
2-
4
.5
,S

SP
5-
8
.5

1.
8
6
4
51
0
4
°
×
1.
8
75

°
M
et
eo

ro
lo
gi
ca
l
R
es
ea
rc
h
In
st
itu

te
13
3 .

N
or
ES

M
2-
LM

-g
n

r1
i1
p1
f1

SS
P
2-
4
.5
,S

SP
5-
8
.5

1.
8
9
4
73

6
8
°
×
2.
5°

N
or
w
eg
ia
n
C
lim

at
e
C
en

tr
e1
34
.

a C
ou

pl
ed

M
od

el
In
te
r-
co
m
pa
ri
so
n
Pr
oj
ec
t
Ph

as
e
5.

b I
nd

ic
es

de
fi
ne

th
e
en

se
m
bl
e
m
em

be
r:
“r
”
fo
r
re
al
iz
at
io
n,

“i
”
fo
r
in
iti
al
iz
at
io
n,

“p
”
fo
r
ph

ys
ic
s,
an
d
“f
”
fo
r
fo
rc
in
g.

En
se
m
bl
e
m
em

be
rs

w
ith

fo
ur

in
di
ce
s
re
la
te

to
C
M
IP
6
.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26907-3

12 NATURE COMMUNICATIONS |         (2021) 12:6663 | https://doi.org/10.1038/s41467-021-26907-3 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


To compare the future state of the drylands soil salinity against the past
conditions, we considered three time periods in our analysis: reference period
(1961–1990), mid-term future (2031–2060), and long-term future (2071–2100).
We used 30-year periods and 1961–1990 as the reference period based on the
recommendations of the World Meteorological Organization for evaluations of the
long-term changes in climatic variables115. Soil salinity predictions for years in the
future periods were averaged and compered to the average of the predictions for
years in the reference period.

We calculated the area of each grid-cell of the global soil base map of the
drylands in the WGS 1984 spatial coordinates using the computer code presented
in the Supplementary Information. We estimated the total annual area of salt-
affected soils between 1904 and 2100 and then computed the annual percentage
change in the area of those soils by dividing the total area at each year by the
average area of salt-affected soils over the period. We assumed an average of 95
years would be enough to remove the potential noise introduced by the spatio-
temporal predictors. We used global administrative areas dataset116 to estimate the
total area of salt-affected soils at the national and continental levels. Numerical
values representing the countries and continents were attributed to each cell of the
base soil map.

Accuracy assessment of the trained models. The results of hyperparameter
tuning and the 10-fold cross-validation accuracy metrics of the best-fitted models
are summarized in Supplementary Table 14. Supplementary Table 15 also presents
the calculated lower and upper limits of 95% confidence intervals of the 10-fold
cross-validation accuracy metrics, calculated for the trained models. For all 16
models, the MATLAB ensemble aggregation method of “LSBoost” was superior in
fitting the models, compared to the “Bagged” method.

For the best-fitted models, the lowest R2 was 71.72% (with the 95% confidence
intervals of 67.62–69.89%) related to the GISS-E2-R model, while the highest R2

between the measured and predicted values of ECe was 73.95% (67.34–70.32%),
calculated for the CNRM-ESM2-1 model (see Table 3 for the details of GCMs). For
all 16 models, the average calculated 10-fold cross-validation R2 was 72.79%.
Likewise, GISS-E2-R and CNRM-ESM2-1 were the models with the highest and
lowest calculated values of RMSE, respectively. The average of 10-fold cross-
validation RMSE for all 16 best-fitted models was 3.6, ranging from 3.52
(3.78–3.93) to 3.67 (3.76–3.95). This represents a normalized RMSE equal to ~6%
(normalized to the observed range of the ECe values).

To understand better how well the best-fitted models predict the response
values, the relation between the measured (values sampled from the soil profiles)
and predicted values of ECe is visualized in Fig. 5 via bin scatter plots. Taking a
conservative approach, Fig. 5 shows only the validation plots for the six (out of the
16 best-fitted) models with the worst performance (i.e. with highest RMSE values).
Predictions of the models are fairly concentrated around the y= x line, suggesting a
good agreement of the modelled values with measured data. The accuracy of
predictions increases with ECe values, with a tendency for over-estimations for
ECe ≤ 1 dS m−1. Overall, the relatively high R2 (>70%) values indicate a satisfactory

model fitting, particularly as such values are not common in digital soil
mapping117.

Additionally, we evaluated the accuracy of the vertical prediction of the 16 best-
fitted models, i.e. the prediction accuracy at various depths from the soil surface. To
do so, we categorized the measured and predicted (by 10-fold cross-validation)
values of ECe into six bins of 0–20, 20–40, 40–60, 60–80, 80–100, and 100–200 cm
based on an average from the lower and upper depths of the samples (each bin
included its left edge); the bins edges were chosen so that the number of samples
available for each bin stayed roughly equal and the deeper depths were not
considered due to lack of data. The calculated R2 values for each bin and each of the
16 models are reported in Supplementary Table 16. The averages of the 16 models
R2 values for the shallowest to deepest soil layers (bins) were 63.59%, 72.99%
77.39%, 77.31%, 79.59%, and 72.51%, respectively. These accuracies are in line with
the reported R2 values of Taghizadeh-Mehrjardi et al.28 who developed separate
regression tree-based models to predict soil salinity (78% for 0–15 cm soil layer).
However, their analysis was purely spatial and was only focused on the saline soils
located in a local area in central Iran (72,000 ha), while the current analysis projects
the spatio-temporal variability in soil salinity on the global scale. We did not
observe a decrease in predictive accuracy of the digital soil models at the higher
depths reported in other studies, such as Malone et al.117 and Minasny et al.118.

In addition to global accuracy assessment of the trained models, we evaluated
the predictive power of the best-fitted models at the country and continental levels
(Fig. 6a, b). We grouped the measured sample values of ECe according to the
continent or the country where the samples were acquired and compared the mean
of each group with the mean of the 10-fold cross-validated predictions for each
group. Only 87 countries had measured input profiles data of ECe required for our
analysis. At the country level, the R2 between the mean of predictions of the 16
models and the mean of measured values of ECe was 80.41% while at the
continental level, this value was 99.64%. The reason for such a high accuracy at the
continental level is the high number of data points within each continent, which
makes the predicted and estimated averages close to each other.

Similarly, we compared the predictions of our models with other available
gridded datasets on soil ECe, including HWSD (Harmonised World Soil
Database10) and WISE (World Inventory of Soil Emission Potentials) which
derived soil properties on a 30 × 30 arc-seconds global grid (WISE-30; ref. 119), at
the country and continental levels. Since these two datasets provide data for
different soil layers (HWSD: two layers at 0–30 cm and 30–70 cm; WISE-30: seven
layers, with five fixed depth intervals of 20 cm up to the depth of 100 cm and two
50 cm depth intervals between 100 and 200 cm), we only focused on surface
measurements. For comparison with HWSD, any soil sample with the upper
sample depth of 0 cm and a lower sample depth ≤30 was chosen as the surface
measurement (a total of 8,995 samples) while for WISE-30, any ECe sample with
the lower sample depth of 20 cm was chosen as the surface measurement (a total of
7,535 samples).

At the location of each particular surface measurement, we predicted the soil
salinity for 0–20 or 0–30 cm (depending on the target dataset for comparison) soil
layers using the purely spatial and spatio-temporal values of predictors
corresponding to the year of sampling of that particular surface measurement.

Fig. 5 10-fold cross-validation plots for the six trained models with the highest root mean squared error (RMSE) values out of the final 16 best-fitted
models. The RMSE decreases from a–f. The colour maps show the scatter density in each bin. The red lines represent the y= x line.
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Then we grouped the predictions and surface measurements based on the country
and continent of sampling. At the country level, the R2 between the mean of our
models predictions and the mean of surface measured values (0–30 cm) of ECe for
74 countries was 68.55%, while this value for HWSD was 13.6%. At the continental
level, these values were 91.48% and 74.98%, respectively (Fig. 6c, d). Compared to
the WISE-30 predictions, the R2 between the mean of our models predictions and
the mean of surface measured values (0–20 cm) of ECe was 69.33% and 87.99% at
the country (71 countries) and continental levels, respectively whereas the WISE-30
values were 17.22% and 5.53% (Fig. 6e, f). Although HWSD and WISE-30 datasets
are purely spatial (they do not include information on the temporal variability of
the soil salinity) and comparison is carried out with the same data used to train the
ML models (as currently there are no other independent soil salinity datasets),
comparing the predictions made by the models developed here against the
predictions of those datasets can provide a better quantitative understanding of the
improved predictive performance of our models.

Model limitations, uncertainties, and perspectives for future research. ML
models are one of the solutions suggested for time series projection challenges120.
However, unlike the analytical models, ML models do not enable consideration of
the mechanistic insights in the predictive algorithms of soil properties72. As

mentioned earlier, no harmonized dataset is currently available quantifying the
concentration of the soluble salts in salt-affected soils and, to a great extent,
quantification of the severity of soil salinity in the field is limited to ECe mea-
surements. Provision of such dataset can be a baseline for developing more
mechanistic and physically constrained approaches in projections of soil salinity.
Although very challenging, partly due to the lack of the required environmental
and soil data, development of root zone salt-budget models for projecting large-
scale soil salinity driven by groundwater table, irrigation practices, and sea level rise
is an important area for future research.

Captured trends and projections in this study depend on the input data used for
training the models. Inconsistency in accuracy and methods applied by different
laboratories for measuring soil properties can negatively impact the trends captured
by the trained models. As we go towards the past, the number of available samples
and their accuracy decreases (Fig. 4b); this in turn may influence the validation
procedures applied to the predictions made by ML models72. It may also generate
predictions biased towards the recent periods when more data samples are available.
Additionally, more care should be given to application of the predictions made here at
locations underrepresented by input data for training the ML models. In the current
study, the majority of soil profiles used for training were sampled from North
America and Australia due to a greater data availability. Thus, there is a possibility
that the results are biased towards the soil and hydro-climatic conditions of these two
continents. One solution to address this issue can be to develop more regional ML
models; yet, this is challenging in the locations with the low number of sample data.
Decrease in the number of available input data reduces the efficiency of the model
training, resulting in less accurate and unsatisfactory validation outcomes. More
updated and geographically scattered profile data are required in future studies to
address the issue of inconsistency in the legacy soil-profile data. Although our analysis
is an estimation of a relative change (relative to the reference period) in primary soil
salinity and biases in GCMs outputs are not significant, application of reanalysis data
for the reference historical period may address the biases issue in GCMs.

More importantly, the extent of uncertainty in the predictors used for training
the models is not spatially constant. All the predictors used here are large-scale
estimations of other models, which inherently include some degrees of uncertainty.
Particularly, purely spatial predictors including the wilting point, field capacity, and
effective plant rooting depth, are less certain in large deserts where observations are
scarce for tuning and validation of the models. One way to address this issue is to
provide spatially explicit maps of uncertainty for the predictions of the ML
algorithms. However, this needs spatially explicit uncertainty maps of the
predictors or their probability distributions. In the case of our study, such data were
not available for the predictors. Additionally, ML algorithms are highly
computationally demanding and estimation of the outputs uncertainty ranges by
methods such as Monte Carlo simulations was not feasible by our computational
resources (assuming hypothetical distributions of uncertainty in the predictors and
input profiles data). Thus, we did not quantify the posterior distribution and
uncertainty of the predictions and instead we estimated the global accuracy of the
projected results via the 10-fold cross-validation method. A less computationally
intensive framework is needed in the future for provision of the spatially explicit
estimations of uncertainties in outputs of the ML models. Furthermore,
comparison of our predictions accuracy with HWSD and WISE-30 datasets was
based on the data used here for ML training and more independent datasets of soil
salinity are required to benchmark our models performance against previous
datasets/models of soil salinity.

The number of GCMs with projected wet and dry sea salt deposition rates
(which are also necessary for mechanistic approaches) were rather limited in both
CMIP5 and CMIP6 data projects. More ensemble members could improve the
certainty of the projected soil salinity. Furthermore, the spatial resolution of our
salinity projections was relatively coarse (0.5°); although the purely spatial
predictors were of the adequate resolution, there was no point in prediction of the
soil salinity values at finer resolutions since the spatio-temporal resolution of the
GCMs grids was roughly between 1 and 3°. Such issues might be addressed with
improvement of the spatial resolution of GCMs and the number of GCMs with sea
salt aerosols projections in upcoming years.

Data availability
Data generated in this study including input data for training the predictive models,
objects of the predictive models, annual predictions made by the models for each
location, and spatially explicit maps quantifying the change in predicted soil salinity in
the mid- (2031–2060) and long-term futures (2071–2100), relative to the reference period
(1961–1990) have been deposited in the “figshare” database, freely available at https://
doi.org/10.6084/m9.figshare.14548947.

Code availability
Computer codes required for regeneration of the main results presented in this paper can
be found in Supplementary Information appendix (computer codes section).
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Fig. 6 Comparison of the predicted values of soil salinity (ECe) in the
present study and the measured values as well as the soil ECe predicted
in other datasets (i.e. HWSD and WISE-30) at the continental and
country levels. a, b Average predicted values versus average measured
values at the continental and country levels (87 countries), respectively.
c, d Average of the surface (0–30 cm) salinity (ECe) values predicted by the
present study and Harmonised World Soil Database (HWSD) versus the
average of measured surface salinity at the continental and country levels
(74 countries), respectively. e, f Average of the surface (0–20 cm) salinity
predicted by the present study and WISE-30 (World Inventory of Soil
Emission Potentials derived soil properties) dataset versus the average of
measured surface salinity at the continental and country levels (71
countries), respectively. The error bars represent the minimum and
maximum of average values calculated for the 29 models used in the study.
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