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H I G H L I G H T S  

• A graphical tool to evaluate performances of sensors was developed. 
• Uncertainty of sensors and its’ contributors can be displayed. 
• Checking compliance of sensors with legislation is easy and fast. 
• Several other information can be extracted.  

A R T I C L E  I N F O   
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A B S T R A C T   

The modified Target Diagram (MTD) was developed to evaluate the performance of low-cost sensors (LCS) for air 
quality monitoring in comparison with reference methods by reporting relative expanded uncertainty and its 
contributors. An MTD provides several pieces of information, including compliance with regulation, sources of 
error and how to diminish them, completeness and validity of LCS calibration etc. It allows the user to examine 
the effect of selecting different regression types and residual fitting on the LCS measurement uncertainty. The 
ordinary least squared regression with fitted residuals and dynamic between reference analyser uncertainty 
rather than constant ones yielded more realistic LCS measurement uncertainty compared to other options. The 
MTD is a fast visual tool to extract several pieces of information on evaluation of any candidate method against 
reference method.   

1. Introduction 

Air Quality Monitoring Stations (AQMS) implement the reference 
measurement methods for the regulated pollutants defined in the Eu
ropean Air Quality Directive (AQD) to provide the best estimation of 
true air pollution levels (EC, 2008). In the last decade, the Taylor Dia
gram (Taylor, 2001) and the Target Diagram (Jolliff et al., 2009) have 
been widely used to evaluate the agreement between air quality models 

and reference measurements of AQMS (Cuvelier et al., 2007; Thunis 
et al., 2012; Vautard et al., 2007). The Taylor Diagram is a composite 
tool visualising of several statistics that summarise agreement between 
two datasets, e.g., correlation, root-mean-squared error (RMSE), and 
ratio of corresponding variances (Taylor, 2001). Jollif et al. (2009) 
developed the Target Diagram, which displays RMSE with an orthogonal 
decomposition of bias and centred RMSE to quantify their corresponding 
contributions to RMSE. The major advantage of the Target Diagram over 
the Taylor Diagram is that it takes bias between two datasets into 
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account. 
As a further version, the FairMode (Forum for air quality modelling 

in Europe) initiative developed the Model Performance Criteria (MPC) 
to check whether paired differences between model outputs and refer
ence measurements remain within corresponding uncertainties (Perni
gotti et al., 2013; Thunis et al., 2012, 2013). FairMode makes the Delta 
Tool available to display Target Diagrams whether or not the MPC are 
satisfied (https://aqm.jrc.ec.europa.eu/index.aspx). 

Although both diagrams are suited for evaluating agreement be
tween model outputs and reference measurements, none of them are 
appropriate to evaluate whether the Data Quality Objectives (DQO) set 
in the AQD are met. The AQD states that reference, equivalent to 
reference and indicative measurements as well as model outputs shall 
meet the DQO, which are the maximum relative expanded uncertainties 
of regulated pollutant measurements not to be exceeded at the corre
sponding Limit Values (LV). The AQD also states that the methodology 
described in the Guide for the Demonstration of Equivalence of Mea
surement Methods (GDE) shall be followed to show the fulfilment of 
DQO (European Commission, 2010). This method estimates measure
ment uncertainty using a quadratic summation of a) the residuals sum of 
squares (RSS) of orthogonal regression and b) the bias between this 
orthogonal regression line and the perfect line of agreement (slope of 1 
and intercept of 0) at each pollutant level. 

The aforementioned methodologies, namely the GDE and the Target 
Diagram, suggest different approaches and thus metrics to check 
compliance of measurements/modelling with the DQO, either directly 
or indirectly. These approaches can be merged in a modified Target 
Diagram, where RMSE is replaced with measurement uncertainty 
calculated in line with the GDE method, thus adding some slight 
changes. Therefore, the GDE and the Target Diagram can be combined to 
display a variety of useful information, e.g., meeting of the DQO, over or 
under-estimation, lack of sensitivity by showing the measurement un
certainty as the distance of each data to origin of the Target Diagram etc. 

The Modified Target Diagram (MTD) proposed in this study has been 
particularly designed for evaluating of the performance of low-cost 
sensors (LCS), which have been receiving an increasing interest not 
only from researchers but also from public communities (Kumar et al., 
2015; Lewis et al., 2018; Rai et al., 2017). From a European legislative 
point of view, the LCS would make air pollution monitoring possible at 
much lower cost compared to reference methods. The LCS are identified 
as emerging devices for indicative measurements or objective estima
tions as defined in the AQD (Aleixandre and Gerboles, 2012; Karagulian 
et al., 2019; Spinelle et al., 2017). However, their performances are 
often questionable (Lewis and Edwards, 2016; Spinelle et al., 2015) and 
protocols for evaluation of LCS for air pollution are being developed to 
be able to gather comparable harmonized metrics about LCS data quality 
(ASTM, 2018, 64899; CEN, 2021; Collier-Oxandale et al., 2020; Papa
postolou et al., 2017; US EPA, 2021a; US-EPA, 2021b). 

The MTD can be used to compare any measurement time series to co- 

located reference data giving a harmonized indicator. Applying MTD to 
any past or future studies with provided time series is easy and does not 
require additional information except for brand of reference analyser. 
Using the MTD for the performance evaluation of both dispersion model 
output and the LCS would make implementing the same assessment 
method in line with the AQD requirements possible. 

This manuscript presents the equations required for computing the 
MTD, a guidance for extracting information from the MTD and several 
examples of MTDs for LCS studies. 

2. Theoretical basis 

2.1. Modified Target Diagram 

When the LCS are collocated with the AQMS, a linear relationship 
between two datasets is expected as shown in Eq. (1). In case of a non- 
linear relationship between the LCS and reference data sets, the pro
posed methodology in this paper cannot be implemented due to a non- 
linear bias between two sets. 

Yi = b0 + b1Xi 1  

where  

• Yi is the LCS final data series. Generally, the raw LCS data are 
transformed to the final LCS data using a known or unknown LCS 
calibration model. Hereafter, the LCS data refers to final data in the 
same unit of reference data, unless otherwise indicated;  

• Xi is reference data series, which is the best estimation of true values;  
• b0 and b1 are respectively the intercept and slope of the regression 

line of Yi against Xi. 

The expanded measurement uncertainty of the LCS, U(Yi), is esti
mated using Eq. (2) according to the GDE and elsewhere (CEN, 2021): 

U(Yi)= k
(

RSS
n − 2

− u2(bs, RM) + u2(bs, s) + [b0 + (b1 − 1)Xi]
2
)½

2  

where  

• k is the coverage factor accounting for the probability distribution of 
uncertainty of a measurement with a selected probability level. The 
corresponding standard (CEN, 2021) imposes k to be 2 for a large 
number of experimental results available that gives approximately 
the 95% confidence interval for a normal distribution (1.96 at 95% 
confidence level).  

• RSS is the sum of the squared residuals, computed using Eq. (3), 
when the RSS is constant over the Xi range: 

Abbreviations 

AQD Air Quality Directives 
AQMS Air quality monitoring stations 
AT Alert threshold 
CL Critical level 
DQO Data quality objectives 
DR Deming regression 
GAM General additive models 
GDE Guide to demonstrate the equivalence 
MPC Model Performance Criteria 
MTD Modified Target Diagram 
LAT Lower assessment threshold 

LCS low-cost sensors 
LV Limit value 
OLS Ordinary least squares regression 
OR Orthogonal regression 
RB Relative bias 
RMSE Root-mean-squared-error 
RSi Squared-residual 
RSS Sum-squared of residuals 
RR Relative residuals 
u(bs,RM) Between reference method standard uncertainty 
u(bs,s) Between sensors standard uncertainty 
UR(Yi) Relative expanded uncertainty of Yi (LCS results for a 

testing duration of i)  
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RSS=
∑n

i=1
[Yi − (b0 + b1Xi)]

2 3    

• n is the number of data pairs;  
• u(bs,s) is the between LCS standard uncertainty;  
• u(bs,RM) is the between reference method standard uncertainty. 

u(bs,s) is optionally added to Eq. (2) when performance is evaluated 
for multiple sensors of the same brand. Usually, a subset of LCS of the 
same brand is tested at the AQMS for calibration and/or performance 
evaluation purposes. Thus, u(bs,s) can be computed using Eq. (4): 

u(bs, s) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑N
l=1
∑p

j=1

(
Yl,j − Yl

)2

N(p − 1)

)√
√
√
√ 4  

where:  

• Yl,j is the measurement of LCS j for period of l;  
• Yl is the mean result for period l from p collocated LCS;  
• N is the number of measurements over time when u(bs,s) is 

estimated;  
• p is the number of collocated LCS. 

The RSS includes the random uncertainty of reference measure
ments. u(bs,RM) shall be subtracted from the RSS, thanks to (RSS/(n- 
2))1/2 and u(bs,RM) being independent and therefore their variances are 
additive. When multiple reference instruments are deployed in field 
tests, the between reference method random uncertainty, u(bs,RM), 
should be calculated using Eq. (4). In this case, Yl,j corresponds to the 
reference data for period l of reference instrument j. When only a single 
reference instrument is deployed, previously calculated u(bs,RM) shall 
be used. These values can be found for many reference analysers else
where (CEN, 2021; “QAL1 - Certified measuring- and eval
uating-systems,” available at: https://qal1.de/en/hersteller/thermo.ht 
m). 

Eq. (5) is derived from Eq. (2) to compute the relative expanded 
measurement uncertainty of LCS, UR(Yi), as the ratio of U(Yi) to Xi. 
UR(Yi) is the square root of the quadratic summation of:  

• RR, see Eq. (6), the relative residuals of the regression line corrected 
for u(bs, RM) and optionally for u(bs,s);  

• RB, see Eq. (7), the relative bias between the regression line and the 
perfect line of agreement with slope of 1 and intercept of 0. 

UR(Yi)=
U(Yi)

X1
=k

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎡

⎢
⎢
⎣

(
RSS
n− 2− u2(bs,RM)+u2(bs,s)

)1
2

Xi

⎤

⎥
⎥
⎦

2

+

[
b0+(b1 − 1)Xi

Xi

]2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

1
2

5  

RR= k

⎡

⎢
⎢
⎣

RSS
(n− 2)

Xi
+
− u2(bs, RM) + u2(bs, s)

Xi

⎤

⎥
⎥
⎦

1 /

2

6  

RB= k
[

b0

Xi
+(b1 − 1)

]

7 

In Eq. (5), since Xi is the best estimate of the true value, it is more 
rational to normalize UR(Yi) to Xi rather than Yi since bias in Yi could 
distort UR(Yi). In addition, by normalising UR(Yi) to Xi, it is possible to 
check whether the DQO are met at the true air pollutant levels including 
the LV, upper/lower assessment thresholds (UAT and LAT), and alert/ 
critical levels (AT/CL) (see Table 1). 

In Eq. (5), (b1-1)Xi+ b0 gives the distance between the regression line 
of Eq. (1) and the perfect agreement line with slope of 1 and intercept of 
0 while random errors are represented by the remaining terms, namely 
the RSS, u(bs,s) and u(bs,RM). In Eq. (6), RSS/(n-2) - u2(bs,RM) shall not 
be negative, otherwise, u(bs,RM) is likely to be overestimated. More
over, a contribution of u(bs,s) is optionally added to Eq. (6) to account 
for the variability in LCS units. If variability of LCS is not tested and 
evaluated, u(bs,s) shall be discarded. In that case, UR(Yi) and RR will 
only apply to individual LCS and cannot be generalised to other LCS of 
the same brand. 

Eq. (5) allows to plot a MTD with RB on y-axis and RR on x-axis. 
UR(Yi) is represented by the hypotenuse of the triangle RB, RR, and 
UR(Yi). UR(Yi) can be directly compared to the DQO that are shown with 
bold contour lines centred on the origin (0,0), here after called target 

Table 1 
Level of upper or lower assessment thresholds or the alert or critical levels and data quality objectives for indicative measurements, objective estimation and class 3 set 
in the Air Quality Directive and in TS 17660.   

Averaging 
time 

LV UAT LAT AT or 
CL 

DQO of indicative 
measurements 

DQO of objective 
estimations 

DQO of Class 3 of TS 
17660   

μg/ 
m3 

μg/ 
m3 

μg/ 
m3 

μg/m3 % % % 

Sulfur dioxide, SO2 1 h 350   500 25 75 200 
SO2 24 h 125 75 50 20 25 75 200 
Nitrogen dioxide, 

NO2 

1 h 200 140 100 400 25 75 200 

NO2 1 year 40 32 26  25 75 200 
Ozone, O3 8 h 120 84 60  30 75 200 
O3 1 h    240    
Benzene 1 year 5 3.5 2  30 100 200 
Carbon monoxide, 

CO 
8 h 10a 7a 5a  25 75 200 

PM10 24 h/1 h 50 35 25  50 100 200 
PM2.5 24 h/1 h 25 17.5 12.5  50 100 200 

Note 1: LV is the limit or target value, UAT is the upper assessment threshold, LAT is the lower assessment threshold, AT is the alert threshold, CL is the critical levels 
and DQO is the data quality objective. Please note that some LVs might change after finalizing the ongoing review of the Air Quality Directive and the update of LVs in 
the new World Health Organization guidelines (WHO, 2021). 
Note 2: For O3, an averaging period of 1 h instead of 8 h shall be used for the evaluation of LCS at the LV. 
Note 3: For benzene, an averaging period of 1 h instead of 1 year shall be used for the evaluation of LCS at the LV. 
Note 4: For CO, an averaging period of 1 h instead of 8 h shall be used for the evaluation of LCS at the LV. 
Note 5: For PM10 and PM2.5, technical standard regarding the testing of LCS is yet to be approved, and it is likely that an averaging period of 1 h shall be set in addition 
to 24 h for the evaluation of LCS at the LV. 

a In mg/m3. 
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circles. Eq. (6) and Eq. (7) show that the RR and RB depend on Xi, while 
(b1-1) is the only constant value. The RR and b0/Xi decrease with 
increasing Xi, indicating that the relative expanded uncertainty given by 
the DQO might be exceeded at lower Xi whereas it is possible to be met at 
the LV, UAT and LAT, and AT/CL. Applying a coloured Xi scale at the 
MTD is an effective visualisation solution to display this complexity, 
clearly identifying UR(Yi) at corresponding Xi. This illustration helps to 
evaluate whether the DQO are met at Xi approaching to the regulated 
pollutant levels. 

2.2. Regression types for comparison of data sets 

The choice of regression type to compare two data sets, e.g., 
orthogonal regression (OR) or Ordinary Least Squares Regression (OLS), 
may have a significant effect on slope and intercept and thus on UR(Yi) 
computed using Eq. (5). The major difference of OR compared to the 
OLS is that it accounts for perpendicular distances from data pairs of 
candidate and reference to the regression line. A generalization of OR, 
so-called the Deming regression (DR, Deming, 1943), aims at mini
mizing a weighted RSS (wRSS), both along x-axis and y-axis (Eq. (8)). 
The DR has only an analytical solution if δ, the ratio of the variances of y 
over x, is known (Eq. (9)). Eq. (10) and Eq. (11) give respectively slope, 
b1, and intercept, b0, with intermediary calculations given in Eq. (12) to 
Eq. (14) of a regression line assuming both x and y are measured with 
non-negligible errors. With equal error variances of y and x thus δ = 1, 

The DR becomes an OR. Since u(bs,RM) can be found for almost all 
reference analysers available in the market, the DR seems to be appli
cable by computing u(bs,s) employing multiple LCS in field experiment. 
However, the direct inspection of approval test reports reveals that some 
of the reported u(bs,RM) are evaluated questionable along Xi range, 
since these tests were performed usually at a single pollutant level, 
which is usually considerably higher than typical ambient air levels, 
thus overestimated for low Xi. u(bs,RM) should ideally decrease with 
decreasing Xi. Consequently, augmented u(bs,RM) leads to an under
estimated δ and thus erroneous slope and intercept of the DR line. 

The GDE imposes to fit an OR to demonstrate equivalence of a 
candidate method to a reference method, both being expected to show 
similar between instrument uncertainty. However, in case of LCS being a 
candidate method, u(bs,s) is expected to be higher than u(bs,RM), as 
reference methods have the highest metrological quality for pollution 
monitoring. Therefore, the OR cannot be used and instead the OLS 
aiming at minimizing errors only parallel to y-axis (LCS) is better suited 
and advised for evaluating the LCS meeting the DQO, since the error on 
the x-axis (Reference) can be assumed to be much smaller than the ones 
on the y-axis (Eq. (3)). For the OLS, the intercept and slope of line are 
computed using Eq. (11) and Eq. (15), respectively. 

wRSS=
∑n

i=1

(Yi − (b1Xi + b0))
2

u(bs, s)2 +

(

Xi − Yi − b0/b1

)2

u(bs,RM)
2 8 

Fig. 1. Example of MTD for a PM10 sensor.  
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δ=
(

u(bs, s)
u(bs,RM)

)2

9  

b1 =
Syy − δ Sxx +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Syy − δ Sxx

)2
+ 4 δ Sxy

2
√

2Sxy
10  

b0 =Y − bX 11  

Sxx =
1

n − 1
∑

(X − X)2 12  

Syy =
1

n − 1
∑

(Yi − Y)2 13  

Sxy =
1

n − 1
∑

(Xi − X) (Yi − Y) 14  

b1 =

∑
[(Xi − X) (Y − Y)]
∑

(Xi − X)2 15  

where Y and X are the mean LCS and reference data, respectively. 
The MTD can be plotted selecting several fitting options including 

the OLS (advised for the LCS, the method prescribed in CEN, 2021), the 
OR as stated in the GDE and the DR. 

2.3. Fitting sum squared of residuals 

In Eq. (3), the residuals, (Yi − (b1Xi + b0)), are assumed to be 
approximatively constant over Xi range to attribute an Xi-regardless 
value to the RSS. Eq. (3) is valid only if the variance of residuals remains 
constant over Xi range, so-called homogeneity of variance or homosce
dasticity. Conversely, the situation of the variance of residuals varying 
over Xi is called heterogeneity of variance or heteroscedasticity (Zuur 
et al., 2010). Heteroscedasticity can be detected using the Breusch Pagan 
test (Breusch and Pagan, 1979). 

In case of heteroscedasticity, using the RSS in Eq. (5) is not possible 
since the squares of residuals, RSi, are not constant over Xi range. 
However, a simple approach to account for possible heteroscedasticity 
consist of fitting a General Additive Model (GAM) (Hastie and Tibshir
ani, 1987, 1990) describing the relationship between RSi and Xi, and 
thus the modifications of Eq. (5) and Eq. (6) respectively to Eq. (16) and 
Eq. (17) for computing UR(Yi) and the RR. 

UR(Yi)=
U(Yi)

X1
=k

⎧
⎨

⎩

[
(RSi − u2(bs,RM)+u2(bs,s))

1
2

Xi

]2

+

[
b0+(b1 − 1)Xi

Xi

]2
⎫
⎬

⎭

1 /

2

16  

RR = k
[

RSi

Xi
+
− u2(bs, RM) + u2(bs, s)

Xi

]1 /

2

17 

The Breusch Pagan test should be initially applied to determine 
whether the variance of residuals is not constant over Xi range. In such 
case, a GAM should be fitted to account for the variation of RSi versus Xi, 
and UR(Yi) and RR should be computed using Eq. (16) and Eq. (17) 
instead of Eq. (5) and Eq. (6). In case of fitting RSi with a GAM, the effect 
of random errors included in the RR on UR(Yi) would be better estimated 
and represented. 

3. Results 

3.1. Guidance of reading MTD 

A wide range of different information can be extracted from the MTD. 
Using the example given in Fig. 1, the following guidance for reading the 
MTD is given where the numbered list refers to blue numbers in Fig. 1:  

1. Firstly, identify the bold line in the plot with a coloured scale 
indicating the ascendingly sorted Xi from green to red.  

2. The colour scale indicates the Xi range from light green to red, 
corresponding to 10.0 and 148.7 μg/m3 in the example of Fig. 1.  

3. The distance between any point of the bold coloured line and the 
origin indicates UR(Yi) computed using Eq. (5). In Fig. 1, the 
smallest Xi of 10.0 μg/m3 has a corresponding UR(Yi) of 215%.  

4. Each UR(Yi) can be visually estimated by interpolation of the 
target circles shown in bold solid lines (50, 100 and 200% in 
Fig. 1) indicating the DQO or dotted lines (150% in Fig. 1).  

5. UR(Yi) corresponds to the hypotenuse of triangle made up of two 
contributors: the first one is from the RR (Relative random effect) 
describing random error of LCS data computed using Eq. (6). In 
Fig. 1, the smallest Xi has a corresponding RR of 200%.  

6. And the second is one from the RB (Relative bias) between the 
LCS and reference data computed using Eq. (7). In Fig. 1, the 
smallest Xi has a corresponding RB of 90%.  

7. The RB is divided into two contributors to UR(Yi): the first one is 
from the intercept of the regression line, which equals to 2(b0/Xi). 
This contribution is indicated by an oblique solid coloured line 
respecting the coloured scale of Xi (see point 2). 2(b0/Xi) values 
are read on the x-axis.  

8. And the second one is a constant contribution to UR(Yi) from the 
slope of the regression line, which equals to 2(b1-1). This 
contribution is indicated by a vertical solid coloured line using 
the coloured scale of Xi. 2(b1-1) values are read on the x-axis. In 
Fig. 1, at the smallest Xi, the RB is 90%, as the sum of b0 effect 
(140%) and b1 effect (− 50%).  

9. Comparison of standard deviations of the LCS and reference data 
and bias being negative or positive, which are also identified by 
the location of the bold coloured line. 9.1) If the standard devi
ation of LCS data is lower than the one of reference data, the bold 
coloured line locates at the left of the y-axis with values on the x- 
axis increasing from right to left, otherwise, the bold coloured 
line stands at the right of the y-axis. 9.2) When the RB is positive 
or negative, UR(Yi) are plotted in the above or below the x-axis, 
respectively. This topic is further discussed in Section 4.1. The 
line of Fig. 1 being at the right of the y-axis shows that the LCS has 
higher sensitivity than the reference data. The bold coloured line 
crossed the x-axis at about 30 μg/m3, thus the line for Xi < 30 μg/ 
m3 being above the x-axis shows that the LCS overestimated the 
reference data. Conversely, for Xi > 30 μg/m3, the bold coloured 
line being below the x-axis shows that the LCS underestimated 
the reference data.  

10. The current AT, LV, UAT and LAT set in the AQD are displayed 
when covered by the Xi range (see Table 1).  

11. All the legislative levels covered by the Xi range are marked on 
the bold coloured line using a blue asterisk with an indicative 
label. In Fig. 1, the LV of 50 μg/m3, the UAT of 35 μg/m3 and LAT 
of 25 μg/m3 are covered by the range of Xi between 10 and 149 
μg/m3.  

12. In the example of Fig. 1, the title is “4043A7_5310CST_ug.m- 
3_Kohler_20200407_20200422_Out.Relative_humidity-1_Me
dian-3_“. Although there are no requirements, the title should 
identify the brand of sensor, e. g. 4043A7_5310CST. In Fig. 1, the 
title also indicates the unit of the raw sensor (μg/m3), the type of 
calibration model (Kohler model), the time interval of the cali
bration datasets (between 2020-04-07 and 2020-04-22), the co
variate used in the calibration model (relative humidity), and the 
method to determine the coefficients of the model (Median-3 
refers to the median of all models set for 3 days interval within 
the calibration period).  

13. The 2nd line of the title gives the interval time of prediction 
(between 2020-11-01 and 2021-04-14), b0 and b1 the intercept 
and slope of the regression line of LCS data versus reference data 
in Eq. (1) with the type of regression being fitted (the OLS, the OR 
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or the DR), and ubs_RM the between reference analyser uncer
tainty. In Fig. 1, for an PM10 reference analyser Fidas, u(bs,RM) is 
1.4 μg/m3 given elsewhere (The approval test, https://qal1.de/r 
eport/0000040212_21227195C_palas_Fidas200S_en.pdf, extrap
olated from Table 26 for the LV of 50 μg/m3).  

14. The caption of x-axis gives the equations and units to compute the 
RR and its contributions from b0 and b1 that are all read on the x- 
axis. In Fig. 1, u(bs,s) was not included in Eqs. (5) and (6) hence 
not in the label of x-axis either. 

The MTD presented in this paper was plotted using R scripts devel
oped by the authors (R Core Team, 2021), in particular the “Target.Di
agram” function in the “Functions4ASE.R′′ file (Gerboles et al., 2021). 

3.2. Decomposition of bias between regression line and perfect agreement 
line 

The RB is decomposed into two elements, 2b0/Xi and 2(b1-1). These 
elements are plotted on the x-axis of MTDs to give visual information 
whether the RB is dominated by either element in relation to Xi. In fact, 
(b1-1) is constant over Xi range while b0/Xi decreases with Xi. An 
intersection point where these two elements cancel each other may 
occur, which is evidenced by the bold Xi coloured line crossing the x- 
axis. Fig. 1 shows an example of the effects of 2b0/Xi (50%) and 2(b1-1) 
(− 50%) cancel each other at Xi about 30 μg/m3. Fig. 2-right shows an 
example where the effect of b0 and b1 never cancel each other since the 
bold coloured line does not cross the x-axis. 

Fig. 2-left gives an example of RB being dominated by the contri
bution of b1 that is evidenced by the larger distance between the y-axis 
and the 2(b1-1) line than the distance between the y-axis and the 2b0/Xi 
line for the highest Xi. Conversely, Fig. 2-right shows an example where 
the RB is dominated by the contribution from b0 that is demonstrated by 
the larger horizontal distance between the y-axis and the 2b0/Xi line 
than the horizontal distance between the y-axis and the 2(b1-1) line. 
Fig. 2-left suggests that a slope adjustment would be beneficial while 
Fig. 2-right suggests an offset adjustment. 

In Fig. 2-right, the RR always equals to zero, resulting from sub
tracting a high u(bs,RM) found in the approval test (0.6 ppm), which is 
even higher than the Xi range (0.1–0.3 ppm CO) plotted in the MTD. The 
effect of constant versus variable u(bs,RM) on the RR is further discussed 
in section 4.3. 

4. Discussion 

4.1. Fast extraction of information from the MTD 

The primary use of MTD is to check whether the LCS meet the DQOs 
of the AQD at the legislative levels presented in Table 1, for indicative 
measurements, modelling and objective estimation. In Fig. 1, since the 
LV at 50 μg/m3 marked with a blue asterisk on the bold coloured line is 
within the first target circle of 50%, it can be visually confirmed that the 
LCS is meeting the DQO for indicative measurements with UR(Yi) of 46% 
being lower than the requirement (50%, Table 1). According to the 
scheme developed in (CEN, 2021), this LCS could be granted to classi
fication 1. 

A simple scatterplot of UR(Yi) versus Xi could have drawn the same 
conclusion. However, the MTD gives additional information such as:  

• The bold coloured line being above the x-axis (1st or 4th quadrant) 
indicates an overestimation of the LCS compared to reference data. 
Conversely, the bold coloured line being below the x-axis (2nd or 3rd 
quadrant) indicates an underestimation of the LCS compared to 
reference data.  

• Additionally, the bold coloured line being at the right of y-axis (1st or 
2nd quadrant) indicates a higher sensitivity of the LCS compared to 
reference data. Conversely, the bold coloured line being at left of the 
y-axis (3rd or 4th quadrant) indicates a lower sensitivity of the LCS 
compared to reference data.  

• Variation of contributors to the RB: High contribution from b0 would 
indicate an offset between the LCS and reference data, possibly 
correctable by offset subtraction, while high contribution from b1 
may indicate an erroneous slope of calibration, possibly correctable 
by re-calibration or readjustment. Significant contribution from b0 
and/or b1 are evidenced when corresponding thin coloured line(s) 
are far from y-axis.  

• The comparison of RR and RB: In Fig. 1, the RR at the LV (40%) being 
two times higher than the absolute value of RB (20%) shows that 
UR(Yi) is dominated by the random errors, as indicated by the RR, 
likely resulting from several parameters including the electronic 
noise of LCS.  

• Improvement by adjustment of b0 and/or b1 in order to set the RB to 
zero: in Fig. 1, the adjustment of b0 and b1 could allow to set the RB 
to zero for the entire Xi range with a rotation of the bold coloured line 

Fig. 2. Examples of MTD with UR(Yi) dominated by the contribution of the slope (NO sensor, left) and intercept (CO sensor, right) of regression line of the LCS data 
versus reference data. 
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upon the x-axis. However, since UR(Yi) is dominated by the RR, 
setting the RB to zero by adjustment of b0 and b1 would not allow any 
significant decrease of UR(Yi). 

There are cases when the effects of b0 and b1 never cancel each other 
and thus the RB never crosses the x-axis. Such cases might happen due to 
either:  

• the contributions of b0 and b1 are located on the same side of the y- 
axis with the combinations of b0 negative and b1 < 1, or, b0 positive 
and b1 > 1, see Fig. 3, left;  

• the contributions of b0 and b1 are located on different sides of the y- 
axis but one of these contributions is overwhelming, see Fig. 3, right 
with the b0 effect being higher than the b1 effect. 

4.2. Effect of the regression line type 

Comparing the slopes and intercepts of OLS and OR reveals signifi
cant differences as shown in Fig. 4. The OLS and OR result in respec
tively positive and negative biases which the latter has an increased b1 
contribution of 13% to UR(Yi) compared to 0%. This is mainly caused by 
the assumption of OR that uncertainties of sensor and reference data are 
very similar. This assumption is generally wrong as well as the robust u 
(bs,RM) value necessary to apply the DR is absent, therefore, the OLS is 
the best choice. 

Even if a more realistic estimation of u(bs,RM) is available to use the 
DR, it is likely that u(bs,RM) and u(bs,s) are not constant over the whole 
Xi and Yi ranges, respectively. In particular, u(bs,RM) and u(bs,s) 
approach the corresponding limits of detection of reference analyser and 

Fig. 3. Examples of MTD for NO2 (brand name NO2_B43) and O3 (brand name OX_A431) sensors with the effects of b0 and b1 not cancelling each other. At left, the 
contributions of b0 and b1 are located in the same side of the y-axis, and at right, the contributions of b0 and b1 are located in different side of the y-axis with 
overwhelming contribution from b0. 

Fig. 4. Examples of MTD for an O3 sensor (brand name OX_A431) being compared to reference data using OLS and OR at right and left, respectively.  
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LCS when Xi approaches zero. When u(bs,s) and u(bs,RM) are known 
along Xi and Yi ranges, the weighted linear regression, one the most 
efficient methods to estimate the intercept and slope of regression line 
(Gerboles et al., 2005), can be implemented, although its computation is 
more complicated. 

4.3. Effects of fitted squared residuals and u(bs,RM) 

Fig. 5, upper, shows scatterplots of GAM-fitted and constant absolute 
value of residuals (whose squares equals to RSS

(n− 2)) over the Xi range on 
plotting of MTD for a PM2.5 sensor. The scatterplot of residuals shows 
how using a constant RSS in Eq. (5) is unrealistic. The scatterplot of 
GAM-fitted residuals is characterised by two bumps at about 10 and 30 
μg/m3 and an extremely high increase in RSi towards the max Xi. For 
constant RSS, the MTD shows a linear increase in UR(Yi) while the MTD 
with GAM-fitted RSi follows the same pattern of RSi: at low Xi the RR is 

zero until the RSi being higher than u(bs,RM) followed by two inflexion 
points of UR(Yi) representing two bumps of RSi around 10 and 30 μg/m3. 
u(bs,RM) of 0.6 μg/m3 is drawn from the approval test of the Fidas 
analyser for PM2.5 at about 20 μg/m3 (https://qal1.de/report/00000402 
12_21227195C_palas_Fidas200S_en.pdf, Table 27), which leads the RR 
to being zero for low Xi. However, the approval test report shows that u 
(bs,RM) decreases with decreasing Xi, down to 0.1 μg/m3 for PM2.5 at 10 
μg/m3. Therefore, UR(Yi) for Yi below 20 μg/m3 is likely underestimated. 

The aforementioned approval test suggests a linear relationship be
tween u(bs,RM) and Xi yielding u(bs,RM) ~ 3% of Xi. Fig. 6 shows the 
effect of variable u(bs,RM) set to 3% of Xi on the MTD of the same PM2.5 
sensor of Fig. 5. The unrealistic zero UR(Yi) at low Xi is replaced by much 
higher values thanks to the better estimation of RR. Conversely, little to 
no change in UR(Yi) can be observed for Xi higher than 10 μg/m3. 

Fig. 5. Example of MTD with GAM-fitted residuals (at left) compared to constant residuals (with RSS averaged as RSS
(n− 2), at right).  
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5. Conclusion 

The proposed MTD requires training regarding its interpretation for 
unexperienced users in order to extract a range of valuable information 
about the performance of a given LCS. Firstly, the compliance with the 
regulations and the DQO of AQD can be easily checked. Secondly, as the 
major added information, the MTD decomposes sources of errors caused 
either by bias of LCS data or random errors, and thus provides guidance 
on how to improve the LCS performance. It allows weighting the 
importance of error sources. When bias appears to be the major source of 
error, adjusting slope and intercept of regression line of LCS vs. refer
ence data quantifies improvement of LCS directly. In case of relative 
expanded uncertainty of the LCS being dominated by random errors, the 
sensitivity of LCS related to pollutant range must be checked, i.e., 
pollutant level should be high enough above LCS detection limit to avoid 
electronic noise interfering signals of measurand. For such cases, the 
MTD allows the user to diagnose if the LCS calibration model is mis- 
defined, e.g., due to lack of LCS selectivity, possible other factors (so- 
called covariates) effecting LCS response, aging-related-drifting of co
efficients of covariates already included in calibration model, or fluc
tuations in the LCS baseline. 

The choice of u(bs,RM) being constant or dynamic over Xi range, 
type of regression between LCS vs. reference data, and computation of 
squared residuals of selected regression line being constant or GAM- 
fitted over Xi range, all affect the MTD and information that can be 
extracted from it. In the absence of robust information indicating 

otherwise, the OLS is the best choice. Although it is tempting to follow 
the methodology given in the GDE and CEN/TS 17660, the MTD would 
better characterize the real performance of LCS by using dynamic u(bs, 
RM) and GAM-fitted RSi rather than constant corresponding values. 

The drawback of MTD is the colour scale making accurate interpo
lation of Xi and UR(Yi) difficult, in particular when Xi range is large. 
Nevertheless, the MTD provides a wide range of useful information for 
evaluating not only performance of LCS but also any other candidate 
method compared to reference method. 

Credit authorship contribution statement 

Sinan Yatkin: Conceptualization, Methodology, Formal analysis, 
Writing - original draft. Michel Gerboles: Conceptualization, Method
ology, Supervision, Formal analysis, Writing - original draft. Annette 
Borowiak: Funding acquisition, writing - review & editing. Silvije 
Davila, Laurent Spinelle, Alena Bartonova, Frank Dauge, Philipp 
Schneider, Martine Van Poppel, Jan Peters, Christina Matheeussen, and 
Marco Signorini: Data collection, writing - review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Fig. 6. Example of MTD with GAM –fitted RSi and variable u(bs,RM) set to 3% of Xi.  

S. Yatkin et al.                                                                                                                                                                                                                                  



Atmospheric Environment 273 (2022) 118967

10

Acknowledgements 

The opinions expressed in this article do not necessarily represent 
those of the European Union. The work was carried out in the framework 
of a Pilot Project “Integrating smart sensors and modelling for air quality 
monitoring in cities” proposed by the European Parliament and imple
mented by the European Commission (Service contract no. 07027747/ 
2019/812686/SER/ENV.C.3). 

References 

Aleixandre, M., Gerboles, M., 2012. Review of small commercial sensors for indicative 
monitoring of ambient gas. Chem. Eng. Trans. 30, 169–174. https://doi.org/ 
10.3303/CET1230029. 

ASTM, 2018. WK64899 new practice for performance evaluation of ambient air quality 
sensors and other sensor-based instruments [WWW document]. URL. https://www. 
astm.org/DATABASE.CART/WORKITEMS/WK64899.htm, 10.26.21.  

Breusch, T., Pagan, A., 1979. A simple test for heteroscedasticity and random coefficient 
variation. Econometrica 47, 1287–1294. 

CEN, 2021. CEN/TS 17660-1:2021–Air quality — performance evaluation of air quality 
sensor systems — Part 1: gaseous pollutants in ambient air [WWW Document]. ITeh 
Stand. Store. URL. https://standards.iteh.ai/catalog/standards/cen/5bdb236e-95a 
3-4b5b-ba7f-62ab08cd21f8/cen-ts-17660-1-2021, 10.26.21.  

Collier-Oxandale, A., Feenstra, B., Papapostolou, V., Zhang, H., Kuang, M., Der 
Boghossian, B., Polidori, A., 2020. Field and laboratory performance evaluations of 
28 gas-phase air quality sensors by the AQ-SPEC program. Atmos. Environ. 220 
(117092) https://doi.org/10.1016/j.atmosenv.2019.117092. 

Cuvelier, C., Thunis, P., Vautard, R., Amann, M., Bessagnet, B., Bedogni, M., 
Berkowicz, R., Brandt, J., Brocheton, F., Builtjes, P., Carnavale, C., Coppalle, A., 
Denby, B., Douros, J., Graf, A., Hellmuth, O., Hodzic, A., HonorÃ©, C., Jonson, J., 
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